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An Operational Definition of model o
validation (for computational phys. engr. models) @ b aaories

Model Validation is the compilation of useful indicators regarding
the accuracy and adequacy of a model’s predictive capability for
particular output quantities (possibly filtered and transformed) that
are important to predict for an identified purpose,

where meaningful comparisons of experiment and simulation
results are conducted at points in the modeling space that present
significant prediction tests for the model use purpose.




A Pragmatic “Real Space” approach to -
model validation will be presented here @l"aagf,‘:z?énes

* The approach evolved from working many industrial scale validation

problems featuring a broad variety of real-world conditions and
difficulties

« Philosophy and rationale underlying the Real Space approach were
presented and discussed at the last JANNAF workshop

« This talk will concentrate on illustrating processes and procedures of the
approach

« Caveats

— No overwhelming consensus yet exists for how to approach model
validation—the Real Space approach is just one possible approach

— Model validation theory and methodology are still being actively

researched, developed, debated, and refined in the experimental, V&V,
and M&S communities

— the Real Space methodology itself is still under development, testing,
and evaluation, and continues to evolve



Real Space accuracy/discrepancy measure |
and Model Adequacy criterion () i

Laboratories

 “Real Space” —involves no subtractive difference of results from simulation and
experiment, or other transform discrepancy measures

« Simple criterion for zeroth-order preliminary indication of model adequacy

exper. — : :_ sim. exper. _J'_ J'__ sim. exper. _J'_
Lo
— _/ S— -
This case meets “Zerot"-order” Greater prediction risk in above cases
conditions for model adequacy — much of reality lies outside the model
« model prediction bounds experimental predictions
uncertainty bar (as the best available — If data/model relationship remains
evidence of where “reality” lies) consistent in extrapolation then
e If the data/model relationship remains much of reality will lie outside predictions

consistent in extrapolation (the hope in
all modeling), the predictions will bound
reality in the extrapolation conditions

Adequacy in any of the 3 cases shown above can
be assessed more definitively if can propagate
errors to system level & assess whether errors

MReality lying w/in the predictions is what a are acceptably small (jointly, for all lower-level
designer or decision maker wants* validation results considered together)
*assuming non-excessive (acceptable) sim. uncer. — Requires system-level model & parametric map

range as assessed by propagation to system level to "traveling model” at validation setting



Equations for Constructing Net Experimental & Simulation
Uncertainty Bars for Real-Space Comparisons

Model Experiment
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Different Types of Uncertainties within s
Terms of Equation Set @m‘ﬁﬂl’i‘m_
Laboratories

Uncertainties in various Terms of the Equation Set can be interval and/or
distributional,

e.g. interval and distributional subterms in Term D of Master Equation Set:

#I1.B_ sources # I.B|intvi sources | # I.BR | PDF sources |
U Ulr, ]I.Bj - U U[re]f.sj + Inwl_c U U[re]I.Bj
7 J=1 Jj=1

z+ A?

* Interval uncertainties seem to
be much more prevalent in real

model validation settings than 2+ AP

are uncertainty distributions

Aggregation of Interval and PDF uncertainties



Sandia Thermal Test Complex

Case Study example:
Validation of Fire CFD model

Sandia
National
Laboratories

 Validate fire CFD simulations of radiative and convective heating
of a weapon-like calorimeter in wind-driven fire.

Cross-Wind Test Facility (XTF)
CFD mesh

interior of
cone calorimeter

1800 b
1600 - =
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s 1400 s [
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= 7 —— sIM1
g 800 | sim2 |[
L 500 4 —— sm3 |[
. i —— sima |[
Calorimeter 400 - siv s |L
] sm 6 |}
Response 200~ -

at location 10  time, [experiments - minutes] [simulations - secor



Construction of Uncertainty Bars on Soni
Experimental Results () .

#+  experiment
~$— computation

response

input



Fire Fluctuation-induced uncertainty on -
experim. sustained high-mean temperature @P’:JL‘:';?éries

« Sustained high steady-state temperature is the Quantity of validation interest

Direction
of fire flow

- Validation comparisons
at 8 TCs diversely and
representatively spaced on
calorimeter

Level 10, “top”
thermocouple set

Graphical
Processing
Uncertainties

Tc3 | Level 2, “bottom”
- thermocouple set
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These sample results are for TC #5

wha el — 1394 +5 K

Exper. 1

—— Experiment 6 TC5 data
—— smoothed data - 4 min. averaging window
—— smoothed data - 6 min. averaging wini" 4549

1

averaging” uncer.

smoothed data — 8 min. averaging wini
1400

\\\ 1300 ,

1200 -

1100

i,
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Exper. 2

w&»‘w_lmz +5 K

—— Experiment 7 TCS data

—— smoothed data - 4 min. averaging window

— smoothed data - 6 min. averaging window
smoothed data - 8 min. averaging window

- different averaging ? w0
time-windows (4,6, "
8 min.) give steady- 0]
state high temps. "““ﬂ
within £5K i

5 6 70 8 9 100 110 120 130
time (minutes)



Possible sources of Uncertainty In -
experimental processed results @l“:&'&:ﬂ‘;‘ém

< error/uncertainty in processing of measurement sensor results
* e.g. spatial interpolation and/or integration or averaging of sensor data
« +5 K for fire example

< sensor reading bias-errors, e.g.
« thermocouple transducer bias error (x11 K for fire example)

» bias error in calibration standard used to calibrate data acquisition system
(to correct for transducer bias error)

« sensor mounting effects like contact resistance between a thermocouple
and the surface it is mounted to (~0 for fire example, averages out of mean)

< error/uncertainty in Data Reduction Equations (DREs) used to calculate
“derived” measurements from other quantities, e.g.

« Speed is not measured directly, is calculated by distance =+ elapsed_time

« Gas velocity is calculated from Bernoulli Equation, Ideal Gas Law, and
measured atmospheric pressure and local temperature and pressure
drop in a Pitot tube

< uncertainty in measured quantities input to DREs
< uncertainty in experimental conditions like BCs, ICs, & item next slide



“Data Conditioning” of Experimental Results to
i : Sandia
account for Uncertain Experimental Input Factor @National

Laboratories

Emissivity of painted
black surface of
calorimeter in fire
experiments was a
prominent
experimental uncer.
(systematic, not
random, over expers.)

» uncertainty of the black paint’s emissivity is a non-traveling systematic
uncertainty (0.86 £ 0.1) in the validation experiments

* this emissivity strongly affects the validation response quantities
(temperatures at the thermocouples) in the experiments

« Since there is significant uncertainty in this experimental input factor,
and the experimental output results of validation interest (TC
temperatures) are sensitive to this input, the output results must be 1
conditioned to reflect this input uncertainty.

» “horizontal” input factor uncer. ® vertical uncer. bar on output result
from model. emis. uncer + 0.1 " = ¢ 4+ 33K at TC#5




Data Conditioning of Experimental Results to

account for Systematically Uncertain Input Factor @ﬁgﬂﬂﬁm
—Term E, 1-D case

Laboratories

* Input uncertainty in the experiment should be reflected by uncertainty on the
output result, but does not automatically show up without “conditioning” the data

Experiment output

response, r,
A

Upper representative bounding
curve on exper. response, r.Y(x;)

Y e
_-~7 %7 Lower representative bounding
-7 =7 curve on exper. response, r,-(x;)
Rl
- > Input, X;
AX; AX; .. . -
\ . * Systematic input uncertainties
Systematic uncertainty of can be-
input to an experiment, int ' |
e.g. aload or —1n erva_s o _
boundary condition — uncertainty distributions

— combination of both



Data Conditioning of Experimental Results to
account for Systematically Uncertain Input Factor @ﬁgﬂﬂﬁm
—Term E, 1-D case

Laboratories

* Input uncertainty in the experiment should be reflected by uncertainty on the
output result, but does not automatically show up without “conditioning” the data

System output Model predicted
response functional trend

Experiment output

response, r,
A

Upper representative bounding > ArY = [or, Y/axi|AX;

curve on exper. response, r.Y(x;) y Feo
/// ] T ,‘<
: s / '
_-~"_-=7 1 Lower representative bounding - Arg- = [0r,H/OXi|AX;
el ad . curve on exper. response, r-(x;)

. /f:g/t o slopes from

4 R Input, x model trend

AX;

Systematic uncertainty of T
input to an experiment, Case where
€.g. aload or . experimentis run
boundary condition at one level of the

input factor,
+ use of a model




Data Conditioning of Experimental Results to

account for Systematically Uncertain Input Factor @ﬁandial
ationa

—Term E, 1-D case

Laboratories

* Input uncertainty in the experiment should be reflected by uncertainty on the
output result, but does not automatically show up without “conditioning” the data

Experiment output

response, r,
A

Upper representative bounding
curve on exper. response, r.Y(x;)

Lower representative bounding
curve on exper. response, r,“(x;)

790
— Input, x;
AX; AX; Experiment output
\ _ _ response, r,
Systematic uncertainty of A

input to an experiment,

e.g. aload or
boundary condition

Output uncertainties 4
corresponding to

System output

response

Model predicted
functional trend

- ArY = |or, Y/ox|AX;

> Arb= |or, Yoxi|AX;

slopes from
model trend

> /reU(Xi)

reL(Xi)

these inputs —

- > Input, X;

AX; T

Case where
experimentis run
at one level of the
input factor

(use of a model)




Data Conditioning of Experimental Results

Sandia
National _
Laboratories

—Term E, multivariate case (2D example)

Experimental output T T

response, I, ‘.’::? i

& ','::::’j:/’i i i

* Multivariate treatment is much AT

more involved than 1-D iq‘*'“:

univariate case AR
- ‘& :’ L _zir-l’

2-D example of e
multivariate case T 7" ArFs | 4
where experiment 13 13
is run at sufficient vnd ‘T ety

level combinations
of the input factor

Experiment output

(model not used) response, r,(x;, x;
Details in conference paper: [ r R
“Data & Model Conditioning for Multivariate tre
Systematic Uncertainty in Model Calibration, w Ar,t= dr,jde|e
Validation, and Extrapolation,” V. Romero, r A
paper AIAA-2010-2511, 12th AIAA Non-
Deterministic Approaches Conference, 12-15 cormers1.2 3,4

i 4 parallel planes > dinat
April 2010, Orlando, FI. P P ¢  coordinate

parallel to Vr,
direction



Aggregate Experimental Uncertainty @ Mot
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Experimental uncer’s. and rollup to aggregate
experimental uncertainty in steady-state temp. at TC5

Aggregate

1600 K = experimental
uncertainty
Exper. 7
+
Exper. 6 1—{7
150K = Exper-to-Exper. + 66
+ _6_6 variability (nom.) B
+39 +11
+ 11 1412 + \-!_E- Meas.
1400 K === Meas. Lo—m — = — T— - - - - —f— uncer.
uncer. N1394 45 -11
-11 \ ~ 39 1
1 U = 1403 - 66
1300 K == — 66 _\ Emis. uncer.

Emis. uncer. -

- 117
Graphical
Processing

Uncertainties

1200 K ==



Construction of Uncertainty Bars on Soni
Simulation Results () .

#+  experiment
~$— computation

response

input



A 4
e~ 7 “Traveling Uncertainties” intrinsic to o
Fire-Dynamics CFD Model @r:ng,gﬁgm

Epistemic parameter and model-form uncertainties:

« heat of combustion: 44.66kJ/mol £ 10% I
* soot extinction coefficient: 7 £ 10%

 flame volume coefficient: 2.13 £ 30%

 flame loading coefficient: 0.41 = 30%

e turbulence model form: TFNS versus BVG

e convection coefficient at object surface: calculated value -50% to +100%

e each simulation took ~ 6wks. on 256 CPUs

e could only afford 5, for 6-factor UQ

18



Disgression next 4 slides:

~——

Use of other application problems & code for @ Noftorel
Sensitivity info. on Fire Model Uncertainties abortores

(sims. & analysis 2000-°02 by Victor Figueroa, Sam Yoon, J. Nelsen, V. Romero)

Max

i . . ) . . Temperature(K) {6062
Block-structured grids with “Airplane Fire =
non-parallel code VULCAN e o

1260.0
168,23
1046.7

« Each Accident Scenario:

— 16 simulations to investigate
sensitivity to 8 sources of
uncertainty (below) = ] : oy

— parameter sets by structured
Experimental Design

 Modeling uncertainties:

— Calculation Resolution in Time, .
Space “Truck Fire”

— Turbulent Kinetic Energy Model Temperature (K)
(2 alternate plausible models) s te s

E

J

I im)

1810.0
L610.0
1470.0
1330.0
10,0
1050.0
a10.0
T770.0
630.0
490.0
292.9

— Heat of Combustion
— Soot Extinction Coefficient
— Flame Volume Coefficient

B

— Flame Loading Coefficient

19 — Convection Coefficient 15 2 2 2

Time= 54,000 Z [n)




Sandia

Block-Structured Experimental Designs @B‘;gj;:g:gm

(L,H,H) (H,H,H) A
10 9 Flame Loading Coeff.
&
High+ ®
3
A
Med + 6® 01 @5
Soot Extinction
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8
Co I-II)eatt of 2 loe=
mbustio
(L,L,L) (H,L, Tim e R esOlUtiOﬂ : : } Flame Vol:me Coeff.
Low Med High
Convection |
Coefficient
Time | 20— o
Resolved 3
Turbulence model
° ° Quasi
uasi
Standard k-e + BVG Steady | 1¢—0]3
k-€e (Buoyant Vorticity
Generation) Grid Resolution

T T } "
20 Low Med High
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Sensitivity Results
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» sensitivities consistent between Truck and Airplane fire simulations

 Sensitivities used to
determine the
combinations of
parameter values
(over their ranges
of uncertainty) that
give enveloping

fire

* Used to estimate
calculated heat

Imparted to object
In model validation

Time = ., Metric is Heating Potential at object surface
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e Airplane-Fire Sensitivity Results

Sandia
. . . . . National
~ Relative Magnitude of Discretization Effects @ laboratores

Is important to assess discretization effects on calculated results

Time = ., Metric 1s Object Surface Temperature - Difference between
400 , . coarse-mesh and
g QS..med T.R:med medlum'meSh
e ] results is same scale
:E: 380 Q.S.,.:fi ne ﬂ - Of Eff_ect as d0m|nant
= physical uncers.
{:‘é 370 ]
@ .
< 360 s 1 * Comparisons at
s p . .
- Thicoase . medium and fine
0 ° 1 ' discretizations
e A x Refinement (case 18 & 2) indicate relatiVEIy
100 : —e— At Refinement on medium grid (case 1 & 3) | _ . . . g .
-©~ Flame Volume (low — igh) |nS|gn|f|Cant d|ﬂ:S.
-} Turbulence Modeling (k- — BVG) |
= Q.&:me_d_'l’_.l%:med
3 80 e /\@ .
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|_§ 70 n
<
oor T.I?.: coarse 1

50 !
22 0 5 10 15



Extrapolation Uncertainty for computed -
steady-state temperatures at TC5 location @Naﬂvna'
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Uncertainty Rollup of Simulation Results,
with Validation Comparisons to @ﬁg?_dﬁal
Experimental Uncertainty
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--------------------------------------- + 33
1220 I33
1500 K == -
range of . 1// .
experimenta range o inati
unI():ertainty prediction _ Comblnatl_ons_ of
uncertainty Extrapolation Model-Intrinsic
1400 K = steady-state uncertainties that
emis. uncer. uncertainties give High and
Low heating
X bounds.
1300 K = 1 +337 .
1286 1273 oZT
R A
1252 K 7FNS-Low, Sim. 3
1200 K ==

\/Propagated uncertainty in the fire CFD model predictions

provisionally* bounds the experimental temperatures w/uncer. — at
TC5 and the 7 other TCs on the calorimeter
*see next slide for caveats
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Caveats and Conclusions @sanma

e simulations were terminated before steady-state results
were established, and mesh-related calculation verification
was not performed = steady-state solutions may lie outside
the estimated uncertainty bars

« +20 bounds on experimental variability were calculated
from only 2 repeat tests; actual variability could be much
greater, large enough to extend well past the simulation
bounds

« A substantial buffer of >35K exists at upper and lower ends
against potential analysis errors from above two causes.
Error buffer is much greater at the other 7 TCs analyzed.



Caveats and Conclusions (cont’d.) )
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* A pragmatic Real Space approach to model validation
has been demonstrated that is versatile, economical,
and robust enough to handle the many real difficulties
and types & sources of uncertainties encountered in
this tough model validation problem—and other types
of difficulties and uncertainties not encountered here.

« Some aspects of the uncertainty quantification in the
fire CFD validation problem were admittedly “ugly” and
crudely approximate, but associated with the problem
itself and not the Real Space validation methodology.



