
SANDIA REPORT
SAND2020-9254

Printed September 3 2020

Sandia
National
Laboratories

Securing machine learning models
Kenneth Goss, Benjamin Jackson, Jacek Skryzalin

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

V 4.93.441'
ACiftopid FL. dal r So-cern* A darin a tradqc

2



ABSTRACT

We discuss the challenges and approaches to securing numeric computation against adversaries
who may want to discover hidden parameters or values used by the algorithm. We discuss
techniques that are both cryptographic and non-cryptographic in nature. Cryptographic solutions
are either not yet algorithmically feasible or currently require more computational resources than
are reasonable to have in a deployed setting. Non-cryptographic solutions may be
computationally faster, but these cannot stop a determined adversary. For one such
non-cryptographic solution, mixed Boolean arithmetic, we suggest a number of improvements
that may protect the obfuscated calculation against current automated deobfuscation methods.
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1. INTRODUCTION

1.1. The goal of securing computation

As the usage of machine learning (ML) increases in high-consequence national security
applications, it will become increasingly important to secure trained ML models against
adversaries who may wish to reverse engineer or exploit these models. As a first line of defense
against such adversaries, one may hope to keep models secure by limiting access to the models
(e.g., by deploying models only on a secure network) and by limiting the number of real-world
observable effects which result as direct consequences of a model's prediction (so as to hinder an
adversary's black-box reverse engineering efforts). At the same time, current trends see the mass
deployment of ML models in a variety of environments not controlled by the owner of the ML
model (e.g., IoT and other "smart" devices, cloud computing servers).

This report discusses various partial solutions to the problem of securing ML models (or, more
generally, any arithmetic circuit) on untrusted platforms. We desire three properties from our
security solution:

• Correctness. A secured model must produce an output for any legitimate input, and this
output should be approximately equal to the output which the raw, unsecured model
produces upon receiving the legitimate input.

• Security. It should be difficult for an adversary to deduce the model's parameters. We are
of the opinion that the description of the model, by itself, is not sensitive; rather, it is only
when a model is combined with its parameters that the model becomes sensitive.
Furthermore, because of the correctness condition, we assume that an adversary is able to
obtain outputs for chosen inputs. Thus, our security condition is that the adversary is not
able to learn much more about the model than what is deducible from these inputs and
outputs.

• Computational complexity. Finally, our model must be somewhat lightweight. That is,
evaluation of the model must not place a substantial burden on the computational platform.

We wish to briefly address and provide an illustrative example of the third property above. One
potential use case for our scheme is to secure classifiers, deployed by an email service provider,
intended to identify spam email or malicious email attachments. One possibility is for the content
to be classified to be encrypted and sent to some third party cloud platform with an analytics
engine. In this scenario, the email service provider wishes to hide their algorithm's parameters
(and possibly the email to be classified) from the cloud computing platform. The cost (which
incorporates both monetary aspects and nintime) of such a security scheme includes internet
communication with the cloud platform and paying for cloud resources as the cloud performs its
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classification. If this cost to the email service provider is higher than the cost to the provider of
standing up its own analytic engine, then the provider will choose not to use the security
solution.

Unfortunately, solutions that provide the most security, which are usually cryptographic in nature,
are often computationally infeasible. On the other hand, less secure techniques, the most notable
of which being software obfuscation, can be bypassed by a sophisticated adversary, especially if
the adversary is aware of the obfuscation techniques used to scramble the model. Even more
troublesome is the question of how effective such measures might be when an adversary has
black-box access to a ML model. For example, if the model in question is known to be linear
regression, an adversary need only observe n input/output pairs (where n is the length of the
model input) in order to completely reconstruct the parameters of the model. The ease of recovery
of other machine learning models is largely an open question, especially in situations where an
adversary can control the inputs fed to the model.

We wish to emphasize this point — our goal, and the best we can hope for, is to make the
algorithm as much of a black box as possible. Most machine learning models are learnable,
almost by definition. This means that given enough inputs and outputs (such as those used to train
the algorithm), the adversary can reconstitute the algorithm with high fidelity. Thus, the measures
discussed in this report are not "one-stop" solutions; but rather components that could aid in
establishing "defense in dept1C.

In the national security setting, we assume a somewhat powerful adversary, who is able to
examine the contents of any file stored on the system. Such an adversarial model is not
unrealistic, even in everyday applications. In the cloud computing setting, it is entirely reasonable
to suspect that a system administrator has full access to all files stored on the system. In most
situations, this ability allows the adversary to (theoretically) view the memory state of the
program during execution, as the adversary can run the program with chosen inputs and monitor
memory contents during program execution. As such, simply storing an encryption of a model's
parameters on disk is not a sufficient solution, since these parameters will be decrypted (and
placed into memory) when the model is used.

Once an adversary has reconstructed a model, they can take measures to circumvent or fool the
ML classifier. For example, in our email example, if an adversary gains access to model
parameters, they can alter a malicious email attachment until it appears benign by the classifier. In
other situations, adversaries may use evasion attacks [14] to misclassify an input in order to effect
or avoid a certain response from the ML model's owner. In high-consequence national security
settings, it is of high importance to avoid such situations.

1.2. Decision functions of common machine learning classifiers

Machine learning encompasses a variety of paradigms, including classification, regression,
dimension reduction, manifold learning, clustering, and anomaly detection. During single-class
classification, one takes an input, often given as a vector v E Nn, and outputs the category or label
to which the input is thought to belong. There are multiple aspects to each classification
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procedure, including the underlying model, how the model is trained given the (labeled) training
data, and how one uses the model to assign a category to the test data (which should not be
processed during training).

In this section, we discuss the final aspect mentioned above. That is, we discuss the various
decision functions (i.e., underlying mathematical functions that are used to assign a category to
data) used in machine learning classification algorithms. It is these decision functions that we
hope to secure. Given an input x and model parameters 0, we let f (x; 0) denote the decision
function of the machine learning classifier.

It is often the case that multiple classification algorithms can share the same decision functions.
However, the way that 0 is determined from the training data differs depending on the underlying
model. Although it is not our goal to discuss exactly how these differences arise, we wish to
provide an illustrative example of how these differences may arise.

For our example, assume the existence of two categories — red and blue. Both linear support
vector machines and linear discriminant analysis have decision functions of the form

f (x; 0) = w • x + b.

It is our goal to set 0 so that f (x; 0) > 0 for red data and f (x;0) < 0 for blue data. When using
linear discriminant analysis, 0 is set so that the hyperplane f (x; 0) = 0 is equidistant from the
arithmetic mean of the red data and the arithmetic mean of the blue data. However, when using a
linear support vector machine, 0 is set so that the hyperplane f (x; 0) = 0 separates the red and
blue data that are "most difficult" to separate.

We now provide an exposition of the most common decision functions used in machine learning
classifiers.

1.2.1. Ensemble methods

It is common when using certain algorithms to create ensembles of classifiers. The philosophy of
an ensemble is that we may average the results of multiple mediocre classifiers in order to create a
powerful classifier. We will introduce ensembles of classifiers in this section, leaving exposition
of individual base classifiers for later sections.

There are three primary properties of a base classifier that make it amenable for use in an
ensemble: simplicity, diversity, and power.

Simplicity. First, because the runtime of an ensemble is equal to the product of the number of
components of the ensemble and the runtime of the base classifier, it is common to use base
classifiers whose decision function is easy to compute. Classifiers whose decision functions have
high runtime are generally not suitable for use in an ensemble.

Diversity. Second, we observe a greater benefit to using an ensemble when the (trained) base
classifiers are sufficiently diverse such that they contribute different pieces of information to the
overall ensemble. For example, due to how linear support vector machines are typically trained,
one expects the parameters 0 of a linear support vector machine to be roughly identical each time
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a linear support vector machine is trained on data sampled from a fixed distribution. As such, an
ensemble of linear support vector machines is not expected to perform substantially better than an
individual support vector machine.

Power. Finally, we need each individual classifier in the ensemble to perform better than random.
Empirically, we observe that it is not necessary for the individual classifiers to perform much
better than random, because the averaging performed by the ensemble can significantly boost
classification accuracy. In fact, using an ensemble with simpler base classifier often performs as
good as, if not better than, an ensemble with more complex base classifiers (which are more prone
to overfitting to the training data).

1.2.2. Polynomial models

Linear models. A linear model has a decision function of the form

f (x;9) = w • x + b.

Linear models are perhaps the simplest of the machine learning classifiers. As such, they are the
easiest to train, most robust to noisy data, and easiest to analyze theoretically. However, the
simplicity of the model comes at the cost of reduced expressive power; linear models are
traditionally only useful when the data categories are quite distinct or if the data dimension is very
high.

Classifiers with an underlying linear decision function include classifiers built from least squares
(ridge classification, lasso classification, etc.), linear discriminant analysis, linear support vector
classification, and logistic regression.

Higher-order models. In order to extend the expressibility of linear models, one can replace each
raw data vector x with a vector z, each entry of which is a product of entries in x. The decision
function for these models is of the form

f (x;0) = w • z+ b.

Because the decision function is computed via a dot product of model parameters and input data,
these classifiers are still linear models. However, higher-order models can be more expressive due
to the possibility of including higher-order terms (e.g., .4x4) in the vector z.

Models that use decision functions of this form include some forms of support vector classifiers
(although these are used much less frequently than linear and kernel support vector classifiers)
and quadratic discriminant analysis. Quadratic discriminant analysis has the a decision function
f (x; El) = w • z + b, where z includes all linear and quadratic terms in the entries of x.
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Figure 1-1. A typical decision tree. This particular tree has a depth of 3.

1.2.3. Nearest neighbors classifiers

Nearest neighbor classifiers serve as relatively simple, intuitive, and powerful classification
algorithms The parameters A of a nearest neighbor classifier include all of the training data (and
their associated labels). Nearest neighbor classifiers operate under the principle that training data
close to an input x should have the same label as x. Thus, the decision function f (x; El) first finds
the k nearest points of training data to the input x and subsequently assigns a label to x based on
the labels associated to these points.

Because the decision function associated to a nearest neighbor classifier involves finding the k
closest training points to the test point, these classifiers are often used only when the training set
is relatively small. Furthermore, nearest neighbor classifiers are typically only used when the
dimensionality of the data is small. This heuristic is due to the "curse of dimensionalW — a
general principle that states that for data sets encountered "in the wild", as the dimensionality of
the data increases, the density of data decreases to such an extent that all data appears equally
similar to all other data regardless of category.

1.2.4. Decision trees

Decision trees have a decision function that predicts a label for an input x based on a sequence of

tests. These tests are typically of the form xi < c. Traditionally, the result of each test determines
which entry i and threshold c are used in the subsequent test. At the conclusion of a sequence of
tests, the decision tree assigns a label to the input datum x.

Decision trees are intuitive and perhaps the most easily interpretable of all decision functions used
by machine learning algorithms (cf. Figure 1.2.4). Unfortunately, individual decision trees are
either prone to overfitting on the training data or otherwise have poor generalization
performance.

Thus, decision trees are commonly used in ensembles (cf. Section 1.2.1), where the results of
multiple decision trees are averaged to construct a more accurate classification. Decision trees are
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particularly suited for ensemble learning due to their simplicity and the diversity of trees provided
by most training procedures (which also guarantee that each tree performs better than random).

When used in ensembles, decision trees typically have low depth (typically either 2 or 3).
However, it is an intriguing idea that, should one have an system where ensembles are easily
implemented but individual classifiers are more difficult to implement, one may be able to create

9

an ensemble of trees of depth 1 (i.e., each tree consists of a single test of the form xi < c).

Altering the internal tests of decision trees. It may be possible to increase the power of
individual trees by replacing each internal node by the decision function of a linear classifier. This
idea has not been explored in the literature, both because ensembles of traditional decision trees
perform so well and because it is a nontrivial (although not infeasible) task to devise and
implement a training procedure for these types of trees. Nevertheless, should one have a system
where ensembles are not easily implemented but individual decision trees are easy to implement,
one might consider expanding the space of possible tests internal to a decision tree as a means of
increasing the classification power of a decision tree.

1.2.5. Kernel support vector machines

Support vector machines (which typically allow the separation of only two classes) operate under
the general principle of trying to find a decision boundary that separates only the members of
each class that are most difficult to disambiguate. This philosophy contrasts with many other
classifiers (e.g., linear and quadratic discriminant analysis), which consider the distribution of all
members of each class.

To augment the discriminative power of linear support vector machines, it is common for a
support vector machine to first embed the data into a space with a high (or even infinite)
dimension and subsequently train a linear support vector machine. Due to Lagrangian duality, it is
not necessary to compute this higher-dimensional representation; one must only be able to
compute the inner product of the result of embedding two of the (lower-dimensional) inputs into a
higher-dimensional space.

A function k that allows the computation of this inner product is called a kernel. When our input
data comes in the form of vectors in Nn, by far the most popular kernel function is the radial basis
function: for x,y E Rn, this function is defined as

rb f (x, y) = exp (—yllx—y112)

where y is a hyperparameter that is chosen by the user. Another kernel function, less commonly
used but easier to compute, is the polynomial kernel, which has the form:

k(x,y) = (y(x,y) + b)d ,

where y, b, and d are hyperparameters that are usually chosen by the user.

The decision functions of kernel support vector machines are of the form

f (x;0) = Ewi • k(xj, x) + b.
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The sum in this decision function is over vectors xi known as support vectors. Each support
vector is usually an element of the training data. However, the size of support vectors is usually
much smaller than the size of the training set. This set is determined when training the model.

1.2.6. Neural networks

Neural networks form a large class of models, with seemingly countless variations and
hyperparameters to set and tune. At their core, neural networks are the result of interweaving
layers of linear computation and simple nonlinear functions. Because these simple nonlinear
functions are often of the form a (x) = max(0, x) (the ReLU function) or a (x) = e,÷1 (the sigmoid
function), neural networks are not polynomial models. However, there has been research on
approximating the nonlinear functions of a neural network with low-degree polynomials (so that
the resulting model is polynomial).

For many applications, neural networks are currently the best-performing classifiers. However,
this power comes at a cost: neural networks require large amounts of training data, training neural
networks can be rather time-consuming, and the underlying workings of neural networks are very
poorly understood in general.

We now describe the decision function for multilayer perceptrons (MLPs), which are arguably the
most basic class of neural network. Let Wi denote matrices and bi denote vectors. Furthermore,
for a vector v and a function a : R R, let a(v) denote the result of applying 'a to each coordinate
of v. When using a MLP for classification, one first associates each category or label to an index
j. The decision function f(x; 0) of a MLP chooses the category or label of x to be the index of

AX;0) Wd • G(' • *G(W2 (W1 •X±b1) b2) • • • ) + bd

that contains the highest value.

1.2.7. Bayesian methods

Bayesian methods impose some probability model on the data and use the underlying model's
probability density function as a decision function. For example, if the red data has a probability
density function Pred and the blue data has a probability density function pblue, then the model
will classify an input x if and only if pred (x) > Pblue (x).

Bayesian methods are unique in their ability to incorporate prior knowledge or expertise into the
model. Using Bayesian techniques, one can guide the model towards certain parameters of the
underlying probability distribution. For example, one can specify that the red data is likely
distributed normally with a mean that is roughly equal to it and a covariance that is roughly equal
to E.

For simple base models, the decision functions of Bayesian methods reduce to standard maximum

likelihood estimates, many of which are linear. For example, given parameter vectors X(red) and
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x(blue)for a Poisson naive Bayes model, we will predict that a sample x is red if and only if

(v k(blue) v - (red))
(L (10g kred) —

1001blue)) 0.

i i 

Note that this decision function is linear.

1.3. Commercially used primitives

In this section, we discuss many useful primitives that each provide partial solutions for
computing in untrusted environments, and we identify the inadequacy of these solutions when
applied to machine learning models in the presence of a moderately sophisticated adversary.

1.3.1. Digital rights management

The question of how to best secure intellectual property (IP) has long been an active and
important research question. Traditionally, this question has been tackled primarily by those
studying digital rights management (DRM). DRM is the study of how to protect content,
traditionally software and entertainment media, from being pirated. For example, product keys,
such as those to be used during installation, can help to prevent piracy, especially when the key
must be authenticated with a central server that limits the number of times a particular key can be
used. Other systems choose to store media in an encrypted state, with decryption occurring when
the media is consumed by the user. For these systems, the decryption key is assumed to be stored
securely and inaccessible to the user.

Our problem is similar in that we wish to prevent content from being examined by an adversary.
However, due to our adversarial model and operational constraints, the space of solutions is quite
smaller than that available to DRM researchers. Because our adversary has the ability to view the
memory contents during the execution of the ML model, model parameters must never be present
in memory in the clear during execution of the model. Furthermore, any ML model deployed into
an operational environment needs to be fully functional, implying that, just like a legitimate user,
the adversary should have the ability to interact with the model without the model's parameters
ever being stored in the clear. This renders ineffective many common DRM solutions.

1.3.2. Code obfuscation and white-box cryptography

Code obfuscation and white-box cryptography are two techniques that, while often considered
DRM techniques, are worth exploring further here. Code obfuscation is the process of replacing
source or binary code with functionally equivalent code that is harder to understand. Although
many techniques exist for code obfuscation, one often assumes that these techniques can be
overcome by a sophisticated adversary. Indeed, many of the tools used to obfuscate code can be
run "in reverse' to undo the obfuscation.
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White-box cryptography is the study of obfuscating cryptographic algorithms [38, 86]. In
particular, one often wishes to decrypt some ciphertext without revealing the decryption key.
White-box techniques often achieve this goal by encoding the function that decrypts a ciphertext
with a fixed secret key as a series of lookup tables in such a fashion that it is difficult to recover
the secret key from these tables. Although white-box techniques provide some degree of security,
the security of these schemes is in question due to the large number of attacks on such schemes
[57, 70].

Furthermore, white-box techniques generally assume that it is possible to consider only a few bits
at a time when performing encryption or decryption (e.g., the S-box of AES operates on 8 bits at a
time). This assumption is violated by most ML models. Although it is reasonable to expect that
one could decompose addition operations into a set of sub-operations requiring a small number of
bits, it is not immediately clear how one would do the same for multiplication operations.
Furthermore, most white-box techniques provide no support for nonlinear control flow (e.g., "if"
statements) when the control flow is determined at runtime (as might be done when implementing
the function f (x) = e' with a Taylor series).

1.4. Another approach

The remainder of this report will discuss how other tools from cryptography might be used to
provide a (partial) solution to our problem. The methods we discuss are generally thought to be of
interest to the research community, but have not yet made their way to mainstream use.
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2. HOMOMORPHIC ENCRYPTION

2.1. Homomorphic evaluation of ML models

Homomorphic encryption is a technique that allows computation on encrypted data [2, 69]. Many
common encryption cryptographic algorithms have some form of homomorphic capability. For
example, the Paillier cryptosystem [73] is additively homomorphic (i.e., given encryptions of x
and y, one can construct an encryption of x y) and the RSA cryptosystem [78] is multiplicatively
homomorphic (i.e., given encryptions of x and y, one can compute an encryption of x * y). These
limited homomorphic capabilities are sometimes sufficient to compute a function of interest, but
solutions in this space, even when available, must be tailored to the specific homomorphic
capabilities of the underlying scheme.

There are, however, fully homomorphic cryptosystems which permit arbitrary computation on
encrypted values. First introduced by Gentry in 2009 [48], fully homomorphic cryptosystems
have become prominent in cryptographic research. A (fully) homomorphic encryption scheme HE
consists of the following probabilistic polynomial time algorithms:

• Key generation. Given a security parameter X, HE . KeyGen(12') produces a public
encryption key pk, a secret decryption key sk, and an evaluation key evk.

• Encryption. Given an input m, HE . Enc(m, pk) produces a ciphertext ctrn for m.

• Decryption. HE . Dec (ctm, sk) produces the plaintext m from an encryption ctm of m.

• Evaluation. Given a function f, the evaluation key evk, and a sequence of encryptions ctm,
of messages mi, HE .Eval(f, evk, ctmi , , ctmd) produces an encryption of f(mi,...,md).

Generally, one assumes that the functions f are restricted to arithmetic expressions consisting of
addition, subtraction, and multiplication. Nonetheless, it is possible with just these three
operations to emulate any binary circuit due to the universality of and, xor, and not gates
(corresponding to multiplication, addition, and addition by 1, respectively).

Fully homomorphic cryptosystems have arrived in three "generations". The first, introduced by
Gentry in [48], relies on ideal lattices and is now thought to be less efficient than more recent
instantiations. Gentry's approach was simplified in [84], where similarities between the current
fully homomorphic encryption schemes were noted.

These similarities gave rise to the second and third generations of fully homomorphic
cryptosystems, which are built more directly on learning with errors (LWE) and its ring-based
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variant R-LWE [75]. Schemes from the second generation of fully homomorphic cryptosystems
(e.g., [11, 26, 27, 29, 43]) follow the general formula

ciphertext = public key x random + plaintext.

Addition and multiplication of ciphertexts is allowed due to the fact that the public keys in these
schemes can be "cancelled" using the secret key. There have been multiple discoveries which
allow one to modify the base schemes from this generation in order to add minor additional
functionality. For example, computation on (both floating and fixed) point numbers (rather than
integers) is allowed by the techniques of [8], and improvements in efficiency at the expense of
some loss in precision are possible using the techniques of [33].

The third generation of fully homomorphic encryption follows the philosophy that a plaintext
number x can be encoded as an approximate eigenvalue of a (ciphertext) matrix M with an
approximate eigenvector as the secret key [30, 50]. These schemes have been highly optimized
(see, e.g., [34, 35, 36, 44]), to the point that it takes roughly 10 ms to homomorphically add or
multiply ciphertexts. However, these schemes generally require that the message space be
restricted to elements of {0, 1}.

Although there has been a substantial amount of research in fully homomorphic encryption, the
existing schemes remain too computationally expensive for many applications. Nevertheless,
there has been a significant amount of research into how homomorphic encryption might be used
to secure ML models [9]. This research generally falls into one of two thrusts. In the first, the
primary goal is to train a model from encrypted data (e.g., by homomorphically evaluating the
optimization algorithms used to train ML models) [55, 62]. In the second, the goal is to encrypt a
trained ML model's parameters and to produce an encryption of the decision output by the ML
model (which might then be sent back to a user with the decryption key) [60]. Much of the work
in this category is focused on homomorphic evaluation of neural networks [24, 31, 37, 51, 56, 87].
In this latter category, [24] is especially interesting due to a trick used to compute (an encryption)
of the sign function; this technique is improved in [25] and may be generalizable to other machine
learning algorithms.

The second of these thrusts is much more heavily researched, for a number of reasons. First, due
to the work that must be done by a data scientist when designing, refining, and testing a model, it
is difficult to train a performant model without the ability to view training data. Second, the
mathematical operations that must be performed when training a model are usually more complex
than those that must be performed when deploying or testing the model, so it is much more
difficult to train a model on encrypted data than it is to test a model on encrypted data Finally, it
is often the case that training data, collected by a data scientist for the purpose of training a
model, is less sensitive than testing data owned by a user.

The work cited above provides a viable solution when a secret key is available to produce a
decision. However, because it is our desire that only an encryption of the model's parameters be
used while still obtaining a result in the clear, we would like to be able to produce a decision
without requiring a secret key. In all variants of homomorphically encrypted models that we've
considered, a key that is used to decrypt the result or decision can be used by an adversary to
recover the encrypted parameters of the model.
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2.2. Secret keys reveal all or nothing

Decryption in many homomorphic encryption systems is often a dot product ct,n • sk, for m e Zt.

For this section, we define Zt = [—t/2,t/2) and assume that t is a multiple of 2. For simplicity of
exposition, assume that q is a multiple of t; the results presented in this section hold even when q
is not a multiple of t, but the exposition is somewhat more clumsy. One might expect that, should
we wish to reveal a limited amount of information about m without revealing all of m, we might
be able to alter the ciphertext and secret key to values c-tm and sk such that, for example,

1 if m , r L 
4141

Li
s-- L

am • A = .
0 otherwise

Our goal would be to publish sk so that the user can perform such a calculation (where m is the
result of the calculation of some decision function). However, we were unable to construct a A
that doesn't otherwise ruin the security of the underlying encryption scheme.

We provide an illuminating example here, based off the homomorphic encryption scheme by
Brakerski [26], modified slightly so that the plaintext space is Zt = [—t/2,t/2) rather than {0, 1}
and to incorporate more recent developments regarding the construction of the secret key. For a
distribution X, we denote xn the distribution of vectors of dimension n where each entry is
sampled from x. We assume that distributions x in this section have support in [—B,B]. We let Lx]
denote the integer closest to x, and [x]t to be the integer in Zt equivalent to x modulo t. The
scheme is as follows:

• Key generation. Given a security parameter X, we produce an integer q and a distribution x
over Z (bounded by B < q), chosen to provide X-bit security. The secret key sk is a vector
sampled from xn. Let N = (n + 1) • (log q + 0(1)). Sample A uniformly from ZNq xn and

sample e from e ' . Let b = [A • sk + e]q, and define the public key as the matrix
pk = [b; —A]. The construction of the evaluation key is somewhat more complex; we refer
the reader to Section 4 of [26] for more details.

• Encryption. Given an input m E Zt, HE . Enc(m, pk) is calculated via

ctm =[PkT . r + [g] .7.] 
q 

e znq+1,
t 

where r is a vector sampled uniformly from {0,1}N and m is the vector (m, 0, ..., 0) e ztn+1 

• Decryption. Given a ciphertext ctm and secret key sk, one decrypts m via

m = [ht • [ctm • (1, sk)],i1
q

• Evaluation. Evaluation is as described in Section 4 of [26].

22



Although we do not discuss evaluation keys in depth, one relevant detail regarding their
construction is that each evaluation key is produced by encrypting the powers of 2 of the bit
decomposition of one secret key sk using a (possibly different) secret key sle (this process is
performed to reduce the "noise' inherent in homomorphic encryption schemes).

Define sk = (72, sk), where sk will be defined in order to make a quantity discussed later very

small. Then

ct • Sk = r T
 

(
2
7 (A • sk e) — A • szk) + —2 LI] m.

t t

Thus, for some I E Z, we have

2 2 q
[ct • ik] = r '

T 

(—
t 
(A • sk e)—A• szk) - [-] 171 + Iq.

t t

Hence,

_-t [ct • ik] 1 = [rT (A -2sk - -t szk) + 2e) + —2 [q] mi +It.
q q \q q ) q) qt 1

Because we are assuming that t is a multiple of 2 and that q is a multiple of t ,

t r 2 t z 2 2
[ : [ct • s-k]q11 = [ [r T (A (-Sk - 

q 
-SO + e) + —H]

2 q q t 2

Let

so that

e- rT (2sk - -t 2Szk) + -e) ,
q q q

[ [ct • s-k]q112 = [[-e+ -2t m112.

It is our desire that this quantity [ [7 [ct • sk] 
q
11 equal [1711. This translates into a desire that
2

be close to zero (say, lb-I ffi). The size of e impacts the value of [ + rml] 2 when m ±t/4,

since this is where small differences in m might change the result of rounding.

We next discuss how to choose parameters so that -e is small by discussing bounds on its
2NBsummands. Note that the value • e is bounded by — which, given typical choices of n, q,

and B, is usually very close to O. The more significant contribution to e comes from

rT •A (sk - LA). We leave as an open question how to construct such variables (including sk)

so that the resulting value is very small.

The more concerning aspect of this construction is that, should an adversary be able to compute
"e+ f'm such that [ Le + fm]] 2 R-2, [HM112, then, by multiplying by 2, the adversary will be able to
deduce m (within a margin of error of This alone is sufficiently alarming. However, because
of the construction of the evaluation keys (which are known to be encryptions of powers of 2 of
the bits of a secret key), it is trivially possible to use sk to recover many (if not all) of the secret
keys.

As such, any value sk that allows a user to deduce whether m E [—t/ 4, t/4] that is constructed as
described above will also render insecure the entire encryption scheme.
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3. FUNCTIONAL ENCRYPTION

Functional encryption is a cryptographic paradigm that, at least theoretically, allows a user to
extract f (x) (the result of evaluating a function f on input x) given only an encryption Enc (x, key)
of x and an evaluation key skf for f [21, 22, 72]. Research into functional encryption is
traditionally approached from two directions. Following the first approach, which follows a
"top-dowe philosophy, one builds functional encryption schemes for general functions f . The
second approach follows a "bottom-up" philosophy. In these approaches, one uses currently
established primitives to construct functional encryption schemes for a greatly restricted class of
functions. Furthermore, these approaches are often computationally efficient, but currently only
very simple functions can be computed under these schemes.

Functional encryption arose out of developments in identity-based encryption [10, 58, 90]. An
identity-based encryption scheme is essentially a public-key cryptosystem where the public key is
common knowledge, but where only the holder of a particular identity can perform the decryption
operation. Later, these schemes were generalized using techniques from multi-party computation
so as to allow a user to a user with identity x to obtain an encryption of a function f and calculate
f (x) without revealing anything about f besides f (x) [81]. This is almost what we want, but like
most techniques used in multi-party computation, its security relies on the security of various
parties. In particular, the protocols from [81] rely on the security of a trusted central authority
which plays an active role in the encryption process. The goals of functional encryption are to
remove the reliance on this trusted third party and much of the communication that is present in
[81].

These approaches are primarily focused on the privacy and security of the user input x. Some
approaches (e.g., [81] above) are additionally concerned with functional privacy — that is, the
privacy of the function f (e.g., [20, 83]). In our applications, we assume that the user is
controlling the computation, so we do not require privacy of the user's input x. On the other hand,
we very much require privacy of the function f . One proposed solution is to switch the roles of
the function f and the user input x in established functional privacy schemes. This idea does not
immediately provide a viable solution because established schemes typically require a secret key
to construct the evaluation key skf.

3.1. Functional encryption — the "top-down" approach

The "top-dowe approach to functional encryption focuses on providing the ability of a user to
compute f (x) for general functions f . These solutions frequently assume the existence of
cryptographic primitives not known to have secure instantiations, and the estimated
computational burden for the calculation of f (x) is several minutes and gigabytes of RAM for
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even the simplest of functions [66]. The results of [28] imply that any general functional
encryption scheme can be composed with a symmetric encryption scheme to construct a
function-private functional encryption scheme.

Furthermore, there are a number of impossibility results that preclude the possibility of various
flavors of functional encryption schemes [3, 13, 53]. These impossibility results imply that there
must be a secret key shared by the party constructing the evaluation key skf and the party
encrypting the input x. These impossibility results are disappointing, but do not immediately
apply to our use case because (a) we do not require the privacy of the input x, (b) we do not
require a scheme to apply to general functions f , and (c) we wish only to hide the parameters of f
(rather than the general form of f).

The approach of Goldwasser et al. provides a way to evaluate functions by composing fully
homomorphic encryption, attribute-based encryption (a generalization of identity-based
encryption [74]), and Yao's garbled circuits [52]. This approach is improved in [18] using a novel
attribute-based encryption scheme with increased efficiency. The techniques of [18] can also be
used to perform predicate encryption (a generalization of attribute-based encryption where the
"attributes" are private) [54].

There is another approach to functional encryption that relies on multilinear maps or graded
encoding schemes (GES) (see [5] for an overview of graded encoding schemes and their security,
and [45, 49, 68] for explicit constructions). Note that although there is a difference between
multilinear maps and GES, when in the functional encryption setting, both terms usually refer to
GES. Graded encoding schemes are similar to homomorphic encryption schemes; the most
significant difference in terms of functionality is that one is sometimes able to test whether a
certain ciphertext is an encryption of zero. These primitives are incredibly powerful but are
poorly understood, and many have doubts on their security [5]. Furthermore, there are massive
runtime and storage requirements of implementations using GES [66]. Graded encoding schemes
can be used in two different ways to produce a functional encryption scheme. In the first, one uses
the GES to obfuscate a circuit representing a function [6]. In the second, one first represents the
function using a matrix branching program and then performs all arithmetic operations using a
GES [46].

The second of these approaches is used to (somewhat) concretely describe a scheme for
calculating 1 [x<y] given encryptions of x and y [19]. The same functionality can be implemented
using more standard assumptions (e.g., the existence of pseudorandom functions, pseudorandom
permutations, and cryptographic hash functions) [32, 67]. The benefit of using the approach of
[19] is that it can be composed with other functionality that has been similarity protected by
matrix branching programs and graded encoding schemes. The primary detriment of [19] is its
draconian computational requirements.

3.2. Functional encryption — the "bottom-up" approach

The "bottom-up" approach to functional encryption focuses on secure and efficient ways for a
user to compute f (x) given an evaluation key s kf for certain classes of functions f . Most of the
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approaches in this category focus on linear functions or subspace membership. For example, the
early publication of Shen et al. focus on functional privacy of the functionality fv(x) = 11 [,..„_0]
[83] or fM(x) = pkix_0] [20]. Most subsequent publications focus on the evaluation of the
function f, (x) = v • x [1, 4, 15, 39, 62]. Many of these also incorporate function privacy, and most
utilize pairings and the security of Diffie-Hellman problems.

More recently, schemes have arisen which permit computation of quadratic functions
fm(x,y) = xT My [12]. Although the techniques introduced in [12] do not hide the matrix M, they
do permit a number of interesting applications. In particular, we can compute predicates using

0 (n2d -1) group elements, where n is the bit length of the input and d is the depth of a Boolean

circuit computing the predicate. For example, one can construct an M such that fM(x) = 11[x<yi

(for some fixed y) using a matrix M whose size is approximately IVN by 1 + OTT, where N is a
predetermined upper bound for the values of x and y. Note that, in this example, the y here is
easily deduced from M, and is thus completely public. Furthermore, because the master secret
key is required to construct fM from M, the holder of this secret key can recover x. Thus, as with
most other functional encryption schemes, this protocol does not provide a solution due to the
requirement that the user hold a secret key in order to compute the desired functionality.

However, this quadratic functional encryption scheme has been used to calculate the output of a
neural network with one hidden layer (and the activation function x x2) [80]. Recall that this
scheme assumes that the weights of the neural network are not secret. Furthermore, if the
dimensions of the weight matrices network are sufficiently high, anyone in possession of the
neural network output and weights of the neural network can invert the calculation and calculate
the input.

3.3. Function-Hiding Inner Product Encryption

In this section, we discuss an unsuccessful attempt to adapt current inner product encryption
schemes (i.e., those that compute fc(x) = c • x) to our use case. Traditionally, it is x that must
remain private, and c can be public. It is our desire to produce a scheme that outputs fc(x)
without revealing c.

We first note that these schemes generally assume at a small discrete log is computable. That is,
most schemes include a step where, given a group G and a generator g E G, it is required to
calculate x from ec. This "discrete log problem" is generally assumed to be difficult, with the
brute force approach being among the fastest methods available to recover x. However, when x is
restricted to be in a small subset, it is feasible to use the brute force approach to deduce x.

We present our exposition based off the inner-product encryption scheme IPE by Abdalla et al.
[1], although the concerns we raise transfer to many other inner-product schemes as well. Abdalla
et al. construct an IPE as follows:

• Setup. Given a security parameter X, IPE.KeyGen(lX) produces a group G, a prime p, and
a generator g E G. Furthermore, we set the master secret key IPE . msk as s E Ze

P' 
where
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each of the entries of s are chosen randomly from Z. We set the master public key
IPE .mpk as (hi = gsi)jev] E Gt.

• Encryption. Given an input x E Zep, we first draw r randomly from zp, and set the
encryption of x to be ct = (cto, Ictilic[f]), where cto = gT and cti = k • ez.

• Key derivation. Given some input c E 4, define the secret key IPE. skc as IPE . msk • c.
• Decryption. Given a ciphertext ct for an input x and a secret key skc associated to c,

calculate
C.x FLA ctici
g 
-

ctoskc •

We note three things from this definition. First, the result of decryption is the value g", so it is
still necessary to solve a discrete log problem. Second, decryption requires that the value c be
available in plaintext. For our use case, this "c" would correspond to a function parameter, which
we would like to keep secret. Lastly, we simply cannot switch the roles of "c" and "x" — this
would require using the master secret key to encrypt or encode the user input. Knowledge of the
master key would then allow the user to recover the secret parameter.

There are other inner product encryption schemes which do not require c or x to be publicly
known. However, these schemes all require a secret key to encrypt/encode both c and x. These
secret keys are usually not the same, but one can derive one from the other. As such, they are not
appropriate for our use case.
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4. OBFUSCATION PRIMITIVES

In this chapter we discuss various primitives that fall under the general umbrella of "obfuscatioC.
The primitives discussed in this section often do not provide security when used alone; they must
be used in conjunction with other techniques to provide security in their desired use case.

4.1. Garbled circuits

Garbled circuits provide perhaps the most notable example of a primitive used to obfuscate
computation in cryptographic contexts. Our goal in this section is merely to describe the features
and aspects of garbled circuits that are relevant to our use case; see [88, 89] for their construction
and analysis for Boolean circuits and [7] for arithmetic circuits. The idea behind garbled circuits
is to "garble each gate in a circuit by replacing each gate by a gate which encodes the gate's
functionality but whose inputs and outputs have been suitably randomized and are now given as
multi-bit "labels". For example, assume we wish to garble a binary gate for the binary operation
op. For each of our two binary inputs xi (where i E {0,1} and xi E {0,1}), we first randomly
assign labels L'ici to the inputs xi, and then encode the gate by storing the values
(cutop x1; 4. 11/41),Enc where Enc(m; k) denotes the result of using a symmetric encryption

scheme to encrypt m using key k. Given input labels , a user can then decrypt the
corresponding entry in the table to obtain the appropriate output label.

The outputs of the final gates of a garbled circuit are often not garbled, allowing a user to obtain
the result of evaluating the circuit in the clear. Because the inputs and outputs of all gates in the
circuit (with the possible exception of the outputs of the final gates) have been randomized, an
adversary cannot deduce the functionality of the circuit by observing only the descriptions of each
gate.

In practice, garbled circuits have a number of operational constraints that preclude their use in
many applications (although garbled circuits are still used as components in more complex
algorithms and in a wide variety of complex applications). For one, a user must have obtained the
labels corresponding to their inputs. Furthermore, the security of garbled circuits is severely
compromised if the circuit is used more than once (or if the user knows the labels of more than
one input).

The standard example given for garbled circuits is that of two millionaires (Alice and Bob) who
each wish to know, between the two of them, who is the richest, while simultaneously
maintaining a desire to not reveal the actual amount of their individually held wealth. In this
scenario, Alice will create a garbled circuit and all relevant labels. Alice will then give Bob the
description of the circuit and Alice's labels. Alice and Bob use oblivious transfer [40] as a means
for Alice to transfer Bob's input labels without Alice knowing Bob's input and without Bob
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deducing the labels of any inputs other than his own. Bob then uses the provided labels and the
description of the garbled circuit to calculate the desired output.

There are two challenges that we will encounter when using garbled circuits for our use case.
First, the single use nature of these techniques implies that it will be difficult to maintain security
given that we wish to perform multiple evaluations of our machine learning analytic. Second, the
security of garbled circuits requires that the one evaluating the circuit knows only the labels to
one input. In our setting, the evaluator must be able to feed any valid input into the analytic; this
implies that the evaluator has knowledge of all available labels.

4.2. Matrix branching programs

A matrix branching program (MBP) is a method used to embed a binary circuit, an arithmetic
circuit, or a finite automaton into a series of matrix multiplications. MBPs share much in common
with garbled circuits, although the specific means of obfuscation differs between the two
techniques. In both techniques, one must first obtain labels or matrices which represent one's
input. Furthermore, it is difficult (if not impossible) to derive the output for any input for which
one does not have the corresponding input encodings. However, because MBPs are built off
arithmetic operations, they are often preferred when one wishes to encrypt the matrix values using
homomorphic encryption or graded encoding schemes [66] (cf. Section 3.1).

In particular, any value a may be encoded as the matrix

1 0 0
M(a) = a 1 0

0 0 1_

There are two key features used by matrix branching programs. First, matrices can be combined
through successive multiplication to effectively perform additions and multiplications of certain
elements. Second, matrices can be randomized in a way that makes it either difficult or infeasible
to extract the non-random components of the information they contain. We now explain each of
these features.

A quick calculation
Let

will verify that

—1 o

M(a b)= M(a)M(b).

—1 0 0

Multiplication is

0 0 1

a bit more involved.

= 0 0 1 P2 = 0 1 0 P3 = 1 0 0
() 1 _ 0 () 1 () 1 0

0 1 O 0 0 1 0 0 — 1

P4 = O 0 1 P5 — 1 0 0 P6 0 1 0
1 0 0 0 1 0 1 O 0

One can verify that

M(ab) = • M (a) • P2 • P3 • M (b) • P4 • M(a) • P5 • M (b) • P6.
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Using these primitives, one can encode and compute any non-branching arithmetic circuit.

Next, we explain how to randomize matrices such that it is difficult for an adversary to extract x
from M(x). Given a MBP Ml • M2 Mn, one first constructs (n + 1) 3 x 3 invertible matrices
R0, ...,Rn with entries chosen uniformly at random from Zq. One then replaces each mi by
Ml = . Traditionally, the Ri are used to prevent the MBP from being executed "out of
order. However, these matrices can also be used to mask the values hidden in the Mi. Finally, to
extract the result of the computation, we must have either Ro = Rn = I, or that there is a decoder
which has knowledge of Ro and Rn.

4.2.1. Weaknesses with the MBP approach

The most significant weakness with the MBP approach is that, With current MPB techniques, one
can only calculate arithmetic expressions involving addition, subtraction, and multiplication. As
most powerful machine learning decision functions use more complex operations (including
transcendental functions, comparisons, and "max"), MBPs are not sufficient.

Furthermore, one can deduce a significant amount of information about the masks used in a MBP.
If the MBP is sufficiently small, we can symbolically execute the MBP using software like
Mathematica. Otherwise, we can use equations and relationships (discussed below) to recover
information about the masks

If one were to encode the decision function of a machine learning classifier using a matrix
branching program, some Mi would represent parameters, which we wish to keep from the user.
Other Mi would encode user inputs. This implies that it is necessary for the user to be able to
calculate Mi = Ri_iM(x)Ril for any input x. This will necessarily leak (a surprisingly large
amount of) information about Ri_1 and Ri.

Given random n x n invertible matrices R and S that are used to mask a user input, the user must
be able to calculate RM(0)S-1 and RM(1)S-1. The matrix M(1) — M(0) contains a single 1 and
the second row and first column; all other entries are O. This allows an adversary to write the
second column of R and the first row of S-1 in terms of one degree of freedom. The equation
RM(0)S-1 = RS-1 further decreases the number of degrees of freedom. Experimentation with
Mathematica suggests that the available equations permit us to reduce the degrees of freedom in R
and S down to (n —1)2 +1.

It is unclear how large of a concern this is. After all, one degree of freedom is enough to mask a
value. However, one could envision a scenario with multiple inputs, where a user could "chain
together various equations to further reduce the degrees of freedom. It might be prudent to
introduce some arithmetic blinding operations to mitigate this concern. For example, to calculate
the equation Li cixi, where xi denote user inputs and ci denote values to be kept secret, one could
construct a MBP for the equation Ei ci (xi + ri) — (Ei ciri), where the ri are chosen at random and
the sum Ei ciri is precomputed.
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4.2.2. Potential improvements to MBP encodings

We first discuss two strategies for changing encodings M(x) for user inputs x. Both strategies
involve replacing the M(x) discussed above with block diagonal matrices Mv(x). Our first
strategy is to introduce blocks of random noise into the encodings of x; these serve primarily to
increase the degrees of freedom.

Our second strategy is to use the Chinese remainder theorem to decompose the MBP. We can
change the domain of our MBP from matrices over Zq for some prime q to matrices over ZN,
where N is the product of two large primes qi and q2. In this setting, our Mv(x) would consist of
two blocks. For a (secret) parameter c, we would define Mv(c) to be block diagonal with blocks
M(c riqi) and M(c r2q2), where ri E ZN is random. The first of these blocks would correctly
calculate the MBP modulo ql, and the second block would correctly calculate the MBP modulo
q2. Bezout's identity could then be used to reconstruct the result of the MBP modulo N (by
performing the inverse of the Chinese remainder isomorphism). However one would need to find
a method for using Bezout's identity without revealing the coefficients in Bezout's identity, as
these could be used to reveal qr and q2.

One might also attempt to use properties of the trace to avoid having to reveal the bookend
matrices Ro and& of the MBP. Note that for matrices X and Y, we have Tr(XY) = Tr(YX).
Thus, one could find matrices A and B such that Tr (A (RoM(x)1?„71) B) = x. For example, we

could choose A and B to first "undo" the randomization from Ro and R,T1 and then rotate the
columns of the resulting matrix M(x) to the right. To hide even more information, the matrix BA
can be provided instead of A and B individually.

4.3. Mixed Boolean arithmetic

Mixed Boolean arithmetic (MBA) refers to computations that compute linear combinations of
Boolean functions of inputs Ei cifi (x), where ci E Z, and fi are functions which operate in a
bit-wise fashion on the inputs xi (e.g., fi(xi , x2, x3) = x2 or fi(xi , x2, x3) = (xl ED x2) A (-0c1 V x3)).
In this section, we briefly describe how one might use MBA to obfuscate arithmetic expressions;
we refer the reader to [41], which we follow closely for our exposition and from which we draw
illustrative examples, for a more detailed account.

There are a number of identities in MBA that can be used to obfuscate both the form of an
expression and constants used during the computation of an expression. For example, one who
wishes to obfuscate the expression x 15 (where x is some user input) might first use the
identity

x y = 3(x V —y) + (—ix V y) — 2(—y) — 2Hx y))

as a rewrite rule for the expression x y and subsequently replace all instances of y with the
number 15. When multiple such identities are composed, the resulting expression can be rather
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difficult to parse. For example, the following expression calculates y = x + 92:

a 229x + 247

237a + 214 + ((38a + 85) A 254)

3(b+ ((-2b+ 255)A 254))+77

75((86c+36) A 70)+231c+ 118

((58d +175) A 244) + 99d+46

g 103(2(e A 148) —(e A 255)) + 13

y 237(45g + 229(174g V 34) + 194 — 247) A 255

One helpful technique, used above, to hide constants is to replace a constant K with the
expression r 1 (E + f (K)), where f and its compositional inverse r1 are mixed Boolean
polynomials, and E is an MBA identity that always equals O. Perhaps the simplest of such
invertible functions are linear (e.g., f (x) = ax b), but one may use more complex functions as
well. The work of Klimov and Shamir [63] discusses multiple ways to construct invertible
functions and more general sufficient conditions under which functions are invertible. However,
[63] does not discuss how to construct the inverse of such a function. In general, we would expect
such functions to be difficult, if not impossible to invert (as most polynomials in R [x] above
degree 5 do not have an inverse).

To construct general MBA identities for n variables, one forms a matrix A with 2n rows whose
columns are labeled by the n variables and Boolean functions of the n variables. The columns
corresponding to the variables should have all 211 possibilities for the input variables. MBA
identities correspond to elements in the nullspace of A. Thus, in order to find many identities,
we'd like the A to have (many) more columns as rows.

For example, the columns of A below correspond to the variables x and y, and the expressions
(x A y) and (x V y):

0 0 0
0 1 0 1

A =
1 0 0 1
1 1 1 1

The element [1, 1, —1, —1] in the nullspace of A corresponds to the identity

x+y— (xAy) — (xvy) = 0,

which allows us to rewrite x + y as (x A y) (x V y).

It should be noted that MBA techniques typically allow one to obfuscate bit-wise operations and
addition; indeed, the general procedure outlined above only allows these operations. However,
other operations can be likewise obfuscated. For example, [91] notes that

xy = A y)(x V y) (x A )7)(xA y).

This identity can be proven by rewriting x as (x A y) (x A —97) (and similarly for y) and using the
identity (—ix A y) (x A = (x V y) — (x A y).
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There exist two classes of (automated) techniques for reversing MBA obfuscation. In the first of
these, symbolic simplification, the attacker attempts to undo the obfuscation by simplifying the
obfuscated expression using (a superset of) the rewrite rules used to construct the obfuscated
expression. In the second class of techniques, often called bit blasting, the monomial Boolean
expressions are first transformed into a standardized canonical form. After this transformation is
complete, the way the expression uses the bits of input in order to construct an output can be
matched against known functions.

These techniques become less effective as the complexity or number of rewrite rules are
increased, or as the number of bits in the input arguments increases. How effective these
techniques are is not fully understood or characterized. To give the reader an idea for the runtime
of these de-obfuscation techniques, we note that the experiments performed in [41] indicate that it
takes about 12 seconds to undo the obfuscation of x ED 92 using symbolic simplification with all
"low-degree rules provided to the simplification program, and about 61 seconds to undo the
obfuscation of x @ 92 if x is a 12-bit integer using a bit blasting approach.

As might be expected, the simplification algorithms discussed in [41] do not work when not
provided with the exact rules used to obfuscate the expression. That is, current simplification
techniques do not scale when the pool of rewrite rules used is large [42].

The authors of [41] also recommend using 'constant-specific' rewrite rules, such as
x ED 42 = ((x V 191) A (x ED 106)) + (x A 64). We note that this example is more of an example of a
higher-order rule (i.e., one with more variables) rather than a constant-specific rule. The rule is
actually just an instance of the identity (x e (y A z)) — ((x V y) A (x ® z)) - (x A —iy A z) = 0 where
y = 191 and z = 106. The use of constants rather than variables does make the simplification
more difficult because the expression appears to have 5 terms ({x, 42, 191, 106, 64}) rather than 3
({x, y, z}) and the "correcr relationships between the constants are not easily determined.

4.3.1. Thoughts on multiplication and MBA

MBA is able to perform addition and operations on values performed bit-wise. Multiplication is
much less suited to the MBA paradigm. In this section, we discuss various ways to incorporate
multiplication into MBA.

We discussed above the derivation of the multiplication rule (derived by rewriting both x and y,
and then simplifying):

xy = (x A y)(x V y) + (x A —y) (—ix A y).

We can generalize this technique by rewriting x and y using other MBA identities and simplifying
the resulting expression. For example, using the identity

x=(xVy)+(xA —iy)—(xey),

one can calculate that

xy = 2(x V y)2 + (x æ y)2 + (—ixA y)(x A —iy) — 3(x V y)(x æ y) — (x æ y) (x A y) — (x A y)(x V )7).
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The strongest rewrite rules for nonlinear functions will use multiple rewrite rules in such a way
that terms are canceled. For example, the derivation of the identity

xy = (x A y)(x V y) + (x A —,y) (—ix A y)

has terms +(x A y)2 and —(x A y)2 . Such cancellation will make it difficult for an adversary to
reverse the derivation of the nonlinear rewrite rule. Unfortunately, we do not have a technique that
can be used to generate identities that will yield cancellations.

We have a bit more success when we want to compute linear combinations of inputs. For
example, assume that it is our goal to find an MBA identity for ax + by for inputs x and y and
known constants a and b. We can slightly modify the matrix A (discussed above) used to find
corresponding MBA identities. One would multiply the column of A corresponding to x (resp., y)
by a (resp., b); the nullspace of A would then correspond to identities with ax and by rather than x
and y.

4.3.2. Creating an MBA rewrite rule generator

In this section, we discuss details relevant to creating a program that can generate MBA rewrite
rules for expressions. As an example, the program should be able to take the number of desired
`variables' such as {x, y}, a target expression such as x e y, several "inpur MBA expressions such
as fx y,x A yl, and output an MBA identity such as x y — 2 (x Ay) —xey = 0 (or several such
identities) which contains the target expression.

We desire the ability to create MBA expressions involving several variables. Additionally, the use
of high-order MBA expressions (i.e., single MBA expressions involving more than two variables),
is also beneficial. Our rewrite rule generator has two main parts. The first part creates a list of
MBA expressions from a set of variables. The set of variables, the list of MBA expressions, and
the target expression are then provided to the second part of the rewrite rule generator, which
creates the truth table corresponding to the expressions and determines the null space of the truth
table. From this null space, rewrite rules are created for the target expression.

4.3.2.1. Random MBA expression generator

The MBA expression generator effectively forms a rooted binary tree where each non-leaf node
has two child nodes. The non-leaf nodes each represent a binary operation on the node's children.
The leaves are random choices of the variables in consideration (and their negation).

For example, the expression generator can produce a 2-level MBA function like (w A x) ED (—iy V z)
where the XOR is the root, the two XOR branches are AND and OR respectively, and those
branches have leaves as w, x, and z respectively.

For non-leaf nodes, we consider the operations AND, OR, and XOR. Leaf nodes are randomly
chosen from the input set of variables (and their negations), with the constraint that no two leaves
that share the same parent will involve the same variable. This avoids (to some extent) degenerate
expressions like (-9, V y), (y V y), (y A —97), etc.
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4.3.2.2. Rewrite rule generator

The rewrite rule generator first creates the truth table of the input expressions (including the target
expression). We then determine the null space of this truth table. When the input expressions are
randomly created, it is often the case that the null space of this truth table matrix is trivial or does
not contain the target expression. When this occurs, the generator has to be rerun with new inputs
until an identity is generated.

Note that an identified basis element of the null space may contain a multiple of the target
expression. For example, the generator may produce the identity x y — 2(x Ay) — x ED y = 0 given
a target expression of (x A y). When working over the ring Z/mZ, we would require that the
modulus m is co-prime to the multiplicity of the target expression so that a multiplicative inverse
can be found. For example, when working with 32-bit numbers, we would require that the
multiplicity of the target expression be odd.

The issue above is sometimes remedied by using other identities produced for the same input. For
example, -2(x y) — (—ix V —y) + 3 (x V y) + ((—Lx) ED y) = 0 and
—3 — (x y) — 2(x V —97) — ((—ix) ED y) = 0 can be added to generate a useful identity for (x V y)
(because all terms in the resulting expression are divisible by 3).

4.3.2.3. Examples

We give some examples of rewrite rules for more complex expressions:

x+y+z-Fw 3-((-1wVy)A(-iwex))+((wVx)A(wV-iy))+((xV-iy)A(xEDz))

+((xvy)A(yV-iz))-((-YVz)A(-iy@z))-((-iwelx)A(-ixEDz))

+2((-iwA-ix)V(xAz))+2((wVx)V(yAz))

+((-iwV-ix)ED(-iyV-iz))+((xED-iz)ED(-1wAz))

+((-iwED-ix)e(we-y))

x+y+z-kw = -2-4((-1.xV-iz)A(we-iz))+((xA-iy)A(-ixez))

- ((x A -iy) V (y ED -,z)) + 4((-iw V x) V z) -2((-ixAz)ED(-iwVx))

+2((-114,EID-iz)e(xvz))-2((-ye-z)e (y A -iz))

— ((x e(we-z))

We can use such rules for "constant-specific" rewrite rules by replacing y, z, and w above by
random constants that sum to c. For example, using 16-bit integers and c = 194, we obtain:
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w + 194 = 57438 + 65532(42943 A ( 9 9 0 3 e w)) + 4(63839 V —,w)

+65534(1696+ (30799 V —Iv)) + 65535(34736 +Iv) + 2(57328 +

Even more generally, we can create a rewrite rule for w + 0 and then add c to the resulting rule.
For example:

w = 62326 + 65532(49086 A ( 44 9 5 8 + w)) + 4(31719 V —,w)

+65534(33816 e (27591 V —,w)) + 65535(37944 +Iv) + 2(54393 +

w+c = c+62326+65532(49086A(44958+w))+4(31719V—iw)

+65534(33816 le (27591 V —iw)) + 65535(37944 e + 2(54393 e

4.3.2.4. Miscellaneous thoughts

The approach discussed above to finding rewrite rules feels very much like a "guess-and-check"
method. That is, it randomly generates functions and subsequently checks if those functions can
create an identity for the target expression. If the rewrite rule generator fails, it must be rerun.
Another approach that may be worth considering is seeing how "close" of an approximation to
the target expression one can get with the given basis functions. One would then continuously
iterate on improving the rewrite rule until it is equivalent to the target expression.

Furthermore, for any rewrite rule w +x y z, we can generate a rewrite rule by w + x y (or
w + x) by substituting random constants into "unusee variables and then subtracting the
constants from the resulting expression. For example, a rewrite rule for w x can be generated by
taking the rewrite rule for w + x y z, substituting y = 15 and z = 35 into the rewrite rule, and
then subtracting 50 (which is the sum of y = 15 and z = 35).

We do note, however, that automated tools may be more likely to have the ability to simplify
expressions involving fewer variables. That is, there may be a "strength in numbers" principle —
expressions with more variables will be harder to simplify. However, it is unclear if an identity
with many expressions is better or worse than an identity with fewer expressions. On one hand,
including more expressions generates a rewrite rule with more degrees of freedom (and is thus
harder to de-obfuscate with traditional automated simplification approaches). On the other hand,
generating a very large rewrite rule and substituting constants into many of the variables may
provide an attacker with more relationships between the random constants (which may make
these constants easier to deduce).

It is also unclear if full randomization of the constants is better than engineering the constants to
have a certain Hamming distance. As an example, a situation where it is observed that constants a
and b satisfy a V b =a and a A b = b reveals that a can be formed from b by flipping some of b's
bits from 0 to 1. A "watchdog" step that monitors for situations where such observations may be
made may serve to prevent trivial attacks.
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4.3.2.5. Rewrite rule generator — version 2

When more variables are added, the time taken to generate a valid rewrite rule increases
substantially. This is a result of the fact that it becomes difficult to find a rewrite rule for
w+x+y+z (for example) rather than some even multiple of w -Fx+y-Fz. This section describes
an approach that decreases the number of "bar rules generated.

Our goal is to solve the linear system Ax = y for x, where A is the truth table determined as above
and y is the truth table for the target expression (e.g., w +x + y+z). In general, A is not a square
matrix, so its inverse is not well-defined. One can create a "generalized inverse, Ag , such that
AAgy = y. As long as A has full row rank, Ag = AT (AA7-) l is well-defined. Then
x = Agy + (I — Ag A)w for any arbitrary w. Currently, we set w = O. One issue is that Ag y may
involve divisions that are not well-defined mod 2n.
Currently, when encountering a system that does not yield a valid rewrite rule, we discard the
entire system of equations and start over with new basis expressions. One may be able to increase
the success rate by carefully choosing w. One may even be able to choose w such that the number
of terms on the right hand side of a rewrite rule is reduced or the coefficients are made smaller.
Finding an ideal w may be hard to automate efficiently, however.

It should also be noted that the above construction for Ag requires that A have full row rank. Thus,
we primarily consider matrices A with more columns (basis expressions) than rows, but our
approach seems to work even when that is not the case. If too few basis expressions are provided,
the program has a hard time finding usable solutions. This seems to be true more often when the
depth of the basis functions is larger. Note that if A does not have full row rank, one can remove
linearly-dependent rows from [Aly] to achieve full row rank.

Another optimization (version 2.1 of our rewrite rule generator) is to remove basis functions that
are linearly dependent on the other basis functions prior to solving the equation.

4.3.2.6. Performance metrics

Our MBA rewrite rule generator is implemented in Mathematica. We present performance
metrics in Tables 4-1, 4-2, and 4-3. We tested the generator on a MacBook with a 2.3 GHz Intel i9
(8 core) processor and 16 GB 2400 MHz DDR4 memory. We denote tests where the program did
not finish within ,c:e, 20 seconds by "DNF". The failure rate is the fraction of attempts that needed
to be aborted and tried again with new basis expressions.

In general, all methods and situations either produced a rewrite rule very quickly (in < 1 second)
or were unable to generate a rewrite rule in fewer than 20 seconds. Failure rates were higher
when using fewer basis expressions and failure rate is generally correlated with performance. In
terms of runtime, it seems that the decreased failure rate when using more basis functions
outweighs the potential extra work needed to deal with a larger truth table. Usually, using depth-2
random functions caused solutions to be found faster than when using depth-3 random functions.
This trend becomes more pronounced as one uses more variables. Finally, our original rewrite
rule generator generally finishes more quickly than versions 2 and 2.1.
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Ver Depth #Expressions Runtime (sec) Avg. #terms in rule Avg. failure rate

1 3 15 0.04 18.2 0.9
1 2 15 0.01 15.3 0.8
1 3 30 0.02 18.8 0.4
1 2 30 0.009 12.6 0.3
2 3 15 0.06 14.4 0.9
2 2 15 0.04 12 0.8
2 3 30 0.05 27.8 0.4
2 2 30 0.03 28 0.4
2.1 3 15 DNF N/A N/A
2.1 2 15 0.3 10.3 >0.95
2.1 3 30 0.03 15 0.5
2.1 2 30 0.04 12.7 0.6

Table 4-1. Performance metrics of MBA rewrite rule generator (with the target expres-

sion being a sum of 4 variables)

Ver Depth #Expressions Runtime (sec) Avg. #terms in rule Avg. failure rate

1 3 30 DNF N/A N/A
1 2 30 0.04 23.7 0.7
1 3 40 0.06 31.8 0.5
1 2 40 0.03 20.8 0.4
1 3 60 0.06 31.8 0.5
1 2 60 0.03 20.2 0.4

2 3 30 DNF N/A N/A
2 2 30 0.09 22.4 0.7
2 3 40 0.08 38.1 0.4
2 2 40 0.05 35.4 0.5
2 3 60 0.1 56.6 0.4
2 2 60 0.07 56.3 0.4
2.1 3 30 DNF N/A N/A
2.1 2 30 0.5 18.5 0.9
2.1 3 40 0.09 31.9 0.5
2.1 2 40 0.2 21.2 0.7
2.1 3 60 0.1 31.8 0.5
2.1 2 60 0.2 21.5 0.7

Table 4-2. Performance metrics of MBA rewrite rule generator (with the target expres-

sion being a sum of 5 variables)
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Ver Depth #Expressions Runtime (sec) Avg. #terms in rule Avg. failure rate

1 3 60 DNF N/A N/A
1 2 60 0.06 34.1 0.5
1 3 64 0.9 63.6 0.9
1 2 64 0.07 28.8 0.5
1 3 80 0.2 63.7 0.5
1 2 80 0.1 28.4 0.5
2 3 60 DNF N/A N/A
2 2 60 0.4 45.2 0.5
2 3 64 1 63.7 0.9
2 2 64 0.3 49.4 0.5
2 3 80 0.4 76.7 0.4
2 2 80 0.3 70.7 0.4
2.1 3 60 DNF N/ N/A
2.1 2 60 0.9 28.9 0.8
2.1 3 64 DNF N/A N/A
2.1 2 64 1 31.1 0.8
2.1 3 80 0.3 63.7 0.4
2.1 2 80 0.9 32.5 0.8

Table 4-3. Performance metrics of MBA rewrite rule generator (with the target expres-

sion being a sum of 6 variables)

4.3.2.7. Pseudocode

In this section, we give pseudocode for our rewrite rule generators. The term "deptlf refers to the
depth of the random expressions. For example, x ED z has a depth of 1 while (x V -iy) A (x ED z) has
a depth of 2. The term "vars" refers to the list of independent variables without negation (e.g.,
{x , y , z,w}). We assume a working modulus of 2". For versions 2 and 2.1, we find it beneficial to
use a list of basis expressions that is longer than 24vars.

We first provide pseudocode to create one random MBA expression. It is understood that these
routines will be run independently to create multiple MBA expressions.

To create a depth 1 function:

1. Randomly choose two distinct elements a and b from vars.

2. Negate a with probability 0.5. Assign this to d.

3. Negate b with probability 0.5. Assign this to Y.

4. Randomly choose a function f from {AND, OR, XOR} and assign this to f.

5. Output f(d,W).

To create a depth d >1 function:

1. Generate two random depth d- 1 function and assign these to fi and f2.
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2. Randomly choose a function from {AND, OR, XOR } and call this f .

3. Output f (fl, f2) •

Version 1 of the rewrite rule generator, given as input a list Lo of basis expressions and a target
expression E:

1. Append E to Lo to form the row vector L2. The last element of L2 should be the target
expression.

2. Create the 2-dimensional truth table for L2 with matrix representation M.

a) Each row of M corresponds to a different choice of values for the input variables.
There will be 2k rows when using k variables.

b) Each column of M represents an expression in L2. There will be m columns, where m
is the length of L2. The last column will represent the target expression.

3. Find a vector x of integers such that Mx = 0 mod 2n such that the final element of x is
exactly 1 (using, for example, Gaussian elimination). If there is no such vector x, then the
list of basis expressions cannot generate a rewrite rule for the target expression. In this case,
abort and start over with different basis expressions.

4. Set L2 . X = 0 and solve for the target expression.

Version 2 of the rewrite rule generator, given as input a list Lo of basis expressions and a target
expression E:

1. Append E to Lo to form the row vector L2 . The last element of L2 should be the target
expression.

2. Create the 2-dimensional truth table for L2 with matrix representation M.

a) Each row of M corresponds to a different choice of values for the input variables.
There will be 2k rows when using k variables.

b) Each column of M represents an expression in L2. There will be m columns, where m
is the length of L2. The last column will represent the target expression.

3. Remove one linearly dependent row at a time from M until M is full row rank. If M cannot
be made full row rank, abort and start over with different basis functions.

4. Assign the last column of (the now full-row-rank) M as column vector y. Assign the
remaining elements of M as matrix A. If A is not full row rank, abort and start over with
new basis expressions.

5. Determine the generalized inverse of A: Ag = AT (AAT)-1 

6. Find a vector x = Agy+ (I —AgA)w, where w is an arbitrary vector of integers, and all
elements of x are well-defined mod 2". To be specific, we are trying to find x where none of
the elements have even denominators. If no vector x exists, abort and start over with a new
list of basis expressions.

7. Set L2 . X = 0 and solve for the target expression.
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Version 2.1 of the rewrite rule generator, given as input a list Lo of basis expressions and a target
expression E:

1. Append E to Lo to form the row vector L2. The last element of L2 should be the target
expression.

2. Create the 2-dimensional truth table for L2 with matrix representation M.

a) Each row of M corresponds to a different choice of values for the input variables.
There will be 2k rows when using k variables.

b) Each column of M represents an expression in L2. There will be m columns, where m
is the length of L2. The last column will represent the target expression.

3. Let R be the rank of M. Without removing the final column, remove one linearly dependent
column from M at a time until M has R-F 1 columns.

4. Remove one linearly dependent row at a time from M until M is full row rank. If M cannot
be made full row rank, abort and start over with different basis functions.

5. Assign the last column of (the now full-row-rank) M as column vector y. Assign the
remaining elements of M as matrix A. If A is not full row rank, abort and start over with
new basis expressions.

6. Determine the inverse of A: A-1.

7. Calculate x = irly such that all elements of x are well-defined mod 2.. To be specific, we
are trying to find x where none of the elements have even denominators. If no vector x
exists, abort and start over with a new list of basis expressions.

8. Set L2 • X = 0 and solve for the target expression.
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5. MULTI-PARTY COMPUTATION

5.1. Secret sharing

Secret sharing in general seeks to divide data among n shares such that the data can be efficiently
reconstructed given k of these n shares. Furthermore, possession of fewer than k of these shares
should provide no information about the underlying data [16]. Traditionally, each of these shares
is distributed to one of n parties participating in the protocol. Unlike homomorphic encryption,
there are no encryption keys in secret sharing schemes. Instead, the shares of data serve as both
the encryption and the key.

5.1 .1 . Shamir secret sharing

In Shamir secret sharing [82], shares are defined as points {(i, f (i))1i#:, along a polynomial f . f
is constructed so that f (0) is the shared secret and the remaining coefficients are drawn uniformly
at random from the same domain as the secret. This domain is typically Zq = Z/qZ for some
prime q. The prime q must be chosen to be greater than the domain required by the magnitude of
the secrets and the number of shares. In order to rebuild the secret, one must possess a number of
shares greater than the degree of the polynomial f . The most common and intuitive method to
deduce f (0) from these shares is Lagrange polynomial interpolation.

This ability to select the degree of the polynomial f independently from the number of players in
the scheme permits a threshold scheme for the shares of the secret. That is, should one desire that
k of n shares be necessary to rebuild the secret, one chooses f to have degree k — 1. It is then
possible to generate n shares while maintaining the ability to rebuild the secret from any set of at
least k of these shares. Furthermore, with at most k — 1 shares, it is impossible to reconstruct the
polynomial or to gain any information about the secret. This is formally referred to as a (k,n)
threshold scheme.

Constructing shares. Given a secret s and a target degree k — 1, one constructs a polynomial f
via:

f (x) = (ck_1Ac-1 + ck_2A
c-2 
+ • • • + c2x

2 , c s) mod q,

where the ci are sampled from a uniform random distribution on the domain of the secret. For
i E {1, ...,n}, the share si is defined as si = (i, f (i)).
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Rebuilding Secrets. One can use Lagrange polynomial interpolation to reconstruct a secret
from shares. The general formula for Lagrange interpolation is:

n 12 xkf (x) yj n _„
j=1 k=1:1c .i X Xk

Thus, to recover the secret, we calculate:

= f (0) = Eyj n -Xk 
j=1 k=1:Icj X Xk

Addition. In the Shamir secret Sharing scheme, addition is "free” in that no communication is
required between players, and no lengthy local computations are necessary. For two values, a and
b, whose associated shares are {(i,ai) } and {(i,bi)}, one can calculate shares for c = a + b via

= (i,ai+bi). Correctness of this procedure is a result of the fact that if f and g are
polynomials of degree k— 1 with f (0) = a and g(0) = b, then (f + g) is a polynomial of degree
k — 1 with (f g)(0) = a+ b.

Multiplication. Because Shamir secret sharing is inherently a linear scheme, multiplication is a
somewhat complex process. Unlike the addition procedure, we cannot simply multiply values of
shares. Assume that we have values a and b and polynomials f and g of degree k — 1 with
f (0) = a and g(0) = b. Then the polynomial (f x g) satisfies (f x g)(0) = ab, but (f x g) now
has degree 2k — 2. Furthermore, the coefficients of (f x g) are no longer random, and thus leak
information.

The multiplication procedure in Shamir secret sharing uses the shares of (f x g) to construct a
polynomial h of degree k — 1 such that h(0) = ab and such that the non-constant coefficients of h
are distributed uniformly at random. We refer the reader to [47] for an exposition of
multiplication in Shamir secret sharing. It is important to note that, in order to reduce the degree
of (f x g), the multiplication procedure requires that n> 2k — 1.

5.1.2. Additive Secret Sharing

Additive secret sharing decomposes values into shares such the sum of the shares is the secret
value. The underlying security is dependent on the fact that the sum (modulo q) of a fixed value
(the secret) and a uniformly randomly selected value is uniformly random. In this context the sum
is therefore unconditionally secure since any adversary, unbounded by limits on computational
power, can do no better than also simply randomly guess at what the two original values may have
been.

Many operations are much more computationally efficient in additive secret sharing than in
Shamir secret sharing. However, unlike in Shamir secret sharing, when using additive secret
sharing, all shares are required to recover the secret value.
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Constructing Shares. Given a secret s and a number of shares n, one first generates n— 1
values si , sn_1 uniformly at random from Zq. One then sets sr, = s si mod q. The
resulting si are the additive shares for the secret s.

Rebuilding Secrets. One can rebuild the secret s from the shares si using the identity
s =riLl si mod q.

Addition. Shares for a sum a + b can be computed by adding the corresponding shares of a and
b. That is, if one has shares fsil for a and for b, then {si + are shares for a + b.

Multiplication. The protocol for multiplication for additive secret sharing is again more
complex than the protocols for other operations. We provide the basic idea here and refer the
reader to [16] for a more complete exposition of the protocol.

We assume shares fail for a and fbil for b (such that a =riLiai and b =L'iibj). Note that
ab = aib 1. The multiplication protocol computes additive shares for each of these
summands independently among various 2-player subsets of the n players. Note that this forces
n> 3 when performing multiplication using additive secret sharing.

When i j, we have players i, j, and k compute shares for aib via

aibj = [ai(b1+ ri)] [—r1(ai+ ri)]+[rirj],

where ri and ri are random elements generated by player k and transmitted to player i and j. The
bracketed values in this expression denote the additive shares for players i, j, and k,
respectively.

5.2. Machine learning using MPC

MPC techniques have been used to provide private evaluation of machine learning classifiers,
including hyperplane classifiers, Naive Bayes classifiers, decision trees and random forests, and
support vector machines [23, 65, 79, 85]. Many of the techniques introduced in these works rely
on other cryptographic primitives, including homomorphic encryption, oblivious transfer, and
secret sharing.

As with other MPC methods, the security of the protocols introduced in these works relies on the
inability of an adversary to obtain sensitive information from all parties involved in the protocol.
Thus, these techniques are insecure when run on a single computational device but could provide
value in a distributed environment. Furthermore, many MPC-based methods for evaluating ML
models focus primarily on the privacy of the user's input data rather than the privacy of the ML
model. However, due to the nature of the primitives used in many of these MPC-based
approaches, there are often privacy guarantees for the model's parameters as well.
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5.3. Useful aspects of MPC

Unlike many of the other techniques discussed in this report, MPC generally permits a wider
variety of expressions to be computed. For example, the work of Nishide and Ohta [71] allows
one to efficiently perform equality and comparison tests (among other operations, including
unbounded fan-in or and prefix-or). This work was later improved by Reistad and Toft [77, 76].

Bogdanov et al. [17] introduces additional protocols that are particularly useful for data mining
applications, including those to find the most significant non-zero bit position, to perform bit
extraction, to perform division by a public constant, and to perform (integer) division on two
shared values. It should be noted that the techniques of [17] work only when using additive secret
sharing with three shares. How well these techniques can be generalized is a matter of future
research.

One of the main dilemmas encountered when attempting to apply cryptographic techniques to
secure data analytics is that of number representation. Most techniques discussed in the report
apply to numbers represented as standard n-bit integers. However, in the realm of machine
learning, floating-point numbers are used almost exclusively to represent numbers. Work of
Kamm and Willemson [59] develop computational techniques for performing floating-point
operations in the MPC context. In their work, they separately represent the sign bit, significand,
and exponent (which can each be represented as integers) and develop protocols for addition,
multiplication, bit shifting, inversion, calculating the square root, and exponentiation (x
This work succeeds (where many others fail) in defining protocols for the more exotic functions
(i.e., inversion, calculating the square root, and exponentiation) for two primary reasons. First, the
outputs of these functions are rarely integers, so schemes based on standard integers cannot even
represent the output of these functions. Second, due to the choice to constrain the significand to
lie in the interval [,1), computational techniques that use a series to calculate an approximation

of a function are more likely to succeed due to the high probability that the interval [1,1) (and
hence, the significand) will lie in the radius of convergence for the Taylor series of the function of
interest. This allows floating-point computations that are not possible with fixed-point
representations.

5.4. Experiments with SCALE-MAMBA

This section documents experiments with the SCALE-MAMBA framework published by KU
Leuven [64]. SCALE (Secure Computation Algorithms from LEuven) is an implementation of
many secure multiparty primitives that is bundled together with the high level language MAMBA
(Multiparty AlgorithMs Basic Argot), which is designed to interface with the framework.
SCALE-MAMBA allows one to write an arbitrary program in a simple style similar to python.
This program is then complied into an executable which can be handled by the SCALE
framework. The capabilities of the system are much more broad than many such frameworks
publicly available. It is built on the SPDZ basic approach to SMC, using oblivious transfers to
generate shared correlated randomness in a precomputation phase, then using secret sharing in an
online phase to evaluate the functionalities of interest.
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Table 5-1. SCALE-MAMBA Performance Tests With Integer Operands

Function Number of Total Approx. Time Approx. Time per
Operations Time (s) online (s) operation (s)

Addition 10 444 60 6.0
Addition 100 474 90 0.9
Addition 1000 460 76 0.1
Multiplication 10 482 98 9.8
Multiplication 100 443 59 0.6
Multiplication 1000 480 96 0.1
Dot Product 10 493 109 10.9
Dot Product 100 493 109 1.1
Dot Product 1000 500 116 0.1
Comparison 10 493 109 10.9
Comparison 100 498 114 1.1
Comparison 1000 fail-r

The framework supports many data types of interest and includes interesting functions. Data types
of interest include finite field elements, fixed point numerical types, and floating point numerical
types. Functions included in the framework include standard basic operators such as addition and
multiplication, as well as much more complicated functionalities such as division, exponentiation
with private exponents, logarithms, and trigonometric functions (for some data types).

In order to explore the utility of the framework, a series of tests were executed testing all these
data types with a set of functionalities of interest each for differing numbers of operations nested
in a worst-case composition to find the limits of the framework's capabilities. In addition to the
built-in functionalities of interest, scripts were written to extend the framework with new
functionalities of potential interest. The additional functionalities added are a means to calculate
an arbitrary base to the power of a private exponent (the framework implements this only with
base 2), the soft sign and sigmoid activation functions, as well as a max function. For each
function and data type combination (as far as possible/applicable), the run-time was recorded as
the wall time from the invocation of the SCALE executable until the return of the completion of
that process. All tests were executed via emulation of multiple parties in multiple sub-processes
on one machine, thus network latency is not a significant factor in these results. When tests for
particular combinations grew large, failures were recorded. We denote a compile time error
(translating the MAMBA code into a SCALE byte-code executable) as fail-c and a run-time error
by fail-r. Normally failures were caused by running out of compute resources on the machine
used for these tests. After a failure was encountered tests with larger numbers of operands were
not performed, these situations are still included and denoted with N/A. Finally, due to the nature
of the framework, the vast majority of the time is dedicated to pre-processing and initialization of
the dependencies for the online phase of computation. This is in turn dominated by the execution
of a number of oblivious transfers determined by the desired security parameter. Executing a
minimal program, sharing and revealing one integer secret, incurred a time of 384s.

For the finite field integer data type, four functionalities were tested: addition, multiplication,
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private dot-products, and comparison. The results of these tests are included in Table 5-1. Note
that there is significant variance in the performance of the pre-computation; since this is the
dominating operation for many of the examples, effects of changes in this phase override
increasing the number of required online operations in some situations. One example of this can
be seen in Table 5-1 in the rows related to performing 100 or 1,000 additions.

For the fixed point data type the widest set of functionalities were tested due to the robust
capabilities of this data type. For fixed point numbers, we tested addition, multiplication, dot
products, comparison, softsign, sigmoid, arctangent, max, and exponentiation. This data type
makes use of approximation for some functionalities though the greatest error was introduced by
truncation required since the default precision of the type is only 20 bits. These results are
included in Table 5-2.

The final set of tests were for floating point operands. The current state of the framework does not
yet have implementation of all the functionalities supported by fixed point operands, so the same
set of tests were again executed as was the case for integer field elements: addition,
multiplication, dot products, and comparisons. The results for operands of this type and available
functions are included in Table 5-3.
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Table 5-2. SCALE-MAMBA Performance Tests with Fixed Point Operands

Function Number of Total Approx. Time Approx. Time per
Operations Time (s) online (s) operation (s)

Addition 10 389 5 0.5
Addition 100 397 13 0.1
Addition 1000 445 61 0.1
Multiplication 10 443 59 5.9
Multiplication 100 442 58 0.6
Multiplication 1000 460 76 0.1
Dot Product 10 460 76 7.6
Dot Product 100 455 71 0.7
Dot Product 1000 502 118 0.1
Comparison 10 471 87 8.7
Comparison 100 492 108 1.1
Comparison 1000 fail-c
Softsign 10 405 21 2.1
Softsign 100 fail-r
Softsign 1000 N/A
Sigmoid 10 420 36 3.6
Sigmoid 100 fail-r
Sigmoid 1000 N/A
Arctangent 10 443 59 5.9
Arctangent 100 fail-r
Arctangent 1000 N/A
Max 10 417 33 3.3
Max 100 448 64 0.6
Max 1000 fail-r
Exp 10 449 65 6.5
Exp 100 910 526 5.3
Exp 1000 fail-c
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Table 5-3. SCALE-MAMBA Performance Tests with Floating Point Operands

Function Number of Total Approx. Time Approx. Time per

Operations Time (s) online (s) operation (s)

Addition 10 491 107 10.7

Addition 100 509 125 1.2

Addition 1000 fail-c

Multiplication 10 424 40 4.0

Multiplication 100 415 31 0.3

Multiplication 1000 fail-c

Dot Product 10 395 11 1.1

Dot Product 100 452 68 0.7

Dot Product 1000 fail-c

Comparison 10 403 19 1.9

Comparison 100 556 172 1 .7

Comparison 1000 fail-c
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