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Xyce Motivation:
Support Radiation Effects Prediction

Sandia ensures electrical systems survivability in hostile 
environments

• Requires electrical modeling:
– Prompt radiation performance

– Extended lifecycle (20 to 40 years)

• Requires predictive, physics 

based models at:
– Compact model level

– 1111, 1344, 1355, 1356, 1748

– Device model level
– 1111, 1355, 1742, 1748  Advanced mathematical algorithms

 Massively parallel applications

Requires research on 

XyceXyce

Circuit response
• Devices
• Integrated circuit
• Circuit Board

Radiation event

Radiation Effects 
• Transient Photocurrent ( dot)
• Neutron



• Essential simulation approach used to verify electrical designs

• SPICE is the defacto industry standard (PSpice, HSPICE, etc.)

• Xyce supports NW-specific device development

• Provides tradeoff between fidelity and speed/problem size

• Xyce enables full system parallel simulation for circuits that are larger than 
commercial simulators can handle

Why Transistor-Level Circuit Simulation?
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Simulation Challenges

• Network Connectivity
• Hierarchical structure rather than spatial topology

• Densely connected nodes: O(n)

• Badly Scaled DAEs
• Compact models designed by engineers, not numerical 

analysts!

• Steady-state (DCOP) matrices are often ill-conditioned

• Non-Symmetric Matrices

• Load Balancing vs. Matrix Partitioning
• Balancing cost of loading Jacobian values unrelated to 

matrix partitioning for solves

• Strong scaling and robustness is the key challenge!

Analog simulation models network(s) of devices coupled via 

Kirchoff’s current and voltage laws
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Transistor-Level Simulation Flow

 Circuit simulators solve a system of 
nonlinear DAEs
 How this is done depends on analysis type

 Implicit integration methods

 Newton’s method

 Sparse matrix techniques

 Transient simulation has�phases
 Compute starting point (DCOP)

 Start analysis (transient)

 Sparse linear algebra / solvers 

•Linchpin of scalable and robust performance
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Balancing Multiple Solver Objectives

 Multiple objectives for load balancing the solver loop 
• Device Loads : The partitioning of devices over processes will impact device evaluation 

and matrix loads

• Matrix Structure : Graph structure is static throughout analysis, repartitioning matrix 
necessary for generating effective preconditioners

 Device Loads
• Each device type can have a vastly different 

“cost” for evaluation

• Memory for each device is considered 

separate

• Ghost node distribution can be irregular

 Matrix Structure
• Use graph structure to determine best

preconditioners / solvers
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Comparable Parallel Simulation Approaches

• Xyce is a distributed memory, MPI-based analog circuit simulator
• Hybrid parallelism (MPI+threads) depending on choice of linear solver

• Many commercial simulators have incorporated parallelism
• Access to multi-processor / multi-core desktops
• Multithreading key portions

• Multi-Algorithm Parallel Circuit Simulation (MAPS) 
[X. Ye, W. Dong, P. Li, S. Nassif]

• Multiple numerical integration methods with synchronization

• WavePipe
[W. Dong, P. Li, X. Ye]

• Multi-core, shared-memory simulator
• Emulate hardware pipelining to expedite time integration

• Domain-decomposition Parallel Simulation 
[H. Peng and C.K. Cheng]

• Divides circuit into linear and non-linear components (subdomains)
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History of Linear Solver Scaling

• Initially (circa 1999), Xyce used available PDE-based preconditioning 
techniques
• Incomplete LU factorization
• Limited scaling / robustness

• For small scale circuits, the Dulmage-Mendelsohn
permutation (BTF) was leveraged in KLU (2004)

• In 2008, BTF structure was leveraged to create
a new preconditioned iterative method
• Great for CMOS memory circuits

• Circuits with parasitics are more challenging

• In 2010, initial development of ShyLU, a 
“hybrid-hybrid” sparse linear solver package
• Improve robustness

W. Bomhof and H.A. van der Vorst [NLAA, 2000]

A. Basermann, U. Jaekel, and K. Hachiya [SIAM LA 2003 proc.]
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Preconditioning
Method

Residual GMRES 
Iters

Solver 
Time (s.)

Local AMD
ILUT

ParMETIS

3.43e-01
(FAIL)

500 302.573

BTF
Block Jacobi
Hypergraph

3.47e-10 3 0.139

26x speedup on 16 cores



A New Framework for Developing 
Robust “Hybrid-Hybrid” Linear Solvers

• ShyLU is a sparse linear solver framework, based on Schur
complements (S. Rajamanickam, E. Boman, M. Heroux):

– Incorporates both direct and iterative methods

– Coarse-scale (multi-processor) and fine-scale (multi-threaded) parallelism

– Can be a subdomain solver / preconditioner or stand-alone linear solver

• This approach solves by partitioning it into

where D and G are square, D is non-singular, x and b are conformally

partitioned

• The Schur complement is: 
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• Solving                consists of three steps:

• ShyLU is used as a stand-alone solver in Xyce

– Matrices partitioned using hypergraph partitioning (Zoltan)

• Wide separator – S can be computed locally

• Narrow separator – S is smaller,

but requires communication

– Preconditioner, S’, generated 

by dropping small entries in S

Achieving Scalability and Robustness 
within Xyce
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D solved exactly using KLU

S solved iteratively via 

preconditioned GMRES



• Necessary for efficient simulation of a primary logic component for W88-Alt AF&F:

– 1.6M total devices, ~2M unknowns 

– Xyce w/ KLU solver takes ~ 2 weeks, w/ ShyLU solver takes ~ 1 day

– ShyLU:  Optimal # partitions = 64; number of rows in S = 1854 (4 MPI procs)

Xyce Achieves 19x Speedup for 
Challenging Stockpile Circuit
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Strong scaling of Xyce’s simulation time
and ShyLU linear solve time for different 
configurations of MPI Tasks X Threads per node.



Hybrid Solvers:  Recent Comparisons

Recently, several parallel hybrid solvers based on Schur complements have 
been developed:

• HIPS (Gaidamour, Henon)

• MaPhys (Giraud, Haidar, et al.)

• PDSlin (Li, Ng, Yamazaki)

• ShyLU (Rajamanickam, Boman, Heroux)

They differ in many ways, e.g, how they approximate Schur complements 
and how they partition/reorder the matrix.

Numerical tests comparing ShyLU and

HIPS were run a 12-core (dual hex)

workstation

•HIPS – MPI only

•ShyLU – MPI+threads
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Publications / Presentations

• Publications

• “Electrical Modeling and Simulation for Stockpile Stewardship”, ACM XRDS, 2013

• “ShyLU: A Hybrid-Hybrid Solver for Multicore Platforms”, IPDPS 2012

• “Parallel Transistor-Level Circuit Simulation”, Simulation and Verification of Electronic and Biological 
Systems, Springer, 2011

• “A Parallel Preconditioning Strategy for Efficient Transistor-Level Circuit Simulation”, ICCAD 2009

• Presentations
• “Sparse Matrix Techniques for Next-Generation Parallel Transistor-Level Circuit Simulation”

Heidi K. Thornquist, Parallel Matrix Algorithms and Applications 2012

• “Partitioning for Hybrid Solvers: ShyLU and HIPS”
Erik G. Boman, Siva Rajamanickam, and Jeremie Gaidamour, Copper Mtn. 2012  

• “Efficient Preconditioners for Large-Scale Parallel Circuit Simulation”
Heidi K. Thornquist, SIAM Computational Science & Engineering 2011

• “Advances in Parallel Transistor-Level Circuit Simulation”
Heidi K. Thornquist, Scientific Computing in Electrical Engineering 2010

• “Large Scale Parallel Circuit Simulation”
Heidi Thornquist and Eric Keiter, Circuit and Multi-Domain Simulation Workshop, ICCAD 2009
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BACKUP SLIDES
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Acronyms

• NW – Nuclear Weapons

• SPICE - Simulation Program With Integrated Circuit Emphasis

• VHDL – VHSIC Hardware Description Language

• VHSIC – Very High Speed Integrated Circuits

• DAE – Differential Algebraic Equation

• DCOP – DC Operating Point

• BTF – Block Triangular Form

• KLU – “Clark Kent” LU

• GMRES – Generalized Minimal RESidual method

• ShyLU – Scalable hybrid LU

• HIPS – Hierarchical Iterative Parallel Solver

• MPI – Message Passing Interface

• AF&F – Arming Fusing & Firing

• ACM – Association for Computing Machinery

• ICCAD – International Conference on Computer-Aided Design

• IPDPS – International Parallel & Distributed Processing Symposium
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