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Results 
• Problem: Cost and complexity of molecular dynamics (MD) 

potentials are growing exponentially.  Effort required to develop 
these potentials and implement them in LAMMPS is becoming 
unsustainable.  The proliferation of new hardware designs 

Accuracy
• Developed SNAP potential for tantalum, an important BCC metal
• Accuracy against QM training data 10x better than existing 

Screw Dislocation Motion in BCC Tantalum
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unsustainable.  The proliferation of new hardware designs 
further exacerbates the problem

• Driver: widespread availablity of quantum calculations (QM) for 
small systems: exposes errors in existing potentials and provides 
data for fitting new potentials

• Solution: Automated machine-learning framework for both 
fitting potentials to QM data and running large-scale MD 
simulations in LAMMPS

• Accuracy against QM training data 10x better than existing 
potentials

• Accuracy of standard physical properties (elastic constants, lattice 
constants) comparable to existing potentials

• Reproduced correct energy barrier for  screw dislocation motion.  
Existing potentials are qualitatively wrong.
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Moore’s Law for Interatomic Potentials
Plimpton and Thompson, MRS Bulletin (2012).
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LJ and SNAP universal scaling
Chama: SandyBridge 2x8c@2.67GHz + FDR IB

LJ

SNAP 

SNAP 
OMP+MPI

Approach

Weinberger, Tucker, and 
Foiles, PRB (2013)
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Computational Performance
A) SNL Chama (Intel SandyBridge CPU Cluster)
• Computational cost per atom 10,000x greater than simple 

potentials such as LJ and EAM
• Large computational cost offset by improved strong scaling
• Further improved strong scaling using micro-load balancing and 

thread parallelism over i-j  neighbor interactions
• Reduced LJ/SNAP maximum speed ratio to 10x 
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Max Speed Step/Sec 10,000 1,000 1/10• Combination of fundamental physics and machine-learning
• GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., 

Phys. Rev. Lett, 2010. Uses 3D neighbor density bispectrum 
and Gaussian process regression. 

• SNAP (Spectral Neighbor Analysis Potential): Uses GAP’s 
neighbor bispectrum, but replaces Gaussian process with linear 
regression. 
- More robust
- Decouples MD speed from training set size
- Allows large training data sets, more bispectrum coefficients
- Straightforward sensitivity analysis

B) LLNL Sequoia (IBM BG/Q)
• Ran fix-sized problem (240k atoms) on 

node counts from 1 to 122,880 nodes.
• Used 2 MPI tasks per node and 32 

OMP threads per MPI task.
• On 120k nodes, the parallel efficiency 

was 20%, with only 2 atoms per node!

C) ORNL Titan (NVIDIA Kepler GPUs)
• Used Shannon (64 GPU testbed)
• Achieved 40,000 threads per atom by 
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Ideal Strong Scaling

OMP-LB 240K atoms

LAMMPS SNAP Si Scaling on Sequoia
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• Achieved 40,000 threads per atom by 
decomposing within each i-j pair

• GPU performance/watt similar to that 
of other high-end platforms

• Scaling tests indicate that 240k atoms 
on full Titan (18k nodes) will run 3x 
faster than full Sequoia (120k nodes)

This work demonstrates that by combining quantum-accurate 
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Performance per ~300W Compute Unit
CU = 1 GPU node, 1 dual Sandy Bridge node, 5 BG/Q nodes
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Output responses: 
Energy, force, stress 
errors per group, 
elastic constants,…

Atom Types 
Out: Energy 
Atom Forces 
Stress Tensor 

This work demonstrates that by combining quantum-accurate 
potentials and petascale computation, it is now possible to 
perform predictive LAMMPS simulations of materials plasticity 
and other performance-critical atomistic phenomena that occur 
on mesoscopic lengthscales inaccessible to quantum methods.
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