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Setting

 Start with a network: edges represent possible influence 
transmission

 Two players, both aim to maximize influence, i.e., convert the 
majority of the nodes to their agenda
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Motivation: Counterinsurgency

 U.S. vs Taliban in Afghanistan

 Taliban attempts to gain local support

 U.S. attempts to mitigate Taliban support
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Point of Departure: Baseline Model

 2-players on a network: “influencer” (maximize contagion) vs
“mitigator” (minimize impact of influencer); zero-sum

 Spread of influence: variation on independent cascades 
model (Kempe et al., 2003)

 Both players simultaneously select up to R nodes

 Activate each edge (i,j) with probability pij

 Any uninfluenced node is “activated” if it has an edge to an influenced 
node

 If node i has influenced neighbors of both kinds, flip unbiased coin
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Computing Equilibria in Baseline 
Model

 Formulate as a (very large) Linear Program (actions = subsets 
of nodes to influence)

 Double-oracle algorithm
 In each iteration, for each player, compute best response to the other, 

add this strategy to the LP, repeat

 Greedy best response

 LSMI heuristic

to approximate

influence
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Defender Oracle

Given attacker strategy, 
choose a set to mitigate 
opponent

Attacker Oracle

Given defender strategy, 
choose set to maximize 
influence

Maximin

Solve game with current 
action sets



Uncertainty about the Network

 Previous art assumes complete certainty (or symmetric 
information) about the network structure

 In reality, the influencer typically knows the network much 
better than the mitigator
 Influencer is “local”, better attuned to culture, reputation, better 

understands how the influence actually flows

 Mitigator is a foreigner, needs considerable effort to obtain accurate 
information, and may still be wrong due to misunderstanding local 
culture and linguistic nuances

 Model this information asymmetry as uncertainty of the 
mitigator about network structure
 Existence of nodes/edges, influence probabilities, relative value of 

nodes (who are the real opinion leaders)
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Model: Bayesian Zero-Sum Game
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……

type 1 type 2

types are possible graphs

Assume that the 
influencer knows the 
true graph



Past Literature: 
Graph Structure has Significant Impact

 Watts and Strogatz (1998) – a few short cuts make 
a dramatic difference

 Costenbader and Valente (2003) – numerous 
centrality measures shown to be highly sensitive 
to data errors

 Kossinets (2008) – Missing data can dramatically 
alter network-level statistics

 Lahiri et al. (2008) – network changes can have 
dramatic and unpredictable impacts on influence 
spread
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Observation: Loss from Ignoring 
Uncertainty Can be Unbounded!
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TODO: argument

#P-Hard even to estimate the impact of uncertainty about a single edge!



Scalability Challenges

 Can formulate our problem as an LP (since zero-sum), but 
there are 3 major scalability challenges

 Challenge 1: Estimating influence is #P-Hard
 Solution: use LSMI heuristic (Tsai et al, 2012)

 Challenge 2: Strategy spaces of both players are exponential
 Solution: Bayesian double-oracle (Halvorson et al., 2009)

 Challenge 3: Exponential number of influencer types (each 
type = graph)
 Solution: ?
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“Naïve” Idea

 Naïve idea: 
 take K sample types from the distribution over graphs

 Use Bayesian double-oracle with only these types

 How well does it work?  How large does K need to be (relative 
to the total number of possible types) to get good solutions?

 These are empirical questions
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Experiments

 Consider variations of:

 Graph topologies (generative models and real graphs)

 Uncertainty/distribution over graphs

 Graph topologies:

 “Scale-free”: preferential attachment model

 “Small-world”: Watts-Strogatz model

 BTER: generate K dense Erdos-Renyi subgraphs (communities), add random 
inter-community edges; can specify arbitrary degree distribution and 
clustering coefficient distribution

 “Indian villages”: social network for several Indian villages

 Models of uncertainty:

 “Random Edge Uncertainty”: uncertain about K randomly chosen edges

 “Influential Node Uncertainty”: uncertain about the identity of a highly 
influential node (add 4 edges to 3 randomly chosen nodes)

 “Intercommunity Edge Uncertainty” (BTER only):  uncertain about K edges 
that connect communities (dense subgraphs) 12



Scale-free, Small-world graphs
(random edge uncertainty)
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Scale-free Graphs Small-world Graphs



Scale-free, Small-world graphs
(influential node uncertainty)
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Scale-free Graphs Small-world Graphs



BTER Graphs
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Suffices to sample a small number of types (2-5)



BTER Graphs
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Suffices to sample a small number of types (2-5)



BTER Graphs
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Not much affected as we increase the number of 
uncertain edges or total number of types



Indian Village Graphs
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Same story if we look at Indian village graphs



Summary of Results
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Parameter Variations

Graph type Scale-free, Small-world, 
BTER, Indian village 8, 10

Graph size 20, 25, 30, 35, 40 node 
synthetic graphs, 80-100 
node real graphs

Uncertainty Random edge, 
Intercommunity edge, 
Intercommunity edge set,
Inter/Intracommunity edge, 
Influential node

Sampled
Types

1-40

Parameter Variation
s

Number of types 4-40

Influential Node Uncertainty:
Edges per node

4, 10-50

Intercommunity Edge Set 
Uncertainty: Edges per type

5-40

Avg contagion probability 0.1, 0.4, 
0.7

Community density 0.6, 0.9

Indian village graph weight 
determination

Uniform, 
Weighted

Over 200 parameter variations tested

Bottom-line: naïve strategy works!



Why does it work?
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consider overlap in nodes used by type-
optimal strategies against:

optimal strategya random type

appears to be a core set of nodes used by optimal 
strategies for individual types and optimal Bayesian strategy



Illustration: “Equal-Community” 
Graphs
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Illustration: “Equal-Community” 
Graphs
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“influencer”

- each type: different influencer 
node 

- Best strategy for one type is 
worst for all the other types



Real Answer: Games are Robust
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Sampling a single type becomes 
arbitrarily worse than optimal

Sampling a single type remains 
close to optimal (remains robust)



Conclusions

 Uncertainty is pervasive in practice, and when uncertainty is 
about a graph structure, it presents severe scalability 
limitations in the worst case

 While a single-player influence maximization can be very 
sensitive to uncertainty, influence games appear to be very 
robust to it

 As long as we have decent information about network 
structure, sampling a small number of types yields near-
optimal mitigation strategies
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