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Presentation Outline

a Introduction

Why does structural health monitoring (SHM) for fiber-reinforced polymer (FRP)
composites matter?

o Implementation of carbon nanotubes
Utilizing their impressive properties for structural monitoring

o Characterizing nanocomposite sensors
What are their mechanical sensing capabilities?

o Changing the SHM paradigm to spatially distributed sensing

From discrete to distributed sensing using electrical impedance tomography

o Validating spatial sensing for common FRP damage modes
How well does multi-modal spatial sensing perform?

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites
A

@ ., Doctoral Exit Seminar: Mechanical and Aerospace Engineering Department, UC Davis - June 7, 2012 2/32



Usage of Fiber-Reinforced Composites

o Over the past 50 years, increased usage of composite materials

Space shuttle and space structures

Naval structures Wind turbine blades CFRP cable stay bridge
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Composite Damage Modes

o Susceptible to damage due to:

Strain, impact, chemical
penetrants, multi-axial fatigue

- Damage modes:
Matrix cracking

Fiber-breakage w3 i
Delamination Visual inspection C-SCAN ultrasound image

Transverse Cracking CFRP panel after 20 Joule impact

Fiber-matrix debonding
Matrix degradation
Blistering

o Difficult to detect
Internal to laminate structure

Nearly invisible to naked eye

Adhesive exposed to hydraulic fluid at 70°C
Sugita et al, (2010)
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University of California, Davis

Emerging Sensing Technologies

Wireless Sensors and Sensor
Networks

UCI DuraNode
Chung, et al. (2005)

Wang, et al. (2008)

o Advantages:
Low cost
Dense instrumentation
Reconfigurable

o Disadvantages:
Point sensors
Indirect damage detection
Physics-based models
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Ultrasonics and
Guided-Waves

Passive sensing

Array of piezoelectric ceramic sensors
and actuators

o Advantages:
Sensors and actuators
Spatial damage detection

o Disadvantages:
Indirect damage detection
Wave propagation models
or pattern recognition
Thin metallic structures
Expensive data acquisition
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Micro-electromechanical
Systems (MEMS)

D) SRR A0S

Amm.
o

AD iMEMS
Weinberg (1999)

3-axis accelerometer
Lemkin (1997)

o Advantages:
Miniaturized sensor designs
Complex sensors/actuators

o Disadvantages:
“Top-down” design
Expensive fabrication
equipment
High costs
Sensor sensitivity on par with
macro-scale counterpart
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University of California, Davis

Current SHM limitations Successful SHM system
Indirect sensing approaches 1. Directly detect and measure damage
Point-based sensing Determine the damage location
Tethered sensors Ascertain the size of the damage

Lack of system scalability Quantify the severity of the damage

O LN

Het  Lgm  Pain  Cad Achieve multi-modal sensing
capabilities (i.e., delamination, cracking,

and chemical penetration)

Merve Connective Hair Strong
tissue mavement pressure

Overview of the human dermatologic
system (Mallery 2008)
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Presentation Outline

PART I PART II PART Il
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using bio-inspired sensing

modal sensing polymer composites skins
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mapping

w1

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites 7730
V] Doctoral Exit Seminar: Mechanical and Aerospace Engineering Department, UC Davis - June 7, 2012 /



University of California, Davis

o Multi-walled carbon nanotubes (MWNT):
Rolled concentric cylindrical structures constructed of graphene sheets
Diameter: 6 ~ 100 nm
High-aspect ratios: ~103 to 107

Metallic conductivity
Five times stiffer and ten times stronger than steel

Aligned carbon nanotube forest TEM imagery of an end cap of a MWNT
Thostenson, et al. (2001) Harris (2004)
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Layer-by-Layer (LbL) Method

o Sequential assembly of oppositely-charged nanomaterials onto a charged
substrate
Bottom-up fabrication methodology
Incorporation of a wide variety of nanomaterials
2.5-dimensional nano-structuring to design multifunctional composites
o Excellent physical, mechanical, and electrical properties:
Physical: homogeneous percolated nano-scale morphology
Mechanical: high strength, stiffness, and ductility

2. Negatively-charged
monolayer
MWNT-PSS

1. Positively-charged
monolayer
PVA, PANI, etc.

0. Negatively-charged
substrate
GFRP composite
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University of California, Davis

Mechanical strength and electrical conductivity/sensing derived from
percolated thin film morphology

Homogeneous composite with similar properties across entire film
Scanning electron microscopy (SEM) imagery to evaluate percolation and uniformity

,&*ﬁ" a:'%;: 2

-~

SANDIA. 3.8 kv X116K 278nm

Scanning electron microscopic (SEM) cross- Surface SEM image of a 100 bilayer MWNT-
section view of a 150 bilayer MWNT-PSS/PVA PSS/PVA thin film
thin film on GFRP
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Piezoresistivity Validation

Objective:

Validate thin film electromechanical performance deposited on GFRP

O

O

Specimen preparation:
Attach two conductive electrodes and composite tabs
o Nanocomposite electromechanical performance characterization:

Apply monotonic and dynamic uni-axial tensile loading to specimens

L N J
o0
OO0
OO0
Agilent 34401A
6.5 Digit Multimeter

Thin film on
glass fabric

<€

(i | [ [ o
o o606 ([ e
~ Agilent 4294A

Precision Impedance Analyzer

Fiber-coated specimen Thin film mounted in load frame Time- and frequency-domain strain sensing
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Electrical Impedance Spectroscopy (EIS)

o Electrical impedance spectroscopy: 3000
Provides greater insight as compared 2500
to bulk resistivity measurements ’
Measurement of complex electrical 2,000/
impedance across spectrum of S 4 500!
frequencies (40 Hz - 110 MHz) N
1,000 |
V(ja')) 4 rzll
Z(0)=—"—==|Z(0)|£$(0) = Z'(0) + jZ" (o) 500
[(]w) Measured
7000 8500 10,000 11,500 13,000
Physically-based equivalent circuits Z[Q]
are used to fit to the impedance data C
R |I
S

AN
W_

Proposed equivalent circuit model for LbL thin films
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Monotonic Sensor Characterization

o Load frame applies stepped-tensile
displacement profile:

Monotonic increasing strain to failure

Capture full sensors response

o Equivalent circuit model-updating:
Fitting with nonlinear least squares

Extract fitted circuit parameters as a
function of applied strain

o Bi-functional strain sensitivity:
Low strain region:
Linear response (elastic)
High strain region:

Normalized Component Change

» Quadratic Response
Damage to GFRP/thin film

1
[E—

0 10,000 20,000 30,000
Strain [ue]
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Dynamic Sensor Characterization
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Preliminary Results

o Application of a strain sensitive carbon nanotube thin film:
Layer-by-layer deposition process
Direct deposition on GFRP
Demonstrated piezoresistivity

o Bi-function strain sensitivity:
Time and frequency-domain characterization
Demonstrated in monotonic and dynamic loading
Low strain region:
Linear strain sensitivity
High strain region:
» Quadratic sensitivity
Damage accumulation
o Deposition limitations:
Substrates required to be less than a few square inches in size
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University of California, Davis

o Rapid large-scale deposition
Required for mass deployment of methodology

a  MWNT-PSS/Latex paint formulation
Collaborated to improve initial Sandia formulation

Sub-micron PVDF creates mold for MWNT
organization

Off-the-shelf deposition method

sonicate with
J nanotube ink
(PSS wrapped MWCNT)

Kynar Aquatec™ latex solution Forms segregated
(avg. particle size 150nm) MWCNT network

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites
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University of California, Davis

Creation of MWNT networks
Electrical percolation above 1 wt% MWNTs

Fiber-reinforced polymer deployment
Surface applied to post-cured composites
Applied to fiber weaves for embedded sensing
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MWNT-Latex Characterization

o Electromechanical characteristics

16 T T T T
¢+ Quasi-static testing Applied 25 BiL PSS-MWNT/PVA TF
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. . . 1.12 r 80
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Spatially Distributed SHM Paradigm

o Current state-of-art in structural health monitoring: v
Passive SHM using acoustic emissions
Active SHM using piezoelectric sensor/actuator pairs
o “Sensing skins” for spatial damage detection:
Objective is to identify the location and severity of damage
Monitor and detect damage over two- (or even three) dimensions

Direct damage detection

Sensing skin for
application to
structure

Composite Predator UAV Drone
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Electrical Impedance Tomography

o Overview of spatial conductivity mapping

Since film impedance calibrated to strain, conductivity maps can correspond to 2-D
strain distribution maps

© @PBS
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Electrical Impedance Tomography

o Electromagnetic imaging technique
Compute ¥ (®) =0 + jwe

o Measure voltage response of injected
current

o Solve conductivity
Inverse problem:

min{|[y" —y (7 )|+ (7))

o Inverse problem methods
Statistical-probabilistic
Linear Methods
Direct / Iterative
Non-linear Methods
Iterative

Mormalized Conductivity Change
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University of California, Davis

= Laplace’s equation:
V- (G V¢) — (), where 6 can vary by orders of magnitude
Governs potential and conductivity relationship

o Forward problem: conductivity known, solve voltage

o Inverse problem: voltage known, solve conductivity

AC
l(w) Boundary

[
[
voltage : Finite
measurements : element
&, = [v)..v,]" | formulation
Vis Vi :
| Predicted
|
vie_| j v | boundary
vis [_] herent || v: ) — voltage
Viz - . Vg Og;puf
step
Vi V7
Vio Vo Vg Iterate
Update
No Forward

Problem

Minimize cost
Sunction
fo)=
|| drerdo)-v ||
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University of California, Davis

o Reconstructs small ¢ changes Ao T ) ( )A 4
Typically difference imaging - ([_{ W[_{ + &R H W
o V.
: 0,—0,<<0, 0 0
o Maximum a posteriori (MAP) Ao AV

~ _BA—

H: sensitivity matrix

o,
H(Gbkgd )1] = 6(7].
Regularization hyperparameter: A

Noise figure
SNR,

SNR, ,
Use representative ¢ distribution

W: Noise model
R: Regularization matrix

0.5

~1

NF(1)=

Mormalized Conductivity Change

o Advantages

Can pre-calculate H

Many damage modes lead to small
changes in ¢
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Validation EIT

|
o Applied sensing measurements Current Injection Pattern

MWNT-Latex deposited upon cured GFRP
composites 60
78 mm x 78 mm sensing region
8x8 electrodes scheme = 32 electrodes 40

3 mm electrodes 20

6 mm spacing

0

0 20 40 60

o Investigate stability and efficiency: [mm]
Computational demand FIT Error

~ 1 s reconstruction time

o Accuracy characterization: E'Sj
Conductivity: %
Point-to-point resistance map via 4-pt probe k
Spatial feature ID sensing resolution 5
~ 6 mm square at center with -50% Ao 0 q
02 40 60 78
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Spatial Strain Sensing

a 4-pt bending o Strain sensitivity
ASTM D7264 » Nearly linear
MWNT-Latex on GFRP
Stepped displacement profile

Tensile/compressive strains

: il B - LA~ l
T e

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites

Doctoral Exit Seminar: Mechanical and Aerospace Engineering Department, UC Davis - June 7, 2012 27/32




University of California, Davis

Current Injection Pattern

- Embedded sensing architecture 78
MWNT-latex on GF fiber weave

60
Embedded within epoxy matrix 40
a Specimens 20
[0°/+45°/90°/-45%], % 20 40 60 78
Unidirectional GF
150 mm x 100 mm
ASTM D7146 Standard
a Anisotropic EIT ISeessws ]
: : : - Oge & 2
Isotropic > Anisotropic ®» w 2
Scalar P Matrix: o - z %
Oge > Ogge by ~2:1 ; - 5
2 Ogo g %j
2 ® £
V-(Gng):O AYYRFYY Y “
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Embedded Spatial Sensitivity

o= Embedded sensing validation:
Determine conductivity change
sensitivity
Process:
Progressively larger drilled holes:
* 1/16”/ 1/8”/ 3/16”/ 1/4”1 5/16”/ 3/8”/ 1/2”

Anisotropic EIT performed

Conductivity change from pristine
sample

Normalized Conductivity Change

X [mm]
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Impact Damage Detection

o Drop-weight impact tests
ASTM D7146
78 mm by 78 mm sensing region
MWNT-latex on glass fiber weave
Impact energy: 20, 60, 100, 140 ]
Before/after EIT measurements

o Verification:

Thermography
Matrix Cracking
Delamination

wn

=
Mormalized Conductivity Change
=

=
Mormalized Conductivity Change

Photographic Imaging

Surface damage

=
wn
=
wn

- &
n
- &
n

—_
]
—_
]

i} 20 40 ] 78 0 20 40 ] 78

w1
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Summary

o Propose a next-generation SHM system
Direct in situ damage detection
Monitor location and severity of damage

- Embedding multi-modal sensing capabilities
Development of MWNT-nanocomposites for SHM
Characterized electromechanical response to monotonic and dynamic strain
Response to temperature swings

o Outline validation of EIT for damage detection
Strain sensitivity
Damage sensitivity
Impact damage
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Thank You!

Questions?
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University of California, Davis

o Carbon Fiber Reinforced Polymers
Highly anisotropic conductivity
Inhomogeneous

o EIT Model

Isotropic
Homogeneous
Gives reasonable results within bounds
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Future Research Interests

o Basic science
Continue improving EIT reconstruction algorithms
Investigate sensitivity mechanisms
Mechanical
Thermal
Chemical
Development of new sensors
Nanoparticle-based
Electroactive polymers

o Application
Extend EIT to wireless monitoring
Implementing new EIT methods specifically designed for SHM
Grid-based EIT
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Bio-Inspired Sensing

- Two important fundamental limitations of SHM technology:

1. Indirect sensing approaches: Sensors do not sense damage directly

2. Point-based sensing: “point” sensors do not detect spatial structural behavior

-  Human dermatological system:
Multifunctional material:
» Strong to keep germs out
- Temperature regulation
- Absorption of nutrients
» Sensing

- Sensing with spatial recognition
Stimulus localization
Multi-modal sensing:

» Multiple receptor types
» Intricate network of nerves

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites
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Previous Research on Spatial Sensing

o SWNT-PE thin films o Limitation
Homogeneous substrates » DC currents only
Aluminum » Single current pattern
Glass » Slow converging inverse algorithm
o Previous SHM EIT work has shown: » Desire in situ sensing

Linear strain sensitivity

Impact sensitivity

pH sensitivity g i
» 7
2] 6
<]
- 4
d 3
9 2
19 1
! ’
1 i 1 i i '% MG
500 -400 -300 -200 -100 0 100 200 300 400 500 Impact damage Sensitivity
Conductivity (S/cm) Loh et al. (2009)
pH sensitivity
Hou et al. (2009)
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Encoding Piezoresistivity for Strain Sensing

o Piezoresistivity based on percolated SWNT nanostructure
Bulk electrical conductivity influenced by number of nanotube-to-nanotube junctions
Applied strain modifies the number of conductive junctions

o Monotonic tensile testing to explore thin film piezoresistivity:

80,000 T T T T T T T T 04
41100

60,000

~41000
40,000+ b

Strain | pe]
Resistance [Q]

20,000+

7900

Normalized Resistance Change [AR/R 0]

I L L L -01 L L Il
50 60 70 80 90 0 20,000 40,000 60,000 80,000

Time [s] Strain [pe]
Nanocomposite monotonically Resistance time history due to Nanocomposite piezoresistive
loaded in tension applied tensile strain linearity

w1
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University of California, Davis

Nanocomposite Strain Sensor Response

[m]

Detect both tensile and compressive strains

Applied cyclic tensile-compressive strains (£10,000 pe)

Linear response beyond 10,000 pe and without film failure
Load-pattern and load-rate independent

o Drawback: undesirable nominal resistivity drift

0.01 |

0.005

0

-0.005 -

Strain (mm/mm)

-0.01 :
0 50

6860

Time (sec)

100

150

6855 -

6850 -

Resistance ()

6845 :
0 50

Time (sec)

100

150

0.01
0.005

-0.005

Strain (mm/mm)
(]

-0.01

7166

7164

7162

7160

Resistance (Q2)

7158

50 100

200

150 250
Time (sec)
50 100 150 200 250
Time (sec)
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Inherent Electrical Properties

o Observe decay in nominal film resistivity

Film Resistance )

« Resistance drift not due to contact effects
» Decay rate dependent on applied current

19,900 . . 6.5 : . . . . . . .
@ Experimental — 100 pA
19800} ———DecayFit . gl
19,700 E . cel
19,600 F | T
£ 5
&
19,500 F . £
T 45
19400 i 5
19,2300 . i
19,200} ; 3y
19100 F . ar
1 9 UUO , , .'1-':'!':':-.‘-."-:-:':rI-,'u';u;.;.l.‘.:.ﬂ.:.{,bm!‘:!l!' 25 | | f | | f | |
0 5,000 10,000 15,000 20,000 0 B00 1000 1500 2000 2500 3000 3500 4000 4500
Time {sec) Time (sec)

» Nominal resistivity decay may be due to localized heating and physical/chemical
changes in nanotube composite

« Decay can be modeled accurately > R=A e+ C
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Drift-free Strain Sensing Response

o Exponential drift can be numerically removed to obtain drift-free response:

0.01H
0.005

— | I f
0.005 / ., | : v ;x Y
-001F ) . \ - ——MTS 810

I |
700 800

Strain (mmdmim)
=

-0.015 | | | | | |
D 100 200 300 400 500 600
Time (sec)

o High-pass filtering can be employed for dynamic strain measurements:

2.805

Experimental
2.5

2.495 H

YWolts V)

2.49 -

2.485

245 1 1 1 1 1 1
a
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Electrical Impedance Spectroscopy (EIS)
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o Characterize SWNT-PSS/PVA thin film electrical properties:
Measured impedance using regulated electrical current signals (AC: 25 - 125 kHz)
Cole-Cole (or Nyquist) plots of complex impedance reveal thin film electrical properties
Formulate equivalent circuit model to describe strain and nominal resistance drift
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Enhanced Thin Film Mechanical Properties

a As-fabricated LbL films show good mechanical performance compared to other
composites

Mechanical properties important for long-term SHM applications
Significant mechanical performance improvements compared to buckypaper

Buckypaper! Epoxy-Resin? f Layer-by-Layer! ‘
(Blighe, et al. 2008) | (Gojny, et al., 2004) | (Loh, et al. 2010)

Young’'s modulus, E 1.3 GPa 3.3 GPa 13.0 GPa
Ultimate tensile strength, o; 7.5 MPa 63 MPa 215 MPa
Ultimate failure strain, & 5,000 pe 68,000 pe 58,300 pe

! Based on single-walled carbon nanotubes (SWNTs)
2 Based on double-walled carbon nanotubes (DWNTs)

a  Seek to further enhance mechanical and fracture performance:
Post-fabrication thermal annealing < polymer cross-linking
Optimize carbon nanotube weight content

Spatial In Situ Structural Health Monitoring for Fiber-Reinforced Polymer Composites
Doctoral Exit Seminar: Mechanical and Aerospace Engineering Department, UC Davis - June 7, 2012

43/32



Nano-Scale Sensing Performance

o Early experimental studies on carbon nanotube strain sensing performance
conducted with atomic force microscope (AFM)
Use tip to bend individually-suspended SWNTs
At 3% strain, conductance decreased by more than two orders of magnitude
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SiO, substrate SWNT ﬁ
sp -0
0 W ‘A-
10° -

: : -
©
o]
e g ot \
o
w B 2x10% S
=
2
R ¢_Z__a 8 1o .
"J‘):-"i. 5=AZT 9)(10—8 S \ 4)(10-38
. e b e by e e a1 PRI SR T SRR Y S TR N TR S S PRI S T S SR [ S
S0, i 10 20 30 10 20 10 20
Individual SWNT suspended over trench Applied AFM tip deflection and measured conductance

(Tombler, et al., 2000) Stanford University
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University of California, Davis

Limitations of Current Nanocomposites

o Current-generation composites employ mixing of multiple ingredients:
Carbon nanotubes with polystyrene
Carbon nanotubes in epoxy-resin

- Employs traditional composite design methodology to optimize one material

property
Buckypaper - high stiffness, but low ductility and ultimate tensile strength
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Buckypaper stress-strain responses Epoxy-resin stress-strain responses
(Blighe, et al., 2008) Trinity College of Dublin (Allaoui, et al., 2002) Shenyang National Lab
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Challenges with Using Carbon Nanotubes

o Difficult to scale nanomaterial properties to the macro-scale:
Tendency to agglomerate due to strong van der Waals interactions
Leads to poor material properties in buckypaper specimens

e

Poorly-dispersed SWNT solution Well-dispersed SWNT-PSS solution

Scanning electron microscopic (SEM) views of carbon nanotube thin films
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LbL Nanocomposite Mechanical Properties

o Morphology consists of mechanically-strong and -stiff nanotubes sitting in a
highly compliant polymeric matrix
Dramatic improvements in nanocomposite strength and stiffness
SWNT-tuned composites exhibit high ductility (> 10,000 pe)

Tensile Force

25 ‘ ‘ 300 ‘ ‘
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Tensile Force
Nanocomposite strained PSS/PVA polymeric Carbon nanotube-reinforced SWNT-
nanocomposite PSS/PVA LbL composite
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Enhanced Thin Film Mechanical Properties

a As-fabricated LbL films show good mechanical performance compared to other
composites

Mechanical properties important for long-term SHM applications
Significant mechanical performance improvements compared to buckypaper

Buckypaper! Epoxy-Resin? f Layer-by-Layer! ‘
(Blighe, et al. 2008) | (Gojny, et al., 2004) | (Loh, et al. 2008)

Young’'s modulus, E 1.3 GPa 3.3 GPa 11.1 GPa
Ultimate tensile strength, o; 7.5 MPa 63 MPa 253 MPa
Ultimate failure strain, & 5,000 pe 68,000 pe 74,000 pe

! Based on single-walled carbon nanotubes (SWNTs)
2 Based on double-walled carbon nanotubes (DWNTs)

o Quasi-static load tests only reveal time-independent mechanical response:
Layer-by-layer films are polymer-based nanocomposites

It is likely that they exhibit time-dependent mechanical properties such as
viscoelasticity
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Nanocomposite pH Sensing

o LbL versatility allows us to encode pH sensitivity within thin films:
Can be used for monitoring corrosion or biological processes
Employ pH-sensitive polyelectrolyte: poly(aniline) emeraldine base (PANI)
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Fatigue Sensor Characterization

o Long-term low strain dynamic o Long-term dynamic response:
response » Slight linear trend in response
Off-set: +4,000 pe « Less than 0.5% over 1,000 cycles
Amplitude: 4,000 pe » Demonstrates the robust sensing
capabilities of this methodology
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Fatigue Sensor Characterization

o Long-term low strain dynamic o Long-term dynamic response:
response » Slight linear decrease in response
Off-set: +4,000 pe « Less than 0.5% over 1,000 cycles
Amplitude: 4,000 pe » Demonstrates the robust sensing
capabilities of this methodology
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