

CASCADE III-V Capability and Results

QASPR Independent Review

November 9-11, 2011

Philip Cooper
Department 1384

SAND2011-xxxx

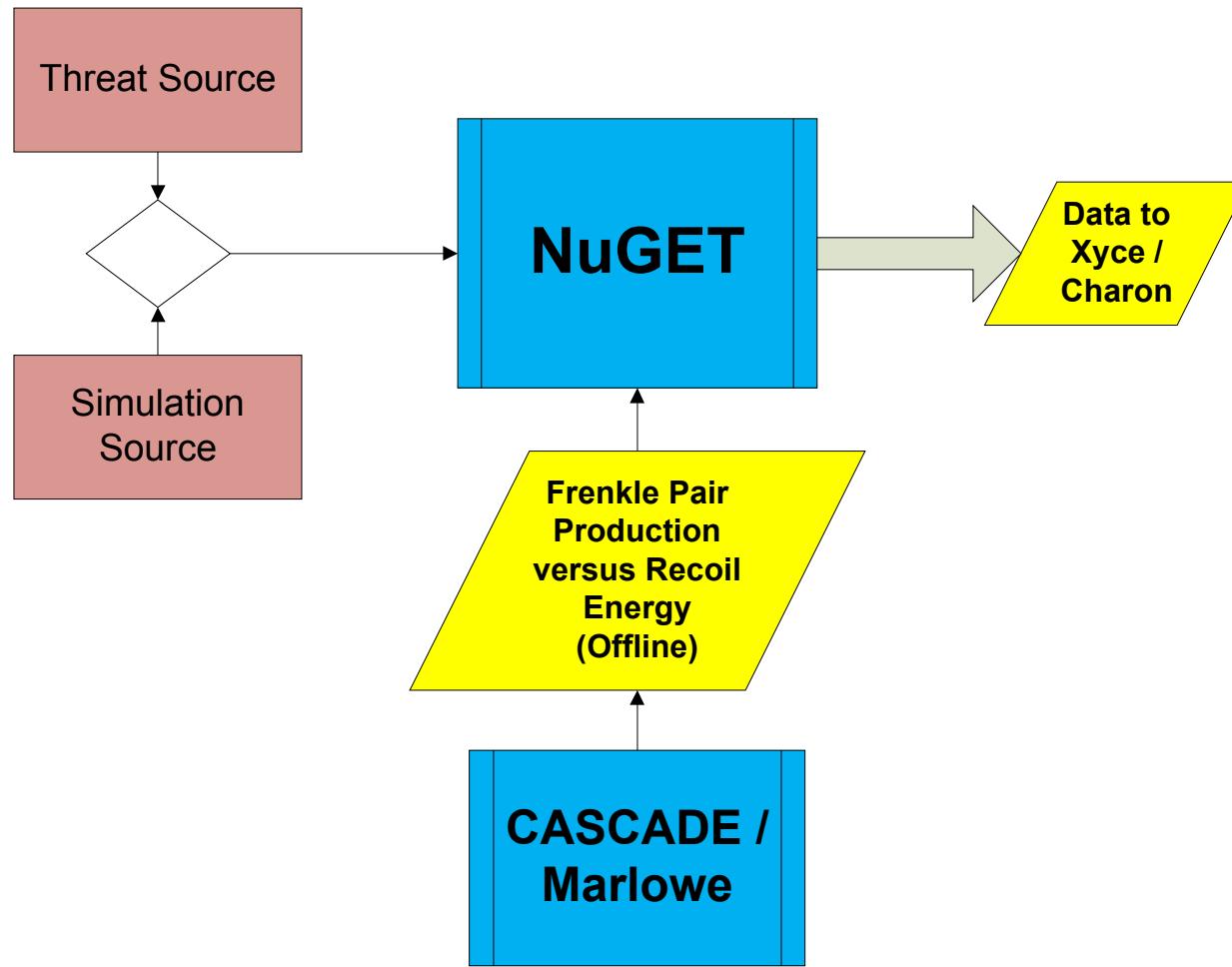
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000..

CASCADE Code

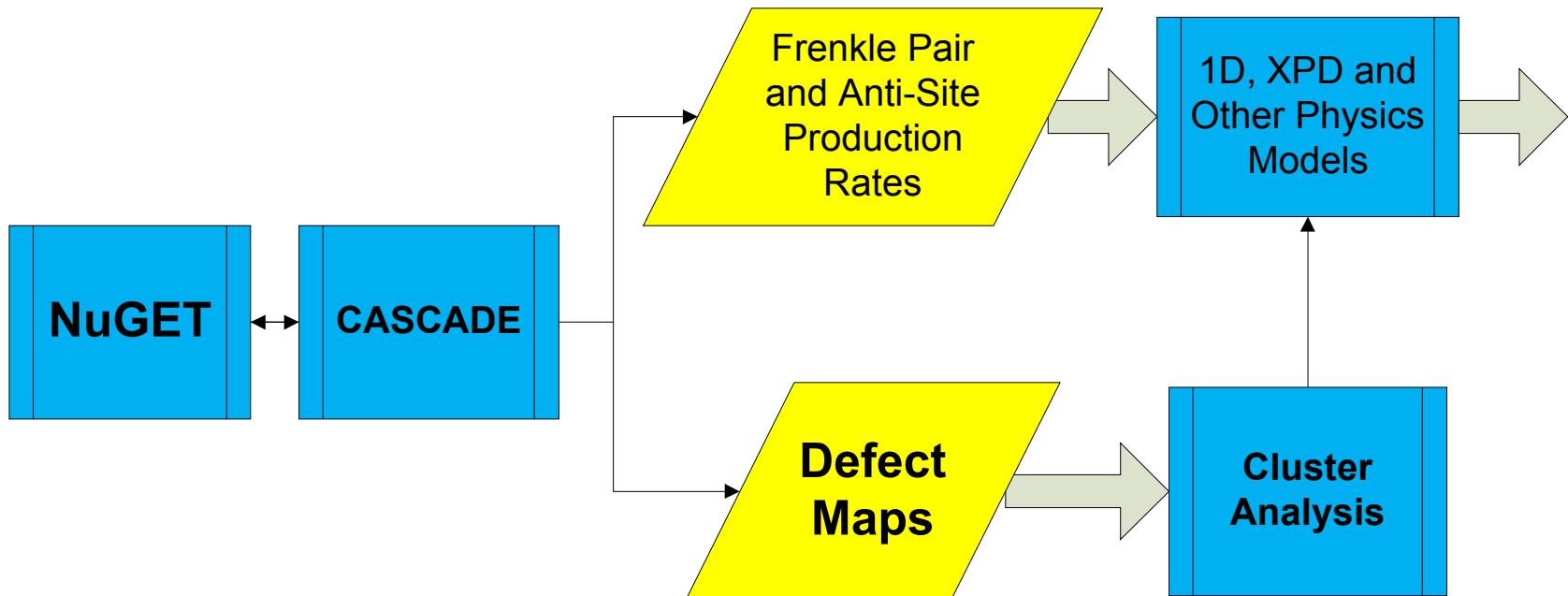
ROLE:

**Using the Threat or Simulation Neutron Fluence,
Time History and Energy Spectra – Generate the
Early Time Displacement Damage Profiles in
Semiconductor Materials of Interest**

Implementing New III-V Capability in CASCADE


- **Implement Additional Empire Recoil Spectra Databases**
 - In-113
 - In-115
 - P-31
 - Al-27
- **Converge on a Threshold Displacement Energy for Marlowe for GaAs**
 - MD Comparisons
- **Pick Threshold Displacement Energies for InP and AlGaAs**
 - ~ Literature Values

CASCADE / NuGET QASPR Roles



- **Production Code Path for Frenkle Pair production Rates – NuGET**
- **NuGET – Traditional ASC Code**
- **CASCADE – Physics / Model Development Code**
 - Frenkle Pair Production – for use in NuGET
 - Defect Maps – for cluster analysis and device physics modeling work

QASPR Production Flow

QASPR Model Development Flow

The Ga and As
results are
very similar

Si and GaAs CASCADE Results – Nov 2010

Facility	SPR		ACRR		
	CC	PbB Bucket	Si	GaAs	
Environment	Si	GaAs	Si	GaAs	
Lattice Material	Si	GaAs	Si	GaAs	
Recoil Model	EMPIRE	EMPIRE	EMPIRE	EMPIRE	
Quantity					Units
FP / Fluence	51.10	48.28	33.52	30.74	(FP/cm ³) / (n/cm ²)
Cascades / Fluence	0.1732	0.2106	0.1492	0.3624	(Reactions/cm ³) / (n/cm ²)
Avg No. FP per Cascade	294.8	229.3	176.2	84.8	FP / cascade
Avg. Recoil Energy	54.56	18.25	39.61	6.67	keV

III-V CASCADE Results – Oct. 2011

Facility	SPR		SPR		
	CC	CC	InP	AlGaAs	
Environment	Si	GaAs			
Lattice Material	Si	GaAs	InP	AlGaAs	
Recoil Model	EMPIRE	EMPIRE	EMPIRE	EMPIRE	
Quantity					Units
FP / Fluence	51.10	38.82	110.84	33.96	(FP/cm ³) / (n/cm ²)
Cascades / Fluence	0.1732	0.2106	0.1780	0.2119	(Reactions/cm ³) / (n/cm ²)
Avg No. FP per Cascade	294.8	185.8	628.4	169.3	FP / cascade
Avg. Recoil Energy	54.56	18.21	45.9	19.0	keV

Conclusions

- **QASPR has a demonstrated III-V capability in CASCADE**
- **There are issues in determining the Threshold Displacement Energies for the new III-V Materials**
- **The Role of CASCADE is evolving in the QASPR Process**

Future Plans

- Comparisons of Frenkel Production for GaAs in CASCADE and NuGET
- Perform InGaP and InAlAs Calculations
- Marlowe Ion Beam Calculations supporting the Ion Beam experimental work
- Pair Correlation Function analysis in CASCADE
- Additional Recoil Spectra
 - Boron
 - Nitrogen