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Outline 

I. Why are defects so important in III-Nitrides? 
II. Deep Level Optical Spectroscopy (DLOS) 
III.DLOS at reduced dimensions: 

A. 2D - DLOS study of InGaN/GaN Light Emitting Diodes 
B. 1D - DLOS study of AlGaN/GaN nanowire heterostructures 

IV.Summary 



Defects and III-Nitrides 

Mis-matched epitaxy and strain 

GaN 

Koleske et al., JCG 242 55 (2002)  

GaN 

InGaN 
Defects incorporate with larger density in III-Nitrides 
 Highly mis-matched epitaxy 

 
 Heterostructures force trade-offs between alloy 

growth conditions 
 

 Facile compensating defect  formation in wide band 
gap materials: Nt ~ eEg/kT 

Non-ideal growth conditions 

Limpijumnong and Van de Walle, PRB 2004. 

Reduced defect formation energy 



Challenges to studying defects in III-Nitrides 

Solution: Deep Level Optical Spectroscopy (DLOS) 

Wide bandgaps limit the use of thermal emission detection methods 
 Thermal emission rates decrease exponentially with trap energy 
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Deep Level Optical Spectroscopy 

1. Chantre et al. PRB 23, 5335 (1981). 

“Thin film” Deep Level Optical Spectroscopy (DLOS)1 

  Photocapacitance technique 

 Sub-band gap optical stimulation to photoionize defect levels  

 Quantify non-radiative defect level energy 
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Increasing h 

•  Optical cross-section so = eo/F = a/Nt 

•  so(h)  dC(t)/dt|t=0  

•  Address defect density later… 

• DLOS only sensitive to depleted regions 
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Interpretation of DLOS spectra 

Chantre, et al., PR B 23, 5335 (1981)  

Lucovsky, Solid State Commun. 3, 299 (1965) 

Armstrong et al, APL 84, 374 (2004) 

Eg 

DLOS of GaN:Si:C 
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Interpretation of DLOS spectra 

Chantre, et al., PR B 23, 5335 (1981)  

Lucovsky, Solid State Commun. 3, 299 (1965) 

Armstrong et al, APL 84, 374 (2004) 

DLOS of GaN:Si:C 
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Eo = 3.28 eV 
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Interpretation of DLOS spectra 
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DLOS of GaN:Si:C 
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Interpretation of DLOS spectra 

Chantre, et al., PR B 23, 5335 (1981)  

Lucovsky, Solid State Commun. 3, 299 (1965) 
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M. A. Reshchikov JAP 97 061301 2005 
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Armstrong et al, APL 84, 374 (2004) 

Eo = 2.90 eV 
dFC = 0.25 eV 

DLOS of GaN:Si:C 

Quantify Eo for sharp and broad defect absorption spectra 



Interpretation of DLOS spectra 

Chantre, et al., PR B 23, 5335 (1981)  

Lucovsky, Solid State Commun. 3, 299 (1965) 
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Armstrong et al, APL 84, 374 (2004) 

Eo = 2.90 eV 
dFC = 0.25 eV 

DLOS of GaN:Si:C 

Vibronic motion 

Quantify Eo for sharp and broad defect absorption spectra 



DLOS application to 2D heterostructures 

 Efficiency of InGaN/GaN multi-quantum well (MQW) light emitting 

diodes (LEDs) drives Solid-state Lighting 

 Solid-State Lighting can reduce 2025 energy consumption by >$100B/yr 

and carbon emission by >100 MT/yr 

 Despite commercial success, defects still limit the efficiency of LEDs 

 Efficiency droop and “green-yellow” gap 

 Use DLOS to understand and control defects in LEDs 

EQE for non-polar and polar InGaN 

InxGa1-xN

(AlxGa1-x)0.52In0.48P

Eye response
Green

Gap

S. Nakamura

InGaN/GaN LED IQE vs. J 

A. David, 2012 DOE SSL R&D Workshop 



Defects limit peak LED efficiency 

Challenge: Needle in a “haystack” 

 Need nanoscale depth resolution 

to differentiate QW and QB defects 

LED design - NOT TO SCALE! 

n-type contact

p-type contact
During growth changes in temperature, gas flows, 

molar flow rates, and pressure

GaN n-type template

c-plane sapphire

GaN bulk on top of annealed NL.

Heat NL to 1050  C in NH3, H2, and N2.

GaN nucleation layer at 530  C, 500 torr.

Anneal sapphire in H2 to 1050  C.
I

GaN barrier raise temperature to 800  C then back 
down to QW growth temperature – with Si doping.

InGaN QW growth at 760  C for blue and 730  C for 
green LEDs – use only N2 and NH3, 300 torr.

GaN or InGaN underlayer (UL) growth at 790 to 880 ºC
1 - 5 QWs

UID GaN

GaN barrier layer

GaN barrier layer

InGaN QW

InGaN QW

InGaN QW

With/without underlayer

GaN n-type regrowth

II

AlGaN p-type

(In)GaN p-type p-type GaN grown at same temperature as 
electron block

p-type AlGaN electron block grown at ~ 970  C for 
blue and 930  C for green – add H2, 200 torr.

III~300 nm 

~2.5/7.5 nm 

~1000 nm 

~ 440 nm 

1 × 109 cm-2 

5 × 108 cm-2 

6 × 109 cm-2 

Dai et al. APL 94 111109 (2009) 

Threading dislocations (TDs) reduce LED peak efficiency 

 What are the defect energy levels (Eo)?  

 At what density (Nt)? 

 Where do they form in the LED ? 



DLOS provides depth resolution in LEDs 

100 150 200 250

-15

-12

-9

-6

-3

0

3

 

E
n

e
rg

y
 (

e
V

)

Depth (nm)

100 150 200 250

-3

0

3

 

E
n

e
rg

y
 (

e
V

)

Depth (nm)

EC 

EV 

EC 

EV 

V = -1 V 

V = -10 V 

LED MQW 1D-SP calculations* 

*G. Snider UND 

V = -1 V: DLOS selective to the MQW region 

 Detect both InGaN QW and GaN QB defects 

 How to distinguish? 



Identify QW-related defects in LEDs 
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 ~2.9 eV In0.13Ga0.87N QW band edge 



Identify QW-related defects in LEDs 
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Ec – 1.62 eV 
dFC = 0.35 eV 

Ec – 2.76 eV 

 ~2.9 eV In0.13Ga0.87N QW band edge 

 No new defect states with increased TDD 
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Identify QW-related defects in LEDs 
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Ec – 2.76 eV 

 ~2.9 eV In0.13Ga0.87N band edge 

 No new defect states with increased TDD 

 Similar to bulk InGaN deep levels – likely QW defects 

DLOS of thin film UID-In0.2Ga0.8N 
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Ec – 1.62 eV 
dFC = 0.35 eV 

Identify defects in 2.5 nm optically active QWs! 



Lighted-CV quantifies defect density 
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Enhanced TDD increases density of all observed deep levels! 

 Decrease in Nt with lower TDD 

 Depth-dependence of Nt not expected for TD-related defects 

 Suggests interaction among point (C, VGa) and extended defects during growth1,2 
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Enhanced TDD increases density of most observed deep levels 
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 Demonstrated quantitative and nanoscale defect 
spectroscopy in MQW active region of LEDs 

 Reduced Nt with TDD correlates with better LED IQE 

 Nt for near-Ev and mid-gap levels trend with IQE 

 QWs are more defective than QBs 

1. Dai et al. APL 94 111109 (2009) 

~ 440 nm 

1 × 109 cm-2 

5 × 108 cm-2 

6 × 109 cm-2 

Dai et al. APL 94 111109 (2009) 



DLOS can be applied to (quasi-)1D systems 

• Sensor applications 

• Solid-State Lighting 

• No TDs, but point defects are still a concern 

PL of InGaN NWs 

Kuyendall et. al Nature Materials 6 951 2007 

50 nm50 nm 50 nm50 nm
50 nm50 nm50 nm

(a) (b) (c)
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50 nm50 nm50 nm
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III-N nanowires (NWs) have attractive electrical and optical properties 

False color SEM of GaN NWs STEM of AlGaN/GaN NW 

Too small for photocapacitance (DLOS) measurements 



Defect spectroscopy of GaN NWs 

• Sub-bandgap photoconductivity – what is the physical mechanism? 

 Weak photoconducitivty for diffuse light 

 Does not explain R dependence 
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Armstrong et al. JEM 38 484 (2009).  



Photoconductivity-mode DLOS for GaN NWs 

"Nano" DLOS - Modulate NW surface depletion region1 

Dark 

1. Calarco et al. Nano Lett. 5 981 (2005). 

Ec

EF

Et

2r

2R 

R

r



Photoconductivity-mode DLOS for GaN NWs 

"Nano" DLOS - Modulate NW surface depletion region1 
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• No e-h pair creation 

• Carrier mobility unaffected 

• Photoconductivity from increase in conductive cross-sectional area As 

2R 



Photoconductivity-mode DLOS for GaN NWs 

"Nano" DLOS - Modulate NW surface depletion region1 
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Armstrong et al. JEM 38 484 (2009).  

• No e-h pair creation 

• Carrier mobility unaffected 

• Photoconductivity from increase in conductive cross-sectional area As 

Sub-bandgap Light 

2R 



DLOS of GaN NWs 

• NW deep level defect spectra similar to bulk GaN:C 

– Not likely to be surface states 

– Possibly carbon-related defects 

• What about surface states? 
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1. Klein et al. APL 75 4016 (1999). 
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Photoconductiviy transients suggest surface states 
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GaN vs. AlGaN/GaN core-shell NWs 
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GaN vs. AlGaN/GaN core-shell NWs 
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• Minority carrier deep level near Ev + 2.6 eV/EC - 0.8 eV 

– Ec - 0.6 eV surface state predicted for n-type, c-plane GaN surface1 

1 Van de Walle et al., JAP 101 081704 (2008). 
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GaN vs. AlGaN/GaN core-shell NWs 

• Similar DLOS spectra for GaN, Al(Ga)N/GaN core-shell NWs 

– Same “bulk” defects 
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GaN vs. AlGaN/GaN core-shell NWs 
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 AlGaN/GaN NW transients AlN/GaN NW transients 

• EC - 0.8 eV level missing in core-shell Al(Ga)N/GaN NWs  

– Further evidence for GaN surface-related defect 

GaN NW PC transients DLOS of core-shell NW 



Summary 

QB 

QW Ec 

EV 

 Quantitative and nanoscale depth profiling of defect levels in LED 

 Correlated deep level density to optical efficiency 

 Strong interaction among point and extended LED defects 

 Quantify deep level energy and density in GaN NWs 

 Bulk-like defects prevalent 

 Observed surface states in GaN NWs 

 Control surface states with epitaxial passivation layers 
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