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Outline	
  

1.  Review	
  of	
  homogeniza*on	
  theory	
  
•  apparent	
  vs.	
  effec*ve	
  material	
  proper*es	
  
•  weak	
  convergence	
  
•  Type	
  1	
  and	
  Type	
  2	
  material	
  variability	
  

2.  Direct	
  numerical	
  simula*ons	
  and	
  comparison	
  to	
  
homogenized	
  PDE	
  solu*on	
  
•  Voronoi	
  microstructure	
  
•  hexahedral	
  mesh	
  overlay	
  
•  boundary	
  value	
  problems	
  

3.  Type	
  2	
  material	
  variability	
  in	
  macroscale	
  simula*ons:	
  
a	
  path	
  forward	
  	
  
•  Mindlin’s	
  con*nuum	
  formula*on	
  
•  elas*c	
  formula*on	
  
•  nonlinear	
  response	
  via	
  FE2	
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Hierarchy	
  of	
  Con*nuum	
  Models	
  

1.  First-­‐order	
  con*nuum	
  
•  microstructure	
  is	
  infinitesimally	
  small	
  
•  stored	
  energy	
  is	
  a	
  func*on	
  of	
  strain	
  only	
  
•  RVE	
  size	
  is	
  infinite	
  (very	
  large	
  compared	
  to	
  microstructure)	
  
•  material	
  proper*es	
  can	
  fluctuate	
  only	
  on	
  a	
  large	
  scale	
  (Type	
  1	
  material	
  variability)	
  
•  used	
  in	
  commercial	
  FEA	
  codes	
  and	
  Sierra	
  

2.  Second-­‐order	
  con*nuum	
  
•  microstructure	
  is	
  small	
  but	
  finite	
  
•  stored	
  energy	
  is	
  a	
  func*on	
  of	
  both	
  strain	
  and	
  strain	
  gradient	
  (Mindlin,	
  1964)	
  
•  RVE	
  no	
  longer	
  exists,	
  instead	
  have	
  a	
  SVE	
  (stochas*c	
  volume	
  element;	
  (Yin,	
  2008))	
  
•  material	
  proper*es	
  are	
  no	
  longer	
  intrinsic	
  but	
  are	
  rather	
  extrinsic	
  (Huet,	
  1990)	
  
•  material	
  proper*es	
  fluctuate	
  on	
  a	
  small	
  scale	
  (Type	
  2	
  material	
  variability)	
  

3.  Direct	
  Numerical	
  Simula*on	
  using	
  Mul*scale	
  Mortars	
  

•  each	
  RVE	
  is	
  coupled	
  through	
  mortars	
  with	
  a	
  mul*scale	
  basis	
  obtained	
  through	
  first-­‐order	
  
homogeniza*on	
  theory	
  (Arbogast,	
  2007)	
  

4.  Direct	
  Numerical	
  Simula*on	
  

(homogeniza*on	
  perspec*ve)	
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Homogeniza*on	
  

fine-­‐scale	
  fluctua*ons	
   replaced	
  with	
  mean	
  behavior	
  

Cons*tu*ve	
  models	
  map	
  average	
  strain	
  to	
  average	
  stress:	
  

�✏
ij �ij = h�✏

iji

�ij = h�✏
iji"ij = h"✏iji

This	
  equivalence	
  is	
  defined	
  in	
  an	
  energy	
  sense:	
   �ij"ij = h�✏
ijih"✏iji
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Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841. 

Apparent	
  vs.	
  Effec*ve	
  Material	
  Proper*es	
  

SUBC	
   KUBC	
  

Capp
� (!)  C  Capp

" (!)

determinis*c	
  
stochas*c	
   stochas*c	
  

C = s*ffness	
  tensor	
  

B < A

par*al	
  ordering	
  defined	
  in	
  an	
  energe*c	
  sense:	
  

iff	
  	
   " : (A�B) : " > 0 for	
  all	
  	
   " 6= 0

finite	
  RVE,	
  apparent	
   infinite	
  RVE,	
  effec*ve	
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Capp
�,L  Capp

�,2L  Capp
�,4L  · · ·  Capp

�,1 = C

L 2L 4L 8L 

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841. 

Apparent	
  vs.	
  Effec*ve	
  Material	
  Proper*es	
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ε = 0.32	

 ε = 0.16	

 ε = 0.08	

 ε = 0.04	



effec*ve	
  value	
  

	
  a
pp

ar
en

t	
  p
ro
pe

rt
y	
   displacement	
  b.c.,	
  KUBC	
  

trac*on	
  b.c.,	
  SUBC	
  

periodic	
  b.c.	
  

First	
  order	
  con*nuum	
  uses	
  this.	
  

(determinis*c,	
  no	
  variability)	
  

RVE	
  size	
  	
  

Apparent	
  vs.	
  Effec*ve	
  Material	
  Proper*es	
  



What	
  about	
  the	
  Governing	
  PDE?	
  

micro-­‐scale	
  

l 

L 

What	
  is	
  the	
  governing	
  
PDE	
  at	
  the	
  macroscale?	
  

macro-scale 

✏ =
l

L

�✏
ij ,j +fi = 0

�✏
ij = a✏ijkl"

✏
kl

⌦

linear	
  elas*city	
  



Strong	
  and	
  Weak	
  Convergence	
  

lim
n!1

hun, vi = hu, vi

lim
n!1

kun � ukL2 = 0

for all v 2 L2

A sequence of functions (un), un 2 L2
is strongly convergent to u 2 L2

if

A sequence of functions (un), un 2 L2
is weakly convergent to u 2 L2

if

These	
  are	
  the	
  modes	
  of	
  convergence	
  in	
  which	
  homogeniza*on	
  is	
  defined.	
  



weak	
  limit	
  
(mean)	
  

Weak	
  Convergence	
  

weak	
  limit	
  
(mean)	
  

u4 u8 u16 u32

Example: The sequence of functions un = sin(n⇡x) in L

2
[0, 1] converges weakly to u = 0.

Theorem:	
  	
  Any	
  sequence	
  of	
  periodic	
  func*ons	
  converges	
  weakly	
  to	
  the	
  mean	
  as	
  
the	
  period	
  approaches	
  zero.	
  	
  



Asympto*c	
  Expansion	
  
(Cioranescu and Donato, 1999, An Introduction to Homogenization.) 

homogenized 
solution 

periodic cell 
solution 

u

✏(x) = u0(x,y) + ✏u1(x,y) + ✏2u2(x,y) + · · ·

uj(x,y) are periodic in y

y
x

x is the `slow’ variable 

y = x/✏ is the `fast’ variable 



Linear	
  Homogeniza*on	
  Results	
  

RESULT:	
  

homogenized	
  solu*on	
   first-­‐order	
  
corrector	
  

second-­‐order	
  
corrector	
  

Observations: 

subs*tute	
  

u

✏(x) = u0(x,y) + ✏u1(x,y) + ✏2u2(x,y) + · · ·
�✏
ij ,j +fi = 0

�✏
ij = a✏ijkl"

✏
kl

does	
  not	
  depend	
  upon	
  	
  	
  !	
  ✏

•  In	
  the	
  limit	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  get	
  a	
  first-­‐order	
  con*nuum	
  (homogenized).	
  
•  For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  need	
  gradient	
  terms	
  (higher-­‐order	
  con*nuum)	
  

✏ ! 0
✏ 6= 0

u

✏(x) = u0(x)� ✏ �(y) ·ru0 + ✏2✓(y) : rru0 + · · ·
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Linear	
  Homogeniza*on	
  Results	
  
(Cioranescu and Donato, 1999, An Introduction to Homogenization.) 

u✏ ! u strongly in L2

u✏ ! u weakly in H1

�✏ ! � weakly in L2

W ✏ ! W strongly in <



Homogeniza*on	
  

negligible	
  effect	
  in	
  areas	
  
of	
  low	
  strain	
  gradient	
  

significant	
  effect	
  in	
  areas	
  of	
  
high	
  strain	
  gradient?	
  

surface	
  
effect	
  

surface	
  
effect	
  

micro-­‐scale	
  stress	
  field	
  
first-­‐order	
  homogeniza*on	
  
second-­‐order	
  homogeniza*on	
  

“Higher-­‐order	
  effects	
  can	
  be	
  expected	
  to	
  come	
  into	
  play	
  in	
  linear-­‐elas*c	
  
solids	
  when	
  the	
  representa*ve	
  length	
  scale	
  of	
  the	
  deforma*on	
  field	
  
becomes	
  comparable	
  to	
  a	
  micro-­‐structural	
  length	
  scale.”	
  	
  -­‐	
  	
  (Mindlin,	
  1964)	
  



1.  spa*al	
  variability	
  of	
  homogenized	
  material	
  constants	
  (Type	
  1)	
  
•  size	
  of	
  microstructure	
  	
  ε	
  =	
  0	
  
•  first-­‐order	
  homogeniza*on,	
  first-­‐order	
  PDE	
  
•  spa*al	
  correla*on	
  at	
  the	
  macro-­‐scale	
  
•  elas*c	
  isotropy	
  assump*on	
  holds	
  regardless	
  of	
  scale	
  

2.  higher-­‐order	
  terms	
  in	
  the	
  PDE	
  itself	
  (Type	
  2)	
  
•  micro-­‐structure	
  is	
  finite	
  ε	
  ≠	
  0	
  
•  higher-­‐order	
  PDE	
  
•  spa*al	
  correla*on	
  at	
  the	
  micro-­‐scale	
  only	
  
•  anisotropic	
  fluctua*ons	
  

Iden*fy	
  Two	
  Types	
  of	
  Material	
  Variability	
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Outline	
  

1.  Review	
  of	
  homogeniza*on	
  theory	
  
•  apparent	
  vs.	
  effec*ve	
  material	
  proper*es	
  
•  weak	
  convergence	
  
•  Type	
  1	
  and	
  Type	
  2	
  material	
  variability	
  

2.  Direct	
  numerical	
  simula*ons	
  and	
  comparison	
  to	
  
homogenized	
  PDE	
  solu*on	
  
•  Voronoi	
  microstructure	
  
•  hexahedral	
  mesh	
  overlay	
  
•  boundary	
  value	
  problems	
  

3.  Type	
  2	
  material	
  variability	
  in	
  macroscale	
  simula*ons:	
  
a	
  path	
  forward	
  	
  
•  Mindlin’s	
  con*nuum	
  formula*on	
  
•  elas*c	
  formula*on	
  
•  nonlinear	
  response	
  via	
  FE2	
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Goals	
  

•  Perform	
  direct	
  numerical	
  simula*ons	
  (DNS)	
  of	
  macroscopic	
  boundary-­‐value	
  problems	
  
with	
  microstructure	
  and	
  compare	
  with	
  the	
  solu*on	
  from	
  the	
  homogenized	
  PDE.	
  

•  Iden*fy	
  any	
  evidence	
  of	
  incomplete	
  first-­‐order	
  homogeniza*on.	
  

•  Propose/inves*gate	
  a	
  higher-­‐order	
  con*nuum	
  theory	
  for	
  Type-­‐2	
  material	
  variability.	
  

DNS	
  Solu*ons	
  

•  Use	
  Voronoi	
  grains	
  structures	
  resul*ng	
  from	
  maximal	
  Poisson	
  sampling.	
  

•  Use	
  the	
  RPI	
  crystal	
  plas*city	
  model	
  (Dave	
  LiRlewood,	
  John	
  Emery)	
  

•  Overlay	
  Voronoi	
  grains	
  onto	
  an	
  independent	
  hexahedral	
  mesh	
  of	
  the	
  structure.	
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Voronoi	
  Microstructure	
  from	
  MPS	
  Seeding	
  

Maximal	
  Poisson	
  Sampling	
  
•  constraint	
  on	
  min.	
  dist.	
  
•  seed	
  un*l	
  ‘max’	
  packing	
  
•  Ebeida/Mitchell	
  Algorithm	
  (1400)	
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Voronoi	
  Overlay	
  of	
  Hexahedral	
  Mesh	
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Hierarchy	
  of	
  Hexahedral	
  Meshes	
  

R0	
   R1	
   R2	
  

R3	
   R4	
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Voronoi	
  Overlay	
  of	
  Hierarchy	
  of	
  Hexahedral	
  Meshes	
  

R0	
  

•  One	
  grain	
  realiza*on	
  with	
  ~	
  6	
  grains	
  through	
  the	
  diameter	
  (~	
  940	
  grains)	
  
•  Hierarchy	
  of	
  hexahedral	
  meshes	
  
•  Pixela*on	
  decreases	
  with	
  mesh	
  refinement	
  

R1	
   R2	
  

R3	
   R4	
  

~	
  4096	
  hexas	
  per	
  grain	
  ~	
  512	
  hexas	
  per	
  grain	
  

~	
  64	
  hexas	
  per	
  grain	
  ~	
  8	
  hexas	
  per	
  grain	
  ~	
  1	
  hex	
  per	
  grain	
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R1	
   R2	
  

R3	
   R4	
  

Voronoi	
  Overlay	
  of	
  Hierarchy	
  of	
  Hexahedral	
  Meshes	
  
One	
  grain	
  realiza*on	
  with	
  ~	
  12	
  grains	
  through	
  the	
  diameter	
  	
  (~	
  6200	
  grains)	
  

~	
  1	
  hex	
  per	
  grain	
   ~	
  8	
  hexas	
  per	
  grain	
  

~	
  64	
  hexas	
  per	
  grain	
   ~	
  512	
  hexas	
  per	
  grain	
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304L	
  Single	
  Crystal	
  Elas*city	
  Constants	
  

C11 = 204.6 GPa

C12 = 137.7 GPa

C44 = 126.2 GPa

anisotropy	
  ra*o,	
   A =
2C12

C11 � C44
= 3.5

(LedbeRer,	
  1984) 

single	
  crystal	
  elas*c	
  constants	
  (cubic	
  symmetry) 

•  assume	
  random	
  crystallographic	
  orienta*ons	
  
•  no	
  correla*on	
  between	
  grains	
  (no	
  texture)	
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RPI	
  Crystal	
  Plas*city	
  Model	
  

g = g
o

+ (g
so

� g
o

)


1� exp

✓
� G

o

g
so

� g
o

�

◆�

Lp =
NX

�=1

�̇�P�

P↵ = m↵ ⌦ n↵

�̇� = �̇o
⇥�

g�

����
⇥�

g�

����
1/m�1

(Dave	
  LiRlewood,	
  John	
  Emery,	
  Chris	
  Weinberger)	
  

plas*c	
  velocity	
  gradient:	
  

Schmid	
  tensor:	
  

(sum	
  over	
  slip	
  systems)	
  

slip	
  system	
  hardening:	
  

slip	
  system	
  slip	
  rates:	
  

� =
NX

s=1

|�s|



−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

St
re

ss
 (M

Pa
)

Strain

(Chris Weinberger) 

Fit	
  to	
  304L	
  

�
o

= 130

g
so

= 230

G
o

= 465

Fit parameters 

Fit compared to experimental (polycrystal) 
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~	
  12	
  grains	
  across	
  diameter,	
  R3	
  mesh	
  

Uniaxial	
  Tension,	
  Displacement	
  Control	
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Compare	
  with	
  Homogenized	
  PDE	
  
(No	
  Variability)	
  

•  symmetric	
  
•  neck	
  is	
  exactly	
  at	
  center	
  

before	
  necking	
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ε = 0.32	

 ε = 0.16	

 ε = 0.08	

 ε = 0.04	



effec*ve	
  value	
  

	
  a
pp

ar
en

t	
  p
ro
pe

rt
y	
   displacement	
  b.c.,	
  KUBC	
  

trac*on	
  b.c.,	
  SUBC	
  

periodic	
  b.c.	
  

First	
  order	
  con*nuum	
  uses	
  this.	
  

(determinis*c,	
  no	
  variability)	
  

RVE	
  size	
  	
  

Apparent	
  vs.	
  Effec*ve	
  Material	
  Proper*es	
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S1	
   S2	
   S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  

Stochas*c	
  Volume	
  Elements	
  

~	
  83	
  grains	
  

~	
  163	
  grains	
  

~	
  323	
  grains	
  

S1	
   S2	
   S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  

S3	
  	
  	
  	
  .	
  .	
  .	
  	
  S100	
  S2	
  S1	
  



31	
  

Stochas*c	
  Volume	
  Elements	
  

~	
  83	
  grains	
   ~	
  163	
  grains	
   ~	
  323	
  grains	
  

•  trac*on	
  boundary	
  condi*ons	
  corresponding	
  to	
  uniaxial	
  stress	
  state	
  
•  ideally	
  would	
  use	
  periodic	
  boundary	
  condi*ons	
  (couldn’t	
  get	
  working	
  in	
  Adagio)	
  
•  recover	
  average	
  strain	
  field	
  
•  calculate	
  apparent	
  moduli	
  	
  
•  100	
  realiza*ons	
  at	
  each	
  grain	
  level	
  
•  take	
  average	
  

Von	
  Mises	
  stress	
  field	
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Convergence	
  to	
  Effec*ve	
  Isotropic	
  Proper*es	
  

number	
  of	
  grains	
   apparent	
  Young’s	
  Modulus	
  
(GPa)	
  

apparent	
  Poisson’s	
  ra*o	
  

~83	
  grains	
   177.2	
   0.317	
  

~163	
  grains	
   180.6	
   0.312	
  

~323	
  grains	
   182.4	
   0.310	
  

∞	
   184.1	
   0.309	
  

•  mean	
  of	
  100	
  simula*ons	
  at	
  each	
  “grain	
  level”	
  
•  ra*onal	
  func*on	
  extrapola*on	
  to	
  ∞	
  
•  first	
  order	
  convergence	
  rate	
  

These	
  values	
  will	
  be	
  used	
  as	
  the	
  homogenized,	
  isotropic	
  proper*es. 
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I-­‐Beam	
  Example	
  

•  tension	
  
•  bending	
  
•  torsion	
  

•  Study	
  sta*s*cs	
  of	
  direct	
  numerical	
  simula*ons	
  	
  
•  Compare	
  to	
  homogenized	
  solu*on	
  
•  Look	
  for	
  evidence	
  of	
  Type	
  2	
  material	
  variability	
  



•  R0	
  
•  8,576	
  hexas	
  

Hierarchy	
  of	
  Hexahedral	
  Meshes	
  

•  R1	
  
•  69K	
  hexas	
  

•  R2	
  
•  549K	
  hexas	
  

•  R3	
  
•  4.4M	
  hexas	
  

•  R4	
  
•  35M	
  hexas	
  



•  RCP	
  Voronoi	
  grain	
  structure	
  
•  60K	
  grains	
  
•  hex	
  mesh	
  overlay	
  =	
  R3	
  (4.4M	
  elements)	
  

Thickness/grain	
  ra*o	
  =	
  4	
  



Thickness/grain	
  ra*o	
  =	
  8	
  

•  RCP	
  Voronoi	
  grain	
  structure	
  
•  420K	
  grains	
  
•  hex	
  mesh	
  overlay	
  =	
  R4	
  (35M	
  elements)	
  



VM	
  stress	
  field,	
  Homogenized	
  

VM	
  stress	
  field,	
  DNS	
  

Thickness/grain	
  ra*o	
  =	
  8	
  



Realiza*on	
  1	
   Realiza*on	
  2	
  



Realiza*on	
  1	
   Realiza*on	
  2	
  

Homogenized	
  solu*on	
  

Symmetry	
  Breaking	
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Ensemble	
  Results	
  

•  100 realizations for thickness/grain ratio = 4 
•  62 realizations for thickness/grain ratio = 8  
•  magnitude of ensemble average stress tensor 
•  standard deviation of stress ensemble 
•  magnitude of difference of ensemble average stress tensor and 

homogeneous solution 
•  projection of DNS solutions to coarse scale mesh and repeat 
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homogeneous	
  solu*on	
  
(stress	
  magnitude)	
  

Ensemble	
  Results,	
  62	
  Realiza*ons	
  

DNS	
  
(magnitude	
  of	
  ensemble	
  average	
  stress)	
  

DNS	
  
(stress	
  standard	
  devia*on)	
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magnitude	
  (ensemble	
  average	
  stress	
  –	
  homogeneous	
  stress)	
  

Ensemble	
  Results	
  minus	
  Homogeneous	
  

(scale lower by factor of 10) 
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Projec*on/Average	
  to	
  Coarse	
  Mesh,	
  R2	
  

homogeneous	
  solu*on	
  
(stress	
  magnitude)	
  

DNS	
  
(magnitude	
  of	
  ensemble	
  average	
  stress)	
  

DNS	
  
(stress	
  standard	
  devia*on)	
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Ensemble	
  Results	
  minus	
  Homogeneous	
  
Projec*on/Average	
  to	
  Coarse	
  Mesh,	
  R2	
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mode 13 mode 15 mode 24 

Direct	
  Numerical	
  Simula*on,	
  Structural	
  Dynamics	
  

•  2 grains across wall thickness 
•  ~8600 grains 

idealized part 

•  4 grains across wall thickness 
•  ~53K grains 

•  4 grains across wall thickness 
•  ~53K grains 
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Outline	
  

1.  Review	
  of	
  homogeniza*on	
  theory	
  
•  apparent	
  vs.	
  effec*ve	
  material	
  proper*es	
  
•  weak	
  convergence	
  
•  Type	
  1	
  and	
  Type	
  2	
  material	
  variability	
  

2.  Direct	
  numerical	
  simula*ons	
  and	
  comparison	
  to	
  
homogenized	
  PDE	
  solu*on	
  
•  Voronoi	
  microstructure	
  
•  hexahedral	
  mesh	
  overlay	
  
•  boundary	
  value	
  problems	
  

3.  Type	
  2	
  material	
  variability	
  in	
  macroscale	
  simula*ons:	
  
a	
  path	
  forward	
  	
  
•  Mindlin’s	
  con*nuum	
  formula*on	
  
•  elas*c	
  formula*on	
  
•  nonlinear	
  response	
  via	
  FE2	
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A	
  Path	
  Forward	
  for	
  Including	
  Microscale	
  Variability	
  in	
  
Macroscale	
  Models	
  

•  Homogeniza*on	
  theory	
  indicates	
  that	
  for	
  finite	
  microstructure,	
  strain	
  gradient	
  effects	
  are	
  
present	
  (strain	
  energy	
  depends	
  on	
  both	
  strain	
  and	
  strain	
  gradient).	
  

•  Addi*onally,	
  expect	
  to	
  see	
  a	
  “size	
  effect”,	
  even	
  for	
  homogeneous	
  fields,	
  at	
  the	
  macroscale	
  
(“apparent”	
  material	
  proper*es	
  described	
  by	
  Huet,	
  1990).	
  

•  Several	
  strain-­‐gradient	
  con*nuum	
  formula*ons	
  

•  Following	
  Josh	
  Robbins	
  lead,	
  going	
  to	
  explore	
  the	
  use	
  of	
  Mindlin’s	
  micromorphic	
  formula*on	
  
(1964).	
  	
  (Josh	
  Robbins,	
  org	
  1443,	
  LDRD,	
  “Micromorphic	
  Con*nua	
  for	
  High	
  Fidelity	
  Physics	
  Models”)	
  

•  Mindlin,	
  1964,	
  “Microstructure	
  in	
  Linear	
  Elas*city”	
  
•  Mindlin’s	
  formula*on	
  allows	
  exis*ng	
  H1	
  FEA	
  formula*ons	
  to	
  be	
  used,	
  but	
  with	
  extra	
  nodal	
  

degrees	
  of	
  freedom.	
  	
  
•  much	
  recent	
  work	
  by	
  W.K.	
  Liu’s	
  group	
  at	
  NU	
  for	
  modeling	
  localiza*on	
  phenomena	
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Mindlin’s	
  Micromorphic	
  Con*nuum	
  Formula*on	
  
(Mindlin,	
  1964,	
  “Micro-­‐structure	
  in	
  Linear	
  Elas*city,”	
  Archive	
  for	
  Ra1onal	
  Mechanics	
  and	
  Analysis,	
  v	
  16,	
  51-­‐78.)	
  

V 0

X,x
Embedded	
  in	
  each	
  material	
  par*cle,	
  there	
  
is	
  assumed	
  to	
  be	
  a	
  “micro-­‐volume”	
  V 0

V 0

macro-­‐displacement,	
  

micro-­‐displacement,	
  

u = x�X

u

0 = x

0 �X

0

X

0,x0

u = u(x)

Key	
  Approxima*on:	
  	
  Approximate	
  	
  	
  	
  	
  	
  	
  as	
  linear	
  on	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  	
  

V 0u0

u

0 = u

0(x,x0)

micro-­‐deforma*on	
  	
  

Micro-­‐deforma*on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  constant	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  but	
  varies	
  on	
  macro-­‐scale	
  	
  	
  	
  	
  .	
  	
  V 0
 (x)

V

V

u

0
i ⇡ x

0
j  ji

 ij =
@u

0
j

@x

0
i
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macro-­‐gradient	
  of	
  the	
  micro-­‐deforma*on	
  

Mindlin’s	
  Micromorphic	
  Con*nuum	
  Formula*on	
  

macro-­‐strain	
  	
   "ij =
1

2
(ui,j +uj ,i )

rela*ve	
  deforma*on	
  

(infinitesimal	
  displacements)	
  

strain	
  energy	
  	
   W = W ("ij , �ij ,�ijk)

�ij = uj ,i � ij

�ijk =
@ jk

@xi

Cauchy	
  stress	
  

rela*ve	
  stress	
  

double	
  stress	
   µijk =
@W

�ijk

�ij =
@W

"ij

⌧ij =
@W

�ij

(not	
  symmetric)	
  

(not	
  symmetric)	
  

(symmetric)	
  

(no	
  minor	
  symmetry)	
  

(no	
  minor	
  symmetry)	
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Mindlin’s	
  Micromorphic	
  Con*nuum	
  Formula*on	
  
(Mindlin,	
  1964,	
  “Micro-­‐structure	
  in	
  Linear	
  Elas*city,”	
  Archive	
  for	
  Ra1onal	
  Mechanics	
  and	
  Analysis,	
  v	
  16,	
  51-­‐78.)	
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Linear	
  Elas*c	
  

8
<

:

�
⌧
µ

9
=

; =

2

4
C G F
G B D
F D A

3

5

8
<

:

"
�
�

9
=

;

•  displacement	
  based	
  finite	
  element	
  formula*on	
  
•  nodal	
  variables	
  are	
  u	
  (3)	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (9)	
  
•  use	
  same	
  shape	
  func*ons	
  but	
  with	
  12	
  d.o.f.	
  per	
  node	
  

 ij
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What	
  about	
  material	
  variability?	
  

8
<

:

�
⌧
µ

9
=

; =

2

4
C G F
G B D
F D A

3

5

8
<

:

"
�
�

9
=

;

standard	
  s*ffness	
  matrix	
  (determinis*c)	
  

•  For	
  polycrystalline	
  material	
  variability,	
  take	
  G, F, B, D, A  to	
  be	
  random	
  matrices.	
  
•  The	
  random	
  matrices	
  are	
  a	
  func*on	
  of	
  sampling	
  volume	
  	
  	
  	
  	
  	
  	
  	
  .	
  
•  Take	
  this	
  sampling	
  volume	
  to	
  be	
  a	
  func*on	
  of	
  the	
  finite-­‐element	
  volume.	
  
•  The	
  random	
  matrices	
  are	
  generally	
  anisotropic.	
  
•  As	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  microstructural	
  fluctua*ons	
  should	
  disappear.	
  

V 0

V 0 ! 1

****	
  Need	
  to	
  stay	
  in	
  weak	
  form	
  (no	
  strong	
  form).	
  ****	
  

all	
  others	
  are	
  random	
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Homogenized	
  Simula*on	
  via	
  FE2	
  

RVE	
  array	
  	
  
Macro	
  FE	
  model	
  

Each	
  element	
  has	
  an	
  
independent	
  RVE.	
  

Challenges:	
  
•  RVE	
  needs	
  to	
  be	
  as	
  small	
  as	
  possible	
  for	
  efficiency.	
  	
  
•  RVE	
  needs	
  to	
  be	
  as	
  large	
  as	
  possible	
  to	
  give	
  effec*ve	
  proper*es.	
  
•  RVE	
  mesh	
  needs	
  to	
  be	
  sufficiently	
  refined.	
  
•  Number	
  of	
  RVEs	
  grows	
  with	
  mesh	
  refinement	
  in	
  macro	
  model.	
  
•  Robustness	
  of	
  CPFE	
  models.	
  

(This	
  RVE	
  array	
  is	
  for	
  tes*ng	
  Sierra/SM	
  capability.) 

(to	
  be	
  compared	
  with	
  direct	
  simula*on)	
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Summary	
  

•  Difference	
  between	
  Apparent	
  and	
  Effec*ve	
  material	
  proper*es	
  
•  Homogeniza*on	
  theory	
  based	
  on	
  concept	
  of	
  weak	
  convergence	
  
•  Use	
  Direct	
  Numerical	
  Simula*ons	
  of	
  macroscale	
  boundary	
  value	
  problems	
  
containing	
  microstructure	
  to	
  inves*gate	
  incomplete	
  first-­‐order	
  homogeniza*on.	
  

•  Propose	
  using	
  Mindlin’s	
  micromorphic	
  con*nuum	
  theory	
  to	
  model	
  Type-­‐2	
  
material	
  variability	
  

•  Will	
  probably	
  need	
  to	
  use	
  FE2	
  approaches	
  to	
  model	
  nonlinear	
  micromorphic	
  
con*nua.	
  


