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Large scale modeling of
neurogenesis

Why it is more interesting and harder
than it looks...

Brad Aimone
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Limitations of past modeling work
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Modeling considerations

* Neuroanatomy

— Circuit (principal neurons,
interneurons, and how they are
connected)

— Maturation of new neurons

courtesy Chunmei Zhao
A 25 dpi 49 dpi
e o
S A * Dynamics
— Every neuron has unique dynamics

— Neurogenesis results in many
different forms of GC dynamics

Behavior

— In vivo and immediate early gene
studies of neuron behavior

— Behavior studies in lesion or
Arruda-Carvalho et al., 2011 knockdown animals




Immature and mature neurons encode

information differentl

A Immature neurons B Mature neurons

A ootm Aa 9 O4m

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage
Neuron; 2011




Mixed coding scheme in DG is

potentially very powerful

Memories encoded by Memories rely on

high and low information neurons: low information neurons:
Okay without neurogenesis

Maturation of neurons allows
memories to now be encoded
by high information neurons

Aimone, Deng and Gage
Neuron; 2011

Impaired without neurogenesis.

Dentate Gyrus performs sparse
coding for episodic memories

Mature neurons are tightly tuned
to specific features
* Not all events will activate
mature neurons

Immature neurons are broadly
tuned
» All events will activate some
immature neurons

Neurons mature to be specialized
to those events later
* Coding range of network gets
more sophisticated over time




Realistic scale model

(a)

Entorhinal
Cortex

G Bc
3 4% 1,000,000

[ mEC ] [ s IEC ] Entorhinal
55,000 | 55,000 Cortex
A MOPP Molecular
7 5,000 Layer

Granule Coll

Layer
[éi‘:'as-%z“t::,.bBc ] [ﬁ’?ﬁ?ﬁi@c ]
.............................. ){ iz;soo ==t & 7,500
e _/HIPP _HICAP .
WLy oy s Hilus
L_%,-sn,ooo ] [-/; 15,000 ][fs;ooo ]




Realistic connectivity and dynamics
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Neurogenesis P
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Activity of network — GC Outputs
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Timestep

Young GCs dominate
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Lack of neurogenesis in large networks

correlates with much lower activit

* Neurogenesis networks
show activity to novel
information at much
higher scales

 As we approach human
scales, mature neurons
appear essentially silent
in response to novel
information

e Signal (immature) to
noise (mature) is
amplified in larger
networks
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Metrics for understanding NG model

- Pairwizse correlation / dot product
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Information processing in large networks
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Information processing in large networks
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Neurogenesis decreases compressibility
and increases total representation




Environmental commitment of

adult-born neurons

Event 1 Event 1 remembered
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excited excited excited excited

Aimone et al., Neuron 2009

Hypothesis: The specialization of young neurons to the environments
present during maturation allows improved encoding of new memories that
relate to previously experienced contexts.



Increasing EC-GC weights impairs

eparation without improving coding
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Increased size networks need neurogenesis for

balancing separability and representations
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So which is right?

Overlapping EC inputs are encoded separately by the DG
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Pattern separation?

Associative memories formed in CA3 do not
interfere with one another

N AAAiAAAAAAA% an A Immature neurons B Mature neurons
u AAABLTNBANA
o p Aok Aa ¢ 0+E A a ¢ O+

Or memory resolution?

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content




Neurogenesis strikes a balance

No neurogenesis yields
very little activity
DG representations are
separate but very sparse

Neurogenesis increases
activity while preserving
separation
DG representations
increase their resolution
but avoid interference

Increasing activity
directly ruins pattern
separation
DG representations are
dense and informative but
potentially interfere with
each other



So what needs to happen?




Neurons to Algorithms (N2A)

A Neural Modeling Tool

Pl Fred Rothganger
PM Phil Bennett

Team  Christy Warrender
Derek Trumbo
Brad Aimone
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Describe the function of each brain circuit.

. | Abstract away physical details to

explain what something does or how
it interacts with other things.
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The Challenge

— ’ i Society for Neuroscience
>30,000 scientists attend
>1,000 topic areas presented
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Need to integrate all this
knowledge. Beyond capacity of
anyone to comprehend.

Complete model of human
cognition cannot exist as an idea
in one person's mind.

Must be an information structure
held in a large computer system.




Where N2A Fits

NEUROSCIENCE
This diagram is not

: exhaustive!
Neuroscience

Modelers

Direct contribution

Informatics Tools

Draws from online NEURON GENESIS
databases

Runs on lower level Simulation
simulation platform Xyce

MATLAB

Python Cit




Scale agnostic

Part Connection Model
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Workflow

* Contributed models
* Neurophysiology literature
* Online databases

* Visualization

* Automatic analysis
L /

+is o S,

Database of
Neural
Structure &

Algorithmic
motifs

Simulate

parameters

<€

Characterize
model behavior




Vision: P2P Sharing

Host A

Host B

Read
Write
Execute

A remote system may be another desktop, a cluster-computer, or a “cloud” service.
You may upload your models to another N2A system,
download models from it,

or ask it to simulate a model on your behalf.

Simulator may be any tool (Xyce, Neuron, PyNN, Brian, ...) for which there is a backend




Model Structure

Dynamical Systems Connection

| ics:
AND Parts-Relations Structural dynamics

express quantity and
arrangement of Parts,
as well as their internal
state.

Many things can be

modeled in this form,
including biology and
cognition.



model of
EC/CA3

Example...

Complex
model of

Intriguing
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CA3/CA2/

New
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Unifying models from across sources

Intriguing

model of

CA3/CA2/
Complex CAl
model of o |

Neat
model of
EC/CA3




It can go beyond models — experimental data
can be represented as well

Intriguing
model of
CA3/CA2/

Complex
model of




Hierarchical Composition

Inherit

Include



Neuroscience Representation:

inj

N2A Representation:

Connections

NN

Parts




Demo

I/ Meurons To Algorithms v0.8.4 EI@

File View Tools People Look & Feel Window Help
e QO FN B EHBGX% c=2E O
( Home r ), Search 3¢ r & HHmod 3¢ ‘

Edit Compartment

General
Parent Summary: @ (® Tree ) Flat () Text () Graph ) Problems <
Equations @ All Equations For "HHmod"
Includes ¢ R Inherited Equations
W ¢ @ E}rayrem: passive
—_—— =WV = (G_m ™ (V_rest-V)+ _inj)/ C_m
_ Uses e m=03
Discussion BYy rest=10613
Permissions B m=1
References ¢ % Included Equations
g ———— ¢ @ MNa_Koch (alias: Na_Koch)
M 2%5" l=G_Na*m*3*h*(E_Na-V)
Lo Y o = alpha_m * (1-m)- beta_m*m

%YW =alpha_h*(1-h)-beta_h *h
Y alpha_m=(25-V) /(10 * (exp ((25 - V) 1 10)- 1)
Y beta_m=4%exp (V/18)
Y alpha_h = 0.07 * exp (-V 1 20)
Y beta_h=1/{exp (30 -V)/ 10} + 1)
5 Na=120
BYE Na=115
¢ @ K_Koch (alias: K_Koch)
Bz K*n4d*(E_K-W)
¥ =alpha_n*({1-n)-beta_n*n
%Y alpha_n = (10 - V) / (100 * (exp ((10-V) 1 10)- 1))
%Y beta_n=0.125* exp (-V / 80)
e K=36
BYE K=-12

ﬂ Connected to: jdbc:postgresqliimechta/n2a
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Measuring parameter sensitivity in neural systems

o [/ l:.;’.‘,‘ Gc
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N2A demo







Summary

» Easy to create / extend / share parts
* Inherit or include existing parts
» References and credit go with parts
e Easy to build Models
e Large hippocampus model accidentally got deleted.
* Took 5 minutes to recreate! (All parts were still in DB.)
e Easy to run simulations
* Simple equation language controls all aspects
 Don’t need to know arcane details of simulator
* (soon) Easy analysis of results
* Automatic generation of multiple simulations to explore parameters
» Stores record of each experiment, so it can be reproduced
* Link out to favorite data analysis tools (Matlab, etc.)



Equations Create “Variables”

Passive Compartment

V' = (G * (v_rest - V) + I_1nj) / C
G = 0.3
V_rest = 10.613
C =1
“Variables”
V'
v < Created implicitly by differential equation V'
G
vV_rest Constants
C

Note that | inj is unresolved. It must be provided before the part is instantiated. Usually
the model specifies such missing values.




Inheritance

lon Channel

V' 4= I / C

Potassium Channel = lon Channel

A +=I / C
I =G * n\d * (E - V)
n' = alpha_n * (1 - n) - beta_n * n

alpha_n = (10 - v) / (100 * (exp ((10 - v) / 10) - 1))
beta_n = 0.125 * exp (-v / 80)

G = 36

-12

m
Il

Only the green equations are specified in the “Potassium Channel” part.



Inclusion

Active Compartment —> Passive Compartment + Potassium Channel “K”

= (G * (V_rest - V) + I_inj) / C

V

G = 0.3

V_rest = 10.613

C =1

\A += K.I / C

K.I = K.G * K.nAd * (K.E - V)

K.n' = K.alpha_n * (1 - K.n) - K.beta_n * K.n
K.alpha_n = (10 - v) / (100 * (exp ((10 - v) / 10) - 1))
K.beta_n = 0.125 * exp (-v / 80)

K.G = 36

K.E = -12

“Boxing” — Prepend the alias of an included part to all the
variables it explicitly creates, except for “+=" equations.

Effect of “+="
vV = (G * (V_rest - V) + I_1nj) / C + K.I / C



Unordered Evaluation

Constants are

' not buffered
Vi
Vo = [(v'dt G
K.I, V_rest
K.n', C
K.n, = [J(K.n'pdt K.G
K.alpha_ng K.E
K.beta_n, I_1nj

First exchange buffers and integrate implicit variables.

V' = (G * (V_rest - Vy) + I_inj) / C + K.I, / C
K.I; = K.G * K.ngA4 * (K.E - V)

K.n"; = K.alpha_n, * (1 - K.ny) - K.beta_n, * K.ng
K.alpha_n; = (10 - Vv,) / (100 * (exp ((10 - vy / 10) - 1))
K.beta_n; = 0.125 * exp (-Vv, / 80)

Then update all regular variables.



Conditional Evaluation

Izhikevich Neuron

v = 1/C*(k*(v-vr)*(v-vt)-u+I)

v =c@v > 35

u’ = a"“(b"“(v—vr)_u)\ Reset when voltage
u =d@v >3 <—_ = T exceeds threshold.

vt = -0.04 (Otherwise integrate
vr = -0.07 v’ and u’)

k = 0.le-6

I =20

a = 100

b = -0.1le-9

c = -0.045

d = 100e-12




Special Variables

Population A Population B
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