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What is pattern separation?



Limitations of past modeling work

Between abstract and 
high fidelity
– Time not particularly 

well represented

– Details of DG 
architecture lost (e.g., 
feed-forward 
inhibition, modulatory 
inputs)

– Experiment doesn’t 
map to behavior

Aimone et al., Neuron 2009



Modeling considerations

• Neuroanatomy
– Circuit (principal neurons, 

interneurons, and how they are 
connected)

– Maturation of new neurons

• Dynamics
– Every neuron has unique dynamics

– Neurogenesis results in many 
different forms of GC dynamics

• Behavior
– In vivo and immediate early gene 

studies of neuron behavior

– Behavior studies in lesion or 
knockdown animals

Mongiat et al., 2009

courtesy Chunmei Zhao

Arruda-Carvalho et al., 2011



Immature and mature neurons encode 
information differently

Aimone, Deng and Gage
Neuron; 2011



Mixed coding scheme in DG is 
potentially very powerful

• Dentate Gyrus performs sparse 
coding for episodic memories

• Mature neurons are tightly tuned 
to specific features

• Not all events will activate 
mature neurons 

• Immature neurons are broadly 
tuned

• All events will activate some 
immature neurons

• Neurons mature to be specialized 
to those events later

• Coding range of network gets 
more sophisticated over time

Aimone, Deng and Gage
Neuron; 2011



Realistic scale model



Realistic connectivity and dynamics
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Neurogenesis Process



Activity of network – EC Inputs
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Activity of network – GC Outputs
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Young GCs dominate
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Neurogenesis

Lack of neurogenesis in large networks 
correlates with much lower activity

• Neurogenesis networks 
show activity to novel 
information at much 
higher scales

• As we approach human 
scales, mature neurons 
appear essentially silent 
in response to novel 
information

• Signal (immature) to 
noise (mature) is 
amplified in larger 
networks



Metrics for understanding NG model



Information processing in large networks
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Information processing in large networks
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Neurogenesis decreases compressibility 
and increases total representation



Environmental commitment of 
adult-born neurons

Hypothesis:  The specialization of young neurons to the environments 
present during maturation allows improved encoding of new memories that 
relate to previously experienced contexts.

Aimone et al., Neuron 2009



Increasing EC-GC weights impairs 
separation without improving coding



Increased size networks need neurogenesis for 
balancing separability and representations



So which is right?

Or memory resolution?

Pattern separation?



Neurogenesis strikes a balance

No neurogenesis yields 
very little activity

DG representations are 
separate but very sparse

Neurogenesis increases 
activity while preserving 

separation
DG representations 

increase their resolution 
but avoid interference

Increasing activity 
directly ruins pattern 

separation
DG representations are 

dense and informative but 
potentially interfere with 

each other



So what needs to happen?
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Original Motivation
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Describe the function of each brain circuit.

AND gate [Kömmerling & Kuhn 99]

A B O

F F F

F T F

T F F

T T T

A

B

O

Neocortical (brain) slice
[Stephen Smith Lab at Stanford]

Sandy Bridge die [Intel Corp.]

Abstract away physical details to 
explain what something does or how 
it interacts with other things.

Brodmann Areas



The Challenge
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Society for Neuroscience
>30,000 scientists attend
>1,000 topic areas presented

Need to integrate all this 
knowledge.  Beyond capacity of 
anyone to comprehend.

Complete model of human 
cognition cannot exist as an idea 
in one person's mind.

Must be an information structure 
held in a large computer system.



Where N2A Fits
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NEURON
GENESIS

C++Python

MATLAB

Allen 
Institute

Neuro-
morpho

NIF

Molecular

Systems

Anatomy

PyNN

Neuro-
construct

Simulation

Informatics Tools

Cognitive

Behavior

NEUROSCIENCE

Xyce

Neuroscience
Modelers

Direct contribution 
of neuroscience data

Draws from online 
databases

Runs on lower level
simulation platform

Electrophysiology

This diagram is not 
exhaustive!



Scale agnostic



Workflow

29

• Contributed models
• Neurophysiology literature
• Online databases

Database of 
Neural 

Structure &
Dynamics

Simulate

Algorithmic 
motifs

• Visualization
• Automatic analysis

Characterize 
model behavior

Fit 
parameters



Vision: P2P Sharing
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N2A

Simulator

Host A

N2A

Simulator

Host B

Simulator

Read
Write
Execute

A remote system may be another desktop, a cluster-computer, or a “cloud” service.

You may upload your models to another N2A system,
download models from it,
or ask it to simulate a model on your behalf.

Simulator may be any tool (Xyce, Neuron, PyNN, Brian, ...) for which there is a backend 
wrapper.



Model Structure
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Connection

Part A Part B

A.V’ +=
B.V’ +=
...

V’ =
m’ =
...

V’ =
m’ =
...

Dynamical Systems
AND Parts-Relations

Many things can be 
modeled in this form, 
including biology and 
cognition.

Structural dynamics: 
express quantity and 
arrangement of Parts, 
as well as their internal 
state.



Example…

Neat 
model of 
EC/CA3

Complex 
model of 

DG

Intriguing 
model of 
CA3/CA2/

CA1

New 
model of 

CA3



Unifying models from across sources

EC 
CA3

EC
DG

CA3

CA3 
CA2
CA1

DG

CA1CA2
CA3

EC

New 
hybrid 
model



It can go beyond models – experimental data 
can be represented as well

Neat 
model of 
EC/CA3

Complex 
model of 

DG

Intriguing 
model of 
CA3/CA2/

CA1

New 
model of 

CA3



Hierarchical Composition
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Model Part

Part One

Part Two

Parent Part

“C”

“A”

Inherit

Include

“B”



Example
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Neuroscience Representation:

N2A Representation:

Connections

Parts

Iinj V1 V3

Measure Spike Propagation through Multi-Segment Hodgkin-Huxley Cable



Demo
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Results
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I_inj = 5 pA I_inj = 10 pA



Measuring parameter sensitivity in neural systems

Hundreds of parameters
Millions(?) of perturbations

Probability of 
result

Possible Model 
Outputs



N2A demo
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Backup

41



Summary
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• Easy to create / extend / share parts
• Inherit or include existing parts
• References and credit go with parts

• Easy to build Models
• Large hippocampus model accidentally got deleted.
• Took 5 minutes to recreate!  (All parts were still in DB.)

• Easy to run simulations
• Simple equation language controls all aspects
• Don’t need to know arcane details of simulator

• (soon) Easy analysis of results
• Automatic generation of multiple simulations to explore parameters
• Stores record of each experiment, so it can be reproduced
• Link out to favorite data analysis tools (Matlab, etc.)



Equations Create “Variables”
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V' = (G * (V_rest - V) + I_inj) / C
G      = 0.3
V_rest = 10.613
C      = 1

Passive Compartment

“Variables”

V'
V
G
V_rest
C

Created implicitly by differential equation V'

Note that I_inj is unresolved. It must be provided before the part is instantiated. Usually 
the model specifies such missing values.

Constants



Inheritance
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V' += I / C

V'     += I / C
I       = G * n^4 * (E - V)
n' = alpha_n * (1 - n) - beta_n * n
alpha_n = (10 - V) / (100 * (exp ((10 - V) / 10) - 1))
beta_n = 0.125 * exp (-V / 80)
G       = 36
E       = -12

Ion Channel

Potassium Channel  Ion Channel

Only the green equations are specified in the “Potassium Channel” part.



Inclusion
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Active Compartment   Passive Compartment +  Potassium Channel “K”

V'        = (G * (V_rest - V) + I_inj) / C
G         = 0.3
V_rest = 10.613
C         = 1
V' += K.I / C
K.I       = K.G * K.n^4 * (K.E - V)
K.n' = K.alpha_n * (1 – K.n) – K.beta_n * K.n
K.alpha_n = (10 - V) / (100 * (exp ((10 - V) / 10) - 1))
K.beta_n = 0.125 * exp (-V / 80)
K.G       = 36
K.E       = -12

“Boxing” – Prepend the alias of an included part to all the 
variables it explicitly creates, except for “+=” equations.

V' = (G * (V_rest - V) + I_inj) / C + K.I / C

Effect of “+=”



Unordered Evaluation
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G
V_rest
C
K.G
K.E
I_inj

V'0
V0 = ∫(V'0)dt
K.I0
K.n'0
K.n0 = ∫(K.n'0)dt
K.alpha_n0
K.beta_n0

V'1 = (G * (V_rest – V0) + I_inj) / C + K.I0 / C
K.I1 = K.G * K.n0^4 * (K.E - V0)
K.n'1 = K.alpha_n0 * (1 – K.n0) – K.beta_n0 * K.n0
K.alpha_n1 = (10 – V0) / (100 * (exp ((10 - V0) / 10) - 1))
K.beta_n1 = 0.125 * exp (-V0 / 80)

Variables are double-buffered Constants are 
not buffered

First exchange buffers and integrate implicit variables.

Then update all regular variables.

V'1
V1
K.I1
K.n'1
K.n1
K.alpha_n1
K.beta_n1



Conditional Evaluation
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v’ = 1/C*(k*(v-vr)*(v-vt)-u+I)
v = c @ v > 35
u’ = a*(b*(v-vr)-u)
u  = d @ v > 35
vt = -0.04
vr = -0.07
k = 0.1e-6
I  = 0
a = 100
b  = -0.1e-9
c = -0.045
d  = 100e-12

Izhikevich Neuron

Reset when voltage 
exceeds threshold.
(Otherwise integrate 
v’ and u’)



Special Variables
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Population A Population B

●
position A.$xyz

instance number A.$index

A.$n instances

C.$from “to” population

●
map to C.$xyz

Connection C

C.$exist

●

●

●●●

●

● ●

●

C.$k nearest neighbors


