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Blue: Defended actions, Red: Attacker’s plan
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P̂ = ∅;
Û = 0;
U =∞;

while Û < U do

(M̂,Da, Û) =DPIP MASTER(P̂);
A
M̂

= ∅;
for a ∈ A do

if Da = 0 then
A
M̂

= A
M̂
∪ a;

end
end
(p, U) =optimalPlan(A

M̂
);

if U > Û then

P̂ = P̂ ∪ p;
end

end

Framework

We propose a Stackelberg game model of security in
which the defender chooses a mitigation strategy that
interdicts potential attack actions, and the attacker
responds by computing an optimal attack plan that
circumvents the deployed mitigations. Our starting
point is actually an extension to the classical plan-
ning framework termed partial satisfaction planning
(PSP), which assigns each goal literal a value, and each
plan action a cost.

Cyber Security Example

Initial state: initial attacker capabilities (possession of
a boot disk and port scanning utilities)

Actions: physical actions (breaking and entering and
booting a machine from disk) and cyber actions(performing
a port scan to find vulnerabilities)

IP for Classical Planning

The problem of finding an optimal plan for PSP given
a fixed number of time-steps has a known integer pro-
gramming (IP) formulation which will provide the basis
for our own techniques. The planning IP introduces a
number of meta-variables to capture how actions mod-
ify the state of each literal l at every time step t. As
an example, computing xpal,t (which is 1 iff an action is
executed in timestep t that has l as a precondition but
does not delete it) requires the following constraints:

∀l,t
∑

a∈prel\dell

ya,t ≥ xpal,t

∀l,t,a∈prel\dell ya,t ≤ xpal,t

where prel represents the set of actions which have as
l a pre-condition and dell the set of actions where l is
deleted as a post-condition. Each of the other meta-
variables is computed with a similar set of constraints.

max
ya,t

∑
l

Vlsl −
∑
a,t

Caya,t

s.t. :

constraints from metavariables

∀l,t xpal,t + xml,t + xpdl,t ≤ xaddl,t−1 + xpal,t−1 + xml,t−1

∀l,t xpal,t + xml,t + xpdl,t ≥ xaddl,t−1

∀l,t xpal,t + xml,t + xpdl,t ≥ xpal,t−1

∀l,t xpal,t + xml,t + xpdl,t ≥ xml,t−1

∀l xaddl,|T | + xpal,|T | + xml,|T | ≥ sl

∀l xaddl,|T | ≤ sl

∀l xpal,|T | ≤ sl

∀l xml,|T | ≤ sl

∀l xaddl,0 =

{
1 if l ∈ I
0 otherwise

Deterministic Plan Interdiction

A deterministic plan interdiction problem (DPIP) is
described by a tuple {P,M, V D

l , V
A
l , C

D
m, C

A
a }, where:

•P is the planning problem for the attack in the ab-
sence of any mitigations

•M is the set of mitigation strategies for the defender

•V D
l and V A

l are the utilities of the defender and at-
tacker respectively when the attacker achieves a goal
literal l ∈ G
•CD

m is the cost of mitigation m ∈M to the defender

•CA
a is the cost of action a ∈ A to the attacker

While a mitigation strategy m ∈ M can potentially
protect against a subset of attack actions a or remove
literals from the initial state I , without loss of gen-
erality, we assume that m only has an effect on at-
tacker actions. Although we prove this problem to be
PSPACE-Complete, when we restrict ourselves to a
fixed number of time-steps we can formulate DPIP as
a (very large) integer program.

IP for DPIP

max
Da,Dm,ya,t,δp

∑
l∈L

V D
l sl −

∑
m∈M

DmC
D
m

s.t. :

∀a Da ≤
∑
m

DmAm,a

∀m,aDa ≥ DmAm,a

∀a,t ya,t ≤ (1−Da)

∀p,a δp ≥ Da

∀p δp ≤
∑
a∈p

Da

∀p
∑
l∈L

V A
l sl −

∑
a,t

CA
a ya,t ≥ UA(p)− Zδp

constraints from Planning IP

Scaling Up with Constraint Generation

The number of feasible plans, and consequently the
number of constraints are exponential in the number
of actions. To manage this problem we develop several
constraint generation approaches. Below is one algo-
rithm for doing this, where P̂ corresponds to the subset
of plans we are currently considering. We can use the
IP for Classical Planning as an oracle to generate the
plans we optimize against.

Algorithm for Constraint Generation

Optimistic Constraint Generation

(3rd Col) Observe that to make progress in each iter-
ation of Algorithm 1 we need only to generate a plan
with a higher utility than any in P̂ , and not necessarily
an optimal plan. We consider two natural candidates
for such optimistic constraint generation: the planning
IP (above) but to cut off the solver after a fixed time
limit and using an off-the-shelf state-of-the-art heuristic
planner (SGPLAN).

Experiments

For the experimental evaluation, we used the pathways
planning domain from the 2006 international planning
competition (IPC). To formulate these as interdiction
problems, we let the set of mitigations correspond to
the set of plan actions (thus, each mitigation m blocks
exactly one attack action). The problems that we ran
our experiments on ranged in size from 46 possible at-
tacker actions and one potential goal (problem number
1) to 490 attacker actions and 27 potential goals (prob-
lem number 20), with a general trend of a larger index
having a larger number of possible attacker actions and
goals.

Effect of Optimistic Constraint Genera-
tion on Runtime

Adding Uncertainty

We can relax the assumption that the attackers capabil-
ities, goals, and action costs as known to the defender in
a relatively standard way by using a Bayesian Stackel-
berg game model. Below we focus on uncertainty in at-
tackers capabilities (uncertainty about goals and costs
can be handled similarly). For the figure below, we
first generated 9 attacker types corresponding to initial
capabilities, and then incrementally abstracted these
to obtain smaller numbers of types. We discuss other
types of uncertainty in the paper.
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