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Outline

 History and tutorial of LEDs, particularly blue III-nitride LEDs.

 Compare LEDs and LDs for solid-state lighting.

 Future projections of LED and LD efficiency and cost.
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History and tutorial of LEDs
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The LEDs beginning: Nick Holonyak, Jr.

 First visible laser in Oct of 1962.

 Made from GaAsP.

 A working laser suggested quantum 
efficiency was high.

 Further suggests efficient LED. 
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1965 Allied Radio Catalog

http://invention.smithsonian.org/centerpieces/quartz/technology/diodes.html


Light of Hope – Or Terror

5



p-n junction light-emitters
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LEDs and laser diodes (LDs)
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Early III-nitride LEDs

• J. Pankove and H. Maruska at RCA Laboratories in 
1968-74.

• First vapor phased growth of GaN.

• Produced near blue emission
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III-nitride breakthroughs
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1. No GaN substrates.  

Renewed interest in late 1980’s, but there were three problems to be solved.

• Need to learn how to grow on lattice 
mismatched substrates.

I. Akasaki, H. Amano, et al. J. Crys. Growth, 98, 209, 1989. 

• I. Akasaki and H. Amano 
demonstrated buffer layer growth on 
sapphire producing lower defect 
density layers of GaN. (1986)



III-nitride breakthroughs
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GaN substrates!  



III-nitride breakthroughs
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2. No p-type doping.  

Renewed interest in late 1980’s.  But there were three problems to be solved.

• Mg doped GaN was not producing p-type 
conductivity. Why?

• Nakamura (1992) demonstrated that 
Hydrogen was passivating the Mg 
acceptors

• Amano (1989) showed ion irradiation 
creates active Mg.



III-nitride breakthroughs
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Higher p-type doping.  

In0.08Ga0.92N
ρ = 0.05 Ω-cm
μ = 6 cm2/Vs
p = 1.7 × 1019 cm-3

M. Moseley and A. Doolittle, GA Tech



III-nitride breakthroughs
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3. GaN emission is in the near-UV, not the visible.

Renewed interest in late 1980’s.  But there were three problems to be solved.

• Need to learn how to grow lower energy 
InGaN material.

S. Nakamura, et al. ALP, 64, 1868, 1995. 

• Nakamura (1995) demonstrated blue LEDs 
with ~10% quantum efficiency.



Anatomy of an blue III-nitride LED
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From indicators to illuminators
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5mm LED:
Epoxy encapsulation
~0.2 mm x 0.2 mm die area
20mA max operating current
10’s of mW of optical power.

High power LED:
silicone encapsulation

~1mm x 1mm die area
700mA-1A  max operating current
~1’s of W of optical power.

~2000



Thin-Film LEDs

 Most LED manufacturers use the thin-film design in their high end chips.

 Chip sizes are ~1mm x 1mm or larger.

 Provides high extraction efficiency ~80%.
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OSRAM CreePhilips-Lumileds
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LED Extraction Efficiency Over Time
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White LED Options

• UV LED + RGB phosphors

• White determined by phosphors

• Excellent color rendering

• Stokes-shift  UV  visible colors

• Blue LED + yellow phosphor

• Simple

• Decent color rendering (Ra ~ 75)

• Stokes-shift loss - blue  yellow

• Direct – RGB LEDs

• Potentially highest efficacy 

• Very large color range

• Most efficient – tunable white



Efficiency and cost over time
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LED Retrofits
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Comparison of III-nitride LEDs and LDs
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Color rendering of a laser white source
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y. Tsao, 
Optics Express, 19, A982, 2011. 

• Only slight preferences when comparing LD and 
traditional sources.

• LD white is a good color rendering source. Why?



High Luminous efficacies of radiation

 Spiky sources give highest luminous efficacies of radiation (lm/W)

 Red/yellow power varied to give CCT=3800, Ra=85
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FWHM=100nmFWHM=50nmFWHM=10nmFWHM=2nm
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LD has improved directionality
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Laser diode micro-projectors
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• Probably many other applications for 
directed light.

• For example it could enable 
novel luminaries. 



Smart lighting
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“2nd Wave Lighting: Smart and 
Feature Rich

Integrated Illumination and 
Displays

Human Health, Well Being and 
Productivity

Agriculture Communication Light-Field Mapping



Speckle
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Deformable mirror

Arrays of different lasers

Diffractive optical elements

• Solutions consist of 
modulating the laser light in 
space or frequency.



LD white examples
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2011 Sandia/UNM

2012 BMW

headlight

2005 Nichia

Fiber light



Efficiency and cost comparison of LEDs 
and LDs
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Valley of droop

III-nitride LEDs vs. laser diodes (LDs)
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• After threshold LDs are not affected by efficiency droop.
• LDs are more efficient at higher input power densities. 



The LED is the ultimate lamp

31

Power conversion efficiency = J inj rad ext

… but a III-nitride LED is not perfect.

Power conversion efficiency=Power out/Power in =100% 

• Power conversion efficiency can be separated into four different efficiencies:
1) Joule efficiency: j

2) Injection efficiency: inj

3) Radiative efficiency: rad

4) Extraction efficiency: ext

• Joule Efficiency, J:
• Fraction of photon energy (h) to 

input energy (VI).
V

I

+ -

h
Rs RD• Injection Efficiency, inj:

• Fraction of electrons and holes that 
arrive at the QWs.

+ VD

-

e-

h+ p

n

QWs

• Radiative Efficiency, rad:
• Fraction of electrons and holes that 

participate in light emission

e-

h+

e-

Ec

Ev

• Extraction Efficiency, ext:
• Fraction of produced light that exits 

the semiconductor

Blue Rebel LED



LD efficiency deficiencies
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Osram blue LD

rad

Power conversion efficiency = Jinjradext



Future Efficiency of LEDs and LDs
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Future Efficiency of LEDs and LDs
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4. Non-c-plane orientations:

c-plane
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Economics of LEDs and LDs

LED LD
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• Assume operation is at peak 
efficiency.

• Input power density is different for 
LEDs and LDs.

• Two different input powers will 
drive chip size and cost.



Economics of LEDs and LDs
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Economics of LEDs and LDs
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Two vastly different areal costs.
LED: ~$10/cm2

LD: ~2000/cm2



Conclusion
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• The LED is over 50 years old and has come a long way!

• Advances in III-nitride materials and device designs have resulted in a 
remarkable transformation from simple indicators into illumination sources.

• Lasers are interesting because:
• Efficiency droop is no longer a problem.
• High efficiency at high input power densities, directionality, and higher LER.

• Despite the higher cost of lasers their high single chip powers make them  
competitive if improvements can be made. 
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Economics of LEDs and LDs

Two different implications for LDs and LEDs:

40

LEDs LDs

1. LED:  To operate at peak efficiency chip cost/area needs to 
be <$1/cm2 for current technologies.  
Drives motivation for inexpensive chip technologies.
Requires 20x reduction over currents costs!  
Clear why we don’t operate at peak efficiency.

2.     LD:  Chip cost/area can be extremely high ~$1000/cm2.  
Promising result because IR LDs are ~$150/cm2

LDs should be cost effective for SSL once improvement are made.


