)

Sandia
National

Laboratories

Homogenization and

Joe Bishop

Engineering Sciences Center
Sandia National Laboratories
Albuquerque, NM

Sandia Multiscale Meeting
May 6-7, 2013
Livermore, CA

o

S5 U.S. DEPARTMENT OF \ 1 =«
v
ity

y T
»!ENERGY VA

al Nuclear Security Administration

SAND2013- 3696P

Material Variability

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




Sandia
I Natonal
Laboratories

Collaborators

John Emery (1524), Chris Weinberger (1814), Dave Littlewood (1444)

PPM Project Support

Amy Sun, Corbett Battaile, Jay Foulk, Brad Boyce

Acknowledgement

Josh Robbins (1443): On the fruitfulness of using Mindlin’s theory of a “continuum
with microstructure.”

2




o ’11 ﬁa;l_dia |
Outline Natorl

. Review of homogenization theory

e apparent vs. effective material properties

 weak convergence

 Type 1and Type 2 material variability

. Direct numerical simulations and comparison to

homogenized PDE solution

* Voronoi microstructure
 hexahedral mesh overlay
 boundary value problems

. Type 2 material variability in macroscale simulations:

a path forward
e Mindlin’s continuum formulation

e elastic formulation
* nonlinear response via FE?




Hierarchy of Continuum Models h

(homogenization perspective)

1. First-order continuum

* microstructure is infinitesimally small

» stored energy is a function of strain only

* RVE size is infinite (very large compared to microstructure)

* material properties can fluctuate only on a large scale (Type 1 material variability)
e used in commercial FEA codes and Sierra

2. Second-order continuum

* microstructure is small but finite

» stored energy is a function of both strain and strain gradient (Mindlin, 1964)

* RVE no longer exists, instead have a SVE (stochastic volume element; (Yin, 2008))
* material properties are no longer intrinsic but are rather extrinsic (Huet, 1990)

* material properties fluctuate on a small scale (Type 2 material variability)

3. Direct Numerical Simulation using Multiscale Mortars
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* each RVE is coupled through mortars with a multiscale basis obtained through first-order

homogenization theory (Arbogast, 2007)

4. Direct Numerical Simulation




Homogenization

_ €
oij = (0 z'j>
fine-scale fluctuations replaced with mean behavior

This equivalence is defined in an energy sense: 0ij€ij = <Ufj> <8§j>

Constitutive models map average strain to average stress:

Eij = <5ij> —> 045 = <Ufj>
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Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.

Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

C = stiffness tensor

finite RVE, apparent infinite RVE, effective
R () < O < 0 ()
o W) > — Ye W
SUBC KUBC
_ deterministic
stochastic stochastic

partial ordering defined in an energetic sense:

B<A iff e:(A-B):e>0 forall e¢#0

h

n
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Apparent vs. Effective Material Properties (@

n

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.
Journal of the Mechanics and Physics of Solids, 38(6): 813-841.

app app app _
CoPP < CPPP < OPP <. < O = O

s
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Apparent vs. Effective Material Properties @&z,

- A displacement b.c., KUBC
g First order continuum uses this.
o
8 periodic b.c.
o .
P e lilien-—=——————— S effective value
c
v . (deterministic, no variability)
© traction b.c., SUBC
o
o
©
>
RVE size
€=0.32
e=0.16 e =0.08 e = 0.04




What about the Governing PDE? [,

macro-scale

ij,j +f =0 What is the governing

—

€ € PDE at the macroscale?
045 = QijkiCkl
micro-scale linear elasticity

—
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Strong and Weak Convergence

A sequence of functions (u,,), u, € L? is strongly convergent to u € L? if
im |Juy, —ul|;2 =0

n—oo

A sequence of functions (u,), u, € L? is weakly convergent to u € L? if

nan;O(un,v> = (u,v) for all v € L?

These are the modes of convergence in which homogenization is defined.
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Weak Convergence

Example: The sequence of functions wu,, = sin(nwz) in L?[0, 1] converges weakly to u = 0.

U1e u3z2
1_ -
weak limit
2ol - | __/(mean)
N
-1 T . o
0 . 0 0.5 1 0 0.5 1
X X X X
L weak limit
/(mean)
2o — — — — e
N
1 T r
0 0.5 1 0 0.5 1 0 0.5 1 O 0.5 1
X X X X

Theorem: Any sequence of periodic functions converges weakly to the mean as
the period approaches zero.
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Asymptotic Expansion
(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

ue(X) — uO(X7Y) + eul(X7Y) + 62“2(X7 Y) T

periodic cell

U (X,¥) are periodic in y solution

y = X/E is the “fast’ variable
homogenized
solution

X is the 'slow’ variable

A\ 4
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Linear Homogenization Results

substitute

CT§j7j _+}f% =0

E— €

u(x) = up(x,y) + eus(x,y) + € uz(x,y) + - - e
05 = Qgik1€k]

-
- -

f .

first-order second-order
does not depend upon €! corrector corrector

homogenized solution

Observations:

* Inthelimitas € — 0, get a first-order continuum (homogenized).
* For € # (0 need gradient terms (higher-order continuum)
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Linear Homogenization Results

(Cioranescu and Donato, 1999, An Introduction to Homogenization.)

u¢ — u strongly in L?
u® — u weakly in H*?
0¢ — o weakly in L?
We¢ — W strongly in R




Homogenization ) e,

—— micro-scale stress field
—— first-order homogenization
----- second-order homogenization

significant effect in areas of
high strain gradient?
negligible effect in areas
of low strain gradient

surface
\ effect

N A

Y

“Higher-order effects can be expected to come into play in linear-elastic
solids when the representative length scale of the deformation field
becomes comparable to a micro-structural length scale.” - (Mindlin, 1964)

surface
effect
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ldentify Two Types of Material Variability

1. spatial variability of homogenized material constants (Type 1)

size of microstructure ¢ =0

first-order homogenization, first-order PDE

spatial correlation at the macro-scale

elastic isotropy assumption holds regardless of scale

2. higher-order terms in the PDE itself (Type 2)

micro-structure is finite € #0
higher-order PDE

spatial correlation at the micro-scale only
anisotropic fluctuations
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1. Review of homogenization theory

* apparent vs. effective material properties
* weak convergence
* Type 1 and Type 2 material variability

2. Direct numerical simulations and comparison to
homogenized PDE solution

* Voronoi microstructure
* hexahedral mesh overlay
* boundary value problems

3. Type 2 material variability in macroscale simulations:
a path forward

e Mindlin’s continuum formulation
* elastic formulation
* nonlinear response via FE?

17
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Goals

Perform direct numerical simulations (DNS) of macroscopic boundary-value problems
with microstructure and compare with the solution from the homogenized PDE.

Identify any evidence of incomplete first-order homogenization.

Propose/investigate a higher-order continuum theory for Type-2 material variability.

DNS Solutions

Use Voronoi grains structures resulting from maximal Poisson sampling.
Use the RPI crystal plasticity model (Dave Littlewood, John Emery)

Overlay Voronoi grains onto an independent hexahedral mesh of the structure.

18



Voronoi Microstructure from MPS Seeding

Maximal Poisson Sampling

e constraint on min. dist.
e seed until ‘max’ packing
e Ebeida/Mitchell Algorithm (1400)
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Hierarchy of Hexahedral Meshes
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Voronoi Overlay of Hierarchy of Hexahedral Meshes

* One grain realization with ~ 6 grains through the diameter (~ 940 grains)
* Hierarchy of hexahedral meshes
* Pixelation decreases with mesh refinement

~ 1 hex per grain ~ 8 hexas per grain

~ 64 hexas per grain

~ 512 hexas per grain ~ 4096 hexas per grain




Voronoi Overlay of Hierarchy of Hexahedral Meshes

One grain realization with ~ 12 grains through the diameter (~ 6200 grains)

~ 64 hexas per grain ~ 512 hexas per grain
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304L Single Crystal Elasticity Constants
(Ledbetter, 1984)

Ci1 =204.6 GPa

single crystal elastic constants (cubic symmetry) C12 =137.7 GPa
Cyy = 126.2 GPa

) ) A= _—_—""2= 35
anisotropy ratio, Ci1 — Cyy

e assume random crystallographic orientations
* no correlation between grains (no texture)

24
- _________________________________________________________________________________________________________________
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RPI Crystal Plasticity Model

(Dave Littlewood, John Emery, Chris Weinberger)

N
plastic velocity gradient: > => 4*pP" (sum over slip systems)
a=1
Schmid tensor: P% = m®n®
o a|l/m—1
_ _ _ o . T
slip system slip rates: V= %g—a P
: : G,
slip system hardening: 9= 9o+ (gso — 9o) [1 — exp (—g —; 7)]

N
y=>_I|yl
s=1




Fit tO 304L m Eﬁ%&i&s
(Chris Weinberger)

Fit compared to experimental (polycrystal)
700

600 .
Fit parameters

7, = 130
400} Jso = 230
300} G, = 465

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Strain



Uniaxial Tension, Displacement Control ()&,

~ 12 grains across diameter, R3 mesh

affantiua lnn ctrain effective_log_strain

effective_log_strain effective_log_strain

0.50
0.38 H
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Compare with Homogenized PDE @ =
(No Variability)

before necking

* symmetric
* neck is exactly at center

28



Apparent vs. Effective Material Properties @&z,

- A displacement b.c., KUBC
g First order continuum uses this.
o
8 periodic b.c.
o .
P e lilien-—=——————— S effective value
c
v . (deterministic, no variability)
© traction b.c., SUBC
o
o
©
>
RVE size
€=0.32
e=0.16 e =0.08 e = 0.04




Stochastic Volume Elements ) e,
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~ 83 grains

... S100

... 5100

~ 323 grains



Stochastic Volume Elements )

* traction boundary conditions corresponding to uniaxial stress state

 ideally would use periodic boundary conditions (couldn’t get working in Adagio)
* recover average strain field

e calculate apparent moduli

* 100 realizations at each grain level

* take average

Von Mises stress field

~ 83 grains

~ 163 grains ~ 323 grains

31




Convergence to Effective Isotropic Properties *-

* mean of 100 simulations at each “grain level”
* rational function extrapolation to oo
* first order convergence rate

number of grains

apparent Young’s Modulus

apparent Poisson’s ratio

(GPa)
~83 grains 177.2 0.317
~163 grains 180.6 0.312
~323 grains 182.4 0.310
oo 184.1 0.309

These values will be used as the homogenized, isotropic properties.

32
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I-Beam Example

* tension
* bending
* torsion

* Study statistics of direct numerical simulations
* Compare to homogenized solution
* Look for evidence of Type 2 material variability

33
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Hierarchy of Hexahedral Meshes
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. . . Sandia
Thickness/grain ratio =4 )t

* RCP Voronoi grain structure
* 60K grains
* hex mesh overlay = R3 (4.4M elements)



. . . Sandia
Thickness/grain ratio = 8 )t

* RCP Voronoi grain structure
* 420K grains
* hex mesh overlay = R4 (35M elements)



Thickness/grain ratio = 8

VM stress field, Homogenized

VM stress field, DNS

von_mises

3.00
2.25
1.50 [
0.75
0.00




Realization 1 Realization 2

J

von_mises y 3 von_mises
3.00 ' : 3.00
2.25 \ 2.25
1.50 1.50
0.75 0.75
0.00 ' — 0.00




~ Symmetry Breakin

Homogenized solution

’

Realization 1 Realization 2
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Ensemble Results

100 realizations for thickness/grain ratio = 4
62 realizations for thickness/grain ratio = 8
magnitude of ensemble average stress tensor
standard deviation of stress ensemble

magnitude of difference of ensemble average stress tensor and
homogeneous solution

projection of DNS solutions to coarse scale mesh and repeat




Ensemble Results, 62 Realizations i) i,
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homogeneous solution
(stress magnitude)

stress_homo_mag
2.50
1.88
1.25
0.62
000

DNS

DNS
(magnitude of ensemble average stress)

(stress standard deviation)

stress_dns_mean_mag

2.50
1.88

stress_stdev

1.00

0.75

1.25 0.50
0.25 | | NS

0.62 i—




Ensemble Results minus Homogeneous )t
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(scale lower by factor of 10)

stress_diff_mag

0.25
0.19
0.12
0.06
0.00

magnitude (ensemble average stress — homogeneous stress)

42



Projection/Average to Coarse Mesh, R2 () &,
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homogeneous solution
(stress magnitude)

stress_homo_mag

2.50
1.88
1.25
0.62
0nn

DNS DNS

(magnitude of ensemble average stress) (stress standard deviation)




Ensemble Results minus Homogeneous )t
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Projection/Average to Coarse Mesh, R2

stress_diff_mag
0.25
0.19
0.12
0.06
0.00
44




Direct Numerical Simulation, Structural Dynamics
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idealized part

mode 13 mode 15

2 grains across wall thickness * 4 grains across wall thickness < 4 grains across wall thickness
» ~8600 grains + ~53K grains + ~53K grains 45
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1. Review of homogenization theory

* apparent vs. effective material properties
* weak convergence
* Type 1 and Type 2 material variability

2. Direct numerical simulations and comparison to
homogenized PDE solution

* Voronoi microstructure
* hexahedral mesh overlay
* boundary value problems

3. Type 2 material variability in macroscale simulations:
a path forward

e Mindlin’s continuum formulation
* elastic formulation
* nonlinear response via FE?

46
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A Path Forward for Including Microscale Variability in
Macroscale Models

Homogenization theory indicates that for finite microstructure, strain gradient effects are
present (strain energy depends on both strain and strain gradient).

Additionally, expect to see a “size effect”, even for homogeneous fields, at the macroscale
(“apparent” material properties described by Huet, 1990).

Several strain-gradient continuum formulations

Following Josh Robbins lead, going to explore the use of Mindlin’s micromorphic formulation
(1964). (Josh Robbins, org 1443, LDRD, “Micromorphic Continua for High Fidelity Physics Models”)

Mindlin, 1964, “Microstructure in Linear Elasticity”

Mindlin’s formulation allows existing ' FEA formulations to be used, but with extra nodal
degrees of freedom.

much recent work by W.K. Liu’s group at NU for modeling localization phenomena

47



Mindlin’s Micromorphic Continuum Formulation () i
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(Mindlin, 1964, “Micro-structure in Linear Elasticity,” Archive for Rational Mechanics and Analysis, v 16, 51-78.)

Embedded in each material particle, there
is assumed to be a “micro-volume” V'

macro-displacement,u = x — X

micro-displacement, u’ = x’ — X’

u = u(x)

u =u'(x,x')

Key Approximation: Approximate u’ as linearon V' .

o
_ _ ou;
micro-deformation  v;; = —
oz

Micro-deformation W(x) is constanton V'’ but varies on macro-scale V.

48
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relative deformation Vij = Uj»i —Vij (not symmetric)

: . . oY
macro-gradient of the micro-deformation x;; = awjk (no minor symmetry)
X

, 1
macro-strain  g;; = —(u;,; +uj,; )

9 (infinitesimal displacements)

strain energy W = W (e, Vij» Xijk)

ow
Cauchy stress ~ 0ij = . (symmetric)
ij
. oW .
relative stress Tij = o (not symmetric)
1J
ow

double stress

Xijk (no minor symmetry)




Mindlin’s Micromorphic Continuum Formulation () i
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(Mindlin, 1964, “Micro-structure in Linear Elasticity,” Archive for Rational Mechanics and Analysis, v 16, 51-78.)
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Linear Elastic

o ¢ G F €
T p=|G B D y
L4 F D A X

* displacement based finite element formulation

* nodal variables are u (3) and wij (9)

* use same shape functions but with 12 d.o.f. per node
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What about material variability?

standard stiffness matrix (deterministic)

/ all others are random

o '\ €

9

I

G
B
D

\]

]
o Q
= O

Y
X

* For polycrystalline material variability, take G, F, B, D, A to be random matrices.
* The random matrices are a function of sampling volume 174

* Take this sampling volume to be a function of the finite-element volume.

* The random matrices are generally anisotropic.

* As V' = oo, the microstructural fluctuations should disappear.

**** Need to stay in weak form (no strong form), ****

52
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Homogenized Simulation via FE?

(to be compared with direct simulation)

Macro FE model

RVE array

Each element has an
independent RVE.

Challenges:
* RVE needs to be as small as possible for efficiency.
* RVE needs to be as large as possible to give effective properties.
* RVE mesh needs to be sufficiently refined.
* Number of RVEs grows with mesh refinement in macro model.
* Robustness of CPFE models. 53

(This RVE array is for testing Sierra/SM capability.)
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Summary

Difference between Apparent and Effective material properties
Homogenization theory based on concept of weak convergence

Use Direct Numerical Simulations of macroscale boundary value problems
containing microstructure to investigate incomplete first-order homogenization.

Propose using Mindlin’s micromorphic continuum theory to model Type-2
material variability

Will probably need to use FE2 approaches to model nonlinear micromorphic
continua.




