
1) What is a microscopic model and what is not? 

2) How to set one up (e.g. quantum-dot laser) 

3) What it tells us (about expt and beyond expt) 

4) Other examples ... 
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𝜵 × 𝑬 = −
𝝏𝑩

𝒅𝒕
 

𝜵 × 𝑯 = −
𝝏𝑫

𝒅𝒕
 

Radiation field: 𝜵 ∙ 𝑫 = 𝟎 

𝜵 ∙ 𝑩 = 𝟎 

Microscopic versus not microscopic 

Constitutive relations: 𝑩 = 𝝁𝟎𝑯 𝑫 = 𝜺𝑬 

𝜺𝒓 𝒙, 𝒚, 𝒛 𝑬 + 𝑷 

Calculated with quantum mechanics 

= microscopic 

Put in by hand = not microscopic 



Gain 

𝑃 = −𝑖
𝜀0𝑛𝑐

2𝜔
𝐺 1 − 𝑖𝛼 𝐸 

polarization 

Linewidth enhancement factor 

Put in by hand: 

Example:  semiconductor laser 

𝑑𝐸

𝑑𝑡
= −𝛾𝑐𝐸 + 1 − 𝑖𝛼 𝛤𝐴 𝑁 − 𝑁𝑡𝑟 𝐸 

𝑑𝑁

𝑑𝑡
=

𝐽

𝑒𝑑
− 𝛾𝑛𝑟𝑁 −

𝜀𝑏
ℏ𝜔

𝛤𝐴 𝑁 − 𝑁𝑡𝑟 𝐸 2 

|𝐸|𝑒−𝑖𝜑 

R. Lang and K Kobayashi, JQE (1980) on laser feedback instabilities > 1700 citations 

Rose, Lindberg, Chow, Koch and Sargent, JQE (1992) microscopic theory & feedback: 11 citations 



An early microscopic model: ZLAG 

a’ = 1 

0 

-1 

b’ = 2 

0 
-1 

1 

-2 

a 
Ja = 1 

b 
Jb = 2 

ab  Ne 

ZLAG transitions 

Frequency 

Left circularly 

polarized 

C
lo

c
k

w
is

e
 

A
n

ti
-

c
lo

c
k
w

is
e

 

A
n

ti
-

c
lo

c
k

w
is

e
 

C
lo

c
k
w

is
e

 

Right circularly 

polarized 

ZLAG cavity modes 
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Laser Field 

Electronic 

structure 

Interacting 

electron- hole 

plasma 

𝐻0 =  𝜀𝑒𝑘𝑎𝑘
†𝑎𝑘 + 𝜀ℎ𝑘𝑏−𝑘

† 𝑏−𝑘

𝑘

 

𝐻𝑐−𝑝 = − ℘𝑘𝑎𝑘
†𝑏−𝑘

† + ℘𝑘
∗𝑏−𝑘𝑎𝑘 𝐸 𝑧, 𝑡

𝑘

 

Carrier-carrier interaction:  

Carrier-phonon interaction:  

𝐻 = 𝐻0 + 𝐻𝑐−𝑝 + 𝐻𝑐−𝑐 + 𝐻𝑐−𝑝𝑛 

𝐻𝑐−𝑐 =
1

2
 𝑊𝑛𝑚

𝑟𝑠 𝑎𝑟
†𝑎𝑠

†𝑎𝑚𝑎𝑛 +
1

2
 𝑏𝑟

†𝑏𝑠
†𝑏𝑚𝑏𝑛 −

𝑛,𝑚,𝑟,𝑠

 𝑊𝑛𝑚
𝑟𝑠 𝑎𝑟

†𝑏𝑠
†𝑏𝑚𝑎𝑛

𝑛,𝑚,𝑟,𝑠𝑛,𝑚,𝑟,𝑠

 

𝐻𝑐−𝑝𝑛 =  ℏ𝐺𝑞𝑎𝑛+𝑞
† 𝑎𝑛 𝑏𝑞 + 𝑏−𝑞

†

𝑛,𝑞

 
 𝑑3𝑟 𝑑3𝑟′𝜙𝑟

∗ 𝑟 𝜙𝑟
∗ 𝑟′

𝑒2

4𝜋𝜀𝑏 𝑟 − 𝑟′
𝜙𝑚 𝑟′ 𝜙𝑛 𝑟  

E 
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Microscopic model for semiconductors 



Example: quantum-dot laser 

Replaces   𝟏 − 𝒊𝜶 𝚪𝑨 𝑵 − 𝑵𝒕𝒓 𝑬 

𝒅𝒑𝜶𝒏𝜷𝒏

𝒅𝒕
= −𝒊 𝝎𝜶𝒏𝜷𝒏

− 𝝎 𝒑𝜶𝒏𝜷𝒏
− 𝒊𝛀𝜶𝒏𝜷𝒏

𝒏𝒆𝜶𝒏
+ 𝒏𝒉𝜷𝒏

− 𝟏 − 𝜸𝒑𝜶𝒏𝜷𝒏
 

𝒅𝒏𝒆𝜶𝒏

𝒅𝒕
= 𝒊𝒑𝜶𝒏𝜷𝒏

∗ 𝛀𝜶𝒏𝜷𝒏
+ 𝒄. 𝒄. − 𝜸𝒏𝒓

𝒅 𝒏𝒆𝜶𝒏
 

Quantum dots 

𝒅𝑬

𝒅𝒕
= −𝜸𝒄𝑬 +

𝒊𝝎𝚪

𝜺𝒃

𝑵𝒅

𝒉
  𝝁𝜶𝒏𝜷𝒏

∗

𝜶𝒏𝜷𝒏

𝒑𝜶𝒏𝜷𝒏

𝒏

 
Laser field 

Similar equation for holes 

Quantum-dot states 

Laser transition 

|𝛼𝑛  
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𝜀𝛼,𝑛 

Inhomogeneous QD distribution 

Laser transition 

Current injection 

Bulk states 

Quantum-well states 

Quantum-dot states 
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𝒅𝒕
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Quantum dots 
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Laser field 

Similar equation for holes 

Example: quantum-dot laser 

Replaces   𝟏 − 𝒊𝜶 𝚪𝑨 𝑵 − 𝑵𝒕𝒓 𝑬 



𝒅𝒑𝜶𝒏𝜷𝒏

𝒅𝒕
= −𝒊 𝝎𝜶𝒏𝜷𝒏

− 𝝎 𝒑𝜶𝒏𝜷𝒏
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𝒅 𝒏𝒆𝜶𝒏
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Laser field 

Example: quantum-dot laser 

Carrier 

injection 

Carrier-carrier 

scattering 

Carrier-phonon 

scattering 
𝑱

𝒆𝑽𝒃𝑵𝒑,𝝈
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𝒑
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Bulk 
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𝒏𝝈𝒌 − 𝒇 𝜺𝝈𝒌, 𝝁𝝈
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Quantum well Plasma temperature 

𝒅𝒏𝝈𝒌⊥

𝒅𝒕
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Among QD, QW and bulk 
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Example: quantum-dot laser 
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Among QD, QW and bulk 

Chow and Koch, IEEE Journ. Quantum Electron. 41, 495 (2005) 



ZLAG 



Consistent treatment 

of dephasing 

Hartree-Fock 

Collisions 

Coulomb 

interaction 

Light-matter 

interaction 

Semiconductor 

Bloch equations 

Waldmuller, …, IEEE JQE 42, 292 (2006) 

Quantum-kinetic equations vs. our effective-rate approach 
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In0.3Ga0.7As QDs 

In0.6Ga0.4As QDs 

Are quantum dot lasers faster than quantum well ones? 

Answer:  Not yet.  One reason is QD density is too low. 



Scattering in quantum dots has to be treated with extra care 

’k'-q 

’k' k 

 

Schneider, et al, PRB 70, 235308, 2004 

(1) Carrier-carrier scattering 

(2) Phonon bottleneck problem 

QD levels 
LO 

2nd Born treatment overestimates problem 

Correct with nonperturbative (polaron) description 

Inoshita, Sakaki, PRB 56,4355, 1997 

Seebeck et al, PRB 71, 125327, 2005 

𝒅𝒑𝜶

𝒅𝒕
= −𝒊𝝎𝜶𝒑𝜶 − 𝒊𝛀𝜶 𝒏𝒆𝜶 + 𝒏𝒉𝜶 − 𝟏  

+𝑺𝜶
𝒄−𝒄 + 𝑺𝜶

𝒄−𝒑
 



Ndot=2x1011cm-2, T=300K, N = 0.1x, 0.5x, 1x,2x,3x1012cm-2 
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Saturation 

Calc: PRB 74, 35334 (2006) 

Expt: APL 99, 61104 (2011) 

Shift 

Calc: PRB 66, 41315(R) (2002) 

Expt: APL 71, 2791 (1997) 

Quantum dots 
Time Time 

Quantum dot laser gain 

+ Fourier 

transform 

Precise scaling of the axii by rigorous treatment of scattering 



Tradeoff between available gain and required current 

in a quantum dot gain medium (InAs) 
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Substrate 

Cladding 

Electrode QWs and 

barriers 

Light emitting diode (LED) 
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LO-phonon-assisted Rabi oscillations 

Carmele, Kabuss and Chow, PRB 87, 041305 (R), 2013 
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1)  Nonlinear dynamics:  Developing new tools for bifurcation analysis 
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Off-shoots of microscopic optoelectronic model 

Lingnau, Ludge, Chow, Scholl Phys. Rev. E 86, 065201 (R), 2012 

2)  Modeling BEC devices – battery, transistor, oscillator, etc.  (with Dana Anderson) 
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Stickney, Anderson and Zozulya, Phys. Rev. A 75, 013608, 2007 


