

# Homogenization and Material Variability

Joe Bishop

Engineering Sciences Center  
Sandia National Laboratories  
Albuquerque, NM

Sandia Multiscale Meeting  
May 6-7, 2013  
Livermore, CA



Sandia  
National  
Laboratories



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

# Collaborators

John Emery (1524), Chris Weinberger (1814), Dave Littlewood (1444)

## PPM Project Support

Amy Sun, Corbett Battaile, Jay Foulk, Brad Boyce

## Acknowledgement

Josh Robbins (1443): On the fruitfulness of using Mindlin's theory of a "continuum with microstructure."

# Outline

1. Review of homogenization theory
  - apparent vs. effective material properties
  - weak convergence
  - Type 1 and Type 2 material variability
2. Direct numerical simulations and comparison to homogenized PDE solution
  - Voronoi microstructure
  - hexahedral mesh overlay
  - boundary value problems
3. Type 2 material variability in macroscale simulations: a path forward
  - Mindlin's continuum formulation
  - elastic formulation
  - nonlinear response via  $FE^2$

# Hierarchy of Continuum Models

(homogenization perspective)

## 1. First-order continuum

- microstructure is infinitesimally small
- stored energy is a function of strain only
- RVE size is infinite (very large compared to microstructure)
- material properties can fluctuate only on a large scale (Type 1 material variability)
- used in commercial FEA codes and Sierra

## 2. Second-order continuum

- microstructure is small but finite
- stored energy is a function of both strain and strain gradient (Mindlin, 1964)
- RVE no longer exists, instead have a SVE (stochastic volume element; (Yin, 2008))
- material properties are no longer *intrinsic* but are rather *extrinsic* (Huet, 1990)
- material properties fluctuate on a small scale (Type 2 material variability)

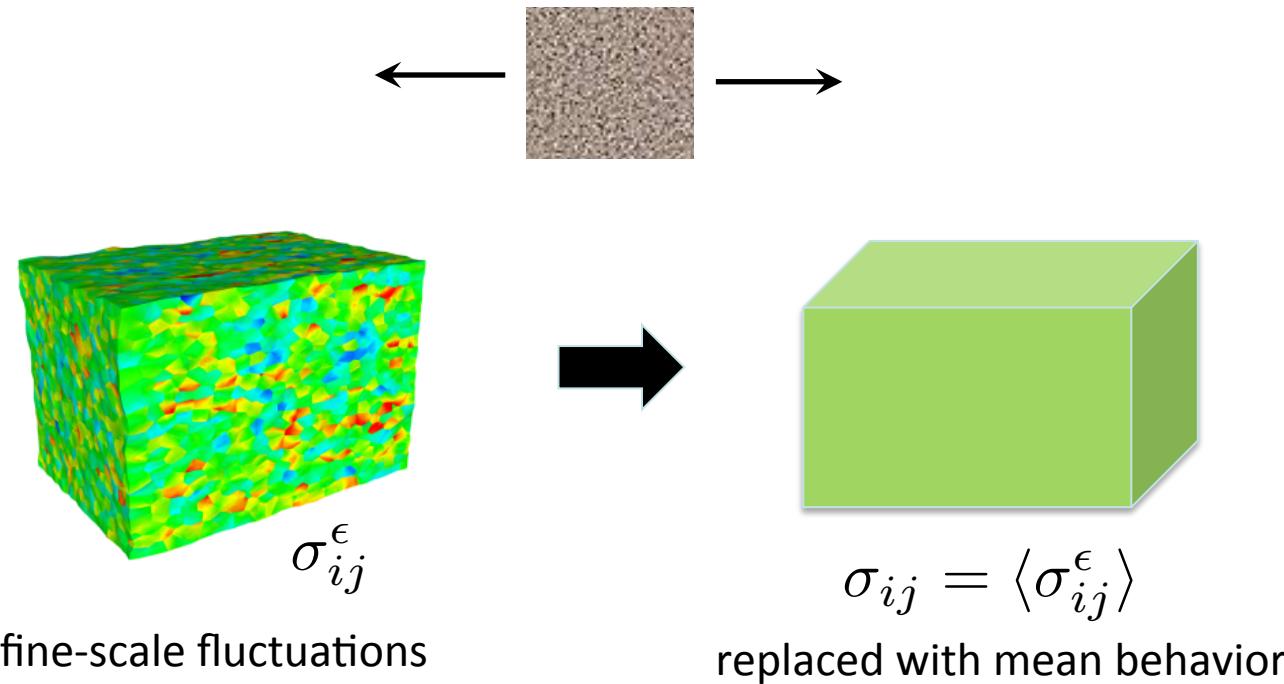
---

## 3. Direct Numerical Simulation using Multiscale Mortars

- each RVE is coupled through mortars with a multiscale basis obtained through first-order homogenization theory (Arbogast, 2007)

## 4. Direct Numerical Simulation

# Homogenization



This equivalence is defined in an energy sense:  $\sigma_{ij}\varepsilon_{ij} = \langle \sigma_{ij}^{\epsilon} \rangle \langle \varepsilon_{ij}^{\epsilon} \rangle$

Constitutive models map average strain to average stress:

$$\varepsilon_{ij} = \langle \varepsilon_{ij}^{\epsilon} \rangle \longrightarrow \sigma_{ij} = \langle \sigma_{ij}^{\epsilon} \rangle$$

# Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." *Journal of the Mechanics and Physics of Solids*, 38(6): 813-841.

$C$  = stiffness tensor

finite RVE, **apparent**

$$C_{\sigma}^{\text{app}}(\omega) \leq C \leq C_{\varepsilon}^{\text{app}}(\omega)$$

SUBC

stochastic

infinite RVE, **effective**

KUBC

stochastic

deterministic

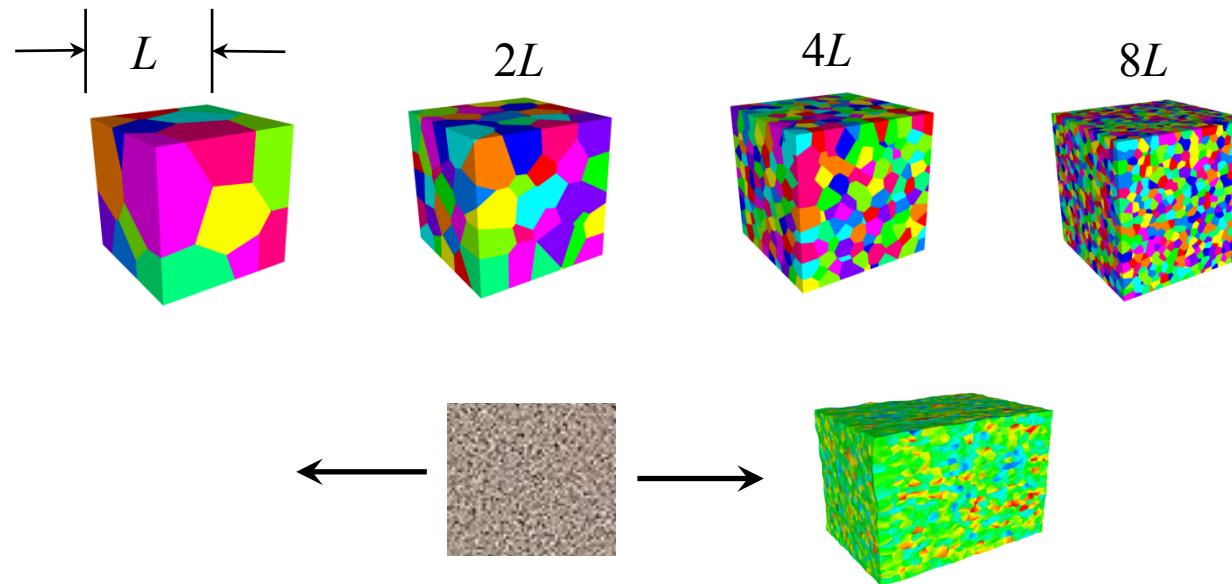
partial ordering defined in an energetic sense:

$$B < A \quad \text{iff} \quad \varepsilon : (A - B) : \varepsilon > 0 \quad \text{for all } \varepsilon \neq 0$$

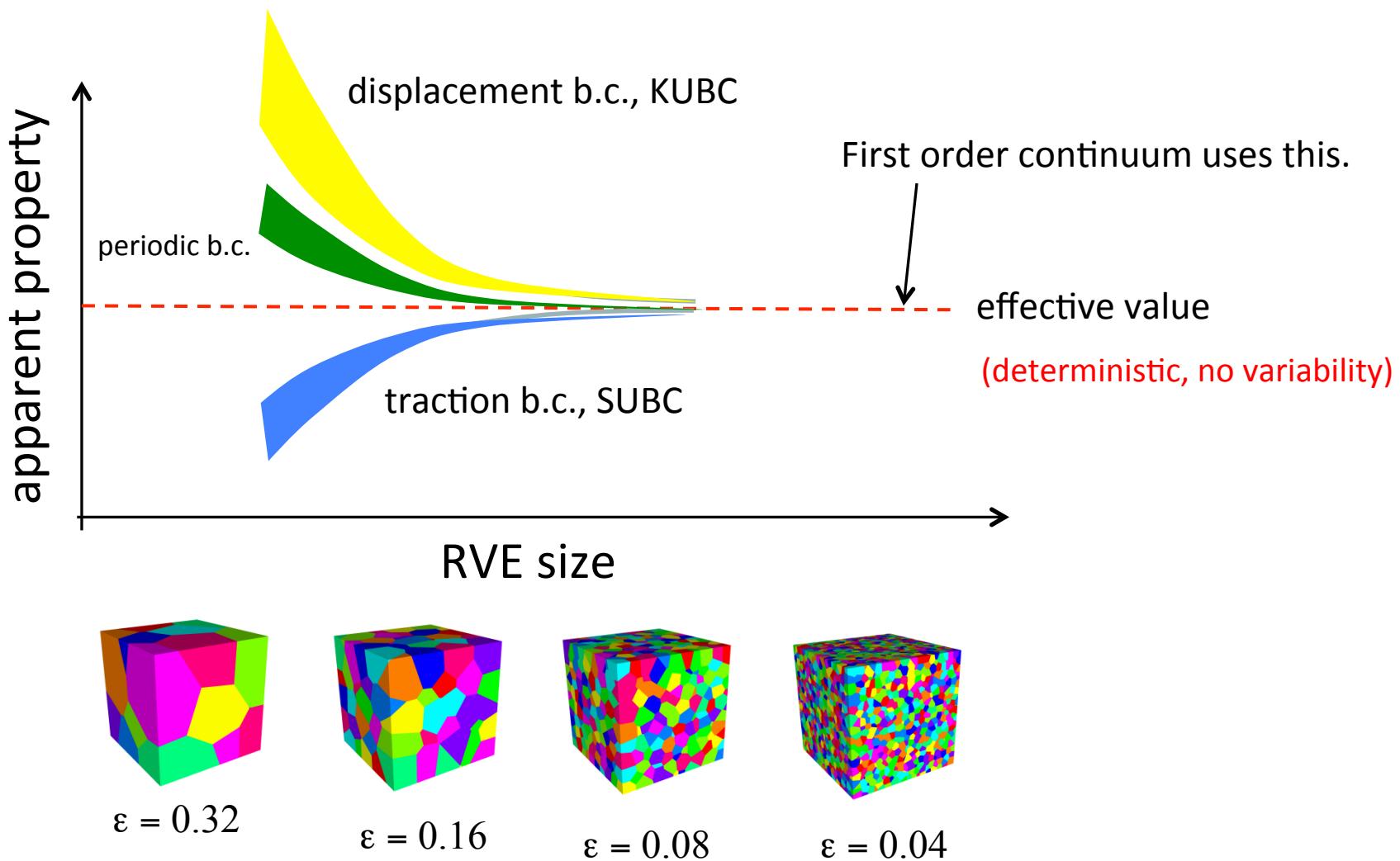
# Apparent vs. Effective Material Properties

Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." *Journal of the Mechanics and Physics of Solids*, 38(6): 813-841.

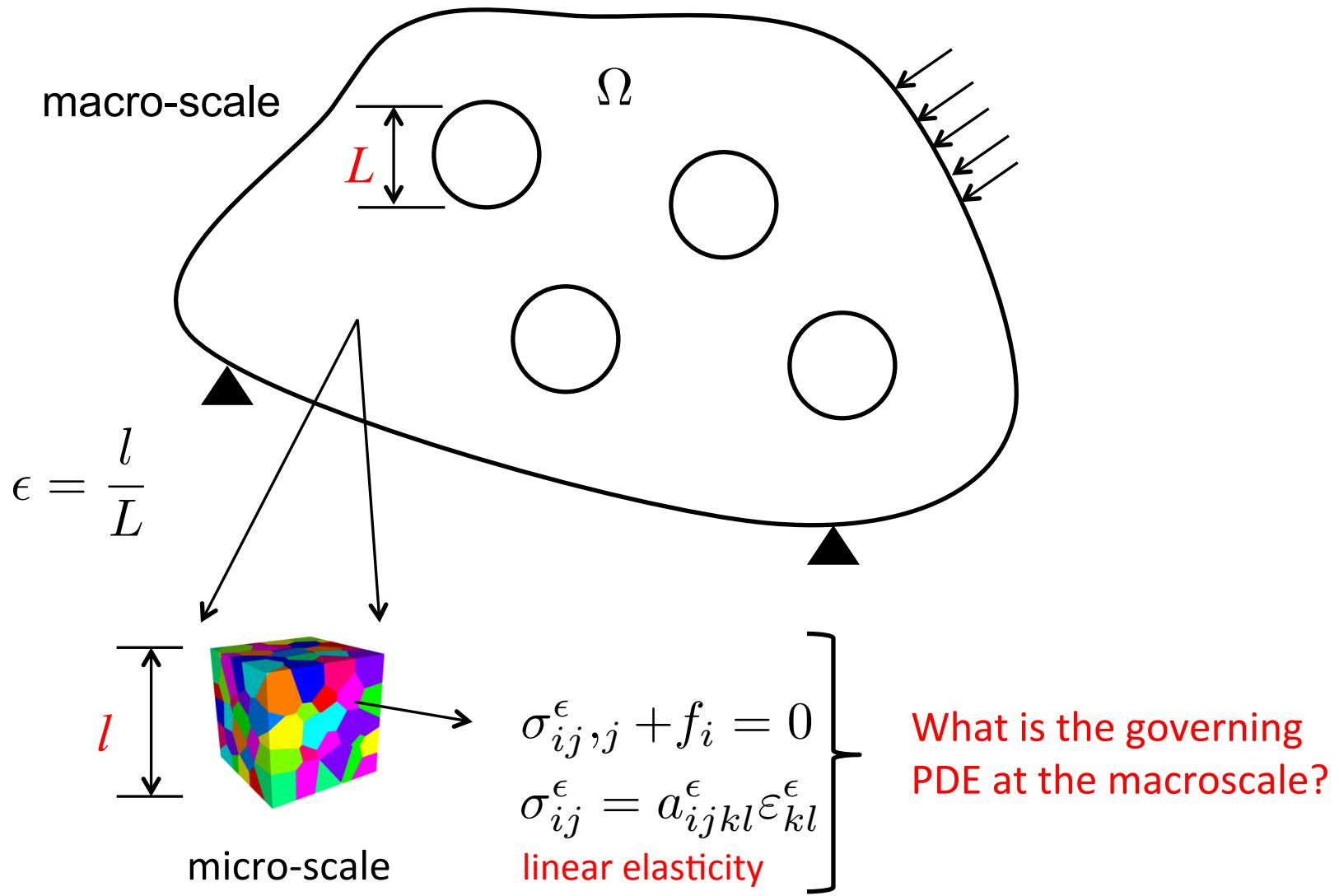
$$C_{\sigma,L}^{\text{app}} \leq C_{\sigma,2L}^{\text{app}} \leq C_{\sigma,4L}^{\text{app}} \leq \cdots \leq C_{\sigma,\infty}^{\text{app}} = C$$



# Apparent vs. Effective Material Properties



# What about the Governing PDE?



# Strong and Weak Convergence

A sequence of functions  $(u_n)$ ,  $u_n \in L^2$  is **strongly** convergent to  $u \in L^2$  if

$$\lim_{n \rightarrow \infty} \|u_n - u\|_{L^2} = 0$$

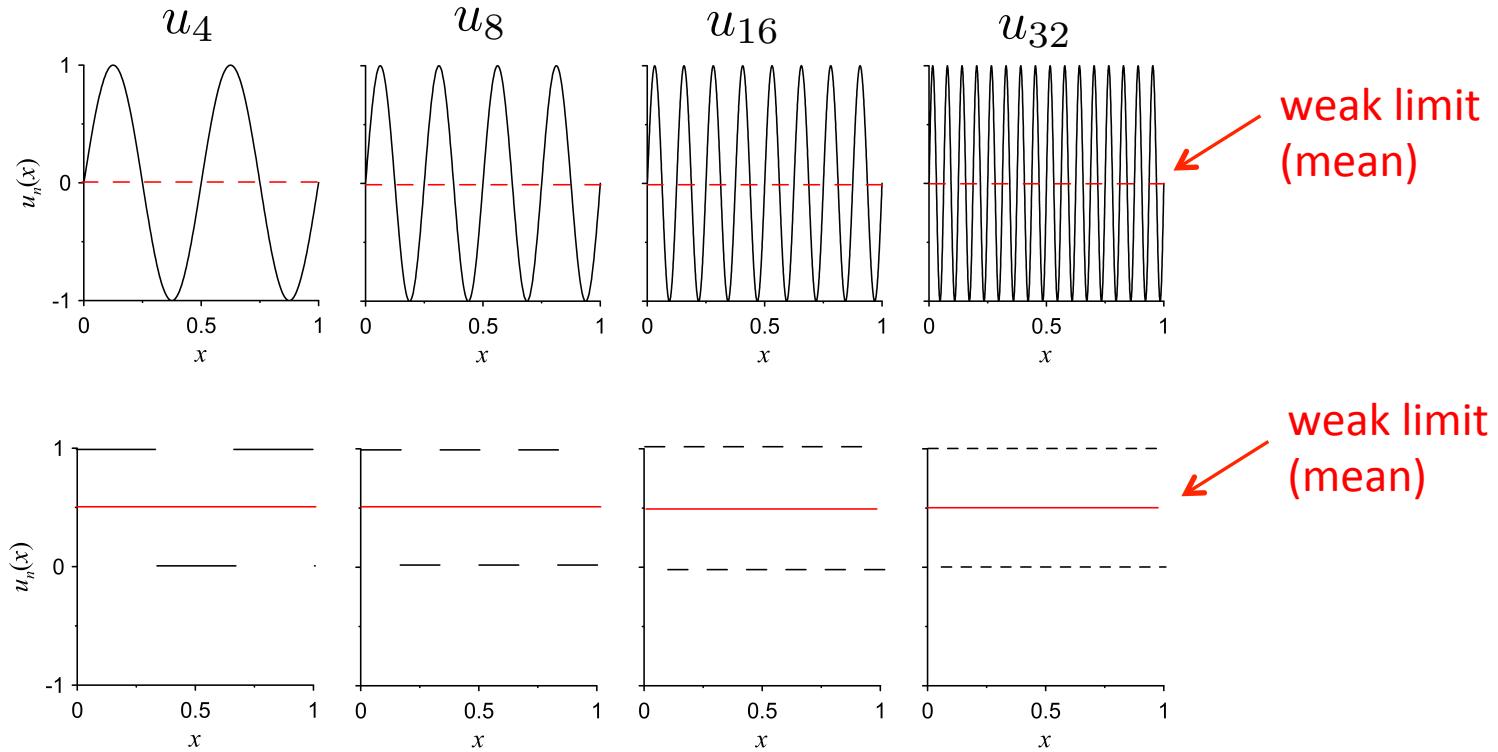
A sequence of functions  $(u_n)$ ,  $u_n \in L^2$  is **weakly** convergent to  $u \in L^2$  if

$$\lim_{n \rightarrow \infty} \langle u_n, v \rangle = \langle u, v \rangle \quad \text{for all } v \in L^2$$

These are the modes of convergence in which homogenization is defined.

# Weak Convergence

Example: The sequence of functions  $u_n = \sin(n\pi x)$  in  $L^2[0, 1]$  converges weakly to  $u = 0$ .



Theorem: Any sequence of periodic functions converges weakly to the mean as the period approaches zero.

# Asymptotic Expansion

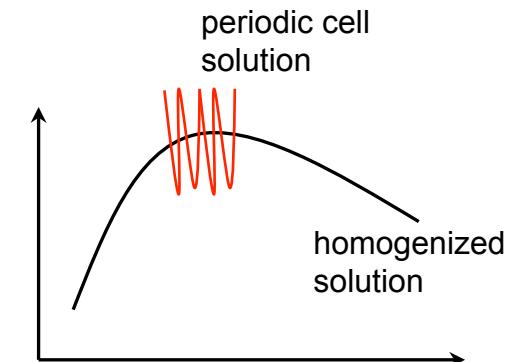
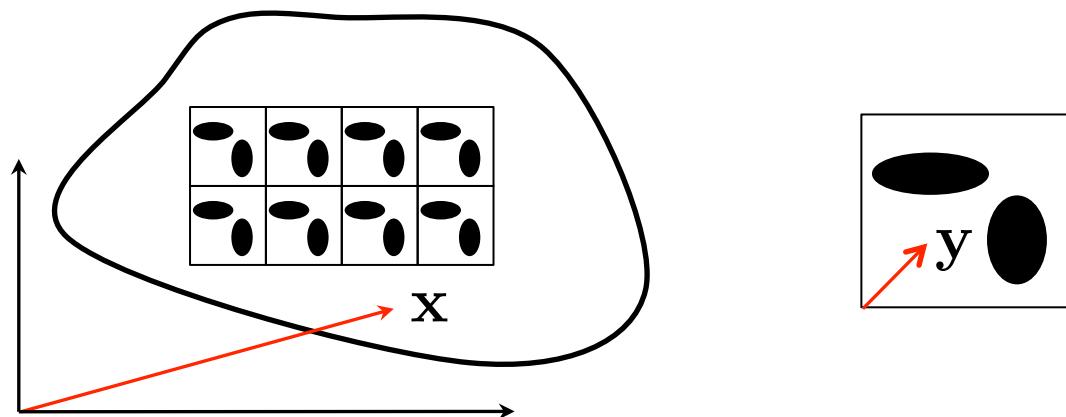
(Cioranescu and Donato, 1999, *An Introduction to Homogenization.*)

$$\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}, \mathbf{y}) + \epsilon \mathbf{u}_1(\mathbf{x}, \mathbf{y}) + \epsilon^2 \mathbf{u}_2(\mathbf{x}, \mathbf{y}) + \dots$$

$\mathbf{u}_j(\mathbf{x}, \mathbf{y})$  are periodic in  $\mathbf{y}$

$\mathbf{y} = \mathbf{x}/\epsilon$  is the 'fast' variable

$\mathbf{x}$  is the 'slow' variable



# Linear Homogenization Results

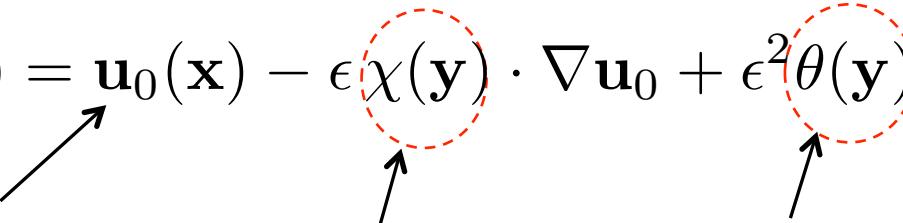
$$\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}, \mathbf{y}) + \epsilon \mathbf{u}_1(\mathbf{x}, \mathbf{y}) + \epsilon^2 \mathbf{u}_2(\mathbf{x}, \mathbf{y}) + \dots$$

substitute 

$$\sigma_{ij,j}^\epsilon + f_i = 0$$

$$\sigma_{ij}^\epsilon = a_{ijkl}^\epsilon \varepsilon_{kl}^\epsilon$$

**RESULT:**  $\mathbf{u}^\epsilon(\mathbf{x}) = \mathbf{u}_0(\mathbf{x}) - \epsilon \chi(\mathbf{y}) \cdot \nabla \mathbf{u}_0 + \epsilon^2 \theta(\mathbf{y}) : \nabla \nabla \mathbf{u}_0 + \dots$


  
 homogenized solution  
 does not depend upon  $\epsilon$ !      first-order corrector      second-order corrector

## Observations:

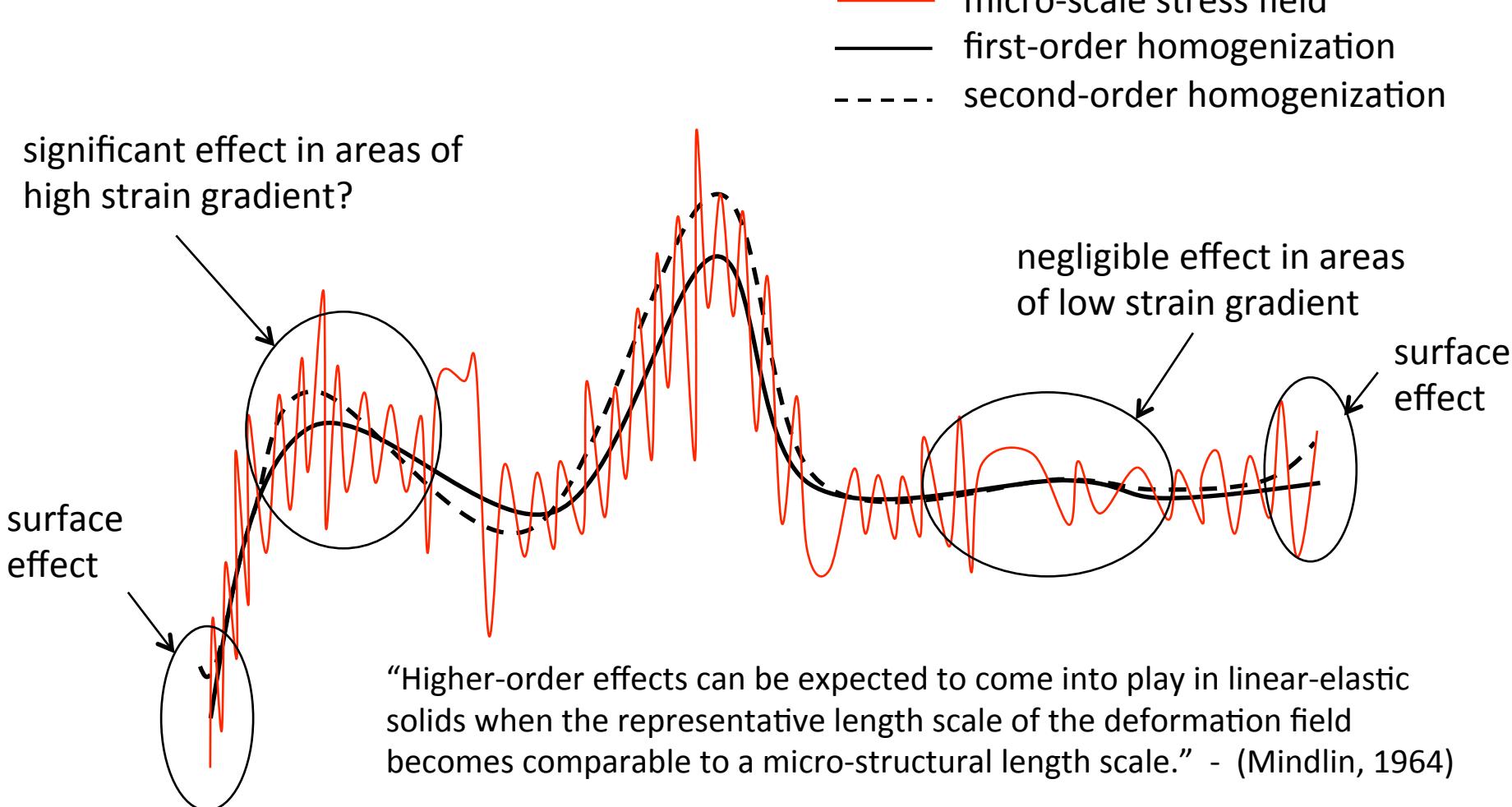
- In the limit as  $\epsilon \rightarrow 0$ , get a first-order continuum (homogenized).
- For  $\epsilon \neq 0$  need gradient terms (higher-order continuum)

# Linear Homogenization Results

(Cioranescu and Donato, 1999, *An Introduction to Homogenization.*)

$$\begin{aligned}\mathbf{u}^\epsilon &\rightarrow \mathbf{u} \text{ strongly in } L^2 \\ \mathbf{u}^\epsilon &\rightarrow \mathbf{u} \text{ weakly in } H^1 \\ \sigma^\epsilon &\rightarrow \sigma \text{ weakly in } L^2 \\ W^\epsilon &\rightarrow W \text{ strongly in } \mathfrak{R}\end{aligned}$$

# Homogenization



# Identify Two Types of Material Variability

## 1. spatial variability of homogenized material constants (Type 1)

- size of microstructure  $\varepsilon = 0$
- first-order homogenization, first-order PDE
- spatial correlation at the macro-scale
- elastic isotropy assumption holds regardless of scale

## 2. higher-order terms in the PDE itself (Type 2)

- micro-structure is finite  $\varepsilon \neq 0$
- higher-order PDE
- spatial correlation at the micro-scale only
- anisotropic fluctuations

# Outline

1. Review of homogenization theory
  - apparent vs. effective material properties
  - weak convergence
  - Type 1 and Type 2 material variability
2. Direct numerical simulations and comparison to homogenized PDE solution
  - Voronoi microstructure
  - hexahedral mesh overlay
  - boundary value problems
3. Type 2 material variability in macroscale simulations: a path forward
  - Mindlin's continuum formulation
  - elastic formulation
  - nonlinear response via  $FE^2$

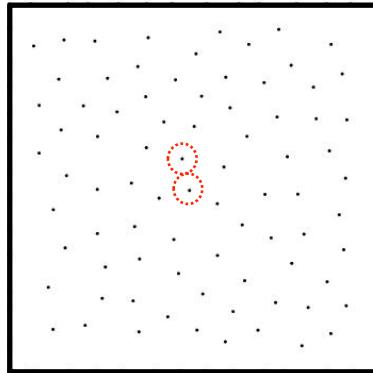
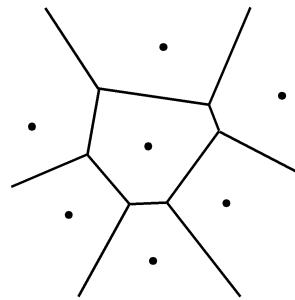
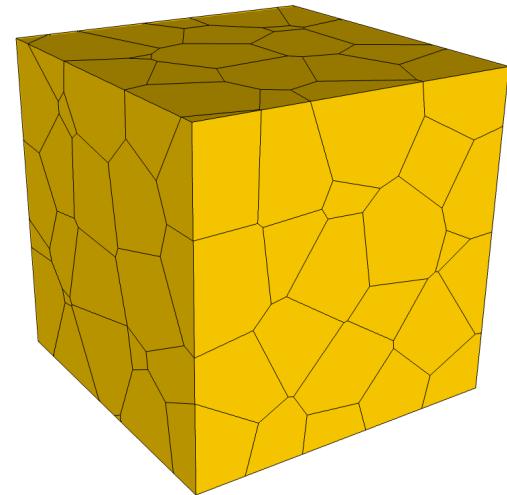
# Goals

- Perform direct numerical simulations (DNS) of macroscopic boundary-value problems with microstructure and compare with the solution from the homogenized PDE.
- Identify any evidence of incomplete first-order homogenization.
- Propose/investigate a higher-order continuum theory for Type-2 material variability.

## DNS Solutions

- Use Voronoi grains structures resulting from maximal Poisson sampling.
- Use the RPI crystal plasticity model (Dave Littlewood, John Emery)
- Overlay Voronoi grains onto an independent hexahedral mesh of the structure.

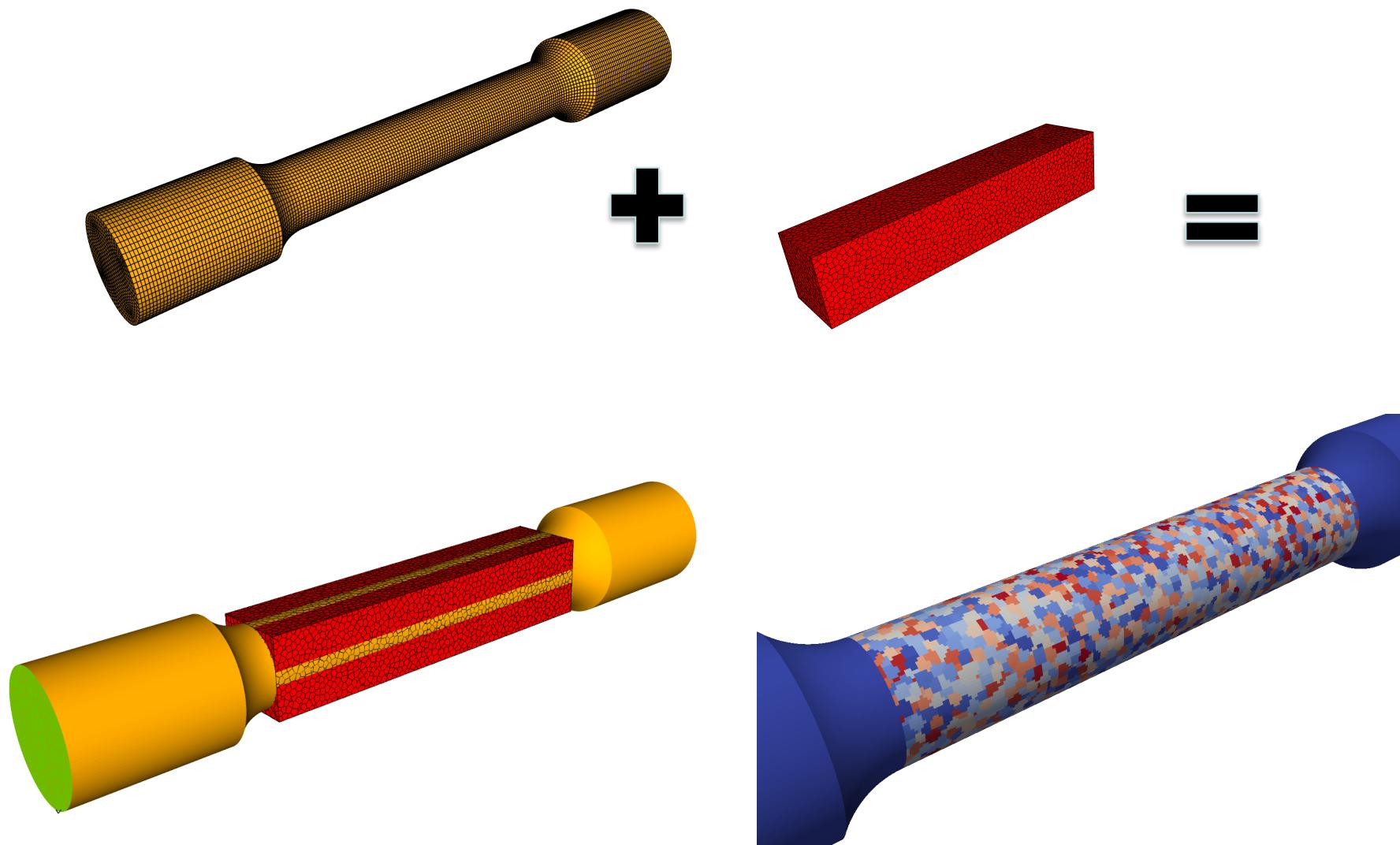
# Voronoi Microstructure from MPS Seeding



## Maximal Poisson Sampling

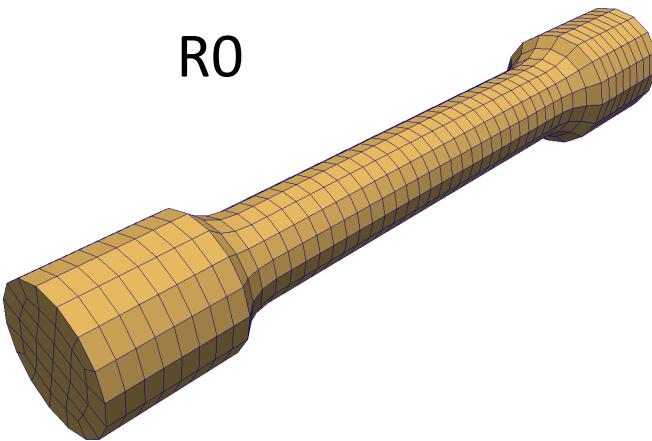
- constraint on min. dist.
- seed until 'max' packing
- Ebeida/Mitchell Algorithm (1400)

# Voronoi Overlay of Hexahedral Mesh

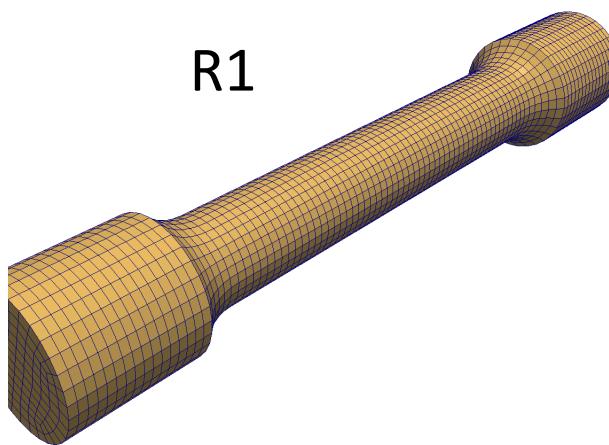


# Hierarchy of Hexahedral Meshes

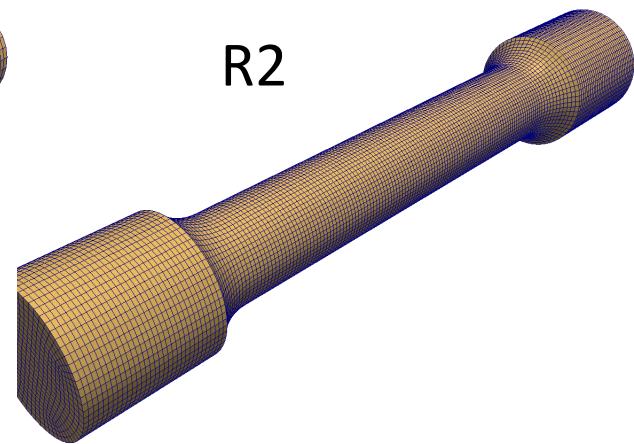
R0



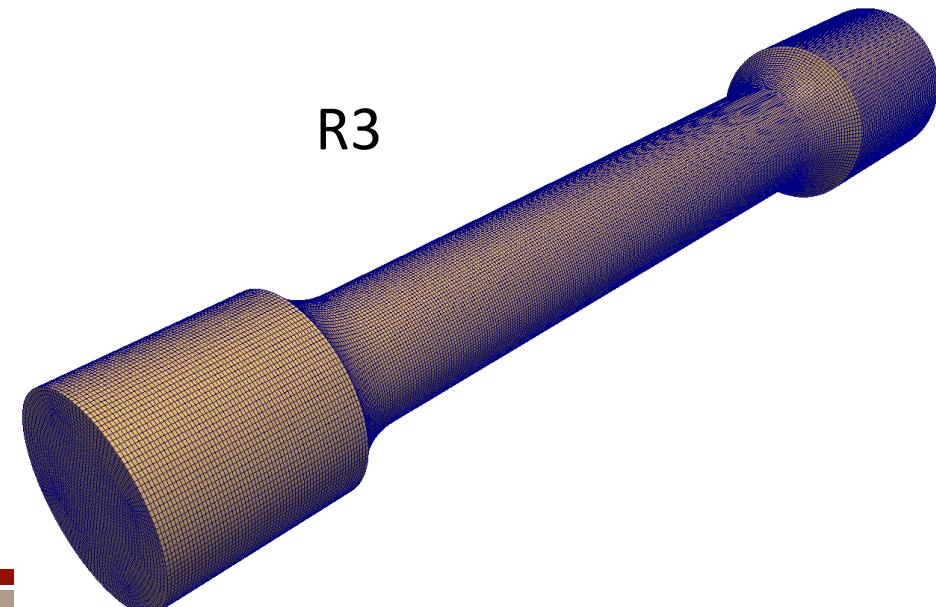
R1



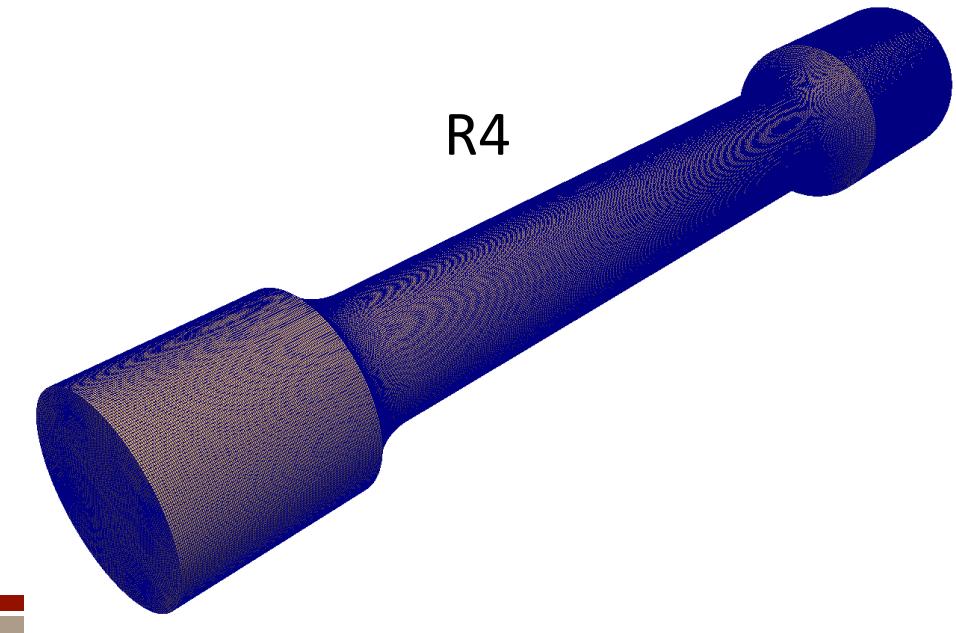
R2



R3



R4



# Voronoi Overlay of Hierarchy of Hexahedral Meshes

- One grain realization with  $\sim 6$  grains through the diameter ( $\sim 940$  grains)
- Hierarchy of hexahedral meshes
- Pixelation decreases with mesh refinement

R0

$\sim 1$  hex per grain

R1

$\sim 8$  hexas per grain

R2

$\sim 64$  hexas per grain

R3

$\sim 512$  hexas per grain

R4

$\sim 4096$  hexas per grain

# Voronoi Overlay of Hierarchy of Hexahedral Meshes

One grain realization with  $\sim 12$  grains through the diameter ( $\sim 6200$  grains)

R1

R2

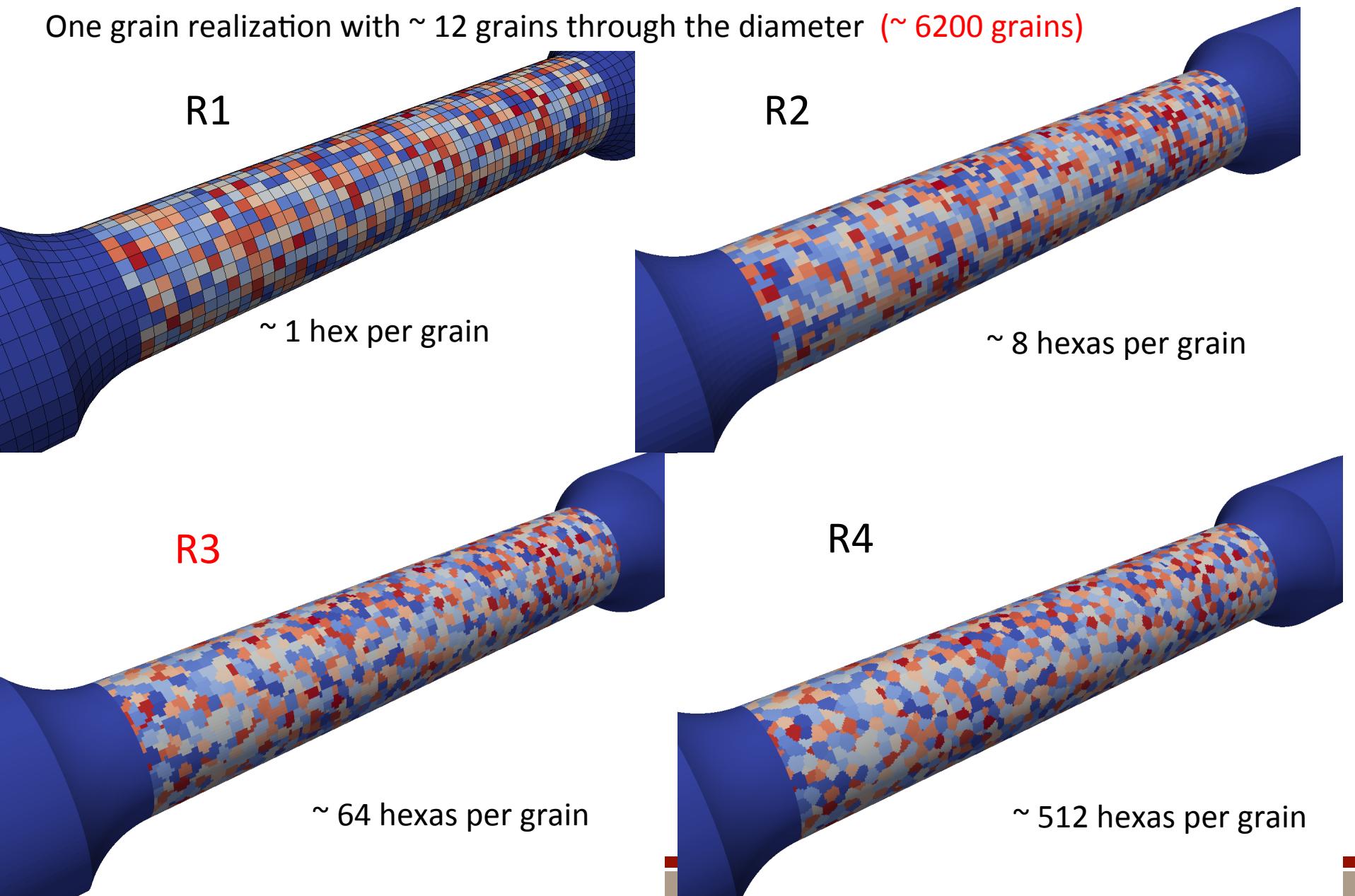
$\sim 1$  hex per grain

R3

$\sim 64$  hexas per grain

R4

$\sim 512$  hexas per grain



# 304L Single Crystal Elasticity Constants

(Ledbetter, 1984)

single crystal elastic constants (**cubic symmetry**)

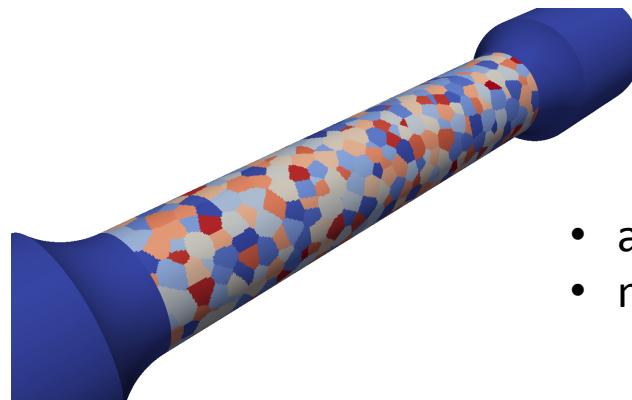
$$C_{11} = 204.6 \text{ GPa}$$

$$C_{12} = 137.7 \text{ GPa}$$

$$C_{44} = 126.2 \text{ GPa}$$

anisotropy ratio,

$$A = \frac{2C_{12}}{C_{11} - C_{44}} = 3.5$$



- assume random crystallographic orientations
- no correlation between grains (no texture)

# RPI Crystal Plasticity Model

(Dave Littlewood, John Emery, Chris Weinberger)

plastic velocity gradient:

$$L^p = \sum_{\alpha=1}^N \dot{\gamma}^\alpha P^\alpha \quad (\text{sum over slip systems})$$

Schmid tensor:

$$P^\alpha = m^\alpha \otimes n^\alpha$$

slip system slip rates:

$$\dot{\gamma}^\alpha = \dot{\gamma}_o \frac{\tau^\alpha}{g^\alpha} \left| \frac{\tau^\alpha}{g^\alpha} \right|^{1/m-1}$$

slip system hardening:

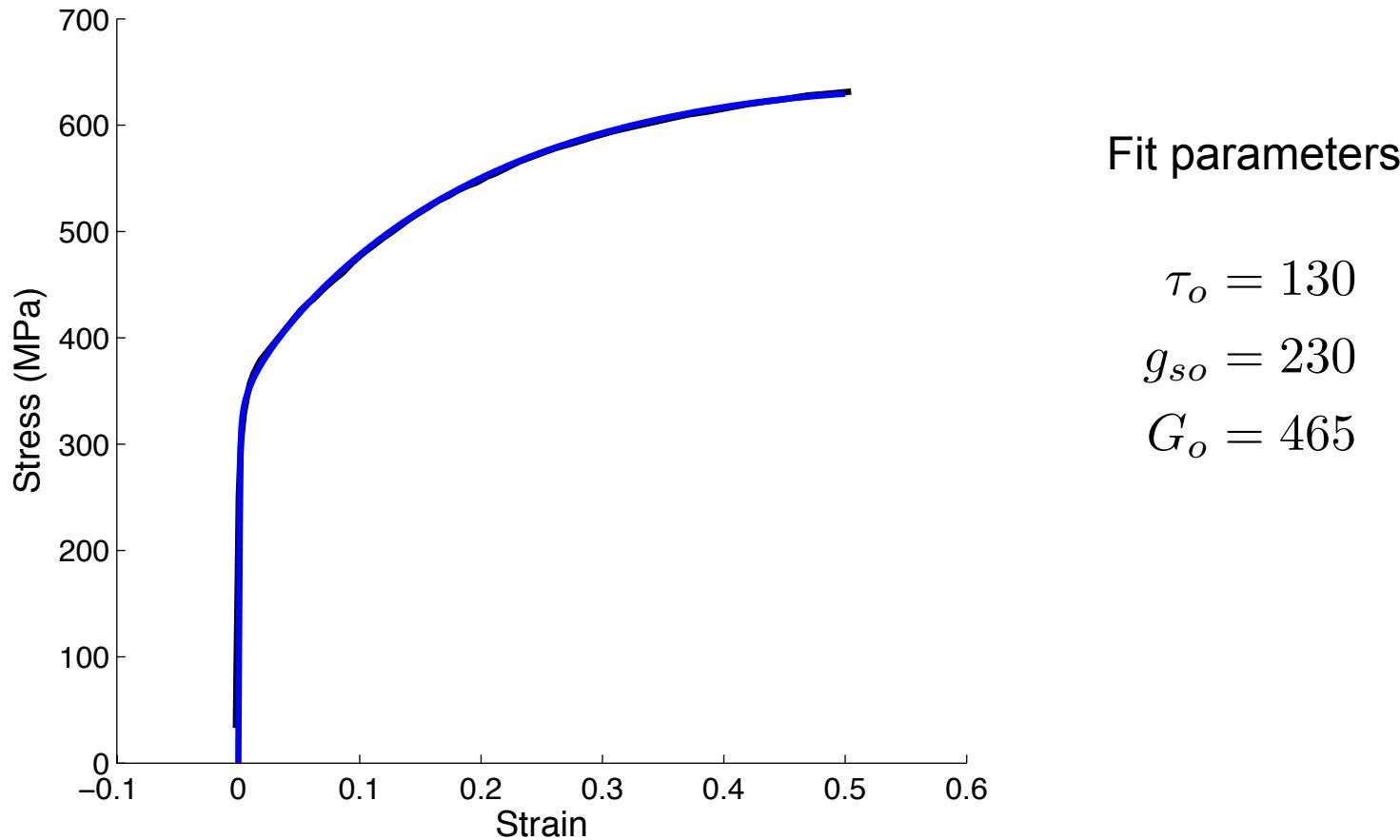
$$g = g_o + (g_{so} - g_o) \left[ 1 - \exp \left( -\frac{G_o}{g_{so} - g_o} \gamma \right) \right]$$

$$\gamma = \sum_{s=1}^N |\gamma^s|$$

# Fit to 304L

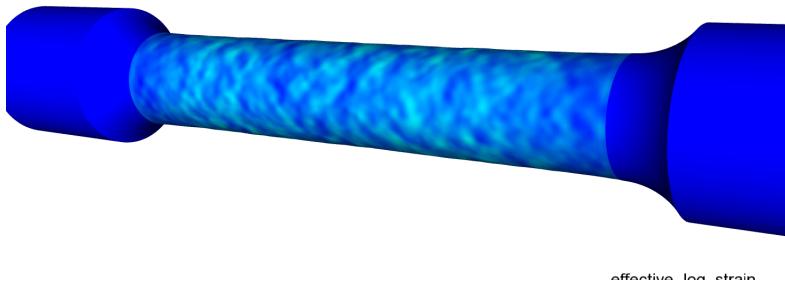
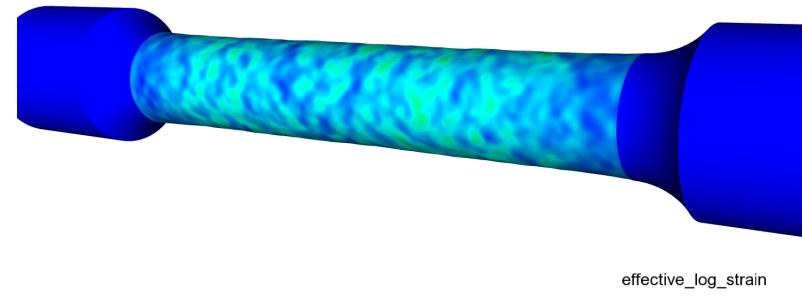
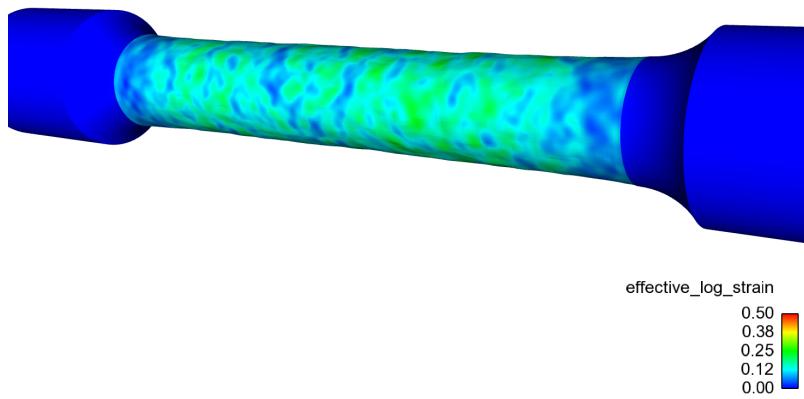
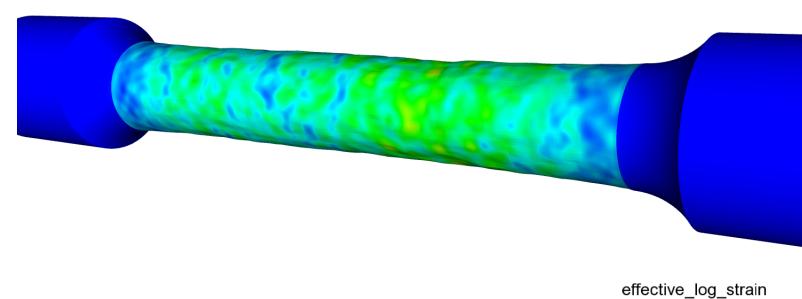
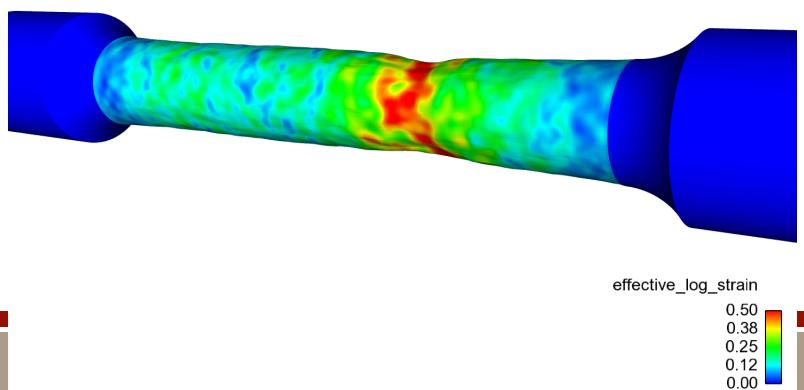
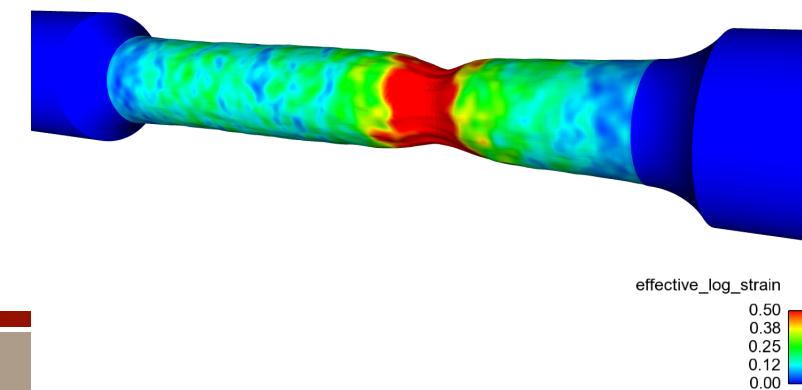
(Chris Weinberger)

Fit compared to experimental (polycrystal)

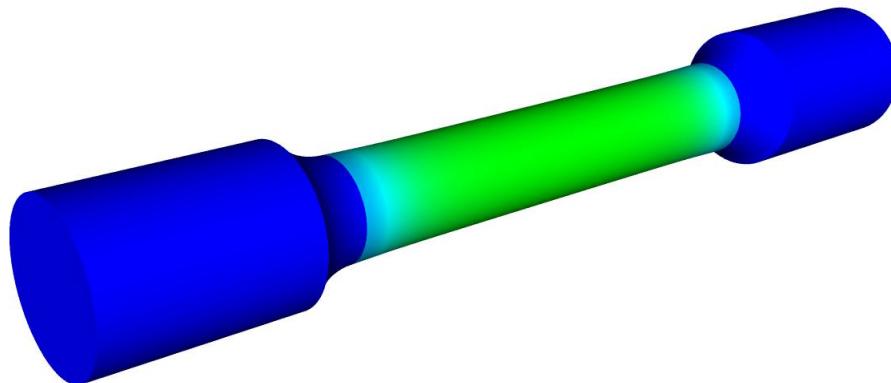


# Uniaxial Tension, Displacement Control

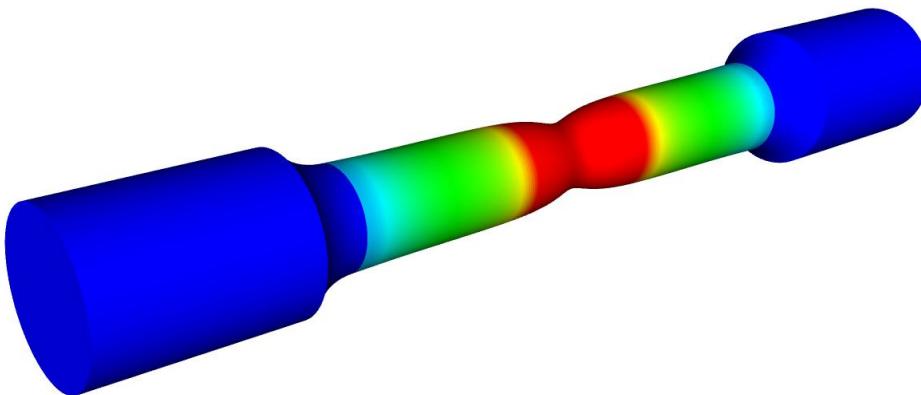
~ 12 grains across diameter, R3 mesh



# Compare with Homogenized PDE (No Variability)

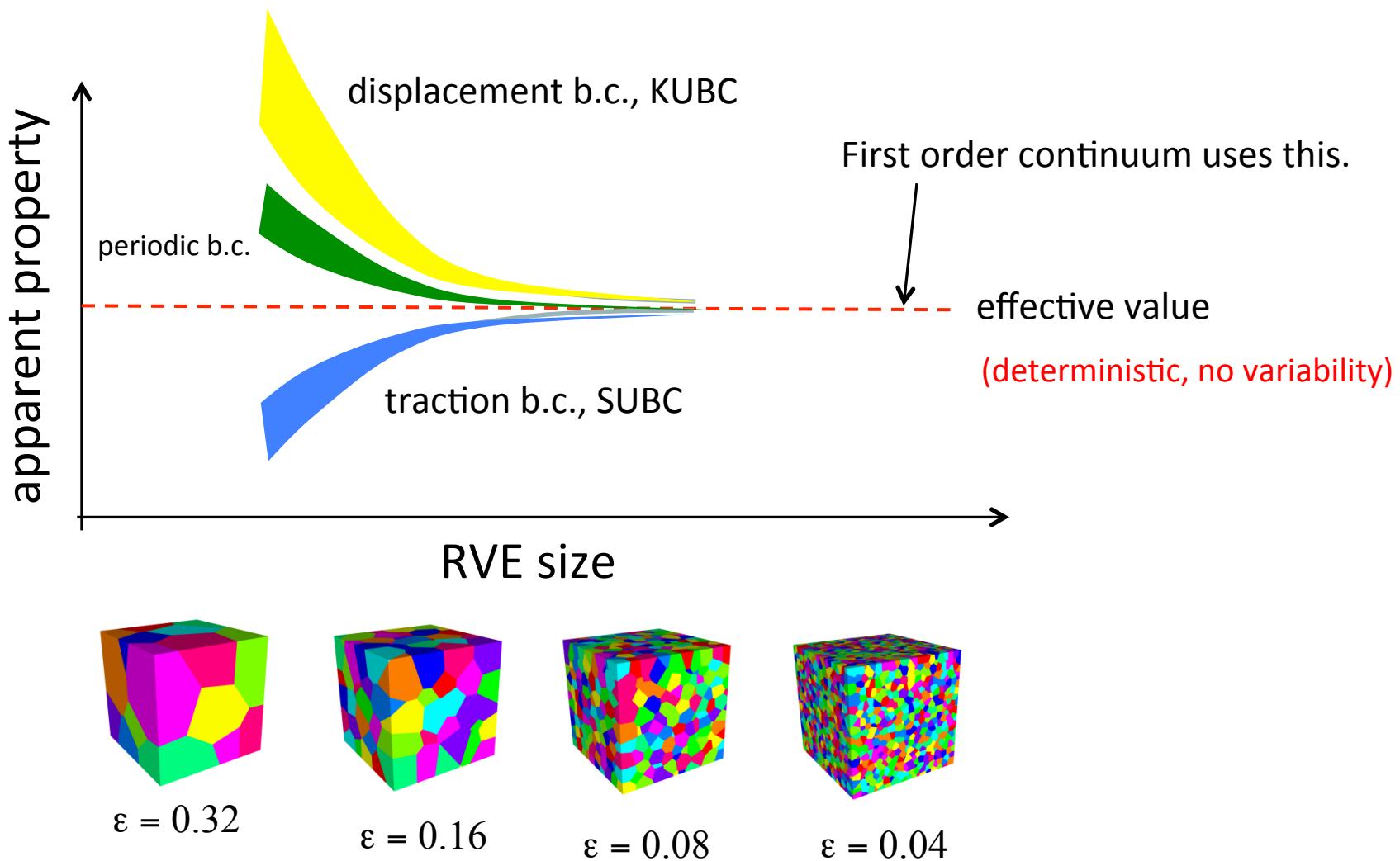


before necking



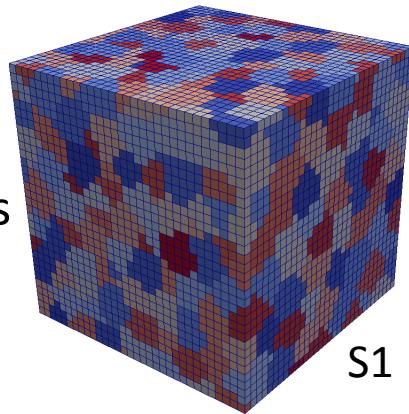
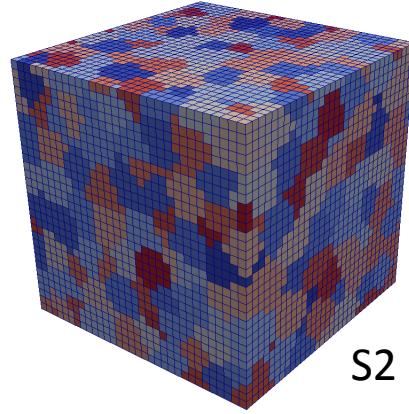
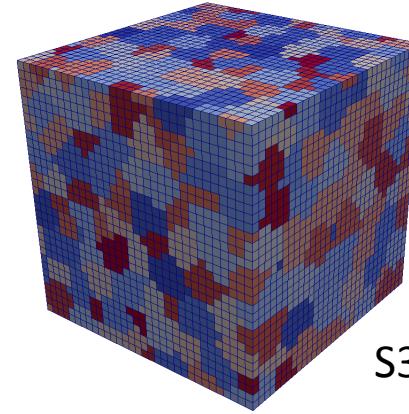
- symmetric
- neck is exactly at center

# Apparent vs. Effective Material Properties



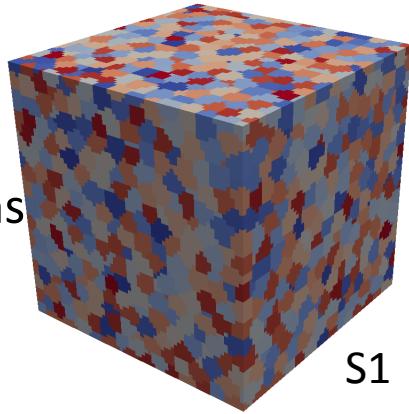
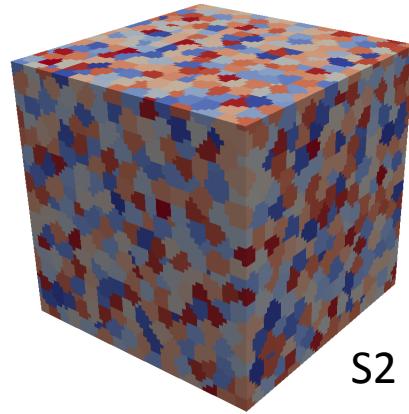
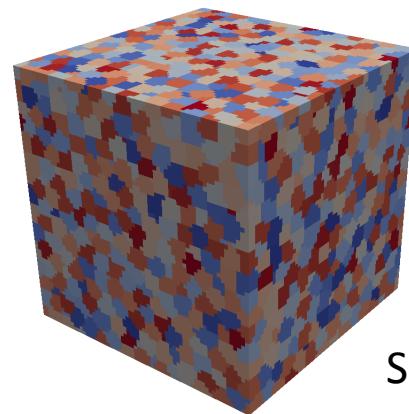
# Stochastic Volume Elements

$\sim 8^3$  grains



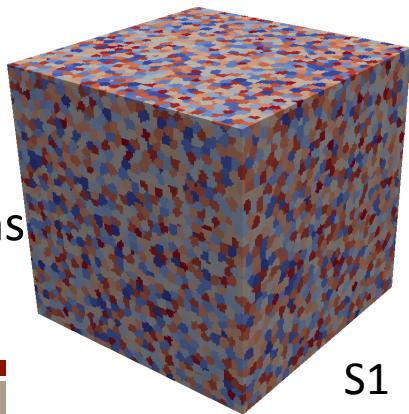
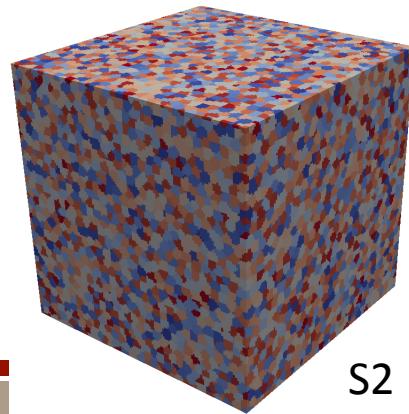
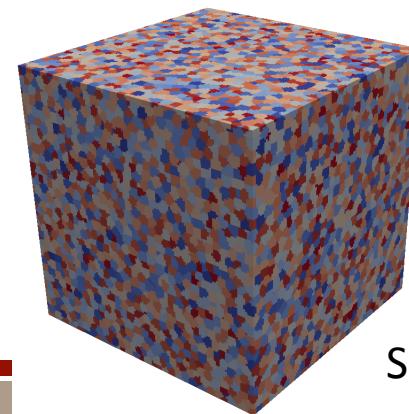
$\dots S100$

$\sim 16^3$  grains



$\dots S100$

$\sim 32^3$  grains

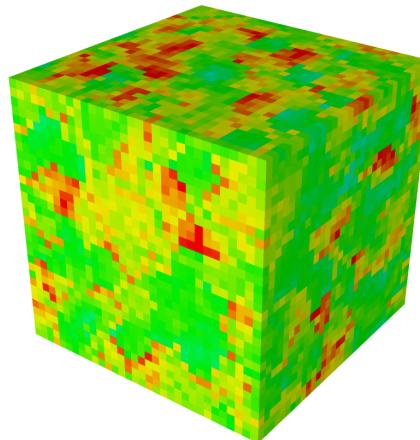


$\dots S100$

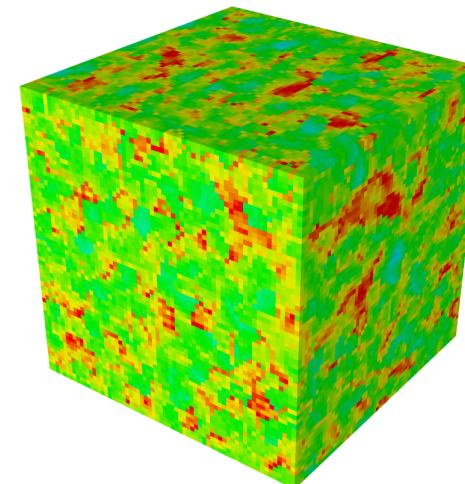
# Stochastic Volume Elements

- traction boundary conditions corresponding to uniaxial stress state
- ideally would use periodic boundary conditions (couldn't get working in Adagio)
- recover average strain field
- calculate apparent moduli
- 100 realizations at each grain level
- take average

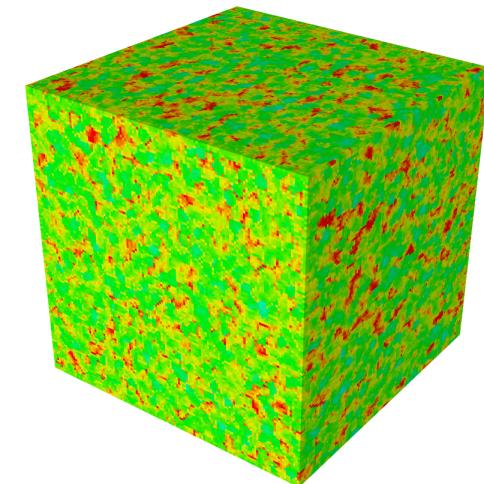
Von Mises stress field



$\sim 8^3$  grains



$\sim 16^3$  grains



$\sim 32^3$  grains

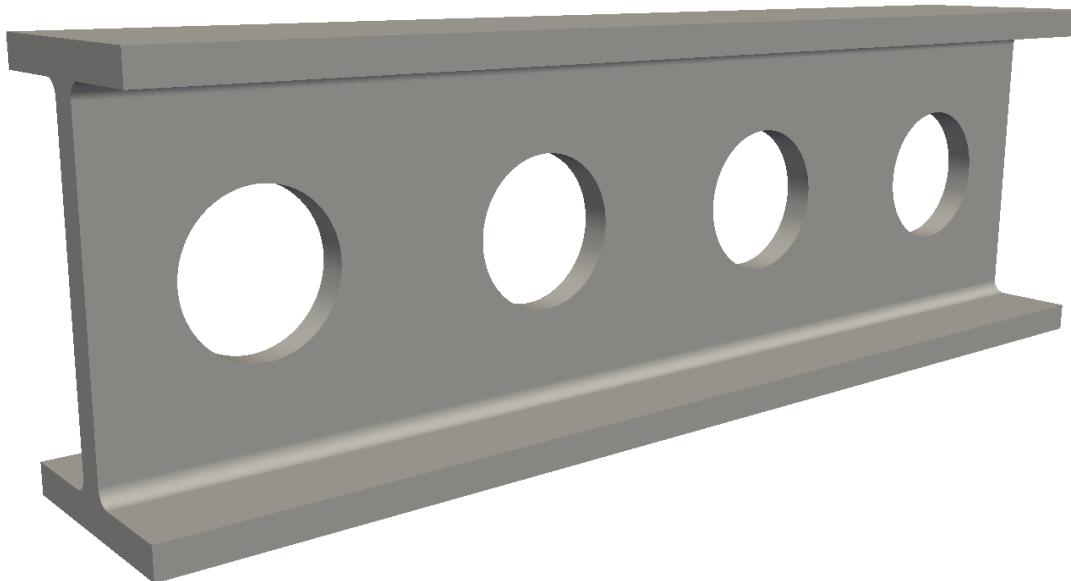
# Convergence to Effective Isotropic Properties

- mean of 100 simulations at each “grain level”
- rational function extrapolation to  $\infty$
- first order convergence rate

| number of grains   | apparent Young's Modulus (GPa) | apparent Poisson's ratio |
|--------------------|--------------------------------|--------------------------|
| $\sim 8^3$ grains  | 177.2                          | 0.317                    |
| $\sim 16^3$ grains | 180.6                          | 0.312                    |
| $\sim 32^3$ grains | 182.4                          | 0.310                    |
| $\infty$           | 184.1                          | 0.309                    |

These values will be used as the homogenized, isotropic properties.

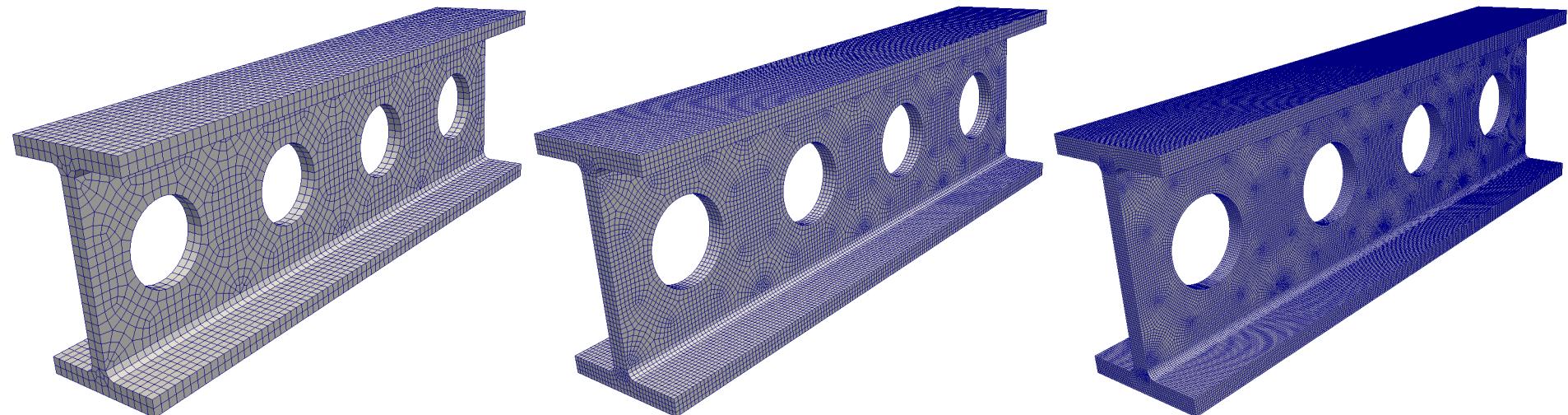
# I-Beam Example



- tension
- bending
- torsion

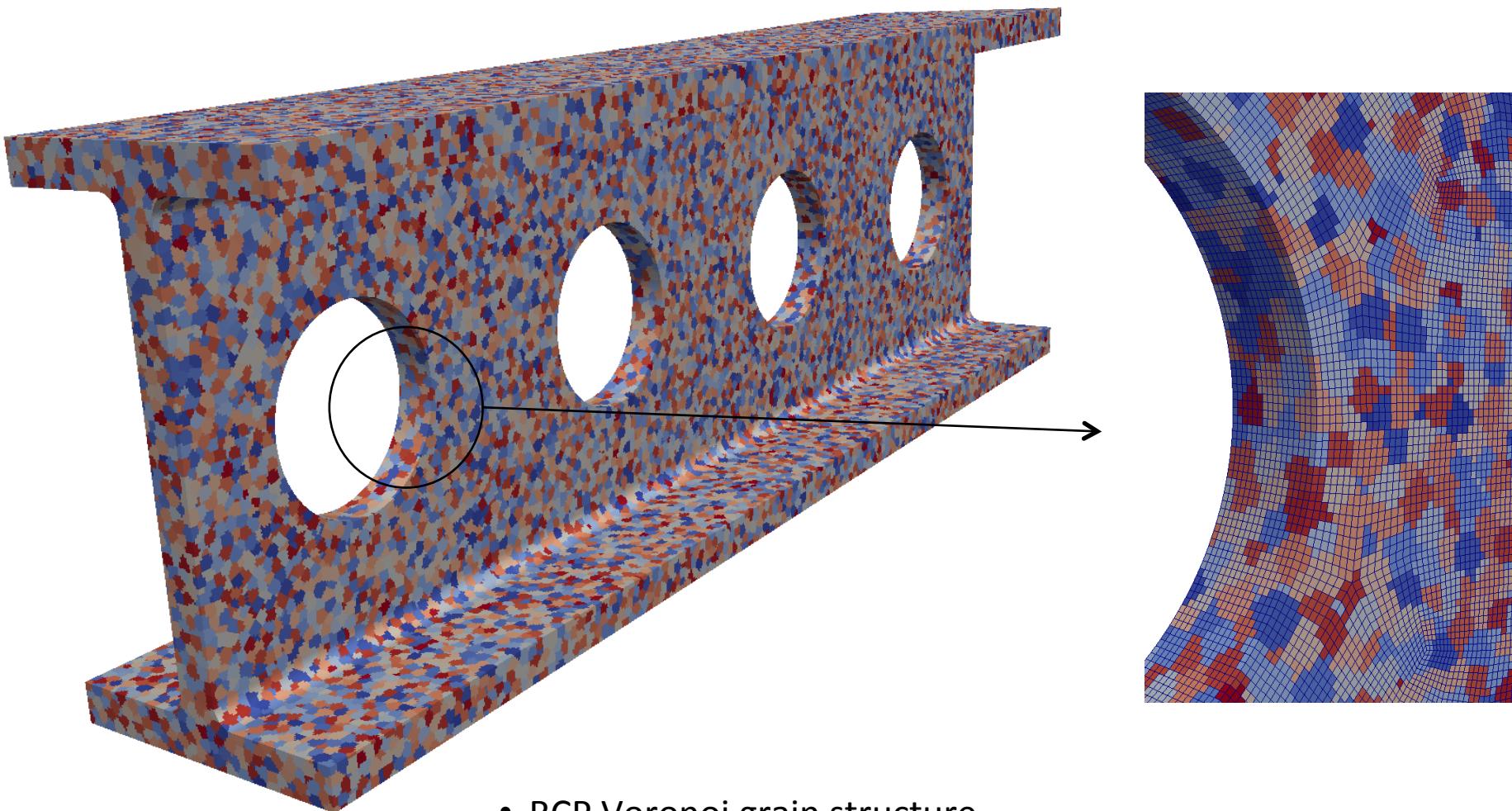
- Study statistics of direct numerical simulations
- Compare to homogenized solution
- Look for evidence of Type 2 material variability

# Hierarchy of Hexahedral Meshes



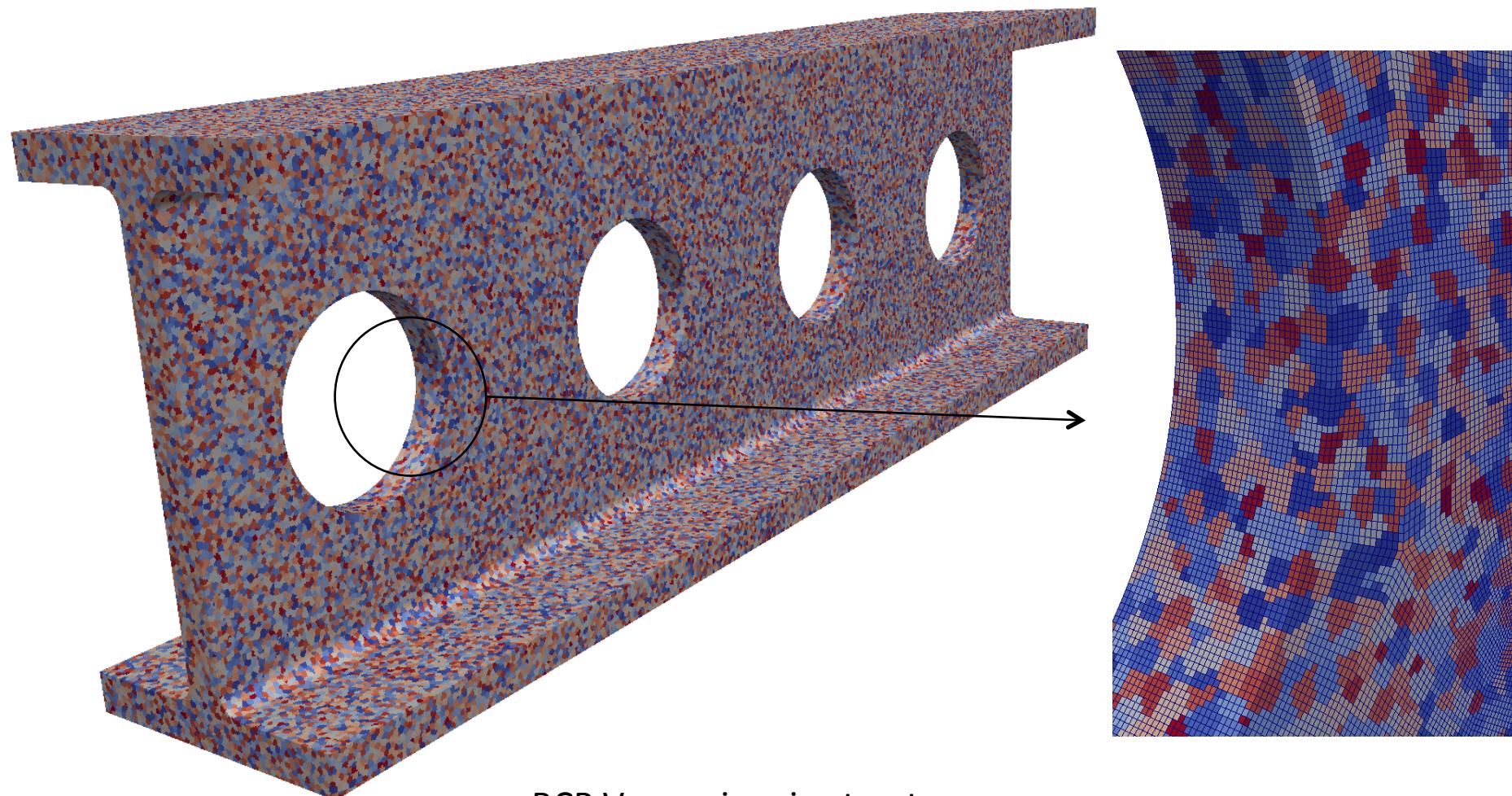
- R0
  - 8,576 hexas
- R1
  - 69K hexas
- R2
  - 549K hexas
- R3
  - 4.4M hexas
- R4
  - 35M hexas

# Thickness/grain ratio = 4



- RCP Voronoi grain structure
- 60K grains
- hex mesh overlay = R3 (4.4M elements)

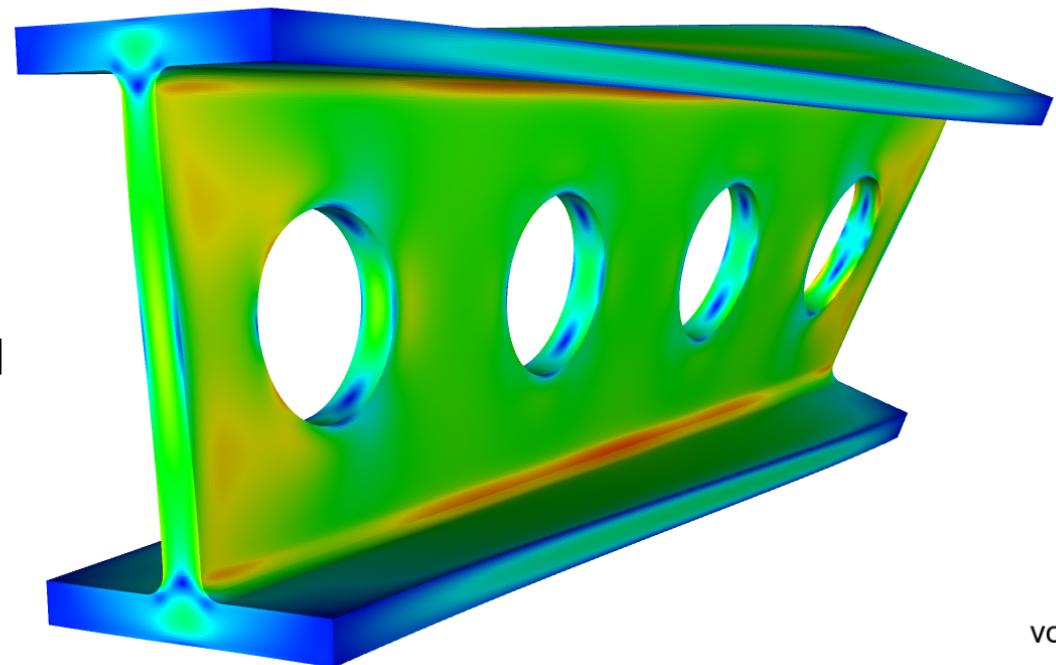
# Thickness/grain ratio = 8



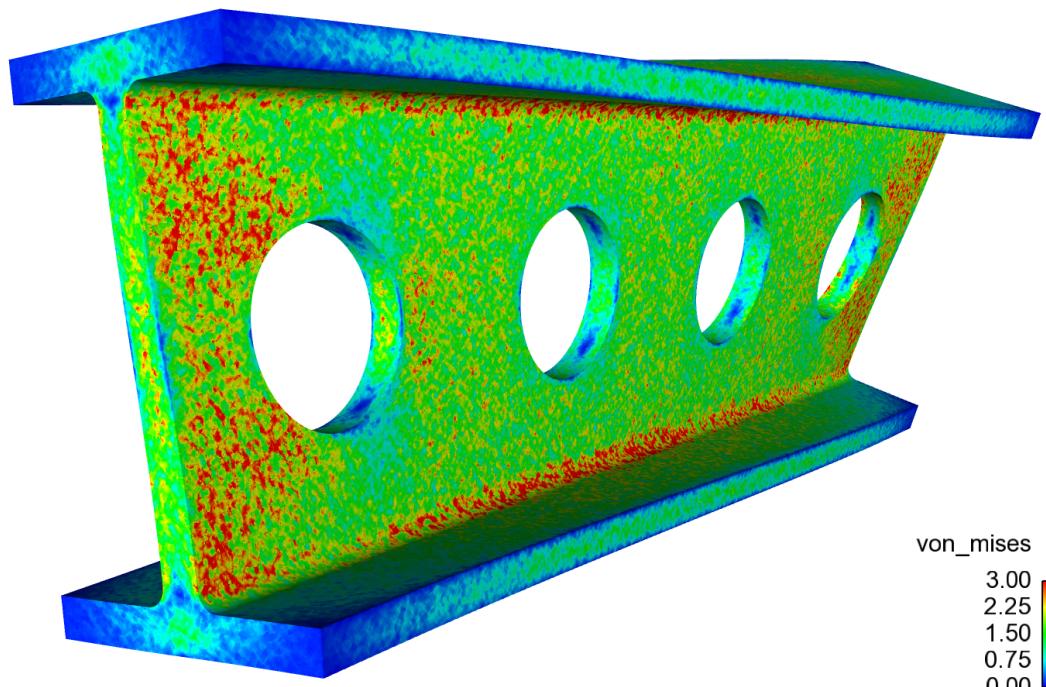
- RCP Voronoi grain structure
- 420K grains
- hex mesh overlay = R4 (35M elements)

Thickness/grain ratio = 8

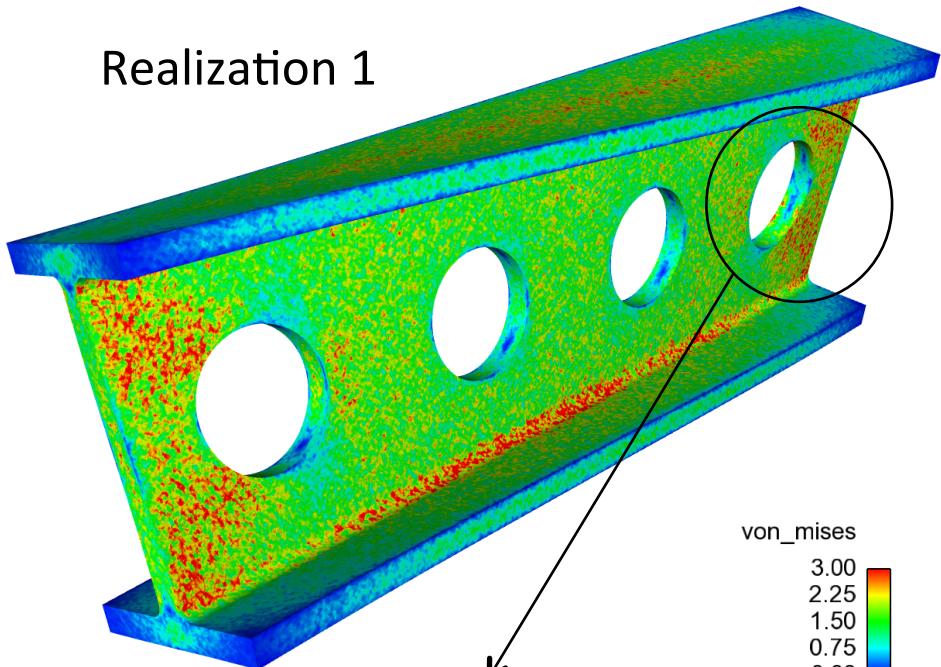
VM stress field, Homogenized



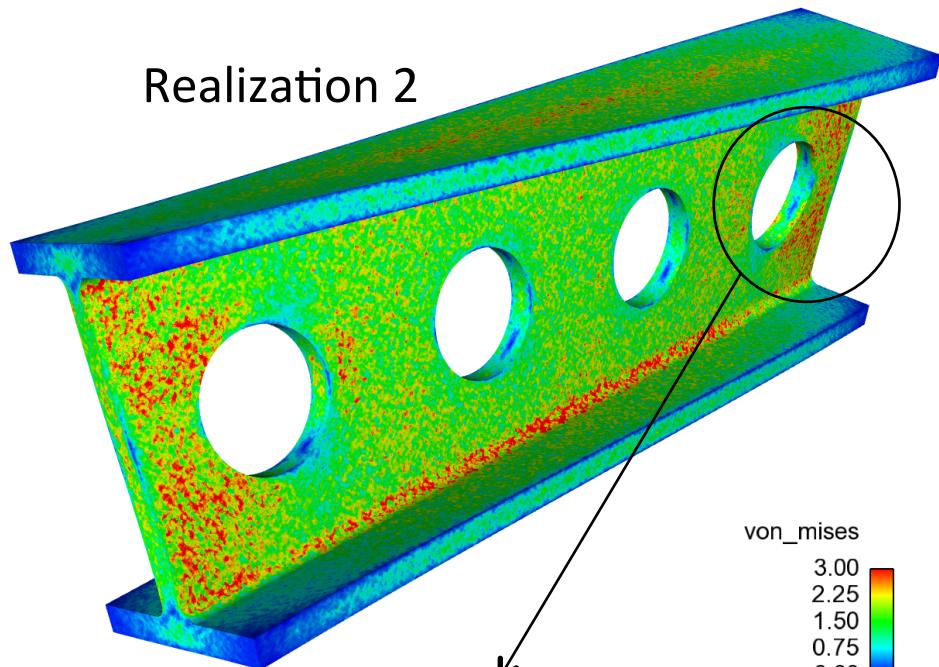
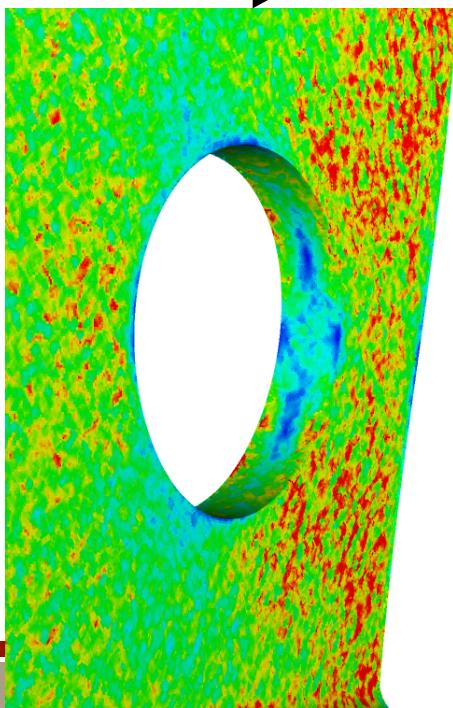
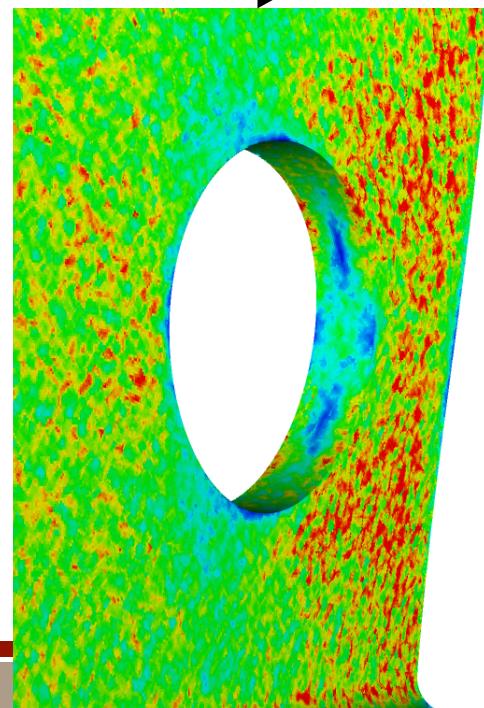
VM stress field, DNS



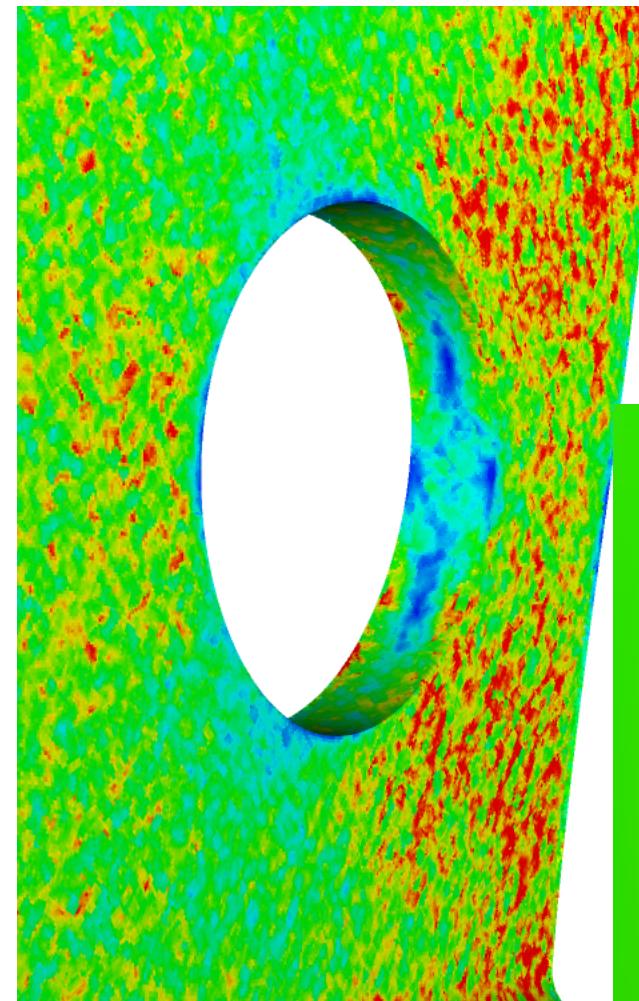
Realization 1



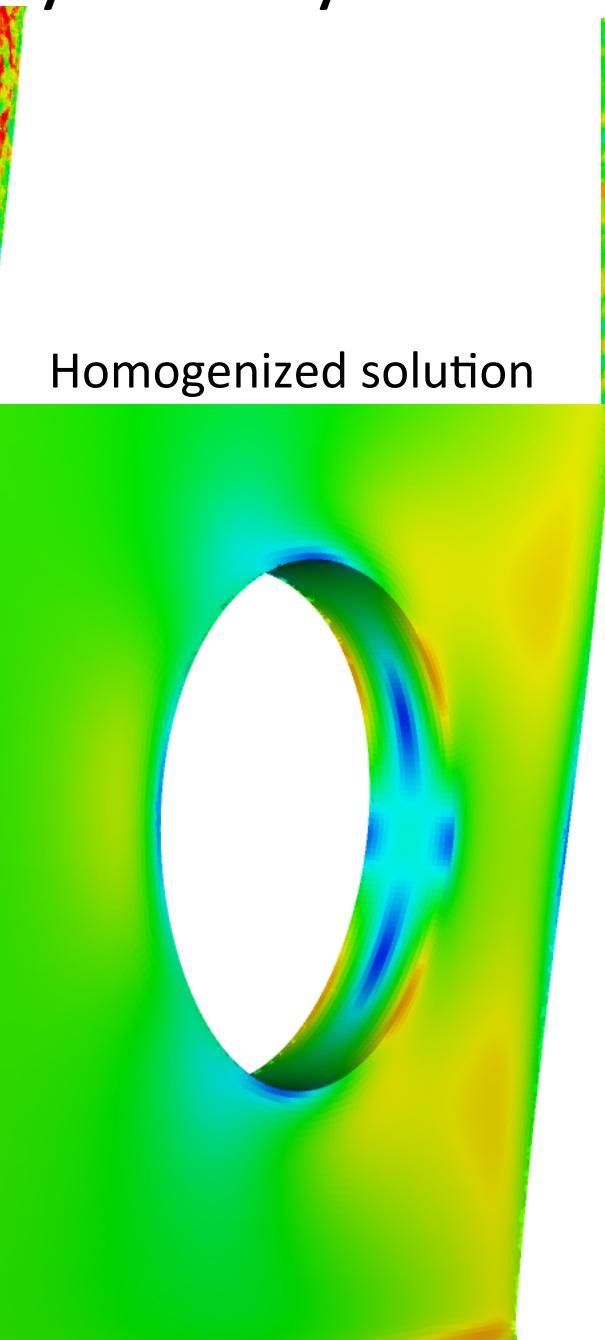
Realization 2



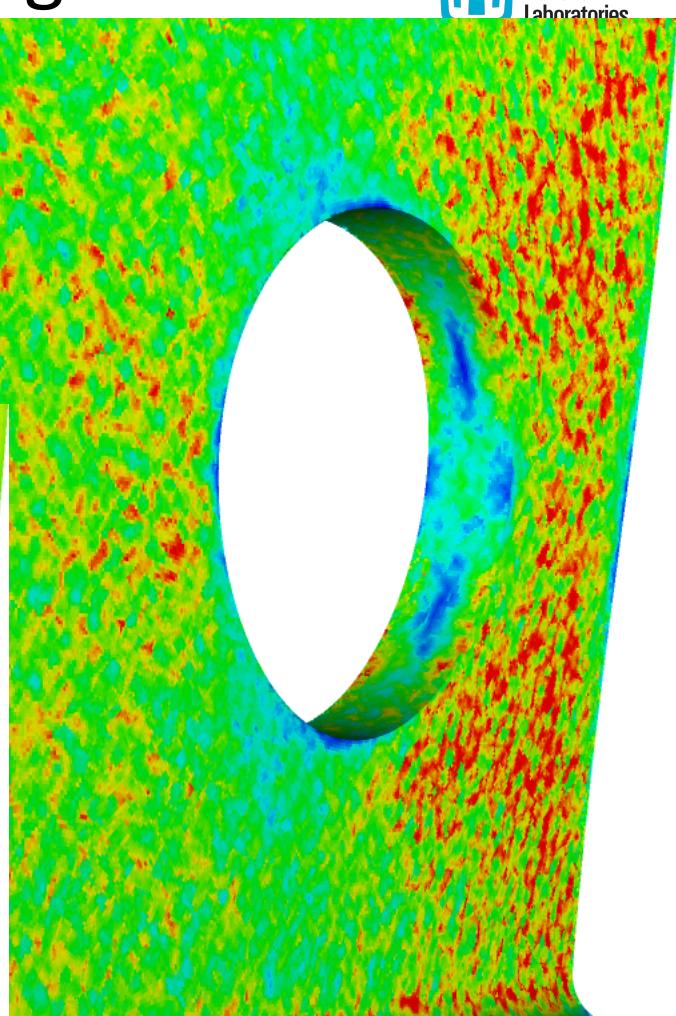
# Symmetry Breaking



Realization 1



Homogenized solution

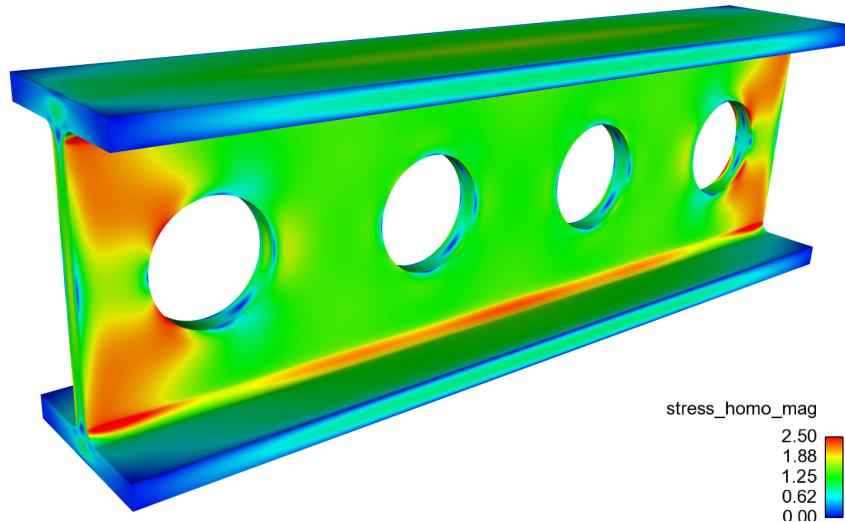
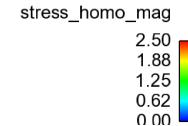


Realization 2

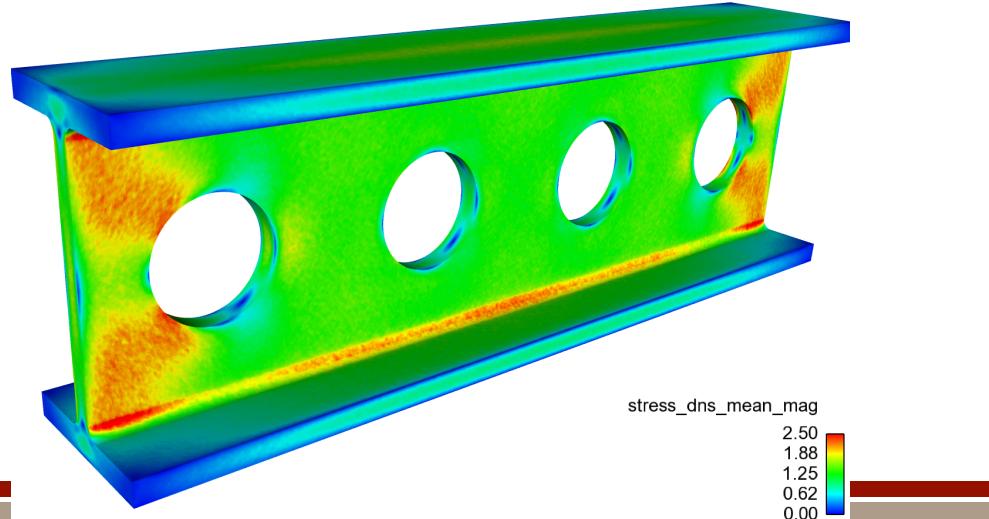
# Ensemble Results

- 100 realizations for thickness/grain ratio = 4
- 62 realizations for thickness/grain ratio = 8
- magnitude of ensemble average stress tensor
- standard deviation of stress ensemble
- magnitude of difference of ensemble average stress tensor and homogeneous solution
- projection of DNS solutions to coarse scale mesh and repeat

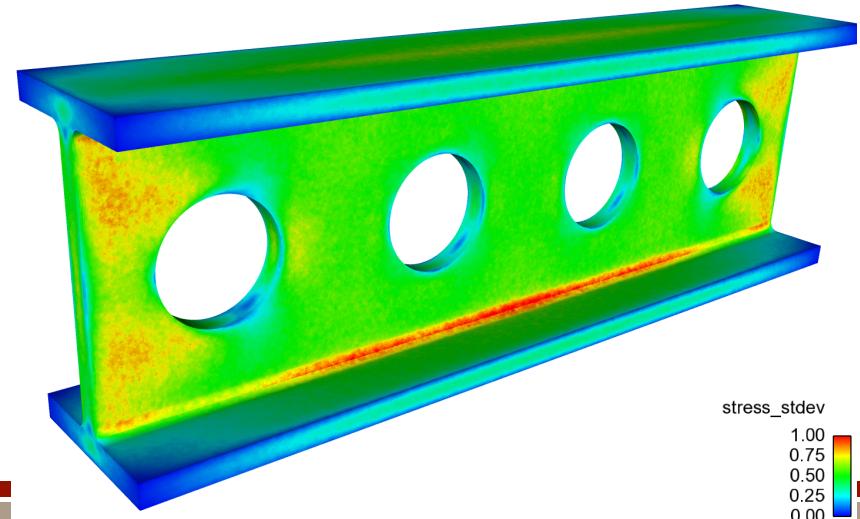
# Ensemble Results, 62 Realizations



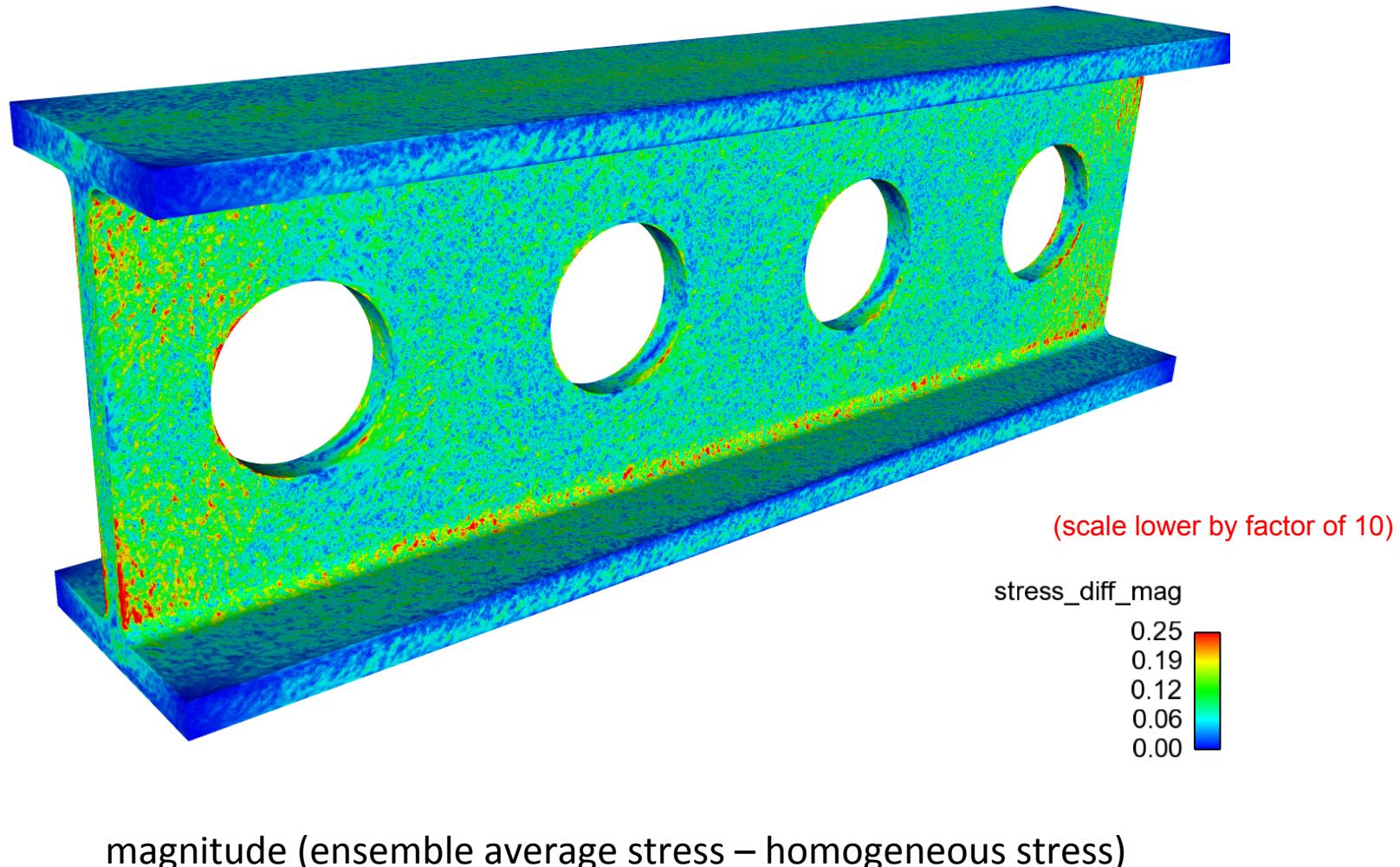
DNS  
(magnitude of ensemble average stress)



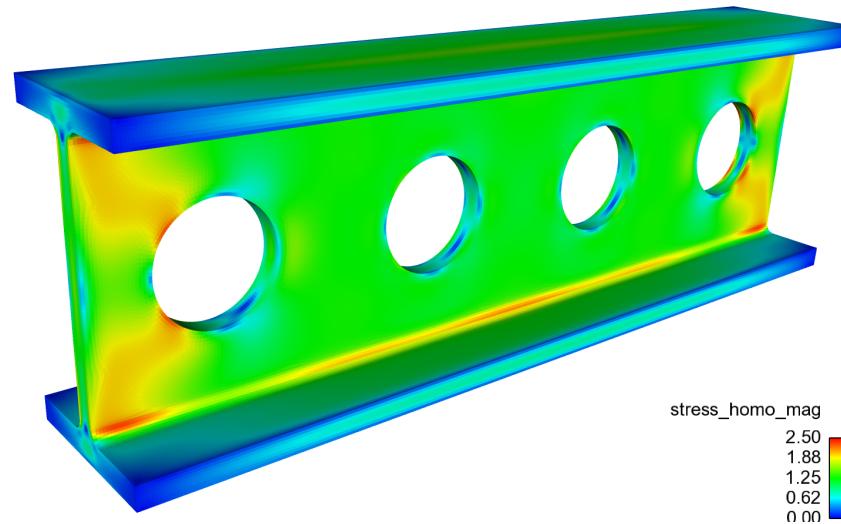
DNS  
(stress standard deviation)



# Ensemble Results minus Homogeneous

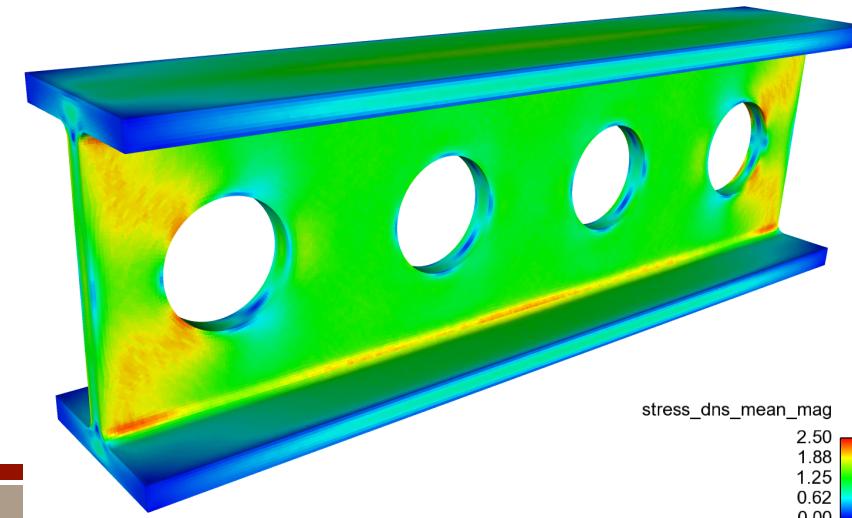


# Projection/Average to Coarse Mesh, R2

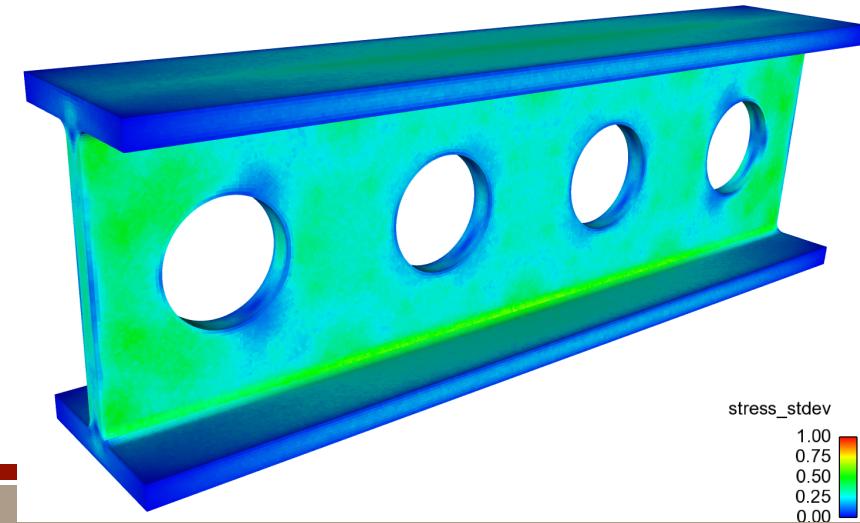


homogeneous solution  
(stress magnitude)

DNS  
(magnitude of ensemble average stress)



DNS  
(stress standard deviation)



# Ensemble Results minus Homogeneous

Projection/Average to Coarse Mesh, R2

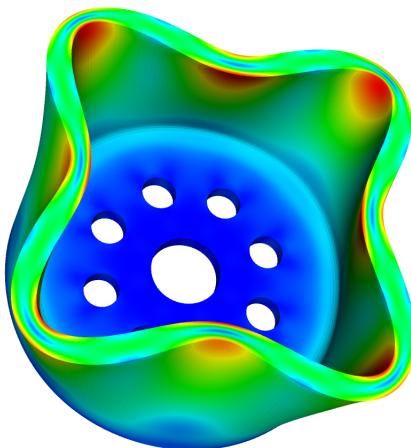


# Direct Numerical Simulation, Structural Dynamics

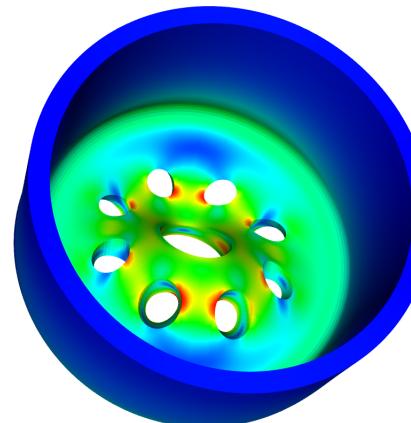
idealized part



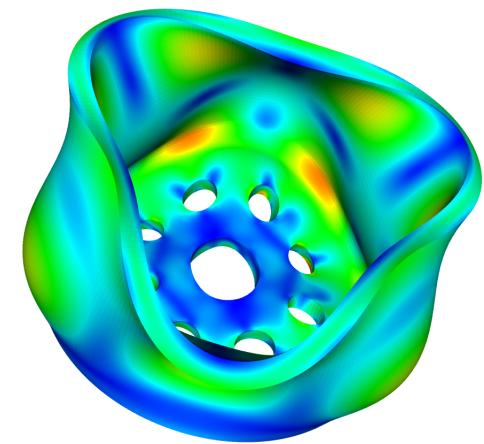
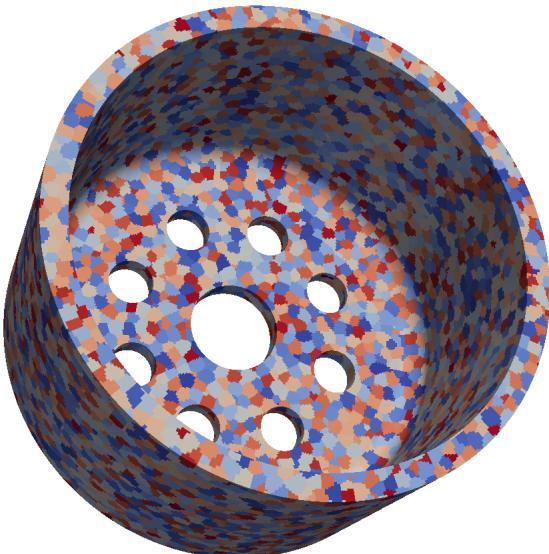
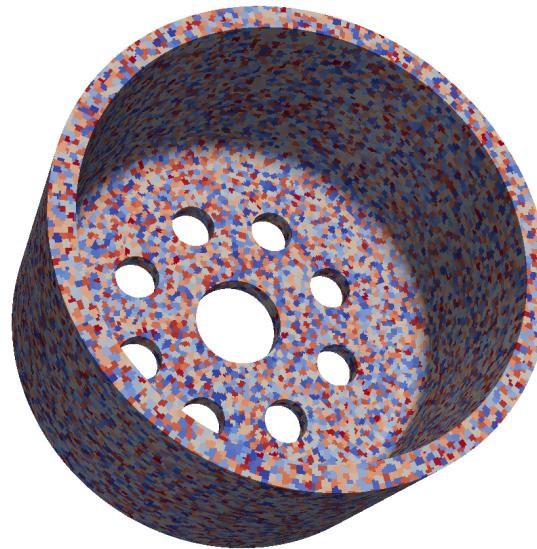
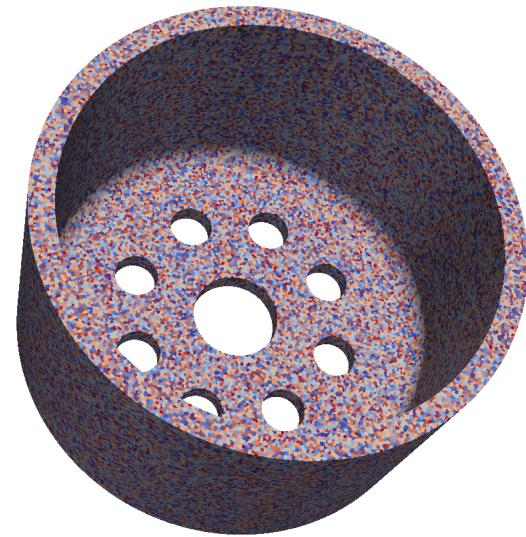
mode 13



mode 15



mode 24



- 2 grains across wall thickness
- ~8600 grains

- 4 grains across wall thickness
- ~53K grains

- 4 grains across wall thickness
- ~53K grains

# Outline

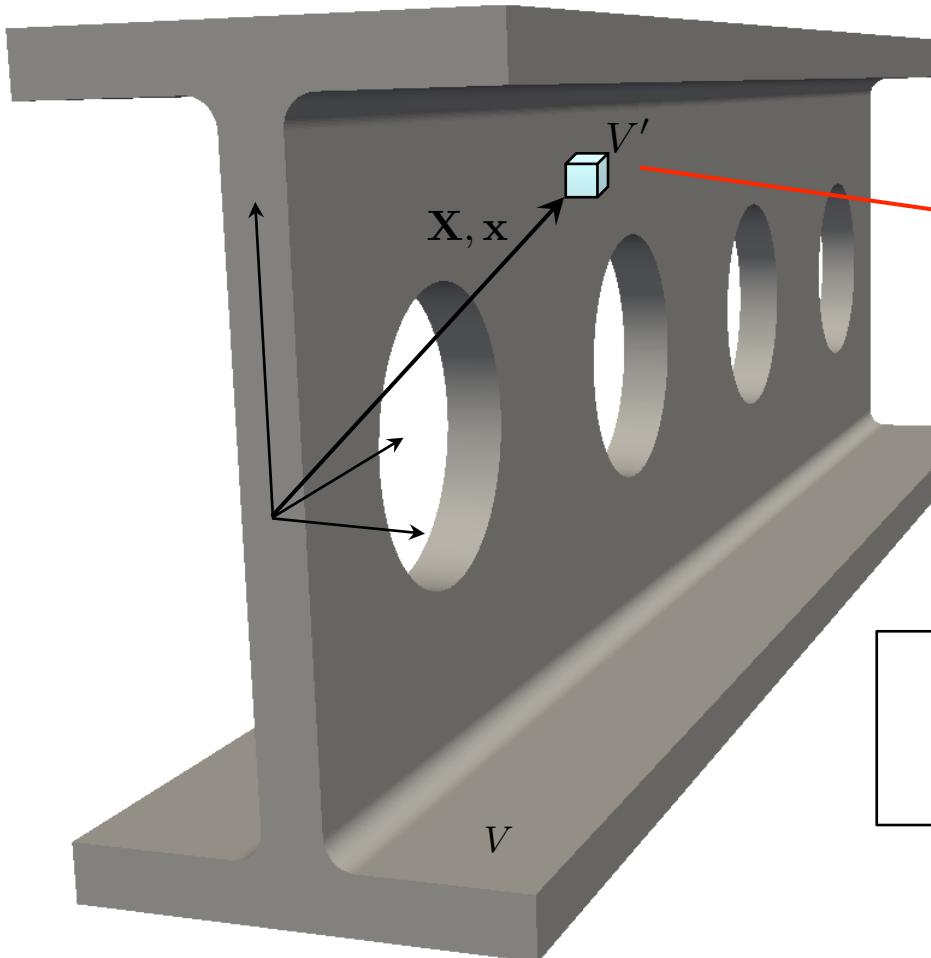
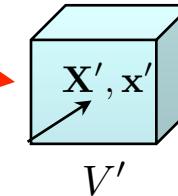
1. Review of homogenization theory
  - apparent vs. effective material properties
  - weak convergence
  - Type 1 and Type 2 material variability
2. Direct numerical simulations and comparison to homogenized PDE solution
  - Voronoi microstructure
  - hexahedral mesh overlay
  - boundary value problems
3. Type 2 material variability in macroscale simulations:  
a path forward
  - Mindlin's continuum formulation
  - elastic formulation
  - nonlinear response via  $FE^2$

# A Path Forward for Including Microscale Variability in Macroscale Models

- Homogenization theory indicates that for finite microstructure, strain gradient effects are present (strain energy depends on both strain and strain gradient).
- Additionally, expect to see a “size effect”, even for homogeneous fields, at the macroscale (“apparent” material properties described by Huet, 1990).
- Several strain-gradient continuum formulations
- Following Josh Robbins lead, going to explore the use of Mindlin’s micromorphic formulation (1964). (Josh Robbins, org 1443, LDRD, “Micromorphic Continua for High Fidelity Physics Models”)
- Mindlin, 1964, “Microstructure in Linear Elasticity”
- Mindlin’s formulation allows existing  $H^1$  FEA formulations to be used, but with extra nodal degrees of freedom.
- much recent work by W.K. Liu’s group at NU for modeling localization phenomena

# Mindlin's Micromorphic Continuum Formulation

(Mindlin, 1964, "Micro-structure in Linear Elasticity," *Archive for Rational Mechanics and Analysis*, v 16, 51-78.)



Embedded in each material particle, there is assumed to be a "micro-volume"  $V'$

macro-displacement,  $\mathbf{u} = \mathbf{x} - \mathbf{X}$

micro-displacement,  $\mathbf{u}' = \mathbf{x}' - \mathbf{X}'$

$$\mathbf{u} = \mathbf{u}(\mathbf{x})$$

$$\mathbf{u}' = \mathbf{u}'(\mathbf{x}, \mathbf{x}')$$

Key Approximation: Approximate  $\mathbf{u}'$  as linear on  $V'$ .

$$u'_i \approx x'_j \psi_{ji}$$



$$\text{micro-deformation} \quad \psi_{ij} = \frac{\partial u'_j}{\partial x'_i}$$

Micro-deformation  $\Psi(\mathbf{x})$  is constant on  $V'$  but varies on macro-scale  $V$ .

# Mindlin's Micromorphic Continuum Formulation

relative deformation  $\gamma_{ij} = u_{j,i} - \psi_{ij}$  (not symmetric)

macro-gradient of the micro-deformation  $\chi_{ijk} = \frac{\partial \psi_{jk}}{\partial x_i}$  (no minor symmetry)

macro-strain  $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$  (infinitesimal displacements)

strain energy  $W = W(\varepsilon_{ij}, \gamma_{ij}, \chi_{ijk})$

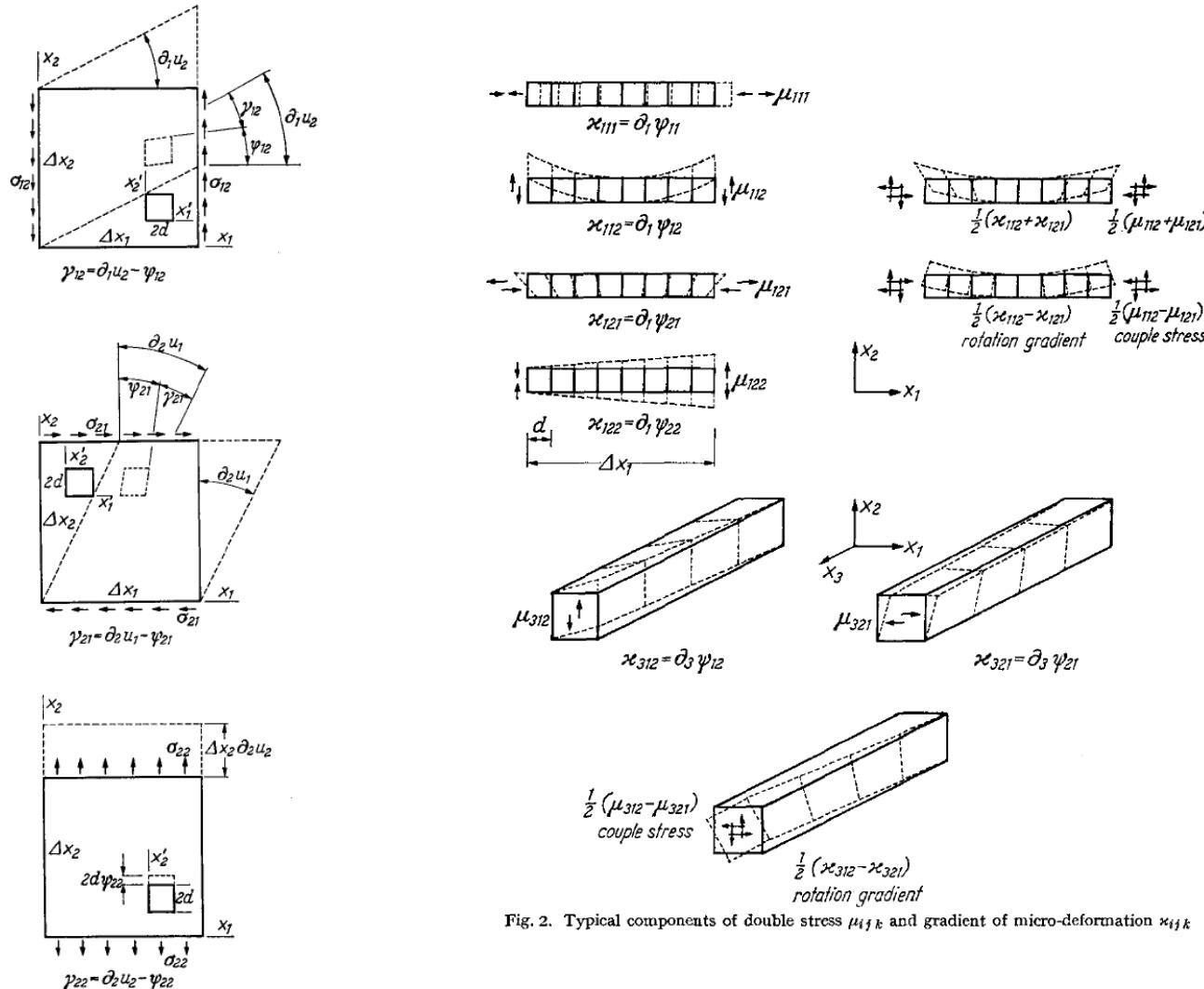
Cauchy stress  $\sigma_{ij} = \frac{\partial W}{\varepsilon_{ij}}$  (symmetric)

relative stress  $\tau_{ij} = \frac{\partial W}{\gamma_{ij}}$  (not symmetric)

double stress  $\mu_{ijk} = \frac{\partial W}{\chi_{ijk}}$  (no minor symmetry)

# Mindlin's Micromorphic Continuum Formulation

(Mindlin, 1964, "Micro-structure in Linear Elasticity," *Archive for Rational Mechanics and Analysis*, v 16, 51-78.)



# Linear Elastic

$$\begin{Bmatrix} \sigma \\ \tau \\ \mu \end{Bmatrix} = \begin{bmatrix} C & G & F \\ G & B & D \\ F & D & A \end{bmatrix} \begin{Bmatrix} \varepsilon \\ \gamma \\ \chi \end{Bmatrix}$$

- displacement based finite element formulation
- nodal variables are  $\mathbf{u}$  (3) and  $\psi_{ij}$  (9)
- use same shape functions but with 12 d.o.f. per node

# What about material variability?

standard stiffness matrix (deterministic)  
all others are random

$$\begin{Bmatrix} \sigma \\ \tau \\ \mu \end{Bmatrix} = \begin{bmatrix} C & G & F \\ G & B & D \\ F & D & A \end{bmatrix} \begin{Bmatrix} \varepsilon \\ \gamma \\ \chi \end{Bmatrix}$$

*(The matrix  $C$  is circled with a dashed red line and has a red arrow pointing to it from the text above.)*

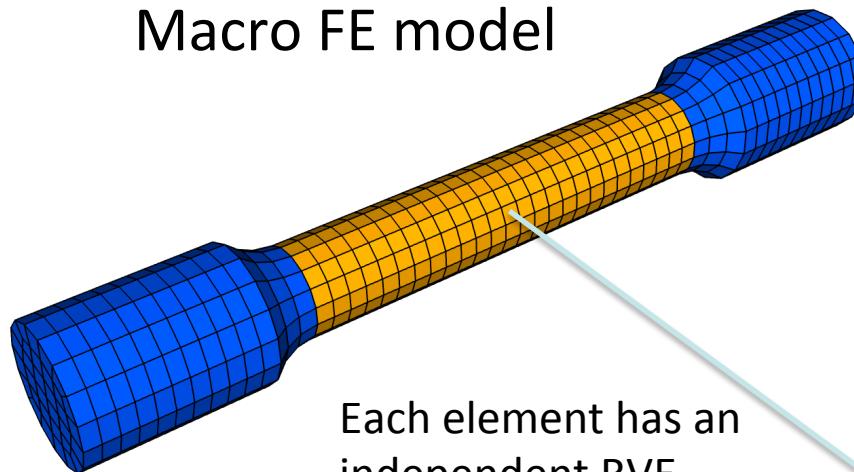
- For polycrystalline material variability, take  $G, F, B, D, A$  to be random matrices.
- The random matrices are a function of sampling volume  $V'$ .
- Take this sampling volume to be a function of the finite-element volume.
- The random matrices are generally anisotropic.
- As  $V' \rightarrow \infty$ , the microstructural fluctuations should disappear.

\*\*\*\* Need to stay in weak form (no strong form). \*\*\*\*

# Homogenized Simulation via FE<sup>2</sup>

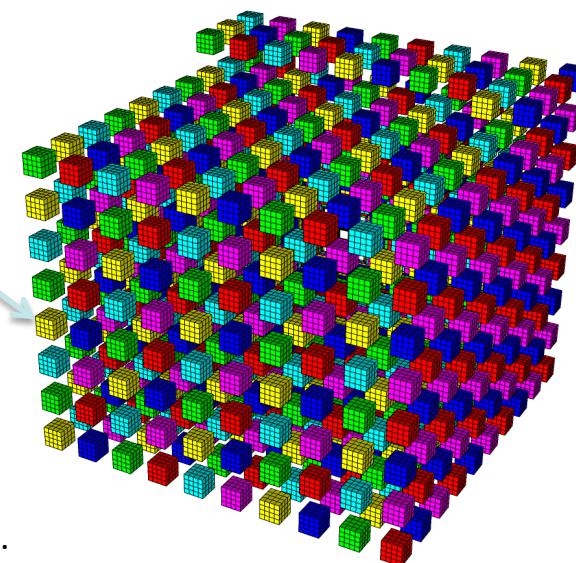
(to be compared with direct simulation)

Macro FE model



Each element has an independent RVE.

RVE array



(This RVE array is for testing Sierra/SM capability.)

## Challenges:

- RVE needs to be as small as possible for efficiency.
- RVE needs to be as large as possible to give effective properties.
- RVE mesh needs to be sufficiently refined.
- Number of RVEs grows with mesh refinement in macro model.
- Robustness of CPFE models.

# Summary

- Difference between Apparent and Effective material properties
- Homogenization theory based on concept of weak convergence
- Use Direct Numerical Simulations of macroscale boundary value problems containing microstructure to investigate incomplete first-order homogenization.
- Propose using Mindlin's micromorphic continuum theory to model Type-2 material variability
- Will probably need to use FE<sup>2</sup> approaches to model nonlinear micromorphic continua.