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ABSTRACT

Ongoing operations and maintenance (O&M) are needed to ensure photovoltaic (PV) systems
continue to operate and meet production targets over the lifecycle of the system. Although average
costs to operate and maintain PV systems have been decreasing over time, reported costs can vary
significantly at the plant level. Estimating O&M costs accurately is important for informing financial
planning and tracking activities, and subsequently lowering the levelized cost of electricity (LCOE) of
PV systems. This report describes a methodology for improving O&M planning estimates by using
empirically-derived failure statistics to capture component reliability in the field. The report also
summarizes failure patterns observed for specific PV components and local environmental conditions
observed in Sandia's PV Reliability, Operations & Maintenance (PVROM) database, a collection of
field records across 800+ systems in the U.S. Where system-specific or fleet-specific data are lacking,
PVROM-derived failure distribution values can be used to inform cost modeling and other reliability
analyses to evaluate opportunities for performance improvements.

3



ACKNOWLEDGEMENTS

The project team would like to acknowledge Christopher Downs, Laura Kraus, Pramod Krishnani,
Taki Okita, Ryan McCauley, and Will Thompson for their assistance with data collection as well as
Kate Cauthen, Jal Desai, and Andy Walker for reviewing the report.

The project team would also like to acknowledge the U.S. Department of Energy's Solar Energy
Technologies Office (Agreement Number 34172) and the National Renewable Energy Laboratory for
providing funding for this research.

4



CONTENTS

1. INTRODUCTION 7

2. HOW TO: FAILURE RATES ANALYSIS 8
2.1. Relevant Data Collection 8
2.2. Data Processing 9
2.3. Statistical Analyses 10

2.3.1. Non-Parametric Approach: Kaplan-Meier estimator 10
2.3.2. Parametric Approach: Weibull Distribution 11

3. FAILURE PATTERNS FROM PVROM 13
3.1. Component Failures 13

3.1.1. Inverters 14
3.1.2. Modules 15
3.1.3. Trackers 15

3.2. Local Environmental Conditions 16
3.2.1. Vegetation 16
3.2.2. Snow 17
3.2.3. Soiling 18

4. CONCLUSION 19

LIST OF FIGURES

Figure 2-1. Summary of Decision Flow Associated with Failure Rates Analysis 8
Figure 3-1. Geographic coverage of Sandia's PVROM Database as of March 2020. 13
Figure 3-2. Occurrence of Rack-Related Damage Tickets  15
Figure 3-3. Occurrence of Vegetation-Related Tickets 17
Figure 3-4. Occurrence of Snow-Related Tickets 17
Figure 3-5. Occurrence of Soiling-Related Tickets 18

LIST OF TABLES

Table 2-1. Example of Processed Data. 10
Table 3-1. Summary of Failure Patterns observed in PVROM. 14

5



ACRONYMS AND DEFINITIONS

Abbreviation Definition

AC Alternating current

AIC Akaike information criterion

BIC Bayesian information criterion

CDF Cumulative distribution functions

DC Direct current

GW gigawatt

IGBT Insulated Gate Bipolar Transistors

kW kilowatt

LCOE Levelized cost of electricity

NREL National Renewable Energy Laboratory

O&M Operations and maintenance

P-P Probability-probability

PV Photovoltaic

PVROM Photovoltaic Reliability Operations and Maintenance

Q-Q Quantile-quantile

SNL Sandia National Laboratories

TTF Time to failure

TTR Time to Repair
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1. INTRODUCTION

Ongoing operations and maintenance (O&M) are needed to ensure photovoltaic (PV) systems
continue to operate and meet production targets over the lifecycle of the project. Although average
costs to operate and maintain PV systems have been decreasing over time, reported costs can vary
significantly at the plant level from $12/kilowatt (kW)/yr. to $30/kW/yr. (Bolinger et al., 2017).
Estimating O&M costs accurately is important for informing fmancial planning and tracking activities,
and subsequently lowering the levelized cost of electricity (LCOE) of PV systems.

O&M costs of a PV system vary as a function of specifications (e.g., inverter type, tracking system),
component reliability (time to failure), environmental conditions, and administrative costs (e.g.,
property taxes, warranties) (Walker, 2017). Subsequently, the input requirements for generating
detailed O&M cost estimates can be significant. While some of the cost model parameters can be
informed by contractual agreements (especially administrative costs) or manufacturer specifications,
empirically-derived failure statistics are also required to capture component reliability in the field
(Hacke et al., 2018). In addition to informing cost models, field failure statistics can also be used to
evaluate opportunities for performance improvements through reliability simulations (Miller et al.,
2012).

Due to the diverse practices used for tracking O&M activities across the RV industry, the collection
and processing of field data can be challenging. To address the need for improved analysis based on
field data, this report describes an updated methodology for deriving component-level failure statistics
with a focus on component reliability. Finally, the report summarizes failure rates observed in the RV
Reliability, Operations & Maintenance (PVROM) database, a collection of field records across 800+
systems in the U.S. Where system-specific or fleet-specific data are lacking, the PVROM-derived
values can be used to inform cost model estimates and other reliability analyses.

NOTE: Development of failure rates using field observations is critical for improving the
accuracy of PV O&M cost models.
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2. HOW TO: FAILURE RATES ANALYSIS

The analysis of failure rates consists of three primary steps: 1) collection of relevant data, 2) processing
of data, and 3) implementation of statistical methods (Figure 2-1). The collection of relevant data
requires answers to two key questions: 1) what is the failure of interest? and 2) what field data is
available regarding the failure of interest? After the relevant data is collected, processing is required to
generate the required features for statistical analysis. This includes tabulation of time to failure (TTF)
numbers and verification of the processed data quality. Once the data is processed, statistical analysis
is conducted to tabulate the failure distribution parameters. Depending on the analysis objectives and
data availability, failure rates can be analyzed using either non-parametric or parametric methods.

47,
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Figure 2-1. Summary of Decision Flow Associated with Failure Rates Analysis

2.1. Relevant Data Collection

Collection of relevant data depends on the failure of interest. The most common definition of failure
refers to equipment not performing required actions Qordan et al., 2017). However, failures can be
defined in different ways for different assets. In the context of PV systems, failures can refer to issues
at the system-level or for a specific asset and can refer to equipment underperforming or not
performing at all. The O&M cost model (developed in partnership by the National Renewable Energy
Laboratory (NREL), Sandia National Laboratories (SNL), etc.) identifies a number of failure activities
prevalent in PV systems (Walker, 2017). Examples of PV failures include inverters and trackers
malfunctioning, fuse failure, and degradation due to environmental conditions.

The resolution of available data often guides the level of detail achievable with the failure analysis. For
example, if field records only state that "inverters are offline" or that the "site is offline", then
evaluating patterns for specific failures (e.g., due to ground fault or software issue) is not feasible.

Common datasets used for failure analysis are based on maintenance records that document
unplanned activities in response to equipment failures. Maintenance records are captured in a variety
of formats, ranging from hand-written notes to formal, digitized entries in a computerized
maintenance management system. The details captured in the maintenance records can also vary, with
some entities capturing nuances of when an event started and ended to some also capturing when the
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associated field work and financial paperwork were completed. For failure analysis, the primary items
of interest from maintenance (or other incident) records include:

• Date/time of failure occurrence,

• Consistent and clear description of the problem (including details about affected
component and corrective actions taken to address failure), and

• Date/time of resolution of the failure.

Some records capture details about the specific component failure and corrective actions in a narrative
format whereas other capture them in distinct and consistent categories. For the former, an
interpretation of the records is required to identify those relevant to the failure of interest. This manual
interpretation introduces subjectivity in the analysis process. If the records are digitized and consistent,
searching for key terms or (where sufficient data is available) advanced data analytic techniques
including machine learning can be used to identify records of interest (Gunda, 2020). If there are no
records related to a particular failure of interest, then another failure should be selected for analysis
(Figure 2-1).

NOTE: Contextual details regarding commissioning details, climate exposure, and warranty
details of the system and/or specific assets can influence the interpretation of the
maintenance records.

2.2. Data Processing

After the relevant failure records are collected, processing is required so that the data can be used for
statistical analysis. Specifically, while the maintenance records may capture the date of failure, they do
not capture details regarding the time to failure (TTF). Thus, these values need to be calculated. TTFs
are calculated by evaluating the amount of time that transpired between when the equipment initial
operation and the failure occurrence. Moreover, depending on the resolution of the available data, the
analysis may be restricted to evaluations of only the initial failure for a given system, if details about
which specific piece of equipment experienced failures are lacking.

Some equipment may not have failure data at the time of analysis, either because a system went offline
prior to experiencing that failure or because observations ended at the site before system experienced
the failure. This data is considered to be censored and should be included in the analysis to capture
patterns associated with lack of failures. For equipment with no observed failures, records are created
that describe the length of period observed (i.e., "righe' censoring or censoring occurring at the end
of the observed period). Inclusion of the right-censored data represents the incomplete knowledge
associated with the dataset being analyzed. An example of processed data is shown in Table 2-1. The
"status" column captures details about whether a failure was observed (1) or not observed during the
period observed (0). Similar datasets can also be constructed for time to repair (TTR) analysis.

Finally, a data quality check is required to ensure that the processed data is suitable for statistical
analysis. At a minimum, the data should be evaluated for inconsistencies, such as dates of failure
occurring before dates of failure resolution (i.e., TTF < 0). Other checks can be implemented
depending on the data resolution and intended use (e.g., time that field work is completed occurs
before the time that the ticket is closed).
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Table 2-1. Example of Processed Data.

Record TTF (days) Status

1 82 0

2 49 1

3 35 0

4 100 1

5 90 1

6 63 1

For records with status = 1 , the time to failure (1 1P) captures the amount of time between equipment's initial operation
and observed failure. For records with status = 0 (i.e., no failure), the 1'1P captures the amount of time observed since
the equipment began operating.

NOTE: Contextual details about the maintenance records (e.g., age of systems analyzed and
how information is collected) can greatly influence the quality of the initial data
processed.

2.3. Statistical Analyses

After data processing is completed, the resulting data is used to create failure statistics. Below two
approaches are described for generating failure statistics: non-parametric and parametric. The non-
parametric approach does not make any assumption about the underlying distribution of the data and
is most effective for statistical analysis of small datasets. In contrast, the parametric approach is
focused on fitting the data to a specific distribution; this approach requires meeting assumptions of
the underlying data's distribution. If these assumptions can be met, parametric approaches have higher
statistical power than non-parametric approaches (Zimmerman and Zumbo, 1993). Multiple software
tools can be used to calculate failure statistics for a given dataset (Klise et al., 2018). Example code
using the open source software R for both the non-parametric and parametric approaches is provided
below.

2.3.1. Non-Parametric Approach: Kaplan-Meier estimator

The Kaplan-Meier estimator is a non-parametric approach for evaluating survival over time that is
able to accommodate censored data in its calculation. The Kaplan-Meier estimator estimates the
probability that a system has not experienced a failure by a given point in time. In other words, the
Kaplan-Meier estimator gives a point estimate of systems' reliability for a given failure at a specific
point in time. The estimator can be plotted over time to illustrate how many systems are expected to
experience their first failure as time progresses. This estimator represents a conditional probability of
failure. That is, if a system has not yet experienced a failure, what is the probability that it will fail by
time t? The Kaplan-Meier estimator of survival is given by

where

AO = lic:t(kyt 
nk—dk 
nk = 1 — P(t)

t(k): time to k th failure;
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nk= number of systems at risk at the beginning of time period t(k), that is, the number of

systems that have not yet experienced a failure right before t(k);

dk= number of systems that fail during period t(k);

P(t) = the estimated probability of failing during period t(k).

Confidence intervals can be computed for the Kaplan-Meier point estimate. To do so one must first

estimate the standard deviation of the estimator. The variance of S(t) is given by

di
ar[S(t(k))] = 62 (t (0) = [1 — P(t(k))] (721 _ do

l~k 

which allows for calculation of a 95% confidence interval on .§.(t) as

S95%(t(k)) = Atk) ± 1.96a(tk)

Since survival is a rate, it ranges from zero to one; hence, so its confidence interval should as well. As
a result, the upper bound of the confidence interval is calculated as

min [1, Atk) + 1.966(tk)}

And the lower bound is given by

max {0, S — 1.96a(tk)}}

An implementation of the Kaplan-Meier estimator using the "survival!' package in R (Therneau, 2020)
is shown below. In this example, "df' represents the processed data containing details about the TTF
(days) and associated status:

librag(survival)

surv object <- Surv(time=elf 1 11-'_days, event=e1 status)

kmfit <- survfit(surv object — 1, data=dfi

summag(kmfit)

2.3.2. Parametric Approach: Weibull Distribution

While a non-parametric approach allows for more flexibility, a parametric approach is often necessary
for reliability analyses. Visualizations and goodness-of-fit tests can be used to identify the distribution
that best represents the data. Example visualizations include quantile-quantile (Q-Q) plots and
probability-probability (P-P) plots, which compare the theoretical cumulative distribution functions
(CDFs) of the distribution model to the empirical CDF. Closer alignment between the empirical CDF
and a theoretical CDF (i.e., the closer the points are to the line y=x) indicates better fit of the data to
the distribution. Users should use Q-Q plots to inspect the tails and P-P plots to inspect the center of
the distributions. If a visual inspection of the plots does not reveal a clear choice among the candidate
theoretical distributions, a more rigorous quantitative approach can be employed to make the
distinction. Metrics such as the Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), and log-likelihood, can provide a quantitative basis for goodness-of-fit evaluations. Smaller
values of AIC and BIC and larger values of log-likelihood indicate better statistical model fit.
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The Weibull distribution is commonly used in reliability analyses due to its flexibility (Nelson, 1985).
For example, a Weibull with a shape factor (beta) of 1 is the same as an exponential distribution with
a constant failure rate. More details are provided below about this distribution and its implementation.
Additional information about fitting other distributions to failure data can be found in Klise et al.,
(2018) and Delignette-Muller and Dutang (2014).

The hazard function, which represents the instantaneous rate of occurrence for the failure, for the
Weibull distribution is defined as (Madigan, 2004):

h(t) = flat"'

The associated survival function for the Weibull distribution is then,

Š(t) = e-flta

where

t: time to kth failure;

a: shape parameter; and

p: scale parameter.

The shape parameter represents the pattern of risk over time. If a =1, then the probability failure is
constant over time; values greater than 1 indicate an increase in failure probability over time and values
less than 1 indicate a decrease in failure probability over time. For a given shape value, increasing the
scale stretches the distribution to the right (i.e., increases the mean time to failure) and vice versa.

An implementation of the Weibull estimator using the "survivar package in R is shown below. As
noted above, "df" represents the processed data containing details about the TTF (days) and
associated status:

librag(survival)

surv object <- Surv(time=dg 1 11-Ldays, event=dgstatus)

weibfit <-survreg(surv object — 1 ,data = df, dist = "aveibull')

summag(weibfit)

Exponential, Gaussian, logistic, lognormal, log logistic, and user-defined distribution parameters can
also be calculated using the "survivar package.

NOTE: Larger datasets increase the robusmess of the derived statistical parameters. Dataset
size can be augmented, either by using longer periods of observation or by increasing
the number of assets and systems considered in the analysis.
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3. FAILURE PATTERNS FROM PVROM

Sandia's PVROM database contains a collection of 50,000+ maintenance records from 800+ systems
across the country (Figure 3-1). The systems represent a total capacity of 5.1 gigawatts (GW) of direct
current (DC) and 3.9 GW of alternating current (AC). Information about some of the failures
referenced in the PV O&M cost model (Walker, 2017), including associated patterns extracted from
the PVROM database are presented in this section.

DC Capacity (GW)

I 2.5

2.0

1.5

1.0

0.5

Figure 3-1. Geographic coverage of Sandia's PVROM Database, as of August 2020.

Data observed in PVROM have the following properties: 1) dates when operations began are known
and vary by system, 2) failure dates and censor dates are random, 3) censoring is "right" (as opposed
to "lefe') because it occurred toward the end of the study period (as opposed to the beginning).
Variations in the actual operation dates are addressed by the calculations of TTF, which captures the
time between operation dates of the equipment and the failure event. TTR analysis is not conducted
due to poor quality and insufficient details in the maintenance data.

3.1. Component Failures

While the records contain details about the general PV equipment involved (e.g., inverter, tracker, and
module), there are insufficient details regarding the specific piece of equipment associated with each
failure event. Thus, the failure analysis is limited to the occurrence of first failure for a system.

A summary of the mean time to failure and associated Weibull parameters for different activities are
provided in Table 3-1. Additional details about these failures are provided in the following subsections.
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Table 3-1. Summary of Failure Patterns observed in PVROM.

Activity Description
Mean Time to
Failure (years)

Weibull Parameters

Shape (a) Scale (13)

Insulated gate bipolar
transistors matrix in inverter* 1.9 0.81 6.01

Inverter fan motor 2.2 1.04 11.03

Inverter reboot to clear
unknown error 1.6 0.86 6.24

Broken modules 2.3 1.29 10.95

Damaged racking 1.5 0.83 8.36

Hydraulic cylinder 1.0 1.14 17.16

Tracker motor controller 1.1 1.10 1.52

Tracker bearing(s) 1.7 1.28 2.18

Note: Analysis was conducted at an annual scale. Shape values greater than 1 indicate an
increasing likelihood of failure over time. *Source: Gunda (2020)

3. 1. 1. Inverters

Most of the entries in PVROM are related to inverters, which are arguably the most important balance
of system component in a PV system for energy production (Hacke et al., 2018). Inverters, which
convert DC to AC, provide a bridge between solar panels and electricity generated for the grid or
home (Formica et al., 2017). When an inverter fails, the system produces little or no power. Thus,
recognizing faults in the inverters is very important for increasing the reliability and efficiency of power
electronic converters since individual faults cause reduced efficiency and eventually lead to complete
system failure (Singh et al., 2015).

A notable inverter-related failure in the PVROM database relates to insulated gate bipolar transistors
(IGBTs). Since IGBTs modulate and filter current at very high speeds based on voltage, their failure
impacts overall inverter functionality (Doyle et al., 2019). Approximately 10% of the systems in the
PVROM database mention failures in IGBTs, occurring on average at 1.9 years after system operations
commence.

Another common failure in inverters occurs due to overheating. Since inverters are sensitive to
temperature variations, regulating the temperature (using cooling systems) prevents premature aging,
leading to improved performance. A typical air-cooled system consists of cooling fans, freeze plugs,
thermostat, radiator, heater core, pressure cap, overflow tank and hoses (Grubišk-Cabo et al., 2016).
A quarter of the systems in the PVROM database discuss cooling fan motor-related issues, with issues
occurring, on average, 2.2 years after initial operations.

When the underlying cause of an inverter failure is not clear, technicians and operators often resort to
resetting the system, as a first response, to bring the inverter to normal operational state (Lucero,
2018). These activities can either be done manually or remotely. Over 40% of the systems within
PVROM discuss resetting of inverters as a response to an unspecified failure. This activity occurs on
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average at 1.6 years after initial operations, occurring more frequently than IGBT or cooling system-
related issues. Additional details about inverter failures can be found in Gunda (2020).

3.1.2. Modules

PV module-related failures include cracked glass, cracked back sheets, and damages to the racking
structures.

At least 1/5 of the systems in PVROM discuss broken modules arising from cracked glass. Cracked
glass can be caused by many different factors (including ice, hail, and debris) and is usually
accompanied by discoloration (Strauch et al., 2010). Cracked glass issues can also emerge near burn
spots (Strauch et al., 2010). Some cracks can start small and due to heat and weather, grow and create
system-level problems (Solar Engineering Group, 2016). According to the PVROM database, broken
modules occurred on average 2.3 years after operations commenced.

Although backsheets are exposed to the sun less than other parts of the system, they still experience
stress due to snow, wind, dust, and pressure. These stresses can lead to cracks in the back sheets,
eventually leading to faults and forced system outages. Humid environments are especially prone to
cracking and delamination in module backsheets (Lin et al., 2015). Only one system in the PVROM
database discussed backsheet issues so distribution parameters were not derived for this failure.

Unlike backsheet issues, damages to the rack systems are more frequently captured within PVROM.
Over 1/3 of the systems discuss issues related to either sinking, leaning, or otherwise damaged racks.
Moreover, rack-related issues are discovered throughout the year, with a local maximum occurring in
March (Figure 3-2). The average TTF for rack-related failures is 1.5 years after operations began.

20-
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Figure 3-2. Occurrence of Rack-Related Damage Tickets

Trackers improve production by orienting solar panels toward the sun such that the angle of incidence
is minimized. The rotation of trackers (either on a single-axis or a dual-axis) is enabled by motors and
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associated controllers. Motors vary in efficiency, lifespans, and maintenance rates. Motors can be
affected by strong winds (e.g., during hurricanes), leading to solar tracker failures (Burgess et al.,
2018). Controller algorithms are designed so that the tracker system follows the sun intelligently, by
using algorithms to position the solar cell and increase the sunlight falling on the array. Failures in the
controller algorithm lead to system performance degradation due to inability to receive the sun's light
at the desired/optimal angle and time duration (Rumbayan and Putro, 2017). In the PVROM database,
76% of the systems (with non-fixed systems) discuss issues related to the tracker motor or the tracker
controller unit; these issues occur on average, 1.1 years after operations began.

Under normal operating conditions, most bearings outlive the equipment in which they are installed.
Only a few bearings fail during equipment operation. When a problem with bearings occurs,
troubleshooting can provide additional insights. Improper mounting techniques or inappropriate
screw sizing, for example, can easily damage bearings and cause premature failure or degraded
efficiency (Burgess and Goodman, 2018). Bolt self-loosening of modules - commonly caused by
vibration - can also degrade the module's performance and efficiency (Burgess and Goodman, 2018).
If bearings have been damaged, underlying root cause should be performed to understand and reduce
risks. Within PVROM, over 77% of the systems (with non-fixed mounts) discuss fastener-related
issues related to bearings, nuts, and bolts. These failures occurred, on average, 1.7 years after systems
begin operating.

3.2. Local Environmental Conditions

The O&M of PV systems is also greatly influenced by local environmental conditions, such as
vegetation, snow, dust, and pollen. Below, issues caused by each of these conditions is described in
greater detail, including a discussion of the times of the year at which these activities generally occur
in the PVROM database.

3.2.1. Vegetation

Vegetation management is required to reduce shading issues, damages from fallen branches,
and control site erosion. Since the amount of sunlight received by the PV systems determines their
power output, shadowing of the solar cells decreases their power output, with actual decreases in
energy production often more significant than expected (Brown, 2016). Vegetation and the associated
effects can vary greatly, based on the geographic region and type of climate. For example, vegetation
management in hot and dry climates is required to reduce likelihood of fires (Beatty et al.,
2017). Entries within PVROM discuss vegetation management both in the context of preventative
maintenance (typically occurring in two phases, between Apr-Jun and Sep-Oct) as well as corrective
maintenance (mostly outside of the winter months) (Figure 3-3). Corrective maintenance address
issues related to shading, wire management, ground faults, or damaged modules as a result of poor
vegetation management. A few records in the PVROM database also discuss triggering of trackers
into snow stow mode from vegetation being high even where there is no snow present.
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Figure 3-3. Occurrence of Vegetation-Related Tickets

3.2.2. Snow

Although cooler temperatures can improve the efficiency of solar production, snow on modules
causes degradation in energy production, especially in low tilt systems (Gwamuri at al., 2015; Gautam,
2020). Furthermore, the weight of the snow can put stress and damage the structural support of the
racks due to the non-uniform localized stresses at the mounting points; these stresses can also create
microcracks in the modules (Gay, 2017). Within the PVROM database, snow-related issues resulted
in forced and unplanned outages at both the inverter- and plant-levels. In some cases, trackers set to
stow mode became stuck in this position. Snow can also affect the surrounding areas, which in turn
affect the system. For example, one of the events in PVROM discuss a local grid outage resulting from
a vehicle running into a pole. These issues were most commonly observed in the late fall, winter, and
spring months across the New England, mid-Atlantic, and upper Midwest regions parts of the country
(Figure 3-4).
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Figure 3-4. Occurrence of Snow-Related Tickets
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3.2.3. Soiling

Airborne particles can significantly reduce output, degrading the system's performance (Hussain et al.,
2017). Soiling of solar panels can emerge from a number of sources, including bird poop, pollen, dust,
and dirt. The local climate (e.g., dry conditions or spring season) and land use (e.g., farming-related
activities) can influence the amount of soiling (NREL, 2017). Soiling stations are used to monitor the
amount of soiling on a system and also used to adjust estimates of expected energy values. The
majority of the soiling-related issues in the PVROM database are reported during the month of June
(Figure 3-5). Most of the tickets during the months of February and September reference soiling
station-related activities.
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Figure 3-5. Occurrence of Soiling-Related Tickets
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4. CONCLUSION

Effective O&M is crucial to ensure PV systems continue to meet production targets over their

lifecycle. Due to diverse environmental conditions and O&M practices at PV systems, the associated

O&M costs for PV systems can vary greatly. While the overall O&M costs for PV systems have been
decreasing, significant opportunities exist for reducing the variabilities in O&M costs between systems.
This report describes a statistical approach for deriving failure distribution parameters that can be used

to inform O&M planning and reduce associated costs. This methodology is implemented using field

data collected from 800+ U.S. systems, stored within Sandia's PVROM database.

A few notes should be made regarding the analysis of PVROM. First and foremost, the values

presented in Table 3-1 represent aggregate patterns across multiple geographies (with varied climates)

and across PV system manufacturers and model types. Although characterizing failure patterns is
informative, ultimately, understanding the cause of each failure is needed to help reduce and mitigate

risks. Unfortunately, root cause analysis is generally not conducted for events captured in the PVROM
database; hence, the root cause for failures is not known.

In the course of analyzing PVROM failure data, significant challenges associated with data availability,

consistency, and completeness were encountered. Standardization of failure data collection and

capture can greatly reduce the processing time and improve the consistency and subsequently, the
accuracy of associated analyses. Improving the resolution of collected data (to specific pieces of

equipment using unique identifiers) will also improve the component-level failure rate analysis and

lead to more refined values. For example, capturing the identifiers of components will enable

evaluations of recurring failure patterns, which can help inform subsequent root cause and failure
modes and effects analyses.

Finally, the age of the plants within PVROM is generally low - between 2-6 years, reflecting the general
pattern of young plants within the industry (Jordan et al., 2020). Thus, continued data collection and
analysis are required to improve our understanding of PV component reliability as plants age.
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