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Outline

• Introduction – DLTS & transistor fundamentals

• Silicon – primarily n-type (P doping) 
– BJT collector – the silicon divacancy & its relatives

– BJT base – the vacancy-donor (VP)

– Correlating defects and BJT gain

• Defects in GaAs – Electrons & Neutrons
– Phonon assisted tunneling – electric field enhanced 

emission
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INTRODUCTION – DLTS 
FUNDAMENTALS
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On the DLTS plots presented in this talk, the maximum 
temperature correspond to emission from ~ Eg/2



Research Objectives

• Predict performance of bipolar transistors 
after exposure to neutrons
– Data from ion damaged devices

• Avoid hazards of fast-burst neutron reactors

– Models of defect evolution are used to connect ion data with 
neutron predictions (models not presented here)

• Experimental Requirements
– Understand effects defect clustering

– Correlate gain degradation of BJT’s with specific defects (Si)

– Understand effects of phonon-assisted tunneling (GaAs)
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Location of 
Generation-Recombination

Recombination at low current
in b/e depletion region

Recombination at high current
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Location of DLTS Data

Recombination at low current
in b/e depletion region

Recombination at high current
in b/e depletion + neutral base

b/e junction

b/c junction
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NEUTRON AND ION DAMAGE

Silicon Bipolar Transistor Collector: Doping ~ 1015 cm-3
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Three Types of V2 defects

• Normal V2 – two equal acceptor levels

• Strained V2 – single acceptor level

• Bistable V2 - two bistable acceptor levels
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• Partial filling of the shallow V2 level because of 
clustered defects and local band bending.

• Strain-induced inhibition of bond averaging of Jahn-

Teller distortion of V2 Svensson, et al., Phys. Rev. B 43, 2292 (1991)
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= charge state

JT Distorted
T < 20 K
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Gain and Defect Bistability
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Injection of minority carriers at 300 K causes E4 and E5 to become visible.  
Annealing at 350 K (80 C) removes E4 and E5.
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Annealing of Bistable E4-E5

Rate = 232 s
-1
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• Bistable E4-E5 has the 
same asymmetry as V2

• Asymmetry of E4-E5 
acceptor level amplitude 
is gone after 500 K

• Bistability remains until                         
560 K

Annealing of Bistable E4-E5
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Annealing above 500 K – Bistability goes 
away, but V2 – like defect remains
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NEUTRON AND ION DAMAGE

Silicon Bipolar Transistor Base: Doping ~ 1017 cm-3
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Neutron – Ion Equivalence 
using EOR Silicon Ions
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Exact match of neutron & ion 
DLTS spectra

Linear relationship between 
inverse gain and DLTS amplitude

Si ion energy chosen to place the ion end-
of-range (EOR) at the emitter-base junction



Remove defects by annealing to assign
relative importance of defects to gain reduction.
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Fleming, et al., J. Appl. Phys. 107, 053712 (2010).
Fleming, et al., J. Appl. Phys. 108, 063716 (2010).
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DEFECTS IN GaAs – ELECTRON 
& NEUTRON DAMAGE

Slide 22



DLTS in GaAs : Analysis is more complex
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Silicon GaAs

Defect library from prior work Extensive (from EPR/DLTS) Minimal (EPR not effective)

Additional defect species in 
clusters

A few, e.g. bistable V2, strained V2 Unknown at present, work in 
progress

Electric-field enhanced 
emission from defects (phonon 
assisted tunneling)

Minimal Extensive – Results in broad 
DLTS features after clustered 
damage (U-band, L-band)

• Neutron spectra is radically 
different from electron damage.

• The broad features after 
neutron/ion damage are known 
as the “U-band” (n-GaAs) and the 
“L-band” (p-GaAs)
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Neutron Damaged GaAs
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• Neutron damage causes expansion of the GaAs lattice

• Decrease of GaAs bandgap

• Bandgap decrease of 0.16 eV results in overlap of U- and L-bands 
& apparent continuous distribution of defect states across midgap

• Cause?

– Inhomogeneous broadening , e.g. strain broadened defect levels

– Homogeneous broadening, e.g. electric-field dependent emission rate
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Broad U- & L-bands at high
doping (neutron damage)
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• Depletion widths are narrower at 
high doping, hence fields are 
higher

• Broadening is suggestive of 
field-dependent emission
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Double DLTS (DDLTS)
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Elastic tunneling

Phonon assisted tunneling

Thermal emission
• If emission from a trap is controlled by 

tunneling, the emission rate will depend 
on the E-field (and on doping).  

• Standard DLTS involves emission from 
regions with varying E-field, hence 
DLTS peak shapes will be distorted if 
tunneling is important.
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The DLTS signal is weighted by x, hence 
    emission at regions near the depletion
    edge with smaller values of E is favored
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Double DLTS (DDLTS)
A differential technique that uses
two DLTS spectra to resolve defects 
located within a defined (high field) region
of the depletion zone.  Region sampled is
controlled by varying the filling pulse voltage
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DDLTS: Measure Emission 
Rate at ~ Constant E-field

• Electron damage, no clusters

• Emission rates increases with 
applied E-field 

• Attributed to phonon-assisted 
tunneling

– Schenk, Solid State Electronics 35, 1585 (1992).

• Much smaller rate increase in 
silicon (Frenkel-Poole emission)

E-field dependent emission rate in GaAs:
Goodman, et al., Jpn. J. Appl. Phys. 33, 1949 (1994).
Auret, et al., Semicond. Sci. Technol. 10, 1376 (1995).



Higher Fields:
E5 Resembles U-band
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Higher Fields:
E5 Resembles U-band
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Consequences of Tunneling
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• Larger GR currents at high doping due to higher E-fields

• Larger GR currents at lower T SRH is small, but tunneling ~ constant 
with temperature

• Decrease in excess GR currents as forward bias increases due to 
lower E-field



Conclusions: Silicon

• Clustered damage
– DLTS spectra of clustered damage similar to point defect 

spectrum
• EOR Si ions produce DLTS spectrum similar to neutrons

– Additional V2-like defects – e.g. “strained V2”

• Ion – neutron damage equivalence
– DLTS of EOR ion and neutron damage related by simple 

scale factor

• Defects that affect gain: VP, V2* and V2 in BJT 
base
– Use annealing to selectively remove defects

– Requires knowledge of annealing in low-doped collector



Conclusions: GaAs

• Emission from GaAs defects is highly 
electric-field dependent
– Consequences on both DLTS and device currents

• DLTS
– Electric-field broadened DLTS of electron-damaged diodes 

resembles DLTS of neutron damage diodes

– U- and L-bands (neutron & ion damage) are likely a 
combination of field-broadened DLTS & the effects of 
additional electric fields from damage clusters

• Device currents
– Excess current in FB diodes beyond standard SRH
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