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Setting

m Start with a network: edges represent possible influence

transmission

B Two players, both aim to maximize influence, i.e., convert the
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. Counterinsurgency

1vation

Moti

m U.S.vsTaliban in Afghanistan

m Taliban attempts to gain local support

m U.S. attempts to mitigate Taliban support
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Point of Departure: Baseline Model @:.

B 2-players on a network: “influencer” (maximize contagion) vs
“mitigator” (minimize impact of influencer); zero-sum

B Spread of influence: variation on independent cascades
model (Kempe et al., 2003)

B Both players simultaneously select up to R nodes
m Activate each edge (i,j) with probability p;

B Any uninfluenced node is “activated” if it has an edge to an influenced
node

m |f node i has influenced neighbors of both kinds, flip unbiased coin




Computing Equilibria in Baseline
Model

= Formulate as a (very large) Linear Program (actions = subsets
of nodes to influence)
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= Double-oracle algorithm

= |n each iteration, for each player, compute best response to the other,
add this strategy to the LP, repeat

= Greedy best response ( Maximin N
= LSMI heU ristic Solve game with current
. G:> action sets
to approximate S y
influence
(Defender Oracle A (Attacker Oracle A
Given attacker strategy, Given defender strategy,
choose a set to mitigate choose set to maximize
\opponent ) \inﬂuence )
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Uncertainty about the Network ) .

= Previous art assumes complete certainty (or symmetric
information) about the network structure

= |n reality, the influencer typically knows the network much
better than the mitigator

= |nfluencer is “local”, better attuned to culture, reputation, better
understands how the influence actually flows

= Mitigator is a foreigner, needs considerable effort to obtain accurate
information, and may still be wrong due to misunderstanding local
culture and linguistic nuances
= Model this information asymmetry as uncertainty of the
mitigator about network structure
= Existence of nodes/edges, influence probabilities, relative value of
nodes (who are the real opinion leaders)
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Model: Bayesian Zero-Sum Game @i,

types are possible graphs

Assume that the
influencer knows the
true graph




Past Literature: ) e,

Graph Structure has Significant Impact

m \Watts and Strogatz (1998) — a few short cuts make
a dramatic difference

B Costenbader and Valente (2003) — numerous
centrality measures shown to be highly sensitive
to data errors

m Kossinets (2008) — Missing data can dramatically
alter network-level statistics

m Lahiri et al. (2008) — network changes can have
dramatic and unpredictable impacts on influence
spread
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Observation: Loss from Ignoring
Uncertainty Can be Unbounded!

N Nodes
o TODO: argument
M Nodes

#P-Hard even to estimate the impact of uncertainty about a single edge!




Scalability Challenges ii

= Can formulate our problem as an LP (since zero-sum), but
there are 3 major scalability challenges

= Challenge 1: Estimating influence is #P-Hard
= Solution: use LSMI heuristic (Tsai et al, 2012)

= Challenge 2: Strategy spaces of both players are exponential

= Solution: Bayesian double-oracle (Halvorson et al., 2009)

= Challenge 3: Exponential number of influencer types (each
type = graph)

= Solution: ?
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“Naive” Idea

= Naive idea:
= take K sample types from the distribution over graphs
= Use Bayesian double-oracle with only these types

= How well does it work? How large does K need to be (relative
to the total number of possible types) to get good solutions?

= These are empirical questions




Experiments L

= Consider variations of:
= Graph topologies (generative models and real graphs)
= Uncertainty/distribution over graphs
= Graph topologies:
= “Scale-free”: preferential attachment model
= “Small-world”: Watts-Strogatz model

= BTER: generate K dense Erdos-Renyi subgraphs (communities), add random
inter-community edges; can specify arbitrary degree distribution and
clustering coefficient distribution

= “Indian villages”: social network for several Indian villages

= Models of uncertainty:
= “Random Edge Uncertainty”: uncertain about K randomly chosen edges

= “Influential Node Uncertainty”: uncertain about the identity of a highly
influential node (add 4 edges to 3 randomly chosen nodes)

= “Intercommunity Edge Uncertainty” (BTER only): uncertain about K edges
that connect communities (dense subgraphs)
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Scale-free, Small-world graphs )
(random edge uncertainty)

Scale-Free Graph (Sampling Scale-up) Small-World Graph (Sampling Scale-up)
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Scale-free, Small-world graphs )
(influential node uncertainty)

Influential Node Uncertainty: 40 Types Influential Node Uncertainty: 40 Type
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BTER Graphs =

Iontercommunity Edge: 64 Types Influoential Node Uncertainty: 40 Types
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Suffices to sample a small number of types (2-5)




BTER Graphs =

Intercommunlty Edge Uncertalnty Influential Node Uncertalnty
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Suffices to sample a small number of types (2-5)
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BTER Graphs =

In%ercommunity Edge Uncertainty i Influential Node Uncertainty
B Optimal B Optimal |
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Not much affected as we increase the number of
uncertain edges or total number of types
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Indian Village Graphs ).
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Same story if we look at Indian village graphs
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Summary of Results ) =,

Parameter Variations Parameter Variation
S

Number of types 4-40
4, 10-50

Graph type Scale-free, Small-world,

Graph size
Bottom-line: naive strategy works! 5-40

Uncertainty

0.1, 0.4,

S U U V eldc

Intercommunity edge set, 0.7
Inter/Intracommunity edge, Community density 0.6.09
Influential node —
Indian village graph weight Uniform,
Sampled 1-40 determination Weighted
Types

Over 200 parameter variations tested
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Why does it work? ) .

consider overlap in nodes used by type-
optimal strategies against:

a random type /\ftimal Strategy

Nodes Used - Diff from BaseType Nodes Used - Diff From Optimal

Average Fraction Difference
Average Fraction Difference

0 5 10 15 20 0 5 10 15 20
Game Instance Number Game Instance Number

appears to be a core set of nodes used by optimal

strategies for individual types and optimal Bayesian strategy
20



Illustration: “Equal-Community”
Graphs

AR R
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Illustration: “Equal-Community”
Graphs
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“influenc

- each type: different influencer
node

- Best strategy for one type is
worst for all the other types 22




Real Answer: Games are Robust

Equal Community Graph — 1-Player

B optimal
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Sampling a single type becomes
arbitrarily worse than optimal
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Equal Community Graph — 2-Player
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| Random Sampling

1 2 3 4 5 6 & é é 110
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Sampling a single type remains
close to optimal (remains robust)




Conclusions )

= Uncertainty is pervasive in practice, and when uncertainty is
about a graph structure, it presents severe scalability
limitations in the worst case

= While a single-player influence maximization can be very
sensitive to uncertainty, influence games appear to be very
robust to it

= As long as we have decent information about network
structure, sampling a small number of types yields near-
optimal mitigation strategies




