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Neuroscience spans many scales
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Computational neuroscience integrates across

scales and drives applications

Applications
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More than just NIH health




Computational Neuroscience at Sandia

 Computational Neuroscience

Adult Neurogenesis LDRD

* Simulation Design Platform

Neurons to Algorithms
LDRD

* Simulation Engine and Analysis

Xycew Emerging Brain Maps
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Stretching from data to a useful model

* Case study: adult neurogenesis
— Biologically very well characterized at low levels

— Big questions
e Relevancein humans
* What types of cognition would it affect?

— Substantial application impact
* Target for in psychiatric and neurological therapeutics
— Beyond NIH: PTSD, depression, and traumatic brain injury?

* Novel form of algorithm — plasticity at neural scales?
— Pattern recognition in dynamic, big data?




What is adult neurogenesis?

* Robust process
— Thousands of new
neurons integrate
into dentate gyrus
monthly

* Highly regulated
— Both proliferation

and survival
controlled

— Activity, enrichment,
stress, diet, aging,
disease...

=

van Praag et al., 1999




What is adult neurogenesis?

e Extended
maturation
— Several weeks to
begin integrating into
circuit
— Still “immature”
several months later

e Positioned to make an
Impact
— Dentate gyrus is

initial stage of
hippocampus

— Network amplifies
effect of new neurons
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904863/figure/F5/

Mainstream theory: pattern separation

_ Ay
cell 1 o e
cell 2 _ Ay cell 1 e iy
cell 3 ) m— cell 3 cell 2 ) -
cell 4 -
o cell 3 pr— y 4 - D) cell 3
cell 5 cell 4 o~ Context 1
ceII 5 Animal exposed to
cell 6 cell 5 ? # object in one location.
-
cell 6 e celld 50;.
. o)
Subset of GCs show multiple /---/ / Context 2
place fields in one context. Same subset of GCs show different / [ Animal must be
i . M able to discriminate
place fields in new context. é old location from
nearby foil.

oo

quu?uO

Sparse set of GCs represent
one context.

v é}g,

Threshold Mossy fiber output only targets
¢ iIIII """"" sparse set of downstream CA3 neurons

Josa  09000Q9

‘ f Sparse set of CA3 neurons
now selected to encode
0 000 0 UW cortical inputs.
High inhibition in DG limits firing
to only most excited GCs.

Context 2

Orthogonal set of GCs represent
different context.




Alternative theory: young and old neurons

encode information distinctly

A Immature neurons B Mature neurons

A ootm Aa 9 O4m

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage
Neuron; 2011




Alternative theory (continued): neurogenesis

dynamically restructures coding scheme

Memories encoded by Memories rely on

high and low information neurons: low information neurons:
Okay without neurogenesis

Maturation of neurons allows
memories to now be encoded
by high information neurons

Aimone, Deng and Gage
Neuron; 2011

Impaired without neurogenesis.

Dentate Gyrus performs sparse
coding for episodic memories

Mature neurons are tightly tuned
to specific features
* Not all events will activate
mature neurons

Immature neurons are broadly
tuned
» All events will activate some
immature neurons

Neurons mature to be specialized
to those events later
* Coding range of network gets
more sophisticated over time




Realistic model of nheurogenesis

Neuroanatomy

— Circuit (principal neurons,
interneurons, and how they are
connected)

— Maturation of new neurons
courtesy Chunmei Zhao
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— Every neuron has unique dynamics
28 dpi mature . . .
T % — Neurogenesis resuI'Fs in many different
—a L= = forms of GC dynamics
L

Behavior

Mongiat et al., 2009
— Invivo and immediate early gene
studies of neuron behavior

b-
— Behavior studies in lesion or

knockdown animals
Arruda-Carvalho et al., 2011
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Goal: scale to realistic rat and human sizes
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Goal: realistic connectivity and dynamics
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Goal: represent neurogenesis with biological

realism

7 - 14 days
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14-21 days

Maturation
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21-28 days

>28 days

14 21 28 35 42 49 56

Aimone, Deng, and Gage
Trends in Cog. 5ci. 2010




Goal: test model using realistic inputs

Train network on
series of different
contexts

Each day, network
exposed to very
familiar, familiar, and
novel contexts and
objects
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Activity of network — GC Outputs
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Young GCs dominate activity in response to

novel inputs
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Lack of neurogenesis in large networks

correlates with much lower activity
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* Neurogenesis networks show activity to novel
information at much higher scales

* As we approach human scales, mature neurons appear
essentially silent in response to novel information

e Signal (immature) to noise (mature) is amplified in larger
networks




How should large spiking networks be analyzed?

- Pairwise correlation / dot product
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Proposal: Use compression techniques to
guantify separation and independent coding
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Neurogenesis maintains compressibility and

increases total representation
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Increasing EC-GC weights impairs separation
without improving coding
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So which is right?

Overlapping EC inputs are encoded separately by the DG

Pattern separation?

Associative memories formed in CA3 do not
interfere with one another

N ﬁﬂ%aﬁﬂ%& ap A Immature neurons B Mature neurons
ey ﬁ‘ﬁa,ﬁ

24 Aa ¢ odm Aa ¢ 0+E

Tuning of immature neurons
Tuning of mature neurons

Or memory resolution?

Low information coding of all content High information coding of some content




Neurogenesis strikes a balance

No neurogenesis yields
very little activity
DG representations are
separate but very sparse

Neurogenesis increases
activity while preserving
separation
DG representations
increase their resolution
but avoid interference

Increasing activity
directly ruins pattern
separation
DG representations are
dense and informative but
potentially interfere with
each other



Next research steps

 UQ /SA on large scale simulations
— Neuroscience does not do this

* Apply principles to neural computing

— How can we effectively emulate structural plasticity in
silicon?
— Explore algorithmic potential

* Impact on human decision making

— Can insights into neurogenesis affect our
interpretation / prediction of behaviors of individuals?




Accomplishments and Impacts

Among first human scale simulations in computational neuroscience

* New methods for quantifying information in distributed and sparse neural
networks

e Compromise between pattern separation and memory resolution debates in
neurogenesis field

e  Substantial health implication on aging, chemotherapy, and disease
populations

* Interpretation and design of neural computing technologies

* Grand Challenge Proposal

. Publications

. Rangel ... & Aimone — “A Hypothesis for Temporal Coding by Young and Mature
Granule Cells” Frontiers in Neurogenesis 2013

e Vineyard .. & Aimone—-“ “Proceedings of HCI International 2013
Invited Talks & Meetings

. BU Biomedical Eng; UIUC Neuroscience; Virginia Tech Carillion

. SfN Annual Meeting, Cosyne, HCI International, BICA







e Health

* National Security

* Brain Inspired Computing

 Hardware solutions — new devices and capabilities
beyond conventional computing

« Software/algorithmic solutions — new algorithms to
enable analysts

 Understanding behavior of adversaries

e e.g., DoD focus on understanding “Neurobiology of
Aggression”




Differentiating Features of the Brain

* High connectivity

* Plasticity / Self-reconfigurable

— Synaptic plasticity (weights between neurons change
over time)

— Intrinsic plasticity (neurons electrical properties
change, for instance homeostatically)
— Structural plasticity (architecture rewires itself)

* Synapses come and go...
* Neurons come and go...




Health and behavioral implications

Real world example

UAV Drone operators

* Sleep deprived

* Low enrichment (isolated in trailer in
desert)

* High stress environment

* Implications of NG on performance
* Ability to react appropriately to novel,
unpredicted events

http://web.mit.edu/newsoffice/2012/boredom-and-unmanned-aerial-vehicles-1114.html

* Implications of uncertain outcomes
e Post traumatic stress disorder
* Depression




Information processing in large networks
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Limitations of past modeling work

e Between abstract and | | |
high fidelity == A
| i ]

— Time not particularly
well represented
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