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1) What is a microscopic model and what is not?
2) How to set one up (e.g. quantum-dot laser)

3) What it tells us (about expt and beyond expt)
4) Other examples ...

Thanks to:
Sandia’s Energy Frontier Research Center (EFRC), DOE-Basic Energy Sciences
Sonderforschungsbereich (SFB) 787

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-AC04-94AL85000.



Microscopic versus not microscopic
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Put in by hand = not microscopic

Calculated with quantum mechanics
= microscopic



Put in by hand:
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Example: semiconductor laser
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R. Lang and K Kobayashi, JQE (1980) on laser feedback instabilities > 1700 citations
Rose, Lindberg, Chow, Koch and Sargent, JQE (1992) microscopic theory & feedback: 11 citations



An early microscopic model: ZLAG
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Microscopic model for semiconductors
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Laser Field
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Carrier-phonon interaction:
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Example: quantum-dot laser

Quantum dots
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Example: quantum-dot laser

Quantum dots
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Example: quantum-dot laser

Quantum dots
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Example: quantum-dot laser

Quantum dots
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ZLAG
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Quantum-kinetic equations vs. our effective-rate approach
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Nonequilibrium dynamics in a quantum-dot laser
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Are quantum dot lasers faster than quantum well ones?
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Answer: Not yet. One reason is QD density is too low.



Scattering in quantum dots has to be treated with extra care

dp,
dt = —lWgPa — lﬂa(nea T Npg — 1)
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Correct with nonperturbative (polaron) description

Inoshita, Sakaki, PRB 56,4355, 1997
g €5k Seebeck et al, PRB 71, 125327, 2005

Must use renormalized energies
(no Baym-Kadanoff ansatz)

Memory effects important
Schneider, et al, PRB 70, 235308, 2004



Quantum dot laser gain

Quantum dots
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Tradeoff between available gain and required current
In a quantum dot gain medium (InAs)
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Curves show present status in relation to eventual performance and
give guidance on where improvement can be effectively made
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Experiment
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LO-phonon-assisted Rabi oscillations

Microcavity
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Population

Semiconductor QD-microcavity-phonon-bath system

System-bath interaction

-- Beyond 2"d Born

-- With memory effects

-- Tracks phonon statistics
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Off-shoots of microscopic optoelectronic model
1) Nonlinear dynamics: Developing new tools for bifurcation analysis
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Lingnau, Ludge, Chow, Scholl Phys. Rev. E 86, 065201 (R), 2012
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FIG. 1. (Color online) The geometry of a BEC transistor. When _I_ .I_ —_—
the number of atoms in the middle well is small, tunneling from the — . A
left into the right well is negligible (a). This is due to the fact that {Ck’ Ck’} [au a] ] M
the chemical potential of the middle well does not match that of the
two other wells (c). Placing atoms in the middle well increases the
chemical potential due to interatomic interactions (d) and enables
tunneling then atoms tunnel from the left into the right well. This
happens because atom-atom interactions increase the energy of the
middle guide (b).

Stickney, Anderson and Zozulya, Phys. Rev. A 75, 013608, 2007



