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Quantifying the effects of
neurogenesis

From information theory to CA3
modeling

Craig Vineyard
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What is Information?
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What is Information?

Apparently these people have it —




What is Information?
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It looks like it was around back in the old days too




What is Information?

= (Claude Shannon (1948) suggested that we measure the
information in a message as roughly the inverse of
probability — more precisely, as the base 2 logarithm
(log,) of the inverse of the probability.

* The intuitive idea behind Shannon’s measure is that the
more surprising a message is, the more information it
conveys.

= Ex: Ifltell you that none of you will win the lottery
tomorrow, this is not very surprising. But if | say that
one of you will, this is very surprising indeed, and in
some intuitive sense more informative.



What is Information?

= Shannon’s 1948 paper, “A Mathematical Theory of
Communication”, marks the birth of modern information
theory.

= Precise notions about information, not to mention tools
that could be used to study it, did not exist prior to this
time.

= Prior to Shannon, those that considered information
primarily did so from a qualitative perspective.

= Shannon’s measure of information, because it was
guantitative, with intuitively appealing operational
interpretations, immediately caught the interest of
engineers, scientists, and mathematicians.



What is Information?

" [nformation theory provides entropy of a discrete random
variable as a quantitative measure of information

H(X) = Z p()log(

=  So what?




So what?

"= (Can be applied to neuroscience to quantitatively measure
the information content of firing neurons.

= And it has been with various methods such as:
= Plug-in Entropy
= Jackknife debiased
= Asymptotically debiased
= Ma bound
= Bayesian/Dirichlet prior
= Coverage-adjusted

= Best upper bound




Neural Information Theory

= Butthere are issues...

= Entropy (and many other concepts from information theory)
calculations require knowledge of the firing behavior probability
distributions for the neurons - however
= Limitations to in vivo recording capabilities
= Neurons are somewhat deterministic
= Neural plasticity effectively creates non-static distributions

= Applicable to single neurons but not ensembles




Compression

" |nstead - we have used complexity as a measure of
compressibility in order to estimate entropy to
guantitatively assess the information content of a signal.

= Szczepanski et al. applied the general Lempel-Ziv
complexity (LZ-Complexity) measure to estimate entropy
of real and simulated neurons.

= | ZCompression is a dictionary technique that does not
require a probabilistic model.

=  Rather dictionary compression techniques exploit redundancies in
the data.

= LZ compression has been used in applications such as UNIX
compress command and GIF compression.



Compression

= [ Z-Complexity is based upon measuring the rate of
generation of new patterns along a sequence of characters

in a string being compressed.
= Applied to neuron spike trains, this technique looks for
repeated spiking behavior over time.




Compression

Once the spike signal is converted into a binary signal,
where an action potential is encoded as a one and the
absence of activity by a zero, the normalized complexity

may then be computed as follows:

C.,(x"
e =

Normalized complexity measures the generation rate of
new patterns along a word of length n with letters from an
alphabet of size a (in this case two).




Compression

But unlike the work of Szczepanski et al., rather than
applying LZ-Complexity analysis to individual neuron spike
trains, we have applied the approach to a neural
population as a whole.

Instead, by applying it across an entire neural ensemble,
we assessed repeated patterns of neural co-activity.




Compression
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Compression
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Compression

Synaptic modifications alter the firing behavior of the
neural network through learning.

In order to account for this plasticity of the network,
rather than computing the ensemble complexity at each
timestep, we concatenated all of the firing outputs of the
entire neural ensemble (while presented a single input
context) into a long spike signal.




Compression

" |t can be proven that as the string length (our series of
neural firings in this case) goes to infinity, the supremum
of the normalized complexity approaches the entropy of

the signal S:

lim sup c,(x™) < H,(S)

n—>00




Experimental Paradigm

. & . & O
¥ 3
© O ) O =

Very Familiar Familiar Novel

O o - ® - )
- 'O, ©° O
o=m W~ B




294

g
e

PRe e P oo
A e
o HAT

oo

) . e A8 B -~ T el 2 P
~s,r.1,y.. oAl A0AE ;r.lml.’r),.i.:«‘i} S et o
ro D RPN .
T s T

e

B A R Bl
M 2o i e as AN
> ,,Tx\..rc. ..»‘\o:,.wu

a
c
o
=
>
()
=z

v ol g
T iibe »
AT S A

ity of network — EC Inputs

IV

Act

daysawi]




Timestep

Activity of network — GC Outputs
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Ensemble Spike Signal
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Normalized Complexities
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Information processing in large networks
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Information processing in large networks
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Neurogenesis decreases compressibility
and increases total representation




Increasing EC-GC weights impairs

eparation without improving coding
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Increased size networks need neurogenesis for

balancing separability and representations
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Next Steps




Next Steps

= We propose to further the understanding of adult
neurogenesis in humans through computational modeling
with two aims:

= Develop a biologically realistic scaled spiking model of the CA3

Quantitatively analyze this model to examine the effects
of neurogenesis on attractor dynamics and learning




" Expand Neurogenic DG model to incorporate downstream
CA3 network
= Neurogenesis itself of course takes place in the DG, however the

functional significance of neurogenesis may require additional
neural circuitry to become apparent




Aim 1

= Mathematics of chaos theory studies the behavior of
dynamic systems in which small variance in initial
conditions leads to vastly divergent outcomes

= |n the context of neurogenesis - possibility that by varying the
memory resolution of the DG encoding, this slight modification of
inputs to CA3 could result in significantly different associative
memory encodings

= Potential ramifications:
= Greater separation between attractor basins
= |ncreased resolution of attractors

= Different understanding of the mapping of the CA3 attractor
landscape



To do so:

= Develop a high fidelity biologically realistic spiking model
implementing Izhikevich neurons with recurrent feedback

= First develop a reduced scale model which operates upon the
output of the Aimone developed DG model

= Asthe model progresses
= Increase biological fidelity by incorporating turning parameters guided by
imaging/physiology work
= Increase scale towards ~ 3 million neurons




"= Develop quantitative metrics for memory dynamics in
spiking neurogenesis DG-CA3 model

= Potential analysis techniques include:

= |nformation theoretic analysis of neural encodings, information
content, and channel capacity

= Assessment of attractor formation and stability

= Analysis of learnability.







Environmental commitment of

adult-born neurons
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Hypothesis: The specialization of young neurons to the environments
present during maturation allows improved encoding of new memories that
relate to previously experienced contexts.



Why Computational Modeling

" The ability to create an accurate computational model

depicts the state of understanding of the underlying neural
processes

" Provides a platform amenable to test hypothesis not
possible in humans or rodents

" |naniterated cycle, computational modeling and
traditional laboratory work (such as experimental studies,
imaging, and physiology analysis) are mutually beneficial.

= Computational modeling may be able to provide predictions and
insights which can be used to guide experimental studies, whose

increased understanding subsequently leads to higher precision
models.



