
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Data Management Issues 
for Exascale Platforms

Jay Lofstead
Scalable System Software
Sandia National Laboratories
Albuquerque, NM, USA
gflofst@sandia.gov

Georgia Tech Alumni Day

April 15, 2013

SAND2013-3094P



HPC Data Management

 Simulations generate LOTS of data periodically now
 E.g., 10s of TB every several minutes

 Older APIs (NetCDF, HDF, PnetCDF)
 Focus on data model, portability

 Next Generation (ADIOS)
 New data model, portability maintained

 Reworked for performance for MPP, large parallel storage arrays

 What do we need for the future?

2



Petascale to Exascale Changes

Petascale Exascale

~16 cores/node 100s of ‘cores’ per node

~250 GB/sec storage array 1-10 TB/sec storage array

1-2 GB/core < 1 GB/’core’

RAM/HDD/Tape RAM?/NVRAM/SSD/HDD/Tape

3



Independence vs. Coordination

 Older APIs
 Generally fully coordinated (mostly failed petascale)

 ADIOS
 Generally fully independent (mostly successful petascale)

 Small per process data sets still problematic
 If small enough to fit in one proc’s memory, worth it?

 Too much overhead to store small blocks

4



File System Matters

 ADIOS demonstrated: Manage the Filesystem
 Control for metadata contention (file creation/open)

 Control for false sharing (multiple procs on same stripe, not same 
spot)

 Control for stripe spanning (overhead of switching stripes)

 Control for other users - ‘interference’ is highly transient

 Maximize parallelism – even beyond file system capacity

 Avoid single points of contention
 Single MDS, single index collector, single ‘master’ for anything

5



Rich Metadata Critical

 Space aware is key – not enough space for full index
 Data characteristics

 Min/max

 Mean

 Collected index blocks

 Dense collection of metadata for rapid processing

6



Memory Hierarchy Depth

 Currently have RAM->HDD->Tape

 Moving to RAM->NVRAM->SSD->HDD->Tape

 Layout matters for parallelism; blocking factors vary by tech
 Moving back down may lose layout information

 Locality, energy, performance all matter

 Data migration automatic or manual? (HSM?)

7



Break SE Best Practices

 Software Engineering Best Practices not always best
 Compile time checking can be problematic

 Adds complexity to API

– HDF API calls to navigate hierarchy

– PnetCDF ‘modes’ for definitions or read/write

 Reduces options for implementations (too detailed API)

– Can you change to using staging with complex API semantics?

– How about switching to asynchronous IO?

– What about a carefully synchronous step-by-step implementation?

 Less dynamic flexibility possible (must recompile to make changes)

– Likely must recompile to make changes to behavior

– Cannot add/remove non-data elements like attributes

8



IO Stack – Not an IO API Only

 Fully integrated storage hierarchy key
 Simple, flexible API

 Options for data movement (staging, disk, or other)

 Flexible formats based on technology (adapts automatically)

 Address parallelism maximally

 Interoperate with existing POSIX interface somehow

9



Questions?

10


