

Sandia Develops a Synthesis of Quantum Dots that Increases the Quantum Yield to 95.5%

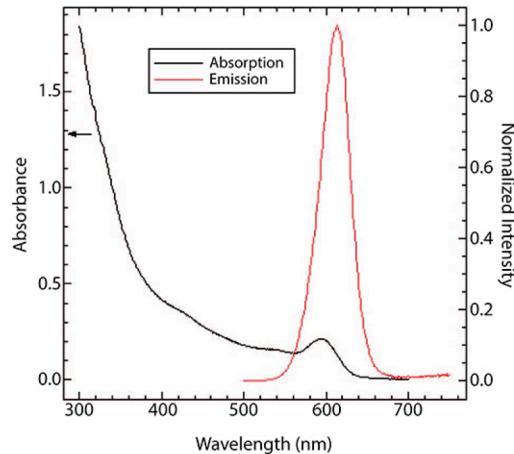
White light-emitting diodes (LEDs) based on blue indium-gallium-nitride (InGaN) LEDs that excite yellow-green-emitting yttrium-aluminum-garnet: cerium phosphors (YAG:Ce, a nonhygroscopic, chemically inert inorganic scintillator) have a cold white emission that can be made warmer with the addition of a red-emitting component. Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are not yet available.

The ideal red emitter would have broad blue absorption and narrowband emission that peaks at \sim 610–630 nm and lacks the deep red emission to which the eye is insensitive. The narrowband red emission criterion enables

- a high luminous efficacy of radiation (LER)—defined as the lumens of light emitted per Watt of light emitted and
- warm white light with a high color rendering index and a low correlated color temperature.

Some additional criteria that red emitters must satisfy relate to their performance in a device and include

- high quantum yield under blue excitation;
- low thermal quenching;
- photostability;
- low scattering losses; and
- resistance to saturation under high excitation fluences.


Our goal is to develop red emitters that satisfy all of these criteria for SSL.

For quantum dots to be suitable for demanding applications, such as SSL, heterostructures must be developed that consist of a group II–VI semiconductor core (e.g., cadmium telluride, CdTe) surrounded by one or more group II–VI shell materials, whose purpose is to (a) enhance the quantum yield, (b) reduce thermal quenching, and (c) enhance the thermal and photostability of these materials so that they have a suitable lifetime (target: $>30,000$ hrs) when subjected to the high excitation fluences characteristic of lighting applications.

CdTe-based quantum dot heterostructures have shown potential as the red-emitting component for warm white LEDs. They have broad blue absorption, narrowband red emission, quantum yield as high as 95.5%, and significantly higher luminous efficacy of radiation than that of the current red LED phosphors. The photoluminescence emission from Type 1 quantum dots is ideally located at 613 nm and its LER is 227 lm/W_{emitted}, which is an 87% improvement over a broadband red-emitting Eu²⁺-doped nitridosilicate phosphor.

The effects of aging include a blue-shift and broadening of the photoluminescence, blue-shift of the absorbance, and an increase in the photoluminescence lifetimes. We measured the smallest

Exceptional Service in the National Interest

The absorbance and photoluminescence emission of Type 1 quantum dots (QDs). Excitation wavelength is 460 nm. Even with multiple shells, these QDs have red emission that is ideal for SSL applications.

CdTe cadmium telluride

CdSe cadmium selenide

CdS cadmium sulfide

ZnS zinc sulfide

ZnSe zinc selenide

CdTe-Based Quantum Dot Heterostructures

Type 1: CdTe | 2 CdSe | CdS | 5 ZnS

Type 2: CdTe | 2 CdSe

Type 3: CdTe | 2 CdSe | CdS

Type 4: CdSe | ZnSe

photoluminescence blue-shift (5 nm) for the Type 2 quantum dots that were aged for one year. Quantum dot polymer encapsulation is expected to improve their photostability and will be a subject of future work.

Type 2 and Type 3 quantum dots that are one year old have significantly less thermal quenching than Type 4 quantum dots at 100 °C. The thermal quenching of Type 1 quantum dots is comparable to that of the Type 2 and Type 3 quantum dots, but is completely reversible. Understanding the mechanisms responsible for thermal quenching in CdTe-based quantum dots above room temperature will help us design heterostructures for SSL applications that minimize or eliminate this effect.

This investigation was conducted by Lauren Shea-Rohwer (in Sandia's Microsystems Integration Dept.), James Martin (in Sandia's Nanoscale Science Dept.), and Xichen Cai and David Kelley (at the University of California-Merced) and was funded by Sandia's Solid-State Lighting Science Energy Frontiers Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Their article, "Red-Emitting Quantum Dots for Solid-State Lighting" can be found in the *ECS Journal of Solid State Science and Technology* (vol 2, issue 2, R3112, 7 pp)

Exceptional Service in the National Interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.