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this 

 Model Validation is the compilation of useful indicators regarding 

the accuracy and adequacy of a model’s predictive capability for 

particular output quantities (possibly filtered and transformed) that 

are important to predict for an identified purpose, 

where meaningful comparisons of experiment and simulation 

results are conducted at points in the modeling space that present 

significant prediction tests for the model use purpose.  

An Operational Definition of model 

validation (for computational phys. engr. models) 



this 

• The approach evolved from working many industrial scale validation 

problems featuring a broad variety of real-world conditions and 

difficulties 

• Philosophy and rationale underlying the Real Space approach were 

presented and discussed at the last JANNAF workshop  

• This talk will concentrate on illustrating processes and procedures of the 

approach 

 
• Caveats 

 

– No overwhelming consensus yet exists for how to approach model 
validation—the Real Space approach is just one possible approach 
 

– Model validation theory and methodology are still being actively 
researched, developed, debated, and refined in the experimental, V&V, 
and M&S communities 
 

 

– the Real Space methodology itself is still under development, testing, 
and evaluation, and continues to evolve 

  

A Pragmatic ―Real Space‖ approach to 

model validation will be presented here 



exper. sim. exper. sim. exper. 

sim. 

• ―Real Space‖ – involves no subtractive difference of results from simulation and 

experiment, or other transform discrepancy measures 

• Simple criterion for zeroth-order preliminary indication of model adequacy 

 

Real Space accuracy/discrepancy measure 

and Model Adequacy criterion  

 This case meets ―Zeroth-order‖ 

conditions for model adequacy  

• model prediction bounds experimental 

uncertainty bar (as the best available 

evidence of where “reality” lies) 

• If the data/model relationship remains 

consistent in extrapolation (the hope in 

all modeling), the predictions will bound 

reality in the extrapolation conditions 

Reality lying w/in the predictions is what a 

designer or decision maker wants* 

*assuming non-excessive (acceptable) sim. uncer. 

range as assessed by propagation to system level 

Greater prediction risk in above cases 

– much of reality lies outside the model 

predictions 

– If data/model relationship remains 

consistent in extrapolation then 

much of reality will lie outside predictions  
 

 Adequacy in any of the 3 cases shown above can 

be assessed more definitively if can propagate 

errors to system level & assess whether errors 

are acceptably small (jointly, for all lower-level 

validation results considered together) 

– Requires system-level model & parametric map 

to “traveling model” at validation setting 

 



(I don’t expect you 

to read these! )  
− Fire CFD val. example 

only involves a few of 

these terms 

─Experimental uncertainty bar (net) 

─Simulation uncertainty bar (net) 

exper. sim. 

    Equations for Constructing Net Experimental & Simulation 

Uncertainty Bars for Real-Space Comparisons  



Different Types of Uncertainties within 

Terms of Equation Set 

Uncertainties in various Terms of the Equation Set can be interval and/or 

distributional, 

 

e.g. interval and distributional subterms in Term D of Master Equation Set: 

 

 

• Interval uncertainties seem to 
be much more prevalent in real 
model validation settings than 
are uncertainty distributions 
 

Aggregation of Interval and PDF uncertainties 



Calorimeter 

Response  

at location 10  

Case Study example: 

Validation of Fire CFD model 

• Validate fire CFD simulations of radiative and convective heating 

of a weapon-like calorimeter in wind-driven fire.  
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Inlet 

Enclosure 

Fuel 

Exhaust 

 

 

Cross-Wind Test Facility (XTF)  
CFD mesh 
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movie 
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Construction of Uncertainty Bars on 

Experimental Results 

 

 
 



Fire Fluctuation-induced uncertainty on 

experim. sustained high-mean temperature  

 

• Validation comparisons 

at 8 TCs diversely and 

representatively spaced on 

calorimeter 

• Sustained high steady-state temperature is the Quantity of validation interest 

These sample results are for TC #5 

Exper. 1 

Graphical 

Processing 

Uncertainties 

Exper. 2 

1394 ±5 K ―averaging‖ uncer.  

• different averaging 

time-windows (4, 6, 

8 min.) give steady-

state high temps. 

within ±5K 

1412 ±5 K 



Possible sources of Uncertainty in 

experimental processed results 
 

 error/uncertainty in processing of measurement sensor results  

• e.g. spatial interpolation and/or integration or averaging of sensor data 

• ±5 K for fire example 
 

 sensor reading bias-errors, e.g. 

• thermocouple transducer bias error (±11 K for fire example) 

• bias error in calibration standard used to calibrate data acquisition system 

(to correct for transducer bias error) 

• sensor mounting effects like contact resistance between a thermocouple 

and the surface it is mounted to (~0 for fire example, averages out of mean)  
 

 error/uncertainty in Data Reduction Equations (DREs) used to calculate 

―derived‖ measurements from other quantities, e.g.  

• Speed is not measured directly, is calculated by distance ÷ elapsed_time 

• Gas velocity is calculated from Bernoulli Equation, Ideal Gas Law, and 

measured atmospheric pressure and local temperature and pressure 

drop in a Pitot tube   

 uncertainty in measured quantities input to DREs  

 uncertainty in experimental conditions like BCs, ICs, & item next slide 



―Data Conditioning‖ of Experimental Results to 

account for Uncertain Experimental Input Factor 

 

• uncertainty of the black paint’s emissivity is a non-traveling systematic 

uncertainty (0.86 ± 0.1) in the validation experiments 

• this emissivity strongly affects the validation response quantities 

(temperatures at the thermocouples) in the experiments 

• Since there is significant uncertainty in this experimental input factor, 

and the experimental output results of validation interest (TC 

temperatures) are sensitive to this input, the output results must be 

conditioned to reflect this input uncertainty.  

• ―horizontal‖ input factor uncer.  vertical uncer. bar on output result 

from model, emis. uncer ± 0.1                   ± 33K at TC#5 

 

Emissivity of painted 

black surface of 

calorimeter in fire 

experiments was a 

prominent 

experimental uncer. 

(systematic, not 

random, over expers.)  



Data Conditioning of Experimental Results to 

account for Systematically Uncertain Input Factor 

–Term E, 1-D case 

• Input uncertainty in the experiment should be reflected by uncertainty on the  

output result, but does not automatically show up without ―conditioning‖ the data 

Systematic uncertainty of 

input to an experiment, 

e.g. a load or 

boundary condition 

Lower representative bounding 

curve on exper. response, re
L(xi)   

Experiment output 

response, re 

∆xi ∆xi 

Upper representative bounding 

curve on exper. response, re
U(xi)  

Input, xi 

• Systematic input uncertainties 
can be: 

– intervals 

– uncertainty distributions 

– combination of both 



Data Conditioning of Experimental Results to 

account for Systematically Uncertain Input Factor 

–Term E, 1-D case 

• Input uncertainty in the experiment should be reflected by uncertainty on the  

output result, but does not automatically show up without ―conditioning‖ the data 

Case where 

experiment is run 

at one level of the 

input factor, 

+ use of a model 
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Systematic uncertainty of 
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Experiment output 

response, re 
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Upper representative bounding 

curve on exper. response, re
U(xi)  

Input, xi 



Output uncertainties 

corresponding to 

these inputs  

Data Conditioning of Experimental Results to 

account for Systematically Uncertain Input Factor 

–Term E, 1-D case 

Systematic uncertainty of 

input to an experiment, 

e.g. a load or 

boundary condition 

• Input uncertainty in the experiment should be reflected by uncertainty on the  

output result, but does not automatically show up without ―conditioning‖ the data 

Case where 

experiment is run 

at one level of the 

input factor 

(use of a model) 

Lower representative bounding 

curve on exper. response, re
L(xi)   

Experiment output 

response, re 

∆xi ∆xi 

Upper representative bounding 

curve on exper. response, re
U(xi)  

Input, xi 

∆re
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Experiment output 
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L(xi) 
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Data Conditioning of Experimental Results 
 

–Term E, multivariate case (2D example) 

 

• Multivariate treatment is much 
more involved than 1-D 
univariate case 

 

 

 

 

 

 

 

 

   Details in conference paper: 

    “Data & Model Conditioning for Multivariate 
Systematic Uncertainty in Model Calibration, 
Validation, and Extrapolation,” V. Romero, 
paper AIAA-2010-2511, 12th AIAA Non-
Deterministic Approaches Conference, 12-15 
April 2010, Orlando, Fl. 

 

2-D example of 

multivariate case 

where experiment 

is run at sufficient 

level combinations 

of the input factor 

(model not used) 

4 parallel planes 



Aggregate Experimental Uncertainty 

Experimental uncer’s. and rollup to aggregate 

experimental uncertainty in steady-state temp. at TC5  

- 1 of 1 -
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Graphical 

Processing 

Uncertainties 



Construction of Uncertainty Bars on 

Simulation Results 
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―Traveling Uncertainties‖ intrinsic to 

Fire-Dynamics CFD Model 

 

• heat of combustion:   44.66kJ/mol ± 10% 

• soot extinction coefficient:  7 ± 10% 

• flame volume coefficient:    2.13 ± 30% 

• flame loading coefficient:    0.41 ± 30% 

• turbulence model form:     TFNS versus BVG 

• convection coefficient at object surface: calculated value -50% to +100% 

 

 

Epistemic parameter and model-form uncertainties: 

• each simulation took ~ 6wks. on 256 CPUs 

• could only afford 5, for 6-factor UQ 
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Disgression next 4 slides:  
Use of other application problems & code for 

Sensitivity info. on Fire Model Uncertainties 

• Each Accident Scenario: 

– 16 simulations to investigate 
sensitivity to 8 sources of 
uncertainty (below) 

– parameter sets by structured 
Experimental Design 

 

• Modeling uncertainties: 

– Calculation Resolution in Time, 
Space  

– Turbulent Kinetic Energy Model  
(2 alternate plausible models) 

– Heat of Combustion 

– Soot Extinction Coefficient 

– Flame Volume Coefficient 

– Flame Loading Coefficient 

– Convection Coefficient 

 

“Airplane Fire” 

“Truck Fire” 

(sims. & analysis 2000-’02 by Victor Figueroa, Sam Yoon, J. Nelsen, V. Romero) 

Block-structured grids with 

non-parallel code VULCAN 
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Block-Structured Experimental Designs 

Turbulence model 

Standard 

k-є 

k-є  +  BVG 

(Buoyant Vorticity 

Generation) 
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Sensitivity Results 

 sensitivities consistent between Truck and Airplane fire simulations  

Time = 170 sec., Metric is Heating Potential at object surface 
 

• Sensitivities used to 
determine the 
combinations of 
parameter values 
(over their ranges 
of uncertainty) that 
give enveloping 
high and low fire 
intensities 
 

• Used to estimate 
bounds on 
calculated heat 
imparted to object 
in model validation 
study 
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Airplane-Fire Sensitivity Results 

~ Relative Magnitude of Discretization Effects 

Time = 22 sec., Metric is Object Surface Temperature • Difference between 
coarse-mesh and 
medium-mesh 
results is same scale 
of effect as dominant 
physical uncers. 
 

• Comparisons at  

medium and fine 

discretizations 

indicate relatively 

insignificant diffs. 
 

Is important to assess discretization effects on calculated results 

 



Thermocouple TC 5
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Uncertainty Rollup of Simulation Results, 

with Validation Comparisons to 

Experimental Uncertainty  

Propagated uncertainty in the fire CFD model predictions 

provisionally* bounds the experimental temperatures w/uncer. — at 

TC5 and the 7 other TCs on the calorimeter   

*see next slide for caveats 
- 1 of 1 -
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Extrapolation 

steady-state 

uncertainties emis. uncer. 

Combinations of 

Model-Intrinsic 

uncertainties that 

give High and 

Low heating 

bounds.  

(Identified from 

previous uncer./ 

sensitivity studies 

of ―airplane‖ and 

―truck‖ fires) 



this 

• simulations were terminated before steady-state results 

were established, and mesh-related calculation verification 

was not performed  steady-state solutions may lie outside 

the estimated uncertainty bars 

 

• ±2σ bounds on experimental variability were calculated 

from only 2 repeat tests; actual variability could be much 

greater, large enough to extend well past the simulation 

bounds 

 

• A substantial buffer of >35K exists at upper and lower ends 

against potential analysis errors from above two causes. 

Error buffer is much greater at the other 7 TCs analyzed.  
 
 

 

  

Caveats and Conclusions 



this 

• A pragmatic Real Space approach to model validation 

has been demonstrated that is versatile, economical, 

and robust enough to handle the many real difficulties 

and types & sources of uncertainties encountered in 

this tough model validation problem─and other types 

of difficulties and uncertainties not encountered here. 

 

• Some aspects of the uncertainty quantification in the 

fire CFD validation problem were admittedly ―ugly‖ and 

crudely approximate, but associated with the problem 

itself and not the Real Space validation methodology. 
 

 
 

 

  

Caveats and Conclusions (cont’d.) 

 


