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 Introduction — DLTS & transistor fundamentals

« Silicon — primarily n-type (P doping)
— BJT collector — the silicon divacancy & its relatives
— BJT base - the vacancy-donor (VP)
— Correlating defects and BJT gain

« Defects in GaAs — Electrons & Neutrons

— Phonon assisted tunneling — electric field enhanced
emission
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INTRODUCTION - DLTS
FUNDAMENTALS
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Capacitance Defect Spectroscopy
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DLTS: Deep Level Transient Spectroscopy

Filling pulse: carrier capture
Transient:; carrier emission
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* Predict performance of bipolar transistors

after exposure to neutrons
— Data from ion damaged devices
« Avoid hazards of fast-burst neutron reactors

— Models of defect evolution are used to connect ion data with
neutron predictions (models not presented here)

#° Research Objectives

 Experimental Requirements
— Understand effects defect clustering

— Correlate gain degradation of BJT's with specific defects (Si)
— Understand effects of phonon-assisted tunneling (GaAs)
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=2 Locationof S

Generation-Recombination

E
Emitter Base Collector
]E D
[C
Recombination at low current Recombination at high current
in b/le depletion region in b/e depletion + neutral base
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b/e junction

Emitter

b/c junction

Recombination at low current
in b/e depletion region

Recombination at high current
in b/e depletion + neutral base
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Location of DLTS Data
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Silicon Bipolar Transistor Collector: Doping ~ 10" cm-3

NEUTRON AND ION DAMAGE
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Point defect spectra (electrons) are related to
clustered defect spectra (neutrons)
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Three Types of V,, defects

* Normal V,

* Bistable V, -
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Mechanisms producing a V, asymmetry

 Partial filling of the shallow V, level because of
clustered defects and local band bending.

VO
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« Strain-induced inhibition of bond averaging of Jahn-

Ec

Teller distortion of V., svensson, etal., Phys. Rev. B 43, 2292 (1991)
S b — —
Undistorted VAN JT Distorted
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Gain and Defect Bistability

Injection of minority carriers at 300 K causes E4 and E5 to become visible.
Annealing at 350 K (80 C) removes E4 and E5.
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Annealing of Bistable E4-E5

Neutron Damaged
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Annealing of Bistable E4-E5
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Shift of V, is associated with transition to V,0

nnealing above 500 K — Bistabillity goes
away, but V, — like defect remains
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Annealing above 500 K — Bistabillity goes

Shift of V, is associated with transition to V,0

@,

away, but V, — like defect remains

Above 500 K, bistable E4-E5 transforms
to the stable L center with two levels.

L Center has two levels
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i" Bistable E4-E5 and V, Annealing ‘*

E4-E5 has the same annealing characteristics and level asymmetry
as the normal V, seen after neutron or other clustered damage.
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Silicon Bipolar Transistor Base: Doping ~ 10'” cm-3

NEUTRON AND ION DAMAGE
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;%meutron — lon Equivalence‘&

using EOR Silicon lons

Exact match of neutron & ion Linear relationship between
DLTS spectra inverse gain and DLTS amplitude
i pnpl base,I Neut;onlio;l equilv. = 1.|2e5 I I I ] I
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qemove defects by annealing to assi
tive importance of defects to gain reduction.
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DEFECTS IN GaAs — ELECTRON
& NEUTRON DAMAGE
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Defect library from prior work

LTS in GaAs : Analysis is more complex

‘{

Neutron spectra is radically
different from electron damage.

The broad features after
neutron/ion damage are known

as the “U-band” (n-GaAs) and the
“L-band” (p-GaAs)

| siicon | GaAs

Additional defect species in
clusters
Electric-field enhanced

emission from defects (phonon
assisted tunneling)

Minimal

VYA T =3
/A I N e
National Nuclear Security Administration

Extensive (from EPR/DLTS)

A few, e.g. bistable V,, strained V,

Minimal (EPR not effective)

Unknown at present, work in
progress

Extensive — Results in broad
DLTS features after clustered
damage (U-band, L-band)
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%Clustered & Non-clustered Damage ‘*
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Neutron Damaged GaAs

| |
15 _Neutron_ Qamaged GaA — = p-GahAs _
10 ms Filling Pulse —e— n-GaAs
- 8
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z T 3
S T
c 05 "e 7
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> [ |
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0.0 J ) ] ) 1

1.0 1.2

E (eV) Density of States.opj

* Neutron damage causes expansion of the GaAs lattice

* Decrease of GaAs bandgap

 Bandgap decrease of 0.16 eV results in overlap of U- and L-bands
& apparent continuous distribution of defect states across midgap

« Cause?
— Inhomogeneous broadening , e.g. strain broadened defect levels

— Homogeneous broadening, e.g. electric-field dependent emission rate
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Broad U- & L-bands at high
doping (neutron damage)

~N, per neutron, n-GaAs
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#¥ Double DLTS (DDLTS) ¥

« If emission from a trap is controlled by
tunneling, the emission rate will depend
on the E-field (and on doping).

Phononassisted tunneling -, Standard DLTS involves emission from

regions with varying E-field, hence

DLTS peak shapes will be distorted if

tunneling is important.

Thermal emission

Elastic tunneling

Double DLTS (DDLTS)
A differential technique that uses
Standard DLTS _ two DLTS spectra to resolve defects
E-field varies from max. value to zero located within a defined (high field) region
The DLTS signal is weighted by x, hence of the depletion zone. Region sampled is
emission at regions near the depletion controlled by varying the filling pulse voltage
edge with smaller values of E is favored
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%DLTS: Measure Emission‘&
Rate at ~ Constant E-field

DDLTS n-GaAs N =1e17 cm”, Electron Damage

Electron damage, no clusters

Emission rates increases with
applied E-field
Attributed to phonon-assisted

tunneling
— Schenk, Solid State Electronics 35, 1585 (1992).

Much smaller rate increase in
si‘licon (Frenkel-Poole emission)
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E-field dependent emission rate in GaAs:
Goodman, et al., Jpn. J. Appl. Phys. 33, 1949 (1994).
Auret, et al., Semicond. Sci. Technol. 10, 1376 (1995).
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Higher Fields:
E5 Resembles U-band

DDLTS n-GaAs N =1e17 cm”, Electron Damage
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Higher Fields:
E5 Resembles U-band

DDLTS n-GaAs N =1e17 cm”, Electron Damage
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*Consequences of Tunnel

Ing

) L) ' L) ' L] ' L] ' L]
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E A ", +0.8V bias )
o - ¢ N Neutrons, C 10 MeV, -
< - Ge 28 MeV, Si 28 MeV {2
$ T ey 13
© 24 | —& _
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« Larger GR currents at high doping due to higher E-fields
« Larger GR currents at lower T SRH is small, but tunneling ~ constant
with temperature
 Decrease in excess GR currents as forward bias increases due to
lower E-field
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i" Conclusions: Silicon ‘*

* Clustered damage

— DLTS spectra of clustered damage similar to point defect
spectrum
« EOR Siions produce DLTS spectrum similar to neutrons

— Additional V,-like defects — e.g. “strained V,”

* lon — neutron damage equivalence

— DLTS of EOR ion and neutron damage related by simple
scale factor

* Defects that affect gain: VP, V,* and V, in BJT

base

— Use annealing to selectively remove defects
— Requires knowledge of annealing in low-doped collector
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i" Conclusions: GaAs ‘*

 Emission from GaAs defects is highly

electric-field dependent
— Consequences on both DLTS and device currents

 DLTS

— Electric-field broadened DLTS of electron-damaged diodes
resembles DLTS of neutron damage diodes

— U-and L-bands (neutron & ion damage) are likely a
combination of field-broadened DLTS & the effects of
additional electric fields from damage clusters

* Device currents
— Excess current in FB diodes beyond standard SRH

g?
L

7 VA
NN,

sandia
National
Laboratories



>~

Acknowledgements
D. King K. McDonald
E. Bielejec G. Patrizi
J. Campbell D. Serkland
S. Myers G. Vizkelethey
N. Kolb W. Wampler
D. Lang C. Seager

)

IR A v Sandia

N !’;‘ : ey #
NN A’ &3 Slide 34 National =
National Nuclear Security Administration I_r.‘l I: 10rd Iﬁ mnes

i



