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Metrics for understanding NG model 



What is Information? 



What is Information? 

Apparently these people have it — 



What is Information? 

It looks like it was around back in the old days too  



What is Information? 

 Claude Shannon (1948) suggested that we measure the 
information in a message as roughly the inverse of 
probability — more precisely, as the base 2 logarithm 
(log2) of the inverse of the probability. 

 The intuitive idea behind Shannon’s measure is that the 
more surprising a message is, the more information it 
conveys.  

 Ex: If I tell you that none of you will win the lottery 
tomorrow, this is not very surprising. But if I say that 
one of you will, this is very surprising indeed, and in 
some intuitive sense more informative. 



What is Information? 

 Shannon’s 1948 paper, “A Mathematical Theory of 
Communication”, marks the birth of modern information 
theory. 

 Precise notions about information, not to mention tools 
that could be used to study it, did not exist prior to this 
time. 

 Prior to Shannon, those that considered information 
primarily did so from a qualitative perspective. 

 Shannon’s measure of information, because it was 
quantitative, with intuitively appealing operational 
interpretations, immediately caught the interest of 
engineers, scientists, and mathematicians. 



What is Information? 

 Information theory provides entropy of a discrete random 
variable as a quantitative measure of information 

 

𝐻 𝑋 =  𝑝 𝑥 log⁡(
1

𝑝 𝑥
)

𝑥∈𝑋

 

 

 So what? 

 

 



So what? 

 Can be applied to neuroscience to quantitatively measure 
the information content of firing neurons. 

 And it has been with various methods such as: 
 Plug-in Entropy 

 Jackknife debiased 

 Asymptotically debiased 

 Ma bound 

 Bayesian/Dirichlet prior 

 Coverage-adjusted 

 Best upper bound 

 
 

 



Neural Information Theory 

 But there are issues… 

 Entropy (and many other concepts from information theory) 
calculations require knowledge of the firing behavior probability 
distributions for the neurons  - however 
 Limitations to in vivo recording capabilities  

 Neurons are somewhat deterministic 

 Neural plasticity effectively creates non-static distributions  

 Applicable to single neurons but not ensembles  

 
 

 



Compression 

 Instead - we have used complexity as a measure of 
compressibility in order to estimate entropy to 
quantitatively assess the information content of a signal. 

 Szczepanski et al. applied the general Lempel-Ziv 
complexity (LZ-Complexity) measure to estimate entropy 
of real and simulated neurons. 

 LZ Compression is a dictionary technique that does not 
require a probabilistic model.  

 Rather dictionary compression techniques exploit redundancies in 
the data. 

 LZ compression has been used in applications such as UNIX 
compress command and GIF compression. 



Compression 

 LZ-Complexity is based upon measuring the rate of 
generation of new patterns along a sequence of characters 
in a string being compressed.  

 Applied to neuron spike trains, this technique looks for 
repeated spiking behavior over time.  
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Compression 

 Once the spike signal is converted into a binary signal, 
where an action potential is encoded as a one and the 
absence of activity by a zero, the normalized complexity 
may then be computed as follows: 

𝑐𝛼 𝑥
𝑛 =
𝐶𝛼(𝑥

𝑛)

𝑛
∗ 𝑙𝑜𝑔𝛼𝑛 

 Normalized complexity measures the generation rate of 
new patterns along a word of length n with letters from an 
alphabet of size α (in this case two). 

 

 

 



Compression 

 But unlike the work of Szczepanski et al., rather than 
applying LZ-Complexity analysis to individual neuron spike 
trains, we have applied the approach to a neural 
population as a whole. 

 Instead, by applying it across an entire neural ensemble, 
we assessed repeated patterns of neural co-activity. 

 

 

 

 



Compression 

 

 

 

 

1001111011101100011 



Compression 
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Compression 
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Compression 

 Synaptic modifications alter the firing behavior of the 
neural network through learning.  

 In order to account for this plasticity of the network, 
rather than computing the ensemble complexity at each 
timestep, we concatenated all of the firing outputs of the 
entire neural ensemble (while presented a single input 
context) into a long spike signal. 

 

 

 

 



Compression 

 It can be proven that as the string length (our series of 
neural firings in this case) goes to infinity, the supremum 
of the normalized complexity approaches the entropy of 
the signal S: 

lim
𝑛→∞
sup 𝑐∝(𝑥

𝑛) ≤ 𝐻𝛼(𝑆) 

 



Experimental Paradigm 



Activity of network – EC Inputs 
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Activity of network – GC Outputs 
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Ensemble Spike Signal 



Normalized Complexities  

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 
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Information processing in large networks 
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Information processing in large networks 
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Variances

Eigenvalues
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Eigenvalues



Neurogenesis decreases compressibility 
and increases total representation 



Increasing EC-GC weights impairs 
separation without improving coding 



Increased size networks need neurogenesis for 
balancing separability and representations 



Next Steps 



Next Steps 

 We propose to further the understanding of adult 
neurogenesis in humans through computational modeling 
with two aims: 

 Develop a biologically realistic scaled spiking model of the CA3 

 Quantitatively analyze this model to examine the effects 
of neurogenesis on attractor dynamics and learning 

 

 

 

 



Aim 1 

 Expand Neurogenic DG model to incorporate downstream 
CA3 network 

 Neurogenesis itself of course takes place in the DG, however the 
functional significance of neurogenesis may require additional 
neural circuitry to become apparent 

 

 

 

 



Aim 1 

 Mathematics of chaos theory studies the behavior of 
dynamic systems in which small variance in initial 
conditions leads to vastly divergent outcomes 

 In the context of neurogenesis - possibility that by varying the 
memory resolution of the DG encoding, this slight modification of 
inputs to CA3 could result in significantly different associative 
memory encodings 

 Potential ramifications: 

 Greater separation between attractor basins 

 Increased resolution of attractors  

 Different understanding of the mapping of the CA3 attractor 
landscape 

 

 

 



Aim 1 

 To do so: 

 Develop a high fidelity biologically realistic spiking model 
implementing Izhikevich neurons with recurrent feedback 

 First develop a reduced scale model which operates upon the 
output of the Aimone developed DG model 

 As the model progresses 
 Increase biological fidelity by incorporating turning parameters guided by 

imaging/physiology work 

 Increase scale towards ~ 3 million neurons 

 

 

 



Aim 2 

 Develop quantitative metrics for memory dynamics in 
spiking neurogenesis DG-CA3 model  

 Potential analysis techniques include:  

 Information theoretic analysis of neural encodings, information 
content, and channel capacity 

 Assessment of attractor formation and stability 

 Analysis of learnability. 

 

 

 

 



Backup 

36 



Environmental commitment of  
adult-born neurons 

Hypothesis:  The specialization of young neurons to the environments 
present during maturation allows improved encoding of new memories that 
relate to previously experienced contexts. 

Aimone et al., Neuron 2009 



Why Computational Modeling 

 The ability to create an accurate computational model 
depicts the state of understanding of the underlying neural 
processes 

 Provides a platform amenable to test hypothesis not 
possible in humans or rodents 

 In an iterated cycle, computational modeling and 
traditional laboratory work (such as experimental studies, 
imaging, and physiology analysis) are mutually beneficial. 

 Computational modeling may be able to provide predictions and 
insights which can be used to guide experimental studies, whose 
increased understanding subsequently leads to higher precision 
models.  


