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Executive Summary

The overarching goal of this project is to understand the potential impact of connected and
automated vehicles. The goal was achieved through data collection, model development, algorithm
designs, simulations, and limited field tests.

The main outcomes from this project include: (1) we collected energy consumption and GPS data
from 500 vehicles over one year, with a total mileage of 8 million miles; (2) Based on the collected
data and other datasets collected at the University of Michigan, we developed a calibrated Ann Arbor
model in Polaris (model developed by ANL), and the fuel economy accuracy was found to be around
3.9% by comparison with field collected data; (3) An open-source SUMO model of Ann Arbor was
developed; (4) Eco-Routing algorithms in Ann Arbor using the SUMO model shows 6% fuel saving
potential; (5) Experiments conducted at the Mcity test facility shows that human drivers roughly
follow the Eco-driving suggestions roughly 70% of the time; (6) Based in the Ann Arbor travel
patterns, we found that each shared automated vehicle can replace around 4 individually owned
vehicles; and (7) Adaptive Traffic Signal Control Algorithm developed through this project has been
validated both in simulations and preliminary test results. For connected and automated vehicles, on
average the performance is 13% delay reduction, and 10% fuel reduction.

While connected and automated vehicles are in their early stage of deployment, the results from this
project confirm that there is significant potential for energy saving if the technologies are developed
and used properly. The three main technologies studied in this project include eco-routing, shared
autonomous rides, and adaptive traffic signal controls. The data collected and model developed
through the project can be used to study many other connected and automated vehicle
technologies.



Accomplishments
This project consists of five inter-connected tasks. The achievements and update on the status of the
milestones are reported for these five tasks separately below.

Task 1 Instrumentation and data acquisition of energy related

information

Task 1 is the portion of the project in which data loggers are installed on 500 vehicles in the Ann Arbor
area in order to generate data that will be used to calibrate the Polaris energy-consumption model
(Task 4), in addition to providing naturalistic driving and energy use data that will be used in other
tasks. Data collection and fusion are also developed in other tasks, but Task 1 focuses on the driving
data collection and fusion of those data with other data.

Overall, Task 1 is almost complete. The remaining work is to monitor the vehicles in the field and
eventually remove the data collection equipment from the vehicles. The task will be complete at the
end of December 2018. Details of the six subtasks follow.

The table shows the six subtasks and delivery times for Task 1, with a note regarding the expected
completion time. Four of the subtasks are complete, another (Subtask 1.5) is on time, but the Subtask
1.6, which addresses the actual fielding of the devices on 500 vehicles, is continuing. The data
collection has been proceeding for well over a year.

Subtask Subtask Schedule Schedule Status
end date
1.1 Coordinate and prioritize vehicle M1 12/5/2015 Complete
signals
1.2 Main data acquisition/ storage/ M2-M12 11/5/2016 Complete

transmission hardware
development and OBD port logger

1.3 Decode and translate vehicle M5-M7 6/5/2016 Complete
energy usage information for
logging

1.4 Integrate safety and other DAQ M5-M10 9/5/2016 Complete
systems into main aggregation
equipment

1.5 Integrate driver choice/behavioral (See Task 4 section)
model (routing) information

1.6 Data collection, instrumentation M8-M36 Complete Complete
refinement, and QC Nov 15, 2018

Progress and achievements during the most recent quarter of the project are described below, by
subtask.

Subtask 1.1. Coordinate and prioritize vehicle signals
This subtask has been reported upon in previous status reports, and is complete.

Subtask 1.2 Main data acquisition/storage/transmission hardware development and

OBD port logger
Subtask 1.2 is considered complete.



Previous project status reports introduced the data logger being used, which is a FleetCarma C2 OBD-
Il connector device that works with combustion only, hybrid, and pure electric vehicles. We have 500
devices and have installed devices into 509 vehicles, including 16 plug-in electric vehicles. (See more
on current device status in Subtask 1.6.)

Subtask 1.3 Decode and translate vehicle energy usage

information for logging
Subtask 1.3 is complete.

The data collected for energy usage has been modified as the
project has progressed, based on our growing understanding and
negotiations with the data logger vendor. This been reported on in '
previous quarterly reports, and will not be repeated here. i +'

Subtask 1.4 Integrate safety and other DAQ systems into main aggregation equipment
This project was completed before this quarter, but a summary follows for convenience.

This subtask addresses the need to fuse data from multiple sources into a comprehensive data set to
support analyses for the project. The sources include:

e Onboard OBD-Il logger (basic travel, location, time, and energy-related variables for 500
vehicles),
e Onboard DSRC devices (basic travel, location, time on some DOE project vehicles, and onboard
a few thousand vehicles from other ongoing projects, as appropriate),
e Metadata for vehicles and traffic signals (e.g., driver demographics, roadway network)
This subtask is considered complete, as the method for fusing the data is known and similar fusion has
been done at UMTRI in the past.

Subtask 1.5 Integrate driver choice/behavioral model (routing) information

This subtask involves providing an in-vehicle system with information that would provide driver
information on the congestion they may face on a planned trip, and advise a route. This effort is
reported in Task 4.

Subtask 1.6: Data collection, instrumentation refinement, and QC

This subtask involves the outfitting of the 500 vehicles with the ODB-II logger, validation of the system
— including the backhaul — and maintaining operations. To date, 7.7 million miles of data have been
collected in this study, and data collection continues. To date, over 787,000 ignition cycles have been
collected across 528 vehicles.

At this time, there are still 279 units installed and actively providing data. The devices are used until
the cellular data package expires, which has occurred over the past months for over one third of the
devices. The remaining devices’ cellular data packages expire early in November, so that data
collection was completed in November 15, 2018.

UMTRI has provided a copy of the database to date to the Argonne National Laboratory (ANL). This is
the complete set of data. This is possible because the informed consent form that the vehicle drivers
signed stated allows this data transfer, and ANL also agreed in writing to protect the data in accordance
to the privacy and data security requirements. The team is considering other ways to share data while
complying with the informed consent agreements with the drivers, including sing a three-step
approach to protect the starting and ending point of all trips.



Task 2 Display energy related information to study its influence on
the driver

Task 2 is designed to understand drivers’ behavior and decision making when interacting with vehicle
connectivity technologies through a set of experiments. In the first experiment (task 2.1-task 2.4),
research team developed a flexible driver information module capable of displaying a variety of
information to the vehicle operator. Information relevant to the energy savings functions will be
displayed to the driver and recorded so that this information can be used for later analysis. Through a
display screen, we will display information (i.e., countdown to traffic signal change from green to red)
to allow for a range of vehicle as well as driver efficiency coaching messages. The type and amount of
information displayed to the driver will be adjusted to aid in the assessment of various driver
information strategies. In task 2.5, factors impacting on drivers’ decision making in choosing routes are
examined through a field study.

The table shows the proposed subtasks and delivery times for the five subtasks of Task 2. The starting
date of the project is taken to be November 5, 2015, the date of the kickoff meeting.

Subtask Subtask Schedule Schedule Status
end date

2.1 Identify CAV user functions, co- M1 12/5/2015 Complete
design and prioritize signals

2.2 Develop driver information display | M2-M7 6/6/2016 Complete
hardware and communication

2.3 Design vehicle information display | M8-M12 12/7/2016 Completed
screen(s) and experimental cases

2.4 Review of the finished human test M13-M24 | 12/30/2018 Completed
results. Review the field
performance of the designed user
interface

2.5 Driver route choice survey and M30 11/30/2019 | Completed
guided-directions application

Subtask 2.1. ldentify CAV user functions, co-design and prioritize signals

Early on in the project two key CAV functions were identified that both show significant potential, and
had not been implemented in large-scale experiments: eco approach and departure, and green wave
(speed recommendation).

This subtask is considered complete.
Subtask 2.2. Develop driver information display hardware and communication

UMTRI has worked with Savari Inc. for developing hardware, software, and communication solutions
for the in-vehicle SPaT (Signal Phase and Timing) visualization and speed recommendation at
intersections. The hardware include ASD (Aftermarket Safety Device), antennas, DVI display (tablet),
WIFI dongle, and USB drive. Figure 2.1 shows the driver information display of the prototype system
that was demonstrated at the end of June 2016. Note this prototype is mainly focused on the system
functionalities rather than the HMI. The demo HMI is rather crude and has been improved during
Subtask 2.3 for the final testing.



(c) Cannot pass on green, prepare to stop (d) Red light violation

Figure 2.1 Savari prototype recommended speed application

Subtask 2.2 is considered complete.

Subtask 2.3 Design vehicle information display screen(s), vehicle instrumentation and
data collection

During this period of report, tasks on data collection, data reduction and data analysis have been
completed. The objective of this testing is to identify drivers’ reaction and acceptance to the energy
related feedback system. An experiment has been conducted tin controlled field environment (MCity
testing facility). The intersections at Mcity are equipped with DSRC Road Side Units (RSU) by using SAE
J2735 standard to allow communication between the vehicles and the infrastructure. For Wireless
Access in Vehicular Environments (WAVE), the SAE J2735 Standard specified a message set to utilize
the 5.9 GHz Dedicated Short Range Communications (DSRC) (Iglesias et al., 2013). Drivers followed the
course outlined in blue arrows (Figure 2.2). Data collection centered around the run from the green
cone to the red stop line. In-vehicle tablet device began receiving SPAT information from the RSU
around orange box while the tablet began receiving SPAT data from RSU at about 100 meters out from
stop line.

The in-vehicle DSRC-based V2I devices, including both hardware and software pieces, were developed
through a collaboration between the University of Michigan Transportation Research Institute and
Savari Inc. The V2I devices received and displayed real-time SPAT information and provided speed
recommendations based on both the current SPAT information and the vehicle’s travelling speed. The
devices included an Aftermarket Safety Device (ASD), antennas for ASD, a tablet screen, a WI-Fl dongle,
a GPS receiver, and a USB drive (See Figure 2.3). Three cameras were used to record the vehicles’ front
view, drivers’ face, and over the shoulder view. When the vehicle was approaching an intersection,
information relevant to the energy-saving and safety-improving functions (e.g., SPAT information and
recommended speed) was displayed to drivers on the tablet screen. The human—machine interface
(HMI) tablet provided drivers with real-time information such as the current speed, suggested speed,
and the countdown to traffic signal change from green to red (See Figure 2.4).



Fig. 2.3 Vehicle instrumentation and HMI display

In the experiment, a total of 32 participants from two age groups, 16 younger (20-30 years old) and 16
middle-aged (40-50 years old), were recruited through a random selection method. Gender was
balanced within each age group. To avoid the influence of novice drivers’ lower confidence and skill
levels on their driving behavior, all the participants had at least five years’ driving experience (mean=18
years, SD=10, range 6-33). Their education levels were divided into three groups: some college or lower
(19%), bachelor’s degree (47%), and master’s degree or higher (34%).

As shown in Figure 2.2, each driver was instructed to follow the course outlined in blue arrows during
the experiment a total of 15 times: a practice drive, seven baseline drives without the DSRC device
activated, and seven treatment drives with the DSRC devices activated. Data collection was geo-fenced
by using the area from the green cone to the red stop line, to capture intersection approaching
segments. Drivers were told to arrive at the green cone with a speed of close to 25 mph (40km/h).
DSCR devices began receiving SPAT information from the RSU around the orange box, which was
located about 100 meters out from the red stop line (i.e., entrance of intersection). After getting
familiar with the testing field, each participant experienced seven different intersection scenarios in
both baseline and treatment conditions:

Scenario 1: “Green Same Speed” — Current phase is green, and the vehicle can pass on green with

current speed — No speed changes required to pass the green phase;

Scenario 2: “Green Speed Up” —  Current phase is not green, and it requires acceleration to pass

green light phases — Required speeding up to pass the green phase;



Scenario 3: “Green Slow Down” — Current phase is not green, and the vehicle can pass on green
if change its current speed by decelerating — Required slowing down to pass the upcoming green
phase;

Scenario 4: “Green Stop” — Current phase is green, and the vehicle cannot pass on green under
any conditions — Impossible to pass green phase;

Scenario 5: “Red Through” — Current phase is red, and the vehicle can pass on the next green if it
changes its current speed — No speed changes required to pass the upcoming green phase;
Scenario 6: “Yellow Stop” —Yellow dilemma zone (less than 8 seconds left for the green light
phase) — Impossible to go through (i.e., make the yellow light);

Scenario 7: “Yellow Through” — Yellow dilemma zone (more than 10 seconds left for the green
light phase) — Possible to go through.

Both objective data (e.g., driving speed, throttle position, brake pedal use) and subjective data
(e.g., user acceptance from questionnaires) were collected and analyzed in this study. A post-study
guestionnaire with 14 questions was distributed to all participants to collect their opinions and
acceptance of the system.

[ 3

o

Fig. 2.4 Example of video views and information displayed through HMI

Subtask 2.3 is considered complete.
Subtask 2.4 Data analysis and interpretation

The research team has completed the main part of this subtask and one manuscript is accepted and
will be presented at the 2019 Transportation Research Board Annual Meeting. The purpose of this
analysis is to examine and predict whether and how drivers will change their behavior when provided
with energy- and safety-related strategy recommendations from V2I communication. Contributing
factors to the potential behavior changes are explored from four aspects, including vehicle kinematic
features, device information, driver characteristics, and subjective data.

Results on drivers’ acceptance

To analyze how much drivers will change their behavior when they are offered speed suggestions, the
compliance rate of recommended speed choices in the treatment group was compared with the result
in the baseline, as shown in the orange bars in Figure 2.5. In the baseline, there were no suggested
speed strategies, so recommended speed choices in the treatment group were used as comparison
references, after matching the constraints that include the same driver, same scenario, similar driving
speed (speed variation within 5 mph) when DSRC devices began to receive SPAT information. Finally,
201 valid samples from the baseline group were obtained. Results showed that in general, the
compliance rate during the treatment drive was much higher than in the baseline. Under scenario 2
(“Green Speed Up”), drivers’ behavior had the largest change with a 42% increase in the compliance



rate after drivers received suggestions from the V2| device. The second largest increase was 36% under
scenario 5 (“Red Through”), where drivers were more likely to keep current speed to enter the
intersection when they were provided with suggestions. In addition, compared with the baseline,
compliance rates under both scenario 1 (“Green Same Speed”) and 7 (“Yellow Through”) increased
more than 20% recommended speed choices. However, a decline of the compliance rate occurred
under scenario 4 (“Green Stop”). This might be because when information of the countdown to traffic
signal change was provided, drivers were aware that they had a chance to enter the intersection in the
next green phase if they decrease the driving speed dramatically and then approach the intersection
at an extremely low speed.

Mixed model analyses were performed by using the PROC GLIMMIX procedure in the statistical
software package SAS 9.2. Drivers’ compliance rate was significantly affected by scenarios (F(6, 380) =
8.70, p<0.01), offering suggestions or not (F(1, 380) = 12.95, p<0.01), and age (F(1, 30) = 4.18, p<0.05).
Younger drivers showed an 11% higher average compliance rate than middle-aged drivers. In addition,
the interaction between scenario and offering suggestions or not (F(6, 380) = 3.73, p<0.05) also led to
obvious changes of the compliance rate.
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Fig. 2.5 Drivers’ compliance rate of recommended speed choices under seven scenarios

Results on predicting drivers’ reactions when offered speed strategies

To predict drivers’ reactions towards speed choice recommendations, The Random Forests Algorithm
was applied by using the 224 samples in the treatment group were used. There were 13 independent
variables, from four sources:
e Vehicle kinematic features, obtained at locations where DSRC devices begin to receive SPAT
information from the RSU: current driving speed, throttle position, and brake;
e Device information: scenario, and V2| suggestions;

e Driver characteristics: age, gender, driving experience, and education level;

e Subjective data: Q1 (reliability and usefulness), Q2 (user-friendliness), Q3 (suggestion
receiving and satisfaction), and Q4 (driving risk).

The detailed definitions of the input variables, together with their distributions, are presented in Table
2.1. The dependent variable is drivers’ reactions, namely, drivers’ behavior approaching the
intersection. The distribution of the dependent variable is as follows: no change (30%), acceleration
(18%), deceleration (without completely stopping) (26%), and stopping (26%).

All 224 samples were split randomly into two sets by the ratio of 7:3 for training and testing
respectively. A Random Forests model was built by inputting 13 independent variables and run in the
R software. According to the stable and minimum values of the OOB error rate, ntree and mtry were
set to 600 and 6 respectively. The prediction result of Random Forests was shown in Table 2.2. In the



training group, the OOB error rate was 27.7%, namely, the OOB accuracy was 72.3%. In addition, the
overall testing accuracy was 75.8% (95% Cl: 63.3-85.8%). This Random Forests model performed well
in predicting the four-category variable with a relatively high accuracy. Using this model, drivers’
reactions at the intersection could be predicted by the data obtained about 87.4m (SD=2.4, range 75.5-
92.8) away where the vehicle started to receive signal phasing and timing information.

Table 2.1. Definitions and distributions of input variables

Input Variables Description (Units) Min Max Mean S.D.

Vehicle variables (obtain at the position where DSRC devices begin receiving SPAT information)

Speed Driving speed (mph) 20 35 26 2.6
Position of the accelerator pedal collected

Throttle position from the vehicle network and normalized 0 17 1.9 3.1
using manufacture specs (%)

Brake Pressing the brake pedal=1; otherwise 0 1 (6%); 0(94%)

Device information

Scenario Seven different intersection scenarios Each scenario (14%)

No change (30%); Acceleration (12%);

V2l Suggestions Recommended speed choices Deceleration (15%); Stopping (43%)

Driver characteristics

Age Younger:20-30; Middle-aged: 40-50 Younger (50%); Middle-aged (50%)
Gender Gender of drivers Male (50%); Female (50%)

Some college or lower (19%);
Education Education levels of drivers Bachelor (47%);

Master or higher (34%)

Driving experience Years of driving experience (years) 6 33 18 10
Subjective data
Ql Reliability and usefulness 8 16 13 2.1
Q2 User-friendliness 8 17 14 2.3
Q3 Suggestion receiving and satisfaction -1 6 3 1.7
Q4 Driving risk 1 6 4 1.1

Table 2.2. Prediction results of Random Forests

Training Set
. Observed 00B 00B
Predicted - -
No change Acceleration Deceleration Stop error rate accuracy
No change 39 3 4 1
Acceleratl'on 4 21 3 2 27 7% 72.3%
Deceleration 5 1 29 10
Stopping 0 4 8 28
Testing Set
. Observed
Predicted No change Acceleration Deceleration Stop Accuracy
No change 18 2 0 0
Acceleration 1 7 0 0 75.8%
Deceleration 0 1 12 7 (95% Cl: 63.3%~85.8%)
Stopping 2 0 2 10

This subtasks is 100% complete.



Subtask 2.5 Driver route choice survey and guided-directions application

The purpose of task 2.5 is to collect naturalistic driving data and understand factors associated
with drivers’ decision making on route choices. This task 2.5 contains four main subtasks which
are all completed: (1) EcoRouting app development, (2) experiment design and conduction,
(3) data analysis and results interpretation, and (4) final report preparation. ANL has
developed the EcoRouting app that was used in this study and collaborated on preparing with
the final report. UMTRI research team has led the effort of subtask (2), (3), and (4). The
research team has recruited a total of 43 participants in this study and the final dataset was
identified from 39 participants and used in the analysis, as some GPS data recording or missing
data issues occurred during the data collection of four participants. The methods and results
are summarized in the following sections.

1. Introduction

The main goal of this turn-by-turn navigation app was to collect all the answers to the
guestions of a survey presented at the beginning of the route, the number of detours with all
the new created directions and all the GPS coordinates followed by the driver.

The app was able to provide three different routes to the driver varying the time and the fuel
consumption on the routes (eco vs fast vs “balanced”). The app was also able to provide the
turn-by-turn guidance using the selected route while recording the data gathered along the
route. The route and navigation services were provided by the MapQuest API. This API
offered the route calculation after the input of the desired destination and also provided all
the data displayed in the turn-by-turn navigation screen.

The recording was made locally in a database file using SQLite API. In the code of the app,
there were two different databases, one was called ‘Trips.db’ and the other was ‘cars.db’. The
database were all the data for the analysis was recorded is ‘Trips.db’. The ‘cars.db’ file just
recorded the different cars used in order to introduce corrections in the required fuel
estimation made by the app at the beginning of the route.

2. Fuel consumption estimation

The three provided routes displayed an estimation of the fuel consumption that was
calculated considering two main effects: the average velocity, the traffic and the car used.
The effect of the velocity was modeled making use of the data provided by the user, since he
was supposed to provide the MPG value in the UDDS cycle (average velocity of 21.2 mph) and
in the HWY cycle (average velocity of 48.3 mph), these two values are easily found in the EPA
website for different car models. In https://www.fueleconomy.gov/feg/driveHabits.jsp, it is
explained that the maximum MPG occurs around 40-50 mph with a low effect of the speed in
this area. Also, when the speed is 80 mph there is a reduction of around 35% in the maximum
value of the MPG. Knowing this and using the two provided values of MPG, the dependency
of MPG with the speed observed in Figure 2.5.1 is obtained.

The effect of the traffic was modeled using the data provided by MapQuest, since they were
able to classify different segments of the route according to the traffic. The three main classes
of traffic segments were FREE_FLOW, SLOW, and STOP_AND_GO.
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Figure 2.5. 1 Effect of the speed on the MPG during a highway driving

With these two main effects on the MPG, the calculation was made using the following
procedure after splitting the whole route into different segments according to:

1. The whole route was split into different segments according to the traffic classification
made by MapQuest.

2. Calculation of the average MPG on each route segment with FREE_FLOW traffic was
made knowing the average speed in the segment and using the plot of Figure 2.5.1.

3. The global MPG of the route was estimated assuming that the vehicle had the value
calculated before in the FREE_FLOW segments of the route, and the city cycle value in
the STOP_AND_GO and SLOW segments. The value of all these segments were
averaged using their distances.

Y. Distancesgrgg rrow * MPG(Average speed) + Y, DistanceSyon rree rLow * MPG_city
Total distance

MP Gglobal =

3. App Functionality

The first screen (Figure 2.5.2) that appears in the app is a list with all the recorded trips, from
this screen the user can access to the information gathered on each trip, and create a new
one. When the ‘plus’ button is pressed, a screen to select the car that will be used appears.
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Figure 2.5.2. List of trips, trip details and select car

Once in the screen to select the car, the user can create a new car with its MPG values or
directly select a previously used car to use it during the route or to edit it (Figure 2.5.3). When
the car has been selected, the user accesses to the survey screen where all the questions to
answer are displayed (Figure 2.5.4).
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Figure 2.5.3. List of cars, create new car, edit car, and survey
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When the user has answered all the questions, the route selection screen appears. On this
screen, the user can type the desired destination and three routes appear with different
values for the distance, required time to complete and required fuel. The user can select the
desired route and pressing the 'START NAVIGATION’ button, the navigation screen will start

(Figure 2.5.5).
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Available routes
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Route 1: Fuel: 0.55 gallons
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Distance: 17.0 miles
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The Navigation display shows the meters left to complete the route with an estimated time to
arrive. The user can also find all the directions that he will find by pressing the ‘List” button
(Figure 2.5.6). In addition, it has to be noticed that each time that the ‘Pause’ button was
pressed, an instance of the trip was generated.
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Figure 2.5.6. Navigation screen

Data Collection
Data Collection

Forty-three participants were given a cell phone handset for two weeks and asked to interact
with a custom-designed and built “Eco-Routing” application. This interaction included
completing a route-choice survey and selecting from recommended driving routes prior to
beginning of some of their driving trips over a 2-week period. Participants who were also
participating in UMTRI’s Ann Arbor Connected Vehicle Test Environment (AACVTE) were
recruited to receive the cellular device with the custom-designed, Eco-routing software
application (Eco-routing device.)

Participants first came to UMTRI to pick-up the Eco-routing Device and to learn how to operate
it. Upon arriving at UMTRI for their visit, participants were presented with the requirements
for participating in the Eco-routing effort. They reviewed and completed the Eco-routing
Informed Consent document if they accepted the terms of the project. The expectations for
the interaction process with the Eco-routing cell phone application were then explained to the
participant. They were walked through setting up the application, inputting a trip, choosing a
suggested route and using the navigation function.

Application

Set-up for the Eco-routing application on the cell phone included having the participant name
their vehicle (in case they used more than one vehicle,) and input the gas mileage they
experience in their personal vehicle for both city and highway driving. Then they were walked
through the pre-drive survey questions and asked if they needed any clarification. Finally they



were shown how to initiate a new trip, and enter a destination into the application. They
could either tap on a map on the screen or directly input an address to enter the location of
the desired destination.

Before each trip began, the interaction with the cell phone application included answering
questions about the nature of the trip and the participant's trip planning process via a
short, eight question survey embedded in the application. After answering a few of these
survey questions, participants then input their desired destination for their planned trip. Next,
the application offered them one, two or three different driving routes to their destination
from which to choose. Each suggested route was listed with its expected distance, expected
fuel consumption and expected time duration. Participants were instructed: "The application
will provide you with the distance, time and estimated fuel consumption for up to three
routes. Choose the route that is most desirable to you (Figure 2.5.7). It is likely that one of
these routes is the best route for you to take, but you are not required to follow them." After
choosing a route, the device provided route guidance to the participant via both live turn-by-
turn directions on the screen and via verbal directions from the cell phone speaker. Maps and
navigation used the MapQuest API.

R 78% M 10:43 AM

Available routes

Distance: 2.9 miles
Route 1: Fuel: 0.11 gallons
Time: 8 mins

Distance: 3.6 miles
Route 2: Fuel: 0.14 gallons
Time: 9 mins

ROUTE 1 ROUTE 2

Figure 2.5.7. Screenshot of Route Selection Screen

The number of suggested routes was a function of the complexity of the route. For a very
short route, there was likely to be only one reasonable route as this would be the quickest
temporally, the shortest distance-wise and most economical for fuel consumption. For more
complex routes there could be more fundamental differences between route choices, often
such as whether to take the highway or surface streets, where to get on or off of the highway,
or sometimes two opposing directions around a city area.



Figure 2.5. 8. Treatment Route (actual GPS data from the participant,) and
Recommended Route (trace route created in Ovitalmaps.) This is an example
of a simple route for which the participant did not follow the Recommended
Route.

Once the participant arrived at the destination they received a message indicating as such. If
they deviated from the Recommended Route directions while driving, new directions were
created instantly, in real-time starting from the current location (treated as a new starting
location) and presented to the participant through the interface (as well as recorded in the

data file.), as shown in Figure 2.5.8.

The application displayed how many trips the participant had input data for and
“completed.” Participants were expected to record data for 20 trips over their two-week
exposure period. At the end of the exposure period participants returned the device and
UMTRI researchers downloaded the data to UMTRI servers. Participants were paid $100 for
their two-week participation if they completed the survey for all 20 trips and did at least
enough driving that the application gave them credit for completing a trip.

Data Collected

A total of 43 participants were originally recruited. The data included the responses to the
guestionnaire questions for each trip as well as the route chosen and the GPS data collected
on the device for the specific trips.

Data Reduction

Data was parsed and loaded onto UMTRI servers and was generally accessed using Microsoft
Transact-SQL. Data was aggregated and analyzed to determine which trips were "Valid" in the
sense that they were comprised of complete and correctly collected data from a participant.

Valid trips were first identified as having a completed survey and a fairly complete GPS
dataset. Trips that were duplicates of other trips (potentially where a participant entered the
same trip twice) were also flagged as "invalid." Finally, later in the analysis if it was found that
the participant did not travel to their inputted destination, the trip was also flagged as invalid
and removed from the dataset used for this analysis.



The GPS data from the Treatment Trips was mapped for each valid trip for each participant to
produce the Treatment Route Maps. Data for the Recommended Route was in the form of
turn-by-turn directions, so in order to compare the two routes, a trace map was made for each
valid Recommended Route chosen by a participant before a Treatment Trip. The Ovitalmaps
software was used to create the trace maps of the Recommended Route. These trace maps
were created by stepping through the turn-by-turn directions and placing pins at critical points
on a map to create a trace of the Recommended Route. Researchers creating the trace maps
began with the GPS location of the beginning and end of each trip and connected the two
points.

To determine if the participant followed the Recommended Route for a given trip, the
Treatment Route and the Recommended Route trace map were visually inspected to
determine if the exact same roads and turns that were recommended in the Recommended
Route were actually followed in the Treatment Route. Any deviation on surface streets or
highways from the Recommended Route would result in a trip being scored as "Did not Follow
Route." Slight deviations within parking lots, shopping centers, apartment communities and
small, unmarked subdivisions at the beginning and end of a trip were outside of the scope of
directions and would not result in a route being scored "Did not Follow Route." Table 2.5.1
presents a summary of the data collected. Forty-three participants received an Eco-Routing
device. Valid Trips were collected from thirty-nine participants. Participants on average
recorded data for 26.8 trips but only contributed valid data for 18.9 trips. Overall, participants
followed the Recommended Route in 434 of 738 valid trips or 58.8 percent of valid trips.

Table 2.5.1. Information on Participants’ Valid trips and route choices

Participant ID  All Surveys  Valid Trips  Followed Route  Did Not Follow

1 25 12 7 5
2 27 17 7 10
3 21 17 6 11
6 21 14 11 3
7 22 22 14 8
8 22 19 13 6
10 16 15 7
11 31 14 6
12 51 30 16 14
13 29 15 4 11
14 28 24 11 13
15 20 16 9 7
16 26 19 14

17 40 37 26 11
18 28 20 15

19 24 19 12 7
20 25 22 11 11
21 6 3 0

22 69 20 17
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Figure 2.5. 9 One example of “followed trip”
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Figure 2.5.10 An example of “un-followed trip” (red is recommended route, purple is actual driving)

Data Analysis and Results

There are two main purposes in this analysis: One is to investigate and predict what kind of
recommended route drivers will choose from eco, fast, and balanced options; The other is to
explore whether and why drivers will follow the recommended route. Impacting factors on
the driver’s route choices and following are examined from three aspects, including driver
characteristics, subjective data, and route information.

Modelling driver’s route choice

Since each recommended route may have several different features at the same time, for
example one recommended route is the most fuel efficient as well as the fast one, the driver’s
route choice is a multi-label problem. To mitigate the effects of unbalanced sample sizes for
different drivers, the average probability of route choice was calculated based on each driver,
as shown in Figure 2.5.11. In general, drivers were more likely to choose the fast route, having
the highest average probability 83.4%, followed by the eco route with a selection probability
around 78.6%, while the routes with the balanced feature had the least likelihood to be
selected, averagely 70.7% for each driver. There were totally 18 variables coded for each trip,
derived from driver characteristics, subjective data, and route information. After eliminating
the highly correlated variables, such as gas consumption and driving time of the selected route
were excluded due to their high correlations with distance, 14 variables were finally chosen
as the input variables for further analysis. Table 2.5.2 demonstrates the detailed descriptions
and distributions for all these candidate variables.



= Choose

Not choose

Figure 2.5. 11. The average probability of route choice

Table 2.5. 2 Definitions and distributions of input variables

Variables Description (units) Min Max Mean S.D.

Route information

Distance Distance for the selected route 030 13260 934  11.87
(mile)
Distance differences between the

Distance saving longest and the shortest 0 13.70 0.82 1.39
recommended routes (mile)

Average gas Gas consumption per mile for the 0.02 0.09 0.04 0.01

consumption

Sequence

Number of routes

selected route (gallon per mile)
The recommendation sequence
for different routes

The number of recommended
routes

Driver characteristics

Age
Gender

Subjective data

Purpose

Decision time

Household
passenger

Younger: 20~50, Older:50~75
Gender of drivers

Purpose of this trip

When did the driver decide to
take this trip?

How many household passengers
were traveling with the driver?

1st (75.88%), 2nd (19.78%), 3rd
(4.34%)

1(36.45%), 2(47.94%), 3(15.58%)

Younger (48.72%), Older (51.28%)
Male (43.59%), Female (56.41%)

Household errands (5.01%), Personal
business (9.08%), Picking
up/dropping off (3.52%), Recreation
(9.62%), Returning home (29.27%),
Shopping (11.11%), Socialization
(6.10%), School /work (19.24%),
Other (7.04%)

Earlier today (10.43%), Several days
or longer (8.54%), Just now
(18.56%), Not sure (0.41%), Routine
(56.37%), Yesterday (5.59%)

0 (85.09%), 1 (9.49%), 2 (3.52%), 3 or

more (1.90%)




How many non-household

o) (o)
passengers were traveling with 0(95.93%), 1(3.79%), 2.(0), 3 or

Non-household

0,
passenger the driver? more (0.27%)
. o Whenever (18.70%), Within 15 - 30
Flexibility How flexible was the driver's mins (4.20%), Within 5 - 15 mins

. . L
arrival time at the destination? (9.08%), Within 5 mins (68.02%)

Household errands (9.89%), Personal
business (13.41%), Picking
up/dropping off (2.30%), Recreation
(9.21%), Returning home (6.37%),
Shopping (10.43%), Socialization
(6.64%), School/work (26.70%),
Other (15.04%)

Were the driver able to leave Maybe (9.89%), No (23.31%), Yes
earlier from the prior activity? (66.80%)

What activity where the driver

Pri ivit
rior activity engaged in prior to this trip?

Leave earlier

Eco-route choice

To further explore the impacting factors on the eco-route choice, mixed model analyses were
conducted in the statistical software package SAS 9.2 by using the PROC GLIMMIX procedure.
All the input variables and their interactions were chosen as the fixed effects, while individual
driver and interactions between driver and any fixed effects were treated as random effects.
The dependent variable was whether choose the eco route or not. After excluding the
insignificant factors, the final model was shown in the Table 2.5.3 Distance had a negative
impact on the eco route choice (t(643)=-5.56, p<0.001), while average gas consumption
positively affected the eco route choice (t(643)=2.35, p=0.019), indicating that drivers were
more likely to select the eco route when its distance was shorter and gas consumption per
mile was higher. In addition, the route recommendation sequence also had a significant effect
on choosing the eco route (all p<0.001), and giving priority to recommend the eco route could
guide drivers to choose the eco way.

Table 2.5.3 Mixed model results for the eco-route choice

Effect Estimate Standard error DF t Value Pr>|t|
Intercept 1.139 0.715 38 1.59 0.119
Distance -0.056 0.010 643 -5.56 0.019
Average gas consumption 40.868 17.395 643 2.35 <0.001
Sequence
1st* 0
2nd -1.925 0.316 52 -6.10 <0.001
3rd -2.518 0.491 52 -5.13 <0.001

Note: * denotes reference group for categorical variables; only significant factors were
demonstrated in this Table

To predict driver’s route choice behavior, a multi-label Random Forests (RF) classification
model was established by using the “scikit-learn” package in Python software (version 3.6).
Those 14 variables mention above were selected as the independent variables, while the
independent variable is what kind of route drivers would choose, which is a multi-label
variable with three candidate features, i.e., eco, fast, and balanced. All 737 samples were



partitioned randomly into 70% for training and 30% for testing. After 5- fold cross-validation,
the parameters in the multi-label Random Forests were determined, i.e., the number of trees
was 550 and the number of variables considered in each split was 4. The final prediction result
was shown in Table 2.5.4. In the training group, the out-of-bag (OOB) accuracy was 87.0%,
and the overall testing accuracy was 79.3%. As for the prediction results in each label, their
precisions were greater than 80%. For comparison, several other machine learning methods
that are commonly-used multi-label classification were also tried in this study, including K-
Neighbors Classifier (KNC), Support Vector Classification (SVC); Neural Network Multi-Layer
Perceptron Classifier (NNMLPC). The area under the Receiver Operating Characteristic (ROC)
Curve (AUC) was used to evaluate the performance of different algorithms, and the ROC curve
in the multi-label classification was measured by the average value of all labels. As shown in
Figure 2.5.12, the AUC of the multi-label Random Forests classification was 0.86 which was
greater than others, indicating that the multi-label Random Forests classification had a better
performance.

Table 2.5.4 Prediction results of the multi-label Random Forests.

Label Precision Recall fl-score
Eco 0.86 0.85 0.86
Fast 0.90 0.95 0.92
Balanced 0.81 0.77 0.78

Overall accuracy Training (OOB): 0.870; Testing: 0.793
Note:  Precision=TP/(TR+FP);  Recall=TP/(TP+FN);  fl-score  =2*(Precision*Recall) /
(Precision+Recall)

Receiver operating characteristic (ROC Curve)
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Figure 2.5.12 ROC curves for multi-label classifiers

Figure 2.5.13 illustrates the variable importance which represented the statistical
prioritization of variables regarding their contribution to the prediction model. Variables from
route information showed the largest impacts on the driver’s route choice, i.e., distance
saving, recommendation sequence, distance, average gas consumption, and the number of
recommended routes, ranking the top five of the feature importance. The following were
subjective data, such as prior activities, the purposes of this trip, decision time, etc. However,
no obvious relationships were found in demographic data, indicating that driver’s route choice
were less likely be affected by age and gender differences.



Feature Importances

Distance saving
Sequence

Distance

Average gas consumption
Number of routes

Prior activity

Purpose

Decision time

Flexibility

Household passenger
Leave earlier

Gender

Age

Non-household passenger
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Relative Importance

Figure 2.5. 13. Variable importance of the multi-label Random Forests

Impacting factors on following the recommended route

Generally, the average probability that drivers would actually follow the route after they chose
from the recommended options was 56.7%, as shown in Figure 2.5.13. The detailed results of
following probability when they selected different categories of recommended routes were
illustrated in Figure 2.5.14. When drivers chose the eco, they had the largest likelihood (61.6%)
to following the route, followed by selecting the fast one with an averaged probability 61.1%.
When drivers selected the route with the balanced feature, they were the least likely to
comply with their option (59.9%).
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Figure 2.5. 14. The average probability of following the recommended route
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Figure 2.5. 15. The average following probability of each recommended route

To explore the impacting factors on following the recommended route, mixed model analyses

were carried out by using the PROC GLIMMIX procedure. In total, 12 candidate variables were

obtained from three sources:

e Route information: eco, fast, and balanced routes;

e Driver characteristics: age and gender;

e Subjective data: purpose, decision time, household passenger, non-household passenger,
flexibility, prior activity, and leave earlier.

These variables together with interactions among them were treated as the fixed effects,
while individual driver and interactions between driver and any fixed effects were regarded
as random effects. Whether driver’s following the selected route was the independent
variable. Results were demonstrated in Table 2.5.5. If drive choose the eco (t(32)=3.61,
p=0.001) or fast (t(31)=4.68, p<0.001) routes, they are more likely to fully drive along the
recommended route. Additionally, compared with driving alone (t(22)=-2.81, p=0.01) or with
only one household passenger (t(22)=-2.95, p=0.007), drivers will comply with the
recommended route when there were three or more household passengers.

Table 2.5. 5 Mixed model results for the recommended route following

Effect Estimate Standard error DF t Value Pr>|t]
Intercept -1.199 0.257 22 -4.67 <0.001
Eco route 0.776 0.215 32 3.61 0.001
Fast route 1.071 0.229 31 4.68 <0.001
Household member
0 -2.394 0.852 22 -2.81 0.010
1 -2.635 0.893 22 -2.95 0.007
2 -2.003 0.989 22 -2.02 0.055
3 or more* 0

Note: * denotes reference group for categorical variables; only significant factors were
demonstrated in this Table.

Conclusions

This study was conducted to collect naturalistic driving study data and understand what
factors are impacting on drivers’ decision making on route choices. A total of 738 valid trips
from 39 participants were recorded and used in the final analysis. Overall, participants



followed the Recommended Route in 434 of 738 valid trips or 58.8 percent of the valid trips.
Both Random Forest Tree algorithm and mixed models were applied in the analysis. In general,
this study found that drivers would change their route choices under certain conditions, when
they were provided with information related to different routes. Results of the analysis
showed that drivers were more likely to select the eco route when its distance was shorter
and gas consumption per mile was higher. It was also found that giving priority to recommend,
the eco route could guide drivers to choose the eco way. If drive choose the eco or fast routes,
they are more likely to fully drive along the recommended route while compared with driving
alone or with only one household passenger, drivers will comply with the recommended route
when there were three or more household passengers.

Task 3: Travel Behavior Modeling

The objective of task 3 is to study the impact of CAVs on travelers’ travel behaviors, including
departure time choice, route choice, willingness to ridesharing, etc.

Subtask | Content Schedule | End date Status

3.1 Experiment and survey design M1 12/5/2015 Completed
3.2 Model departure-time choice behavior M2-M6 5/5/2016 Completed
3.3 Model route choice behavior M7-M12 11/5/2016 Completed
3.4 Model travel activity pattern change M13-M20 | 7/5/2017 Completed
3.5 Calibration of POLARIS traveler behavior model | M21-M24 | 11/5/2017 Completed

Subtask 3.1. Experiment and survey design

A survey was designed to characterize the possible change of travel behaviors introduced by CAVs. The
survey was conducted among the participants of the Safety Pilot project. In total, 396 responses were
collected.

There are two types of questions in the questionnaire. The first type of the questions is related to the
participants’ demographic characteristics, such as gender, age, level of education, employment status,
etc. The other type of questions is about the information of their households, for instance, number of
cars, number of children, etc. Some of the questions are listed in Table 3.1.

Table 3.1 Sample questions in the survey

Questions Values

Gender 1=Male, 2=Female

Age 1=25-34, 2=35-44, 3=45-54, 4=55-64, 5=65+
Primary driver of the vehicle 1=Yes, 2=No

Number of vehicles in the household Integer

Number of adults in the household Integer

Number of children in the household 1=0 children, 2=1 child, 3=2 children, 4=3

children, 5=4 children, 6=5+ children
Number of licensed drivers in the household | Integer

Status of Employment 1=Full time, 2=Part time, 3=No
Consistent work schedule 1=No, 2=Yes
Start time of work hours Numerical

End time of work hours Numerical




Primary mode of travel to work 1=Drive Alone, 2=Carpool, 3=AATA Bus, 4=U
of M Bus, 5=Bicycle, 6=Walk, 7=0ther
Status of student 1=Full time, 2=Part Time, 3=No

Highest level of education 2: Did not complete High School

3: High School/GED

4: Some college

5: Associate degree

6: Bachelor's Degree

7: Master's Degree

Bicycle 1=Yes, 2=No
Transit/bus pass 1=Yes, 2=No
Free parking at the place of employment 1=Yes, 2=No
Hours per week driving in Ann Arbor area 1=30 minutes or less, 2=1-4 hours, 3=5-9

hours, 4=10-14 hours, 5=15-20 hours,
6=0ver 20 hours

This survey can be regarded as a benchmark when analyzing the possible change of travel behaviors.
In subtask 3.3, when mining activity patterns, the data collected in this survey will be combined with
the household activity data extracted from the Safety Pilot project database, to cluster the participants
and analyze their similarities within each cluster.

Subtask 3.2. Departure time choice and traffic demand

3.2.1 Introduction

Traffic congestion and air pollution have become severe problems, especially in big cities. Ridesharing
(Shaheen at al., 2015) is commonly recognized as an effective solution to reduce congestion and
transport emission (Caulfield, 2009). Among all the factors that influence people’s willingness to
ridesharing, incompatible work schedules and loss of privacy are the top ones (Baldassare et al., 1998;
Koppelman et al., 1993; Teal, 1987). Time savings from the usage of HOV lanes and monetary savings
from the evenly shared tolls, parking fees, and gasoline costs are the main incentives to motivate
people to share rides (Yang and Huang, 1999).

Autonomous vehicle (AV) technology can be a potential disrupter of the current mobility system. Since
AV can reposition themselves, the negative effect of incompatible work schedules on ridesharing might
be alleviated: when two commuters share a ride from home to attend two different activities, if their
activity durations result in a long wait between the two when they would like to go home, an AV can
be called to pick one of them up. However, with traditional vehicles, one has to either bear the long
wait or use expensive taxi service. This observation implies that AV has a potential to encourage
ridesharing when activity uncertainty is considered.

The goal of this subsection is to study the impact of AVs on travel mode and departure time choices
during peak hours. We demonstrate the impact of AV in a simple scenario. The scenario considers
round-trip commute with congestions at a single bottleneck and random work end time in the evening.
In this scenario, a commuter can share a ride with another commuter from home to work in the
morning, and either share a ride or call an AV to take her from workplace to home in the evening,
depending on the actual work end time of her and her ridesharing partner. Dynamic user equilibria of
the bottleneck congestion are analyzed for three cases: no ridesharing, ridesharing without AV, and
ridesharing with AV.



3.2.2 Problem statement and classical bottleneck model

During the morning peak hours, in a lot of cities, for instance in New York, traffic flows mainly from
outside of the city to the center of the city. Because of the huge traffic demand within a short period,
congestion occurs easily. For simplicity, such transportation networks during the morning peak hours
can be modeled as the graph shown on the left-hand of Figure 3.1. In the graph, “H” represents home
(residential areas), and “W” represents workplace. Then, because all “H”-“W” pairs are independent
from each other, we can just focus on one of the pairs, shown on the right-hand side of Figure 3.1.

Figure 3.1 Simplification of transportation network with one center

In the standard bottleneck model proposed by Vikery (1969), commuters drive from “H” to “W” in the
morning and wish to arrive at their workplace at a certain time point in the morning. “H” and “W” are
connected by a road with capacity s. Since the capacity of the road is limited, once demand rate
exceeds the capacity, there will be congestion. The commuters choose their departure time to
minimize their travel costs. It is a tradeoff between suffering congestion and being early or late to
arrive at workplace.

In the evening, similarly, most of the traffic flows from the city center to the outside. However, the
difference is that commuters’ departure time choice could be influenced by their work end time.
Suppose two commuters go to work by ridesharing in the morning. If their work end time turns out to
be very different, one of them must wait for the other for a long time. This effect of incompatible work
schedule is one of the obstacles for ridesharing. To capture the effect of different work end time on
commuters’ travel behaviors, the work end time is modeled as a random variable distributed in an
interval. Here provides a formal description of the model for the evening commute.

During the evening rush hours, a sufficiently large number, N, of commuters travel from work (W) to
home (H). Each commuter can depart from (W) only after her work ends. The commuters’ work end
time is uniformly distributed in the time interval [t,, tp], i.e., to~U(ty, tp). There is only one road
connecting (H) and (W), with a single bottleneck whose capacity is s. If the arrival rate at the
bottleneck exceeds s, a queue will form. If two commuters share a ride when they go to work in the
morning, they should go home by ridesharing with each other as well. It's also assumed that
ridesharing partners equally share their total travel costs.

Similar with the definitions in Vikery (1969) and Arnott et al. (1990), the cost of a trip, C, is expressed
as a combination of the travel time spent on road, the travel time spent in office, and the fixed cost
such as tolls. Specifically,

C = travel time cost + waiting time cost + Fixed cost

a(travel time) + B (waiting time) + Fixed cost,

where «a is the shadow value of the travel time when suffering from congestions on the road, and 8 is
the shadow value of the time spent in the office after one’s work ends. The fixed travel time cost is set
to zero, which does not change the nature of the problem.



Considering both the realistic situations and the simplifications of the problem, the following
assumptions are made.

e o > B.Suffering from congestion on the road is costlier than waiting in the office.

p— > s. Peak demand density is larger than the capacity of bottleneck, otherwise no
b~la
congestion will form, and each commuter will go home as soon as her work ends.

e Each commuter is rational and has complete information.
3.2.3 Round-trip bottleneck model without autonomous vehicles

To analyze the equilibrium of round-trip commute, we can study the behaviors of a pair of
commuters in the following two cases.

Case 1: All the other commuters drive alone

Suppose all the other commuters share rides and then investigate the choice of a pair of commuters,
by comparing the expected cost of ridesharing E(C,) with the expected cost of driving alone E(C,). If
ridesharing is costlier, it is an equilibrium; if traveling alone is costlier, then it is not an equilibrium. In
other words, an equilibrium obtains only if the two commuters have no incentive to share rides, i.e.,

E(C,) < E(Cy).
Case 2: All the commuters share rides
Suppose all the other commuters share rides and then compare the costs for the two commuters when
sharing a ride and when driving alone. If traveling alone is costlier, then an equilibrium obtains when
all the people share rides. If ridesharing is costlier, then it is not an equilibrium. In other words, an
equilibrium obtains only if the two commuters have no incentive to travel alone, i.e.,

E(Cy) > E(Cy).

3.2.4 Round-trip bottleneck model with autonomous vehicles

If all the regular vehicles are replaced by autonomous vehicles, the traffic pattern would be different.
In the morning, all the commuters will go to work by ridesharing, because even if their work end time
t1, t, turn out to be very different from their partners’, they can reposition an AV in advance to pick
them up. The resultant total cost is still no more than the case when traveling alone during the round-
trip commute.

In the evening, different from the case without autonomous vehicles, in this case, commuters can not
only choose departure time but also decide if ridesharing or not. Their willingness to ridesharing will
change the traffic demand and influence their departure time choice. On the contrary, their departure
time choice can also change the traffic pattern and influence their willingness to ridesharing.
Apparently, the fixed cost of a trip with an autonomous vehicle, Fyy,, could change the equilibrium as
well.

Due to the complexity of the problem, simulation-based method is applied. It basically simulates the
process to achieve equilibrium. In each iteration, all the commuters choose their departure time and
travel modes based on the observed traffic condition in the current iteration. Then, due to the choices
made by the commuters, the traffic condition is also updated. After several iterations, commuters’
choices and the corresponding traffic condition will converge, which means an equilibrium is achieved.
Figure 3.2 shows the distribution of the travel modes in the (ty,t;) space, with 8/a = 0.5,s(t, —
te)/N = 0.5,sF,,/aN = 0.05. If the work end time of the two commuters lies in the green area, then
they will still share a ride in the evening commute; otherwise, they will travel alone.
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Figure 3.2 Travel mode in equilibrium considering AV

Figure 3.3 shows the percentage of ridesharing commuters during the evening commute for the three
cases of equilibria when the vehicle related travel cost (fuel, mileage, tolls) varies. It can be easily seen
that when the fixed cost is low, which our real-world situation usually is, AV can encourage more
ridesharing. This is because with AV, commuters can go to work by ridesharing in the morning, without
worrying about the potential incompatible work end time with their partners in the evening. In the
evening, those pairs of commuters whose work end time turn out to be very close can still go home by
ridesharing. However, when the fixed cost of an AV is high, AV can potentially discourage ridesharing.
This is because with AV, those whose work end time is much earlier than their ridesharing partners can
call AV to pick them up, without staying in the workplace and waiting for their partners.
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3.2.5 Summary

The objective of this study is to investigate the impact of autonomous vehicles on peak-hour traffic
congestions. First, the congestion during peak hours is explained by bottleneck models. As an
extension to the classical bottleneck model which focuses on morning commute only, the methodology
is also applied to the evening trip and thus the round-trip commute. Then, the equilibria of departure
time and travel mode choices are established for both regular vehicle case and autonomous vehicle
case. It is shown that in equilibria, AV could encourage ridesharing if its fixed cost is low enough but
discourage ridesharing if its cost is high.



It should also be noted that this study has limitations that future work may overcome. On one hand,
in this study, a simplified transportation network is used. In real world, a transportation system can be
very large and complicated. It may also contain HOV lanes, public transportation, parking constraints,
etc. On the other hand, all the commuters in this study are assumed to be rational and homogeneous.
In real life, commuters may have bounded rationality and different values of time.

Subtask 3.3-3.5. Activity patterns and travel behaviors

3.3.1 Activity pattern mining
Introduction

To understand the potential changes of departure-time choices, route choices, and travel activity
patterns after CAVs are in place, the first step is to understand how people travel now when CAVs are
not prevalent. To this end, analyzing the baseline travel pattern using Safety Pilot data is essential. At
this stage, we hope to travel patterns (including departure-time, route choice, activities, and
destinations) from the Safety Pilot database, conducting statistical analysis and build a connection
between the trajectory data and the travelers’ demographic factors.

Traveling is a derived demand and the internal motivation for traveling is to accomplish certain
activities. Therefore, the activity-based approach provides a more realistic and enriched
representation of how people travel compared to the traditional trip-based approach. With the
emergence of the trajectory data collection devices, such as GPS devices, smart phones, Bluetooth, or
connected vehicles, the activity-based approach becomes increasingly popular in travel demand
modeling and forecasting because of its power in accommodating these disaggregated travel data.

Data description

Specifically, we will introduce the data collected from the first nationwide scaled-down testbed for
connected vehicles in Ann Arbor, Michigan. “Stay points” along a GPS trace (i.e., a static point with a
staying duration of more than a certain threshold) contains importation travel “semantic” information,
including the type of the land use for each stay point, the activity one performs at that location, and
the activity schedule for each individual traveler. Such rich information can benefit various research
topics, including: activity travel pattern identification, hotspot analysis (i.e., a region with concentrated
travel demands), travel recommendation, life pattern understanding, user similarity, and location
prediction (Zheng, 2015).

One trip is defined as one segment of travel starting from when the engine is turned on until it is off.
Literally, the first GPS point along one trip is the origin while the last is the destination (see Figure 3.4).
If a driver is assumed not to stop in the middle of a trip, the origins and destinations are treated as the
major stay points for each individual.
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Figure 3.4 Sample travel-activity pattern: (a) Conceptual trip chain; (b)Time-space trajectory

However, GPS trajectories are generally quite noisy and thus in many cases, we cannot directly adopt
the first (or last) points of a trip as the origins (or destinations). Especially when the car engine just
starts, it takes a while for GPS devices to connect to satellites and thus make origin points particularly
difficult to identify. To more accurately capture origins and destinations, we used both speed, denoted
by v, and the number of satellite, denoted by n. The rationale of using speed is that when a trip just
starts or is about to end, its speed must be lower than a threshold speed v},. The number of satellites
attached to one GPS point indicates its measurement accuracy. The more satellites, the more accurate
the point is. In other words, assume the optimal number of satellites to ensure a GPS measure is ng,
the closer the actual satellite number is from ng, the more accurate this point is. Accordingly, the
confidence of the accuracy of a GPS point is defined as the weighted average of the speed difference
from the threshold speed and the satellite number difference from the optimal number:

e

h Ng

where a and 8 are weight parameters.

Built upon the confidence of a point, now we are ready to define a set of rules to identify the origin
0(i) and the destination D (i) for a trip T;. If the confidence of the first (or last) point is greater than
0.6, it will be used as the origin (or destination) point. However, if its confidence is lower than 0.6, it is
inappropriate to use. Given that an individual’s travel trajectories are continuous, the origin of the trip
T; is the destination of the trip T;_; and the destination of the trip T; is the origin of the trip T;, ;.
Therefore, if the confidence of the destination (or origin) of the last (or next) trip is higher than the
first (or last) point of this trip, we will use the destination (or origin) of the last (or next) trip. Otherwise
we will not consider this trip. These rules can be expressed as follows:

first(T;) Q(first(Ti)) > 0.6
0 =4p@-1) QDG -1) = Q(first(Ty)) & Q(first(T)) < 0.6,
(0) other

last(T))  Q(last(T;)) = 0.6
DD =40@+1) Q(0G+1))=Qlast(T,)) & Qlast(T)) < 0.6,
0} other



where first(T;) represents the first point of trip T;; last(T;) represents the last point of trip Tj;
D(i —1) and O(i + 1) represent destination of the trip T;_; and the origin of the trip T}
respectively.

Using the above rules, all the stay points of each driver can be extracted. Here the data used is from
April 1 to October 30, 2013. Figure 3.5 illustrates one driver’s stay points during this period where x-
axis and y-axis represent longitude and latitude respectively. Clearly these points are highly scattered,
mainly because of the GPS errors or because drivers may stop in multiple places in one mall area.
DBSCAN (Density-based spatial clustering of applications with noise) method (Ester et al., 1996) is first
applied in MATLAB if points are within the range of 50 meters. As illustrated, the blue cross in the circle
is the center of a cluster of multiple points. If a point is visited at least once a week, it is a frequently
visited place (in blue), otherwise it is an infrequently visited place (in red).
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Figure 3.5 Density cluster of the origins and the destinations for one driver

To identify the land use types of these points, they are then imported to ArcGIS (www.argcis.com) and
the “spatial union” tool is used to map points to the shape file of the City of Ann Arbor land use with
the threshold value set as 100 meters. There are 13 land use types, as shown in Table 3.2.

Table 3.2 Land use types

ndex | Lane use type

On road

Single-family/ Multiple-family residential
Commercial

Industrial

Governmental / Institutional

Parks, Recreation, and Open Space
Transportation/communication/utilities (TCU)
Water

Agricultural

Airport

Others

Home

S 200N IWIN~|O

=0
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In a period of 7-month travel history, a set of time stamps to visit one cluster can be extracted. In
Figure 3.6, the x-axis and y-axis are longitude and latitude respectively while z-axis represents the time
stamp. Denote the coordinate of the cluster center by (x;, y;). Denote the earliest time to arrive at
one cluster and the latest time to leave the cluster by t; and t; respectively. Therefore, one frequently
visited place can be denoted by P (xq,Vy, [t1, t1]). A traveler’s activity pattern (P1— P2— P3— P4)is
obtained when time t;,; > t;(i = 1,2, ...), where t; is the earliest time to reach the activity i + 1
and t; is the latest time to leave activity i.
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Figure 3.6 Schematic diagram of frequently visited places and activity pattern

To understand the evolution of the activity patterns, the dynamic activity patterns are presented over
the map of the city of Ann Arbor on Friday September 13, 2013 using a professional data visualization

III

tool “Processing” (www.processing.org). Figure 3.7 shows the traffic density during a one-hour period
(on the left column) and the activity type of each participant’s residing location at a given time (on the
right column). As time elapses, the cars start leaving residential areas and stay in the land use types
related to work from 8 am. After 5 pm, more cars are on road during the evening peak hour. At 8 pm,

there is a growing number of cars on commercial or recreational land use.
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Figure 3.7 Schematic diagram of frequently visited places and activity pattern

Similarity analysis among activity patterns

Similarity is a quantitative measure of the extent to which patterns from two sources are alike. Cosine
similarity, measuring the cosine of the angle between two vectors, is widely used in revealing
connections in the social network (Toole et al., 2015).

In this study, we aim to define a similarity index measuring individual’s activity sequence similarity.
Travel activity pattern similarity is a quantitative measure of the extent to which travel activity patterns
of two households or individuals are alike. To find an appropriate similarity measure between two
activity patterns, we first define the longest common sequence between two sequences a; and a;. For
instance, if individual i’s pattern is ‘home-work-institution-home’ and individual j’s is ‘home-work-
shops-work-home’, then their longest common sequence is ‘home-work-home’. Accordingly, the
travel pattern similarity is defined as:

length(longest common sequence between a; and a]-)
S:: =
Y max{length(a;), length(aj)}

Note that s;; is always equal to sj; so the similarity matrix is symmetric. This definition does not
consider where and when each activity is conducted but only the sequence.

Built upon the similarity calculated between every two travelers, we will group them by their similarity
values and then compare their demographic features within each cluster. The similarity value s;; for
individual i and j can be used to construct a similarity graph, denoted as G, which is composed of
nodes and edges G = (V, E), where V is the set of households and E is the set of weighted edges. The



weight of the edge ij is s;;, representing the similarity between i and j. Spectral clustering method is
implemented to cluster travelers sharing similar travel patterns (Von Luxburg, 2007).

Applying the clustering method to the Safety Pilot dataset, 3 major clusters are identified. Looking into
the demographic characteristics, significant difference among the clusters can be observed, as shown
in Figure 3.8. For instance, people in cluster 1 spent a lot of time at school. In fact, all the travelers in
cluster 1 have child/children in their households. In cluster 2, travelers spent more time at workplace.
In fact, all of them are employed, as the survey tells. People in Cluster 3 spent more time at home. In
fact, they are mostly senior people according to the survey.
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Figure 3.8 Histogram of household features within five clusters

Other than inspecting features within each cluster using histograms, it is also interesting to know
whether travel activity similarity is correlated with any demographic features quantitatively. There are
many machine learning techniques which can be used to establish the mapping from demographic
features to travel behavioral similarity. For simplicity, the linear regression model, i.e., S = ¢X + b, is
used. As S,X are matrices, they are first vectorized and then the regression is performed in the
corresponding vector space. The elements in X are categorical variables, so they are first converted to
factors and then multiple linear regression is employed in R using “Im” routine. Table 3.3 illustrates
the estimation results using 396 samples.

Table 3.3 Estimation of coefficients

Estimate | Std. Error | tvalue p value Significance level
Intercept 0.615548 | 0.002234 | 275.516 | < 2e-16 HAx
Gender2 -0.00509 | 0.001303 -3.911 9.21E-05 | ***
Age2 -0.00176 | 0.001635 -1.077 0.2814
Age3 0.00329 | 0.001856 1.773 0.07627 | .
Aged 0.01238 | 0.002554 4.848 1.25E-06 | ***
Age5 -0.01552 | 0.005181 -2.995 0.00274 | **
Adults2 0.003693 | 0.001499 2.463 0.01377 | *
Adults3 0.006318 | 0.002273 2.78 0.00544 | **
Adults4 0.015908 | 0.003711 4.287 1.81E-05 | ***




Adults5 0.036668 | 0.008661 4.234 2.30E-05 | ***
Children2 -0.01623 | 0.001539 | -10.546 | < 2e-16 HAx
Children3 -0.04346 | 0.001802 | -24.116 | < 2e-16 HAx
Children4 -0.03711 | 0.002717 -13.66 | < 2e-16 HAx
Children5 -0.03272 | 0.010595 -3.088 0.00201 | **
Children6 -0.01508 | 0.006015 -2.508 0.01215 | *
Vehicles2 -0.00846 | 0.001539 -5.493 3.95E-08 | ***
Vehicles3 -0.02018 | 0.002138 -9.442 | < 2e-16 rokx
Vehicles4 -0.00926 | 0.003455 -2.68 0.00737 | **
Vehicles5 0.012982 0.00584 2.223 0.02622 | *
Vehicles6 -0.00338 | 0.012988 -0.261 0.79442
Employed?2 -0.0319 | 0.001502 | -21.236 | < 2e-16 rokx
Schedule2 -0.02041 | 0.001349 | -15.134 | < 2e-16 rokx
Mode2 -0.02563 | 0.002999 -8.544 | < 2e-16 rokk
Mode3 0.016646 | 0.002921 5.698 1.21E-08
Mode4 -0.00146 | 0.007034 -0.208 0.83522
Mode5 -0.00054 | 0.003439 -0.156 0.87572
Mode6 -0.05617 | 0.002975 | -18.879 | < 2e-16 ok
Mode7 -0.07191 0.002231 | -32.227 | <2e-16 ol
Student2 -0.02562 | 0.002804 -9.138 | < 2e-16 HAx
Student3 -0.06731 | 0.003754 -17.93 | < 2e-16 HAx
Education3 -0.00452 | 0.001529 -2.958 0.0031 | **
Education4 | -0.00386 | 0.001924 -2.007 0.04474 | *
Education5 -0.00852 | 0.002772 -3.075 0.0021 | **
Education6 | 0.005668 0.00439 1.291 0.19665
Education? -0.0299 | 0.014079 -2.124 0.03371 | *

Significance codes: 0 “*** 0.001 ‘**’ 0.01 ‘**’ 0.05‘."0.1°"1

Because all the explanatory variables are categorical factors, the first level is used as the reference
level. The number after the variable name represents each level other than the reference level. For
example, gender has two levels: 1 (male) and 2 (female). In R, gender=1 is treated as the reference
level and therefore the coefficient (i.e., -0.00509) in front of “Gender2” is estimated relative to the
reference level, meaning that when the gender is changed from 1 to 2, the similarity measure will be
reduced by a magnitude of 0.00509. Most coefficients are significant because of the small p-value,
indicating that an individual’s travel activity is indeed correlated to demographic features.

3.3.2 Household activity pattern optimization model
Introduction

The goal of this subsection is to investigate the impact of automated vehicles on daily traffic and energy
consumption. The model is activity-based because the presence of automated vehicles will not only
change people’s travel experience on road, but also change their departure time and travel mode. To
this end, we should change our focus from how people finish their daily travels to how people finish
their daily activities.

The household activity pattern optimization problem is defined as follows. For a household that has M
members and V vehicles, given the daily activity of each member, determine the optimal activity
sequence for each member/vehicle as well as the start and end time of each activity, so that all
activities can be finished, and the system cost is minimized. The system cost could be one or a



combination of the followings: total travel time, total waiting time, total travel distance, total energy
consumption and so on. There can also be some constraints, such as

* Travel time between different locations of activities

*  Feasible time windows for start/end of each activity

*  Some activities must be performed by certain members
*  Some activities must be performed using certain vehicles
* Some members can only drive certain vehicles

Optimization model

The problem is formulated using a network flow model. The start or the end of each activity is modeled
as a node, and connections between each pair of nodes are the links. Note that the links in this model
have two categories. If the link is from the start of an activity to the end of the same activity, the weight
on the link is the duration of the activity; if the link is from the start/end of one activity to the start/end
of another activity, the weight on the link is the travel time between two locations. With these nodes
and links, the goal of the problem is to find an optimal path for each member and each vehicle to finish
all activities with minimal cost. The notations are summarized in Table 3.4.

Table 3.4 Notations used in the household activity pattern optimization model

Input parameters

AV The set of indicators whether each vehicle is an autonomous vehicle. AV(v)=1, if
vehicle v is an automated vehicle. AV(v)=0, otherwise.
RS The matrix of indicators whether a member is willing to share a ride with

another member. RS(m,n)=1, if member m want to share ride with member n.
RS(m,n)=0, otherwise.

MA Member-activity matrix. MA(m,a)=1, if member m is eligible to perform activity
a. MA(m,a)=0, if member m is not eligible to perform activity a.

VA Vehicle-activity matrix. VA(v,a)=1, if vehicle v can be used to perform activity a.
VA(v,a)=0, otherwise.

MV, Member-vehicle matrix of capability. MV.(m,v)=1, if member m can drive vehicle
v. MA(m,v)=0, otherwise.

MV, Member-vehicle matrix of ownership. MV,(m,v)=1, if member m own vehicle v.

MA,(m,v)=0, otherwise. Here we assume that each vehicle must stay with one of
its owners at the beginning and the end of the day.

VvC The set of vehicle capacities. VC(v) denotes the capacity of vehicle v.

P* The set of spatial-temporal nodes corresponding to arriving at the locations of
activities. P*(a) denotes arriving at the location of activity a.

P The set of spatial-temporal nodes corresponding to leaving from the locations of
activities. P"(a) denotes leaving from the location of activity a.

FP For any activity a, if u=P*(a), then FP(u)=P(a).

P P=P*UP"

Q' The set of spatial-temporal nodes corresponding to returning home, including

the final return home and midday return home. Q*(m,k) denotes the k' return
home for member m, k=1,2,..., K, K+1, where K is the maximum number of
midday return home, Q'(m, K+1) denotes the final return home for member m.
Q The set of spatial-temporal nodes corresponding to midday leaving home,
including the first departure from home and midday departure from home. Q'
(m,k) denotes the k™ leaving home for member m, k=0,1,2,..., K, where K is the
maximum number of midday leaving home, Q’(m,0) denotes the first departure
from home for member m.

N The set of all spatial-temporal nodes. N={P*, P, Q*, Q}.




t Time matrix. t,w is a large number L if w=u or u=FP(w), or the activity execution
time if w=FP(u), or the travel time between the location of node u to location of
node w for all other cases.

c Cost matrix. ¢',w denotes the vehicle cost (e.g., fuel consumption) if vehicle v is
used to travel from node u to node w.
TW The matrix of time window for all the nodes including the first departure and the

final return. Specifically, TW=[TW, TW,], where [TW,(u) TW,(u)] gives the time
window for activity u.

Decision variables

X"uw Binary variable indicating whether link (u,w) from node u to node w is on the
path of member m. X™, =1, if link (u,w) from node u to node w is on the path of
member m. X™, ,=0, otherwise.

Xuw Binary variable indicating whether link (u,w) from node u to node w is on the
path of vehicle v. X*,,w=1, if link (u,w) from node u to node w is on the path of
vehicle v. X¥,w=0, otherwise.

Tu Continuous variable denoting the time of each spatial-temporal node.

The constraints in this problem include:

1)

2)

3)

4)

5)

6)

Each activity must be performed by at least one eligible member.
z (X:,LFP(u) -MA(m,u)) 21, ueP’

meM

Each activity must be performed by an eligible vehicle.

Z(ZX:L, -VA(v, M)J =, ueP’

veV \ weN

Z(ZX:,W 'VA(Vau)j:L ueP”

veV \ weN
Midday return home trips may or may not happen for each member or vehicle.
The number of midday return home trips for each member or vehicle is restricted to a certain

maximum value, K. One obvious upper bound is the total number of locations for all activities and
homes, Na+Nnm. However, it is usually much lower than that.

Flow conservation for each member.
For the ease of composition, we assume there is always a dummy link between node Q*(m,K+1)

and node Q'(m,0) for member m, i.e., X", »=1, if u=Q*(m,K+1) and w=Q'(m,0). The physical meaning
of this link is that member m should stay at his/her home from the final return home time on one
day to the first departure time on the following day. With that, we can complete the following
conservation equation for member m.

XN => X", meM, ueN

weN weN

Flow conservation for each vehicle.
Similarly, assume that X", w=1, if u=Q*(m,K+1), w=Q'(m,0) and MV,(m,v)=1, for any vehicle v and
one of its owner m. The flow conservation equation for vehicle v is

ZX:,W = ZX;M, veV,ueN

weN weN

Each node should be visited at most once for any member or vehicle.



7)

8)

9)

ZX;',IWSL meM,ueN

weN

X:’WSI, veV, ueN

weN

Driver on board.
For any trip of a regular vehicle v, it must be guaranteed that at least one feasible driver of that

vehicle is on board. However, if vehicle v itself is an automated vehicle, there would be no
constrained on human drivers.

> (X7, -MV(m,v))+ AV 2 Lif X} =1, veV,u,weN

u,w
meM

Travel with vehicle.
For any link that is part of any member’s path, it must be guaranteed that there is one vehicle

traveling on the same link.

> X =Lif Y X' >1, u,weN

veV meM

Note that there is no need to let two vehicles travel on the same link, because each node in the
model is specific for one member.

Vehicle capacity constraint.

The number of occupants of any vehicle at any time must be less than or equal to its capacity.

3 X! <VCW)if X!, =1, ve V,u,weN

meM

10) Ride-sharing.

Each member m will not visit any activity that is not on his/her list. However, if member m wants
to share a ride with another member n, then member m may also visit member n’s activities and
member n’s home.

DX+ K+ X0+ X gy ) = 0, if D RS(m,n)- MA(n,u) =0,

u,w

weN neM
m m m m
or, Y (X7 + X + X0, + Xy ) S Lo D RS(m,n)- MA(n,u1)
weN neM

meM,ucP”’

S (X7, X0+ X7 X ) =0, ifRS(m,n) =0,
u,h, u,h, I o
ueN
m m m m
or ZN(X“JI: + Xu,h; + Xh;,u + Xh;,u) <L- RS(m,}’l)
ue

mneM,m#n

Similarly, each vehicle v will not visit any activity or home location that is not on the list of any of
its owners or its owners’ ride-mates.
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11) Time constraints.
For any node, its time must be within the feasible time window.

TW (u)<T <TW,(u),ueN

For any link connecting two consecutive spatial-temporal nodes, except for the dummy link, the
time difference between them must be greater or equal to the time needed to finish the trip or
activity.

T,-T >t ,ifX!" =lorX, =1, meM,veV,u,weN, w=Q (m,0),
where t,, ,, is a large number L if w = u or u = FP(w), or the activity execution time if w =

FP(u), or the travel time between the location of node u to location of node w for all other cases.
Cost functions could include one or more of the following:

Cost function Description
Z Z Z e’ Total cost of vehicle usage.
u,w M w
veV ueN weN
Z z z t X" Total travel time for all members.
uw " u,w
meM ueN weN,w=FP(u)
Z T Final return home time.
Q' (m.K+1)
meM
Z (T _7 ) Total out-of-home time
" (m, K +1 " (m,0
ey Q (m +) Q (m )
Total waiting time.
m
Z Xu JFP(u) FP(u) 7:,) _tu FP(u)
ueP* \meM
Approximated total waiting time*
z TFP(u) -T,-t, Fp) T Z Wk L | L pp()
ueP* meM
Total waiting time
T ) t, X" . .
meM( Q' (mK+) meZMuezNweN;P(u) u, W W (alternative expression**)




* Here we approximate the waiting time for any additional member engaged in an activity as the
activity execution time. When this approximate total waiting time is minimized, it is very likely that the
actual total waiting time is also minimized.

** Note that the out-of-home time for all members is comprised of the total travel time for all
members, the total execution time for all activities (a constant), and the total waiting time for all
members.

3.3.3 Minimum fleet problem
Problem statement

If multiple families share a fleet of autonomous vehicles, what is the minimum fleet size required to
satisfy their travel demand? Specifically, given a set of origins and destinations of all the trips, how
many vehicles are needed to serve the trips? How will the vehicle miles travelled (VMT) change?

Data description

The data used are the high-resolution trajectory data collected by both on-board units and road side
units. Given the trajectories, we can extract the origins and destinations (ODs) of the trips, which could
be regarded as the first and the last locations of the trajectories. Due to the precision of the GPS devices
and the “cold start” effect, the destination of the current trip might not match with the origin of the
next trip of the same traveler. This is not a big issue in this context because it does not influence the
general framework of the problem.

The left part of Figure 3.9 shows the distribution of the ODs of the trips in southeast Michigan collected
from 2014 to 2018. The area with the highest travel demand of the Safety Pilot participants is the Ann
Arbor-Ypsilanti area, highlighted by the red rectangle. Within all the trips, 79% of them has either origin
or destination in the highlighted area, and within these trips, 81% of them have both origin and
destination in the area. Therefore, our focus is on the highlighted area. By focusing on this area, the
scale of the problem and the computational time required to solve the problem can be significantly
reduced. The right part of Figure 3.9 shows the distribution of ODs in the selected area.

ODs of Safety Pilot Participants (2014-2018) ODs in the Selected Area
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Figure 3.9 ODs of all the trips
Offline minimum fleet problem

Denote the set of trips by 7. For any trip T; € T, it can be represented by a tuple (tlp, t{i, llp, l?), where
the elements represent pick-up time, drop-off time, pick-up location, and drop-off location,

respectively.

Vehicle shareability network is a directed network whose nodes are the trips in T (Vazifeh et al.,
2018). Two trips T; and T; are connected by an arc from T; to T}, if



td+ty; <t

where t;; is the minimum connection time between l? and l}”. In other words, arc (T;, Tj) means that

it is possible for a vehicle to pick up the passenger of trip T; after dropping off the passenger of trip
T;.

A path cover of a network is a set of paths by which all the nodes are covered. A node-disjoint path
cover is a path cover that any two paths in it share no common node. Solving the minimum fleet size
problem is equivalent to solving the minimum node-disjoint path cover problem of the vehicle
shareability network. The number of paths in the resultant path cover represents the minimum
number of vehicles needed. Each path indicates the route the corresponding vehicle should follow.
Figure 3.10 shows a vehicle shareability network for five trips. The arcs in red represent a minimum
node-disjoint path cover of the network. Solving the minimum path cover problem is NP-hard in
general. However, since the vehicle shareability network is acyclic, it can be transformed into a
bipartite matching problem which can be solved efficiently.

Vehicle Shareability Network Node-Disjoint Path Cover

Figure 3.10 Vehicle shareability network and its node-disjoint path cover

Both the left column and the right column of the bipartite consist of the trips in 7. Based on the vehicle
shareability network, the edges of the bipartite can be constructed correspondingly. Denote the
cardinality of the max matching of the bipartite by m. Then, the minimum fleet size is |7| — m. This is
because in the left (right) column of the bipartite, there are |T| —m nodes with zero degree,
representing the end (start) of the |T°| — m routes. All the other nodes have a degree of two, indicating
that they are in the middle of the routes. The maximal matching problem can be solved efficiently by
Hopcroft-Karp algorithm (unweighted) or Kuhn-Munkres algorithm (weighted).

By setting the weights on edge (Ti,Tj’) of the bipartite as N — d;;, the solution can guarantee both
minimum fleet size and minimum connection distance, where N is a sufficiently large number and d;;
denotes the distance between l{i and l]p,. Formally, the maximal matching problem can be expressed
as

maximize Z(N — dij)xij
ij
subject to inj <1,Vvi
i ]
Z xl-j <1 ) V]
J
xij € {0,1}, Vl,]
where x;; = 1 if the edge between trip T; in the left column and trip T]-’ in the right column is in the
matching, 0 otherwise.



In Figure 3.11, the edges in red represent a max matching of the bipartite. Similarly, if the weights on
the edges of the bipartite are set as N — (tjp - t{i), then the solution of the max matching problem

guarantees both minimum fleet size and minimum connection time.

Bipartite Maximal Matching

Figure 3.11 The equivalent bipartite and its maximal matching
Online minimum fleet problem

In the offline case, the ODs of all the trips are known in advance. In the online case, the information of
the trips can only be known when a traveler sends a request to the fleet management system. Once
there is a vehicle that can serve the request, the system will route the vehicle to pick up the traveler
and deliver the passenger to the destination. The matching between vehicles and travelers can be
formulated as an assignment problem and solved by bipartite matching algorithms (for instance, Kuhn-
Munkres algorithm) efficiently.

When ridesharing is allowed, i.e., when a vehicle take two or more passengers at the same time, it is
not a bipartite matching problem anymore. Denote the set of vehicles by V; denote the set of
passengers by R; denote the set of trips by T. A trip is a subset of V, in which all the passengers’ trips
are shareable with each other. In other words, they can be potentially picked up by the same vehicle
without violating any capacity or waiting time constraints.

Then an RTV graph can be built, as shown in Figure 3.12. In this graph, a passenger node is connected
to a trip if it is a member of the trip; a vehicle and a trip is connected if the vehicle can take all the
passengers in the trip (Alonso-mora et al., 2017).
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Figure 3.12 RTV graph in the online mode



For trip t € T and vehicle v € V, set the weight on edge (t,v) as w(t, v) which is usually related to
distance or time between t and v. The goal is to maximize the sum of the weights, without violating
any constraints. Formally, the problem can be formulated as the following mixed integer programming
problem.

minimize Z w(t, v)xe,
(tv)eAry
subject to Z Xy <1,VVEV
t:(t,v)eEATy )

Xty < 1 ,VT ER
t:(t,r)EATR V:(t,U)EATV

Xty €{0,1},VtET,vEV

where binary variable x;, = 1 if trip t € T and vehicle v € V are matched, 0 otherwise. The first
constraint ensures that each vehicle can serve at most one trip at the same time. The second constraint
guarantees each passenger can only be assigned to at most one vehicle. For instance, the arcs in red
in Figure 3.12 form a feasible solution of the problem.

Application to the Safety Pilot data

The methodology was applied to Safety Pilot Data collected during the year of 2015. All the ODs were
extracted from the GPS trajectories. For the purpose of privacy protection, the real origins and
destinations of the participants’ trips were mapped to the closest intersections on the transportation
network.

Figure 3.13 shows the comparison between the actual number of vehicles and the ideal minimum fleet
size in each day of 2015. In the figure on the left-hand side, the blue curve represents the actual
number of vehicles recorded in the Safety Pilot database. The orange curve represents the minimum
fleet size required to complete all the trips if different families share vehicles. The peaks represent the
weekdays and the valleys represent the weekends. The figure on the right-hand side implies that a
fleet with 200 vehicles could almost satisfy the transportation demand every day. One can see that,
ideally, vehicle sharing could significantly reduce the number of vehicles. The average number of
vehicles could drop from 443.9to 111.1.
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Figure 3.13 Actual number of vehicles and minimum fleet size

However, in terms of VMT, if different families share vehicles but do not share rides, the vehicles have
to travel more because of the connections between different trips. Figure 3.14 shows the change of
VMT. On average, VMT would increase by 25.6%.
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Figure 3.14 Actual VMT and VMT of minimum fleet size

Further analysis shows that to a large extent, the minimum fleet size is determined by the peak
demand rate in each day. Figure 3.15 shows the correlation between the minimum fleet size and the
maximum hourly demand in each day. The corresponding R? is 0.93, which implies a strong correlation.
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Figure 3.15 Correlation between min fleet size and max hourly demand

The extracted data are also used for the online case, where the ODs of all the trips are not known in
advance. The left part of Figure 3.16 shows the number of served trips with different maximum waiting
time, using the trip data on Feb 2, 2015 (Monday). Apparently, the more time the travelers are willing
to wait, the more likely their requests will be served. It implies that even in the online mode, 120
vehicles are able to serve almost all the transportation demand, with a ten-minute max waiting time.

The right part of Figure 3.16 shows the results when not only are vehicles shared but also ridesharing
is allowed. In general, the fleet size could be further reduced.
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Figure 3.16 Trip service rate with different fleet size and waiting time (online mode and rideshare mode)

The above results are for the data collected from the Safety Pilot project, whose participants are
sparsely distributed in southeastern Michigan. If the population density is higher, the effect can be
even more significant. To further verify the methodology, it is applied to the taxi trip data in
Manhattan, New York. Figure 3.17 shows the result for New York taxis. When ridesharing is allowed,
the same fleet size can serve much more trips. In other words, the fleet size could be significantly
reduced as well.
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Figure 3.17 The effect of ridesharing on New York taxis

Summary

This section studies the potential change of the fleet size and VMT if different families share a fleet of
vehicles. The offline problem is formulated as a node-disjoint path cover problem which is equivalent
to solving for a weighted maximal matching on a bipartite. The solution of the bipartite matching
problem can guarantee both minimum fleet size and minimum connection distance (or time). The
online versions of the minimum fleet problem are also studied.

After applying the methodology to all the trips collected by the Safety Pilot project in 2015, the results
show that if different families share a fleet of vehicles, the total number of vehicles needed could be
significantly reduced (by 75.0%). However, the VMT would increase by 25.6%, due to the connections
between different trips. Even in the online case, when the information of the trips is known in real
time, 120 vehicles could serve almost all the trips if the travelers are willing to wait for ten minutes.
Further analysis also shows that the minimum fleet size has a strong correlation with peak-hour
demand rate.
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Task 4 System model development and Validation

The objective of Task 4 is to develop and validate a transportation system model of the Ann Arbor
region, both for baseline analysis as well as CAV scenario analysis. Task 4 will incorporate data
collected as a part of Task 1 and Task 2, as well as behavioral models developed in Task 3 into an
integrated travel behavior and transportation system simulation model using the POLARIS software.
The updated POLARIS model will then be used to simulate various connected vehicle technologies and
guantify changes in energy consumption resulting from those scenarios.

The table shows the proposed subtasks and delivery times for the seven subtasks of Task 4, with a note
regarding the expected completion time. The subtasks for Task 4 have not presented major
unexpected obstacles.

Subtask | Subtask Schedule Schedule Status
end date




4.1 Implement baseline POLARIS model | M1-M12 9/16 Completed

4.2 Determine data needs for further M1-M12 9/16 Completed
model development

4.3 Query, collect and process data M13-M24 | 9/17 Completed
from the connected vehicle fleet

4.4 Implement traveler and CAV agent M25-26 11/17 Completed
behavior rules

45 Implement and calibrate the M27-M30 | 3/18 Completed
POLARIS-Autonomie model

4.6 Model validation with new data M31-M32 | 5/18 Completed
from field tests

4.7 Vehicle energy consumption M31-M36 | 8/18 Completed
guantification

Subtask 4.1. Implement baseline POLARIS model
The baseline POLARIS model for Ann Arbor has been fully implemented. Further development of the
model will occur within task 4.4 and validation of the model will be completed under task 4.5

Subtask 4.2. Determine data needs for further model development
Completed

Subtask 4.3. Query, collect and process data from the connected vehicle fleet

The target is the development of a process querying, collecting and processing the data from
vehicle test data in order to define the baseline for all our CAV & ML fuel
consumption validation work. The procedure requires many database analysis,
cleaning and restructuration.

4.3.1 Vehicles medialization

The University of Michigan provided so far 154 conventional vehicles, 52 HEVs, 13 PHEVs and 2
EVs which the manufacturing years are from 2011 and over (manufacturing before 2011 is not
taken in consideration).

e 59 conventional vehicles are now modeled and validated (less 5% Fuel economy difference

on the regulatory EPA cycles).
e 24 conventional vehicles and 30 HEVs are in validation process (Fuel economy difference on
the regulatory EPA cycles between 5% and 10%)

4.3.2 On-road test data

e Some inconsistencies found on data acquisitions and address to University of Michigan:
o Potential errors in data acquisition
o Some vehicle speed trace remains at zero
o Some vehicles are not moving for the most part of the trip
o Acceleration grade issues on cycles



e Validation of Autonomie’s vehicle models on four real world driving cycles is shown in the

table below
odeid | Distance k] Real world fuel cons |  Autonomie fuel DI 4] Real world fuel { Autonomie fuel
[1/200km] cons [1/100km] eco[mpg] eco [mpg]
cycle 473 1 1.1 0.6 05 16.2% 282 313
oy 4732 134 10 10 7.0% 3.1 308
cycle 473 3 129 10 10 0.0% 300 299
cycle 473 13 14.0 10 10 0.1% 328 327

4.3.3 Next steps

e Continue models building and validation (on the regulatory EPA cycles & the Real World
cycle)

e  Work with University of Michigan on fixing the potential inconsistencies from on-road test
data

e Run large scale simulation and validate the energy consumption

Subtask 4.4 Implement traveler and CAV agent behavior rules

4.4.1 Eco-Mobility on Demand Service with Ridesharing

Mesoscopic fuel consumption model

To evaluate the network-wide impact of Eco-Routing, an Eco-Routing algorithm is going to be
implemented in POLARIS, as discussed in the previous quarterly update. In the application, the
connected vehicles serve as probed vehicles and send motion information such as speed and
acceleration to traffic management center, and the traffic management center broadcasts the
vehicle motion information to the network. Host vehicle can use the broadcasted vehicle
motion information and fuel consumption model to estimate the fuel-optimized route. One
of the core functions is the fuel consumption model, which takes the vehicle motion
information as input and output estimated fuel consumption for host vehicle on the links. The
model need to have the ability for online calculation and accurate enough for route
optimization.

The fuel consumption is obtained with Gaussian Mixture Regression[1]. With the objective of
regression to maximize the conditional likelihood of output on the input variables as shown in
equation (0.1), based on Bayesian law (0.2), maximizing total likelihood is equivalent since the
input variable is independent of model parameter. With 6 denote as the set of model
parameter, X denote as the input, and Y denote as the output

0" =argmax, (Y | X,0) = argmaxHHp(Yi | X.,0) (0.1)

p(Y,X|0)=P(Y| X,0)P(X|0) < P(Y| X,0) (0.2)

In this way, instead of minimizing the squared error of model output, a Gaussian Mixture
Model (GMM) is obtained by maximizing the total likelihood of input and output. Since each
component of the GMM is multivariate Gaussian distribution, the conditional distribution of
output for each component also follows Gaussian (0.3)



X X, Z
X, My X, Zp (0.3)
=X, | X, =x)~ N(/ul +Z,25 (Y= 1), 5, _21222222)

For GMM where the probability density function is the weighted sum of individual Gaussian
component, the expectation of output is

EY|X =x) ZZ”iEi(y | %), () =ZW,-(X0)E,-(J/|X0) (0.4)

where w,(x,) is the posterior of component probability based on marginal distribution of the
input variable, and E (y|x,) is the expectation from individual components. The input
variables to the model are shown in Table 4.5. Model parameters for road sections with
different speed limits are obtained individually.

Table 4.5 Fuel consumption Model Inputs
Model layer input

Motion related features Link related features
Average speed Average grade
Speed change Link Length

The model performance is evaluated against average speed model[2], power balance
model[3] and Neural Network. The equations of the benchmarks are shown in Table 4.6.

Table 4.6 Benchmark Models
Average speed model f=txexp(B,+ Bv+ BV + BV + BV + Bis)
Power balance model S =tx(By+ Byva+ Pysv+ Bv’)
Neural Network

where f is the expected fuel consumption, v is average speed, a is average acceleration, s is
average grade, t is travel time on the road section, 8; are model parameters. The performance
of the models is tested with expected fuel consumption estimated from microscopic fuel
consumption model simulated data with real life speed and grade trajectories. The relative
error distribution of the proposed model and the benchmarks are shown in Figure 4.18 and
Table 4.7. The mean absolute percentage error of our proposed model is 10%. For R?, our
model and Neural network show close performance, and further fine tuning of the Neural
network has potential to achieve better performance. However, compared with the enormous
number of parameters to tune in the neural network, our model is non-parametric, in this

way, there is no need for parameter tuning.
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GMR 0.98 10.08




The fuel consumption estimation function is going to be implemented in POLARIS as cost
estimation function in routing library and used together with current time-dependent A*
routing policy to calculate eco route. Further investigation includes eco-routing with travel
time constraint.

Constrained Eco Routing

To evaluate the benefit of eco-routing, a preliminary eco routing algorithm is implemented
with Ann Arbor network in Matlab based on Dynamic Programming. Dynamic programming
solves the optimization problem recursively based on Bellman principle

xi* = arg minxeadjom (x1) g(xi) + f* (‘xi—l) (05)
f* (xifl) = minxeadjm,, (x5) g(xi—l) + f* (xi—Z) (06)

where x, is the optimal next link location, x,  is the last link location, f"(x, ,) is the optimal
value function at last link, g(x;) is the transition cost based on fuel consumption in traditional

eco routing and weighted sum of travel time and fuel consumption in travel time constrained
eco routing which is defined as

g(xi) :(l_wt)c(xiﬂxi—l)""wtt(xi) (0.7)

where c(x;,x,_,) is the estimated fuel consumption and #(x;) is the estimated travel time for
current link. To address the travel time constraint, a soft constraint w, is defined with respect

to time limit 7, as shown in Figure 4.19.
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Figure 4.19 Soft constraint for travel time

c ¢

The travel time constraint is defined as
t(x)=(1+ g)t*(xl.) (0.8)

where ¢ is a relaxation constant and ¢*(x,) is the travel time for shortest time path from origin

to current link. Currently the fuel consumption and travel time are based on speed limit, and
in the next step, real time traffic information is going to be taken into consideration. A case
study comparing shortest path, fast path, eco-routing and constrained eco-routing are shown
below in Figure 4.3.
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Figure 4.20 Routing results from different fouting s;tfategy

From the case study, it’s shown that for the selected origin-destination pair, constrained
routing has 24.4% reduction in fuel with 0.9% increase in time compared with fastest path.
The routing results from one-to-all pairs are also evaluated as shown in Figure 4.21. The fuel
consumption and travel time are normalized with fuel consumption of eco routing and travel
time of fastest path respectively. The constrained eco routing can have a maximum 45% fuel
consumption reduction with a maximum 4.4% increase in travel time compared with the
fastest path.

2
® Constrained Eco Routing
18 % Shortest
' ® Fastest
® Eco Routing

Normalized Fuel Consumption

1 1.1 1.2 1.3 1.4 1.5
Normalized Time
Figure 4.21 Normalized travel and fuel consumption from different routing strategy

In the preliminary implementation, the results are evaluated based on one-to-all route results,
which means route from a single origin link to all other links. The next step is to evaluate the
algorithm with the origin-destination pairs identified through Ann Arbor Connected Vehicle
Pilot database and implement the routing algorithm in POLARIS to evaluate the benefit under
real time traffic states.

Expected Benefit Estimation



To estimate the expected fuel consumption and travel time for different routing
algorithms, we use travel origin-destination pairs from real-world driving data. We assume
that the number of vehicles using proposed routing algorithm is limited, i.e., the vehicles
cannot cause notable change to the travel speed of the links in the traffic network. The data
to estimate travel demand is during May 2013 to October 2013, from 17:00 to 19:00 on
weekdays. 25,001 trips were identified within the specified time. The origin and destination
locations are identified through a density based cluster algorithm called OPTICS[4]. The
advantage of this algorithm compared with other distance based clustering algorithms such
as DBSCAN [5] is that it can cluster data with density change. This is critical in our analysis since
the spatial densities of trip origin and destination locations can be affected by multiple factors
such as parking lot size. We only include trips happening at least once per week. There are
3,031 frequently visited origin-destination pairs identified, and the identified starting and
ending locations are shown in Figure 4.22.

o v “('b) —
Figure 4.22 Trip locations identified with OPTICS: (a) Trip starting locations; (b) Trip ending locations

The studied Ann Arbor traffic network consists of 21,569 directed links with variate link
types including local, minor, major, collector, ramp, and highway. The computation time to
solve all-to-one routing result is around 13 s on a computer with Intel Core i7 and 16 G RAM.
Considering requirement for the travel time of shortest-time routing, the computation time
for constrained eco-routing is about 26 s. The routing cost are evaluated based on historical
average speed during the studied hours. The uncovered links are imputed with their posted
speed limits. Since they are never traveled by the sample vehicles over 6 months, we
hypothesize these links are less traveled and the posted speed limit is a reasonable
approximation for the free flow speed. To get the historical average speed, we use GMM to
approximate average speed distribution of individual links and estimate the posterior of
mixing coefficient based on speed during the sampled hours. The expectation of travel speed
is estimated with the estimated posterior of the mixing coefficient.

To compare travel time and fuel consumption for different routing strategies, travel time
and fuel consumption of different strategies are normalized with the travel time of fastest
route and the fuel consumption of unconstrained eco-route respectively. The normalized
costs are shown in Figure 4.23. The scatter plot is overlaid with expectation of cost estimated
with the OD pair travel frequency. The error bars for each routing solution are 10% and 90%
percentiles respectively. The expectation of travel time and fuel consumption are summarized
in Table 4.9.



From the results, we can see that the shortest path consumed less fuel compared with the
fastest path algorithm, while the travel time is increased significantly. Also, with a maximum
of 6.48% increase in travel time, the constrained eco-routing solution has expected fuel saving
of 5.16% and maximum saving of 51.8%, compared with the fastest-path solution. It’s also
noted that for the given OD pairs, 28% of the eco-routing solution are the same as the fastest-
path solution, and 27% is the same as the shortest-path solution. For constrained eco-routing
results, 55% is the same as the fastest-route solution and 27% is the same as the shortest-path
solution. Besides that, 28% of shortest path and fastest-path are the same. The difference
between eco-routing and constrained eco-routing is due to the travel time constraints.

Eco-Mobility-on-Demand Service with Ridesharing

As a start point, we reproduce the work in [6] by assuming the road network is static and
solving all optimal routes considering travel time and fuel consumption offline. Travel time
and fuel consumption of corresponding routing strategy is used for cost and constraints
evaluation in assignment. Including dynamic road network information is done later. The trip
assignment algorithm is based on a shareability graph. The graph is defined as undirected
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graph with nodes defined as customers and vehicles. An edge exists between two customers
if a vehicle can depart from the origin of one of the customers and fulfill the travel demands
of both customers without violating travel time constraints. An edge exists between a vehicle
and a customer if the demand can be served by the vehicle without violating travel time
constraints. Then a necessary condition for a trip to be feasible is that the customers of the
trip can form a clique with one vehicle present in the shareability network. A clique is a
subgraph such that every node is connected to every other node within the same clique. It’s
noted that the cliques do not need to be maximum cliques in the shareability graph. The
cliques in a graph can be found with Bron-Kerbosch algorithm [7] with worst case time
complexity 0(dn3%/3) where n is the number of nodes and d is degeneracy of the graph,
which is a measure of sparseness. In this way, instead of evaluating cost of trips for every
possible combination of customers and vehicles, one can solve single-vehicle-multiple-
customer problems for every clique.

Trip scheduling for each clique is a traveling salesman problem with pickup and delivery.
The problem can be solved with multiple algorithms. If the number of customers is small, (e.g.,
less than 5), the exact solution can be found by Dynamic Programming in less than 1 sec on a
standard desktop computer. Heuristic based algorithms such as T-share [8] can be used to find
the solution if the problem size is large.

After all feasible trips were found through solving the scheduling problem for all cliques,
the optimal trip assighnment problem can be formulated and solved through Integer Linear
Programming (ILP). In this Section, we briefly summarize the formulation from [6].



The cost for each customer consists of wait time and delay time. Wait time is defined as
time between the customer travel request and time of pickup. Delay time is defined as the
difference between planned travel time and the shortest travel time after pickup, which is
from the fastest path solution from origin to destination. The cost of a trip is defined as wait
time plus delay time for all customers if fastest routing strategy is used, and fuel consumption
if eco-routing strategy is selected, denoted as c{i for trip i. The states of the system are §;
which is the indicator variable for trip/clique and &, which is the indicator variable for a
customer. If at an assignment instant, there are m feasible trips from TSP step and n
customers, then 8, = {6} € {0,1},i EN,1 < i <m}and§, = {6 €{0,1},i e N,1 < i <n}.

8t is 1if trip i is selected and 8} is 1 if customer i is assigned. The objective function is
m

n
Z cisi + Z (1 -6Y), (0.9)
i=1

i=1
where D is the penalty for unserved customers. The constraint for vehicle is that each vehicle

can only serve one trip
m

Z alsi <1,vj, (0.10)
. i:1 .
where a} is the indicator variable for vehicle j and trip i, a} = 1 if vehicle j can serve trip i.
The constraint for customer is that a customer is either assigned or ignored

m
Z bisi + (1-6)) = 1,vj, (0.11)
i=1

where b} is the indicator variable for customer j and trip i, b} = 1 if customer j can be served

by trip i. With linear constraints and the objective function, the trip assighment problem is an
integer linear programming. For online optimization, we follow [6] to keep a pool of customers
and a customer is removed from the pool if it’s picked up by vehicle or cannot be served within
the time constraint. If a customer is ignored, a vehicle from the idling fleet is assigned to serve
the vehicle with minimum wait time as the objective.

We randomly selected 4% of the trips generated during the studied time as demand for the
shared mobility fleet. The trip generation rate is 35~40 new trips every 30 sec and we follow
the re-optimization strategy every 30 sec from [6]. The simulation period for our study is 30
min. We fix the fleet size at 900 and the vehicle capacity is 4. The wait time constraint is 3 min,
and the delay time constraint is 3 min. The benchmark algorithm is the non-sharing case,
where everyone drives their own cars. For ridesharing control, 3 different strategies are
selected and the routing strategies in corresponding phase are summarized in Table 4.10.

Table 4.10 Routing Strategy of Different MOD Control Strategies

MoD Control Strategy Assignment Rebalance
Fastest routing Time Time
Eco-routing Fuel Fuel
Hybrid routing Fuel Time

No sharing (baseline) Time -
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Figure 4.24 Simulation Results (a) Average customer number per vehicle; (b) Total travel time (c)
Fleet fuel consumption per customer; (d) On-time served customer ratio and fleet fuel reduction
compared with non-sharing baseline

o

During the simulated period, all customers are served. As shown Figure 4.24(a), our
proposed algorithm results in 1.36 customers per vehicle, indicating more efficient usage of
the fleet. Besides that, as shown in Figure 4.24 (c), with normalized fuel defined by fleet total
fuel consumption normalized with number of served customers, the MOD service reduces the
operation cost for the service provider. The total travel time increased as shown in Error!
Reference source not found.(b), however, it should be noted that all algorithms can serve
more than 94% of customers within the time constraints. With travel time as cost, the total
fuel consumption is increased by 3% due to the increased vehicle travel mileage in rebalancing
and picking-up. If fuel consumption cost is considered by the service provider, the total fuel
consumption can be reduced by more than 30%.
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4.4.2 Eco-approach and Departure (EAD)
Motivation for Eco-approach and Departure

Traffic congestion in urban driving environments costs Americans an extra 6.9 billion hours of
time and $160 billion worth of fuel annually [1]. Intersections where drivers rapidly decelerate to obey
the traffic signals are among the most common area that result in increased fuel use and travel time.
Connected Vehicle (CV) technologies offer an opportunity to resolve this problem by connecting
vehicles and traffic infrastructure through wireless communication methods such as Dedicated Short
Range Communications (DSRC). In this setting, vehicles can obtain information of other vehicles, and
of traffic infrastructures, such as signal phasing and timing (SPaT) information of adjacent traffic lights.
An eco-driving concept at signalized intersections, commonly called Eco-approach and Departure
(EAD), has been proposed to solve the aforementioned problem by utilizing SPaT. The goal of EAD is
to determine energy efficient trajectories of a vehicle as it passes through signalized intersections.

Motivation for the case study

Recent research which utilized SPaT on eco-driving at urban-driving environments have
verified its potential to reduce fuel consumption, however, the results have been limited to simulations
and controlled lab tests. The goal of the case study is a two-fold. First goal is to develop a realistic
algorithm for eco-driving at urban-driving environments. The second goal is to verify and validate the
benefits of the proposed algorithm in realistic settings.

In order to achieve the first objective, a realistic EAD algorithm should consider not only the
host vehicle, but also surrounding environments such as the vehicles in front of the host vehicle,
queues at the signalized intersections, vehicles in the next lanes, and stochasticity of traffic lights.
Accordingly, we propose a novel EAD algorithm which takes the vehicles in front of the host vehicle,
the queue length, and stochasticity of traffic lights into account.

For the second objective, we verify the benefits of the proposed method by comparing them
to naturalistic human driving records at signalized intersections, instead of comparing the results to
simulation models or controlled lab tests. Hundreds of human-driven trips made on Plymouth Road
and Fuller Road, Ann Arbor, Ml were extracted from the Safety Pilot Model Deployment (SPMD) [2]
database, which contains naturalistic driving records of roughly 3,000 drivers in Ann Arbor, MI. The
uniqueness of each driving records and SPaT makes each trip a unique problem. For each trip
undertaken by a human driver, the proposed EAD method is used to produce a solution given the same
initial and final conditions.

The EAD algorithm for free-flow traffic

We first propose a Dynamic Programming-based algorithm for free-flow traffic. Then, we
compare its solutions to real-world results obtained for 609 human-driven trips in Ann Arbor, MI.

The problem is formulated as a non-linear optimization problem in which the objective is to
find a fuel-efficient speed profile. It's system dynamics, cost function, and equality and inequality
constraints of the problems are elaborated below. It is assumed that the vehicle is operating in free-
flow traffic and equipped with a continuously variable transmission and an internal combustion engine
whose fuel consumption is represented by a static brake specific fuel consumption map.

e State x(t) := [d(¢t), v(t)]
* Inputu(t):= a(t)
System Dynamics Ma(k) = F(k) — Mgf — 0.5pC;Av(k)? (zero-grade & zero-wind speed)



*  Constraints Aprake, max < u(t) < Qaccel, max: 0< v(t) < Umax
d(ti) = di' t; € tgreen, pi=12,.n tf < tmax, simulation
* Initial & Final Conditions x(to) = [do, vo], d(tf) = df, v(tf) € [Vnom — €, Vnom + €]
*  Cost Function f(t) : Combination of fuel consumption, travel time, and riding comfort
t
f(@) = WTTq)(tf) + fof(WFCLFC (©) + WrcLpc(9))
q)(tf): = tr, LRC(k) = u(t)z' LFC(k) = FC(Teng(t)' Weng(t))
Results for free-flow traffic
For each human-driven trip, the proposed method uses Dynamic Programming to determine
globally optimal trajectories of three different eco-driving policies: fuel-optimal policy (DP WS1),
time-optimal policy (DP WS3), and nominal eco-driving policy (DP WS2). Given the same initial and
the final conditions as those of a human driving record, comparisons are made across the driving

records and the eco-driving policies to demonstrate the real-world benefits. Among 609 trips, two
representative cases were selected and depicted in Figure 4.1, and Figure 4.2.
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Figure 4.1. A representative trip on Fuller Rd, Ann Arbor [3] Figure 4.2. A representative trip on Plymouth Rd, Ann Arbor [3]

As shown in the above figures, the amounts of fuel saving that the fuel-optimal policy and the
nominal policy have are significant. Two explanations for how the proposed method saves fuel are as
follows: First, EAD utilizes SPaT in planning the trajectories to minimize unnecessary acceleration and
deceleration. Second, EAD searches solutions over the BSFC map of a vehicle and runs the engine of
the vehicle at highly efficient engine operating points. The Figure 4.3 compares the engine operation
points of a human driver and those of the nominal EAD policy for the trip depicted in Figure 4.2.



Engine BSFC(g/kWh) Map
—=T - LI

200 0 7 =
- — y
Fited best BSFC|~ _—

180 41 O Best BSFC

Human Driver
2 _EAD

e
160 EL
140 F
120 P~
100F

80—

Engine Torque[Nm]

60

s . 1dling; FC = 0.198(g/s),,
CoaStlné’ FC :1(6 Erfgi(:le Speed[;O;S] e 00

Figure 4.3. The engine operation points on BSFC map of the trip Figure 4.2. The engine operation points of the human driver
are colored yellow, and those of the nominal EAD solution are depicted in purple.

It is shown that the human driver runs the engine at less fuel-efficient operating points, as he
or she hit the idling engine operation point far longer than the EAD solution. The nominal EAD policy
instead either coasts consuming its kinetic energy (thus consuming zero fuel) or hit one of the highly
efficient operation points in the fuel map.

Total 287 and 322 human-driven trips were made on Fuller and Plymouth Road are compared
with the three EAD policies. The fleet statistics on the nominal EAD policy are described in Figure 4.4
and 4.5, showing the potential fuel savings of 40-50% while matching human travel time.
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Figure 4.4. The nominal EAD policy solutions are compared with 287 human-driven trips undertaken on Fuller
Road. For the Lawful case, EAD saves roughly 40% of fuel on average, while sacrificing travel time only 2.5%. For
the cases of Unlawful human trips & Lawful EAD, the fuel saving benefit becomes smaller. For the Unlawful
human and EAD case, the fuel saving greatly increases to achieve 48% [3]

In Figure 4.4 and 4.5, the first and the fourth box plots represent comparisons between fuel
consumption and travel times of 'Lawful' EAD and 'Lawful' human drivers, i.e. those drivers who abided
by the operating speed limit of 40 mph. The second and the fifth box plots represent those of 'Lawful'
EAD and 'Unlawful" human drivers who exceeded 40 mph at some point over the trip. In order to draw
a consistent comparison, the third and the sixth plots, represent the results when EAD is allowed to
exceed the limit and its maximum speed is set to be the same as that of the human driving record.
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Figure 4.5. Comparisons between the nominal EAD policy solutions and 322 human-driven trips undertaken on
Plymouth Road. Because of more frequent changes in traffic signals and longer red lights, the fuel and travel
time saving potential is greater than that of Fuller Road. For the Lawful case, EAD not only saves fuel by 49% on
average but also travel time by 10% [3]
The realistic EAD algorithm

The proposed eco-driving method for free-flow traffic showed potential fuel savings of 40-50%
while matching human travel time when compared to roughly 600 naturalistic Human driving data.
Position of Vehicle While the results can serve as an upper bound of
fuel saving potential of the eco-driving in the
vicinity of signalized intersections, they are
limited to free-flow scenarios where the EAD
vehicle is unconstrained by other vehicles. In
many urban driving scenarios, the motion of a
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m

stance

B o = e = vehicle is constrained by other vehicles. The most
important factor which constrains the motion of

o XFY, an EAD vehicle is the presence of a vehicle in
P front. The figure on the left illustrates how the
g i i — = » ® «  presence of a front vehicle can affect the
g? X HV (FV) : with the presence of FV operation of the host vehicle, and how EAD path

is changed accordingly.

Here, we assume that the front vehicle is a
Human-driven vehicle. In order to find the optimal
trajectory of the host EAD vehicle, the path of the Human-driven front vehicle should be obtained to
calculate a safe set S(t) of the host vehicle. A safe set describes combinations of the state, and the
input which does not jeopardize the safety of EAD vehicle. The front vehicle EAD problem is formulated
similar to the free-flow problem. An additional constraint on the state and the input is added to ensure
the safety.

Figure 4.6. lllustration of different EAD solutions
with/without a front vehicle [4]

e State x(t) = [d(¢t), v(t)]'
* Inputu(t) := a(t)
System Dynamics Ma(k) = F(k) — Mgf — 0.5pC;4Av(k)? (zero-grade & zero-wind speed)
*  Constraints Aprake, max = u(t) = Qaccel, max, 0< U(t) < Umax
d(ti) = di' t; € tgreen, pi=12..n, tf < tmax, simulation
e Safety Constraints [d(t), v(t), a(t)] € S(t) vt
* Initial & Final Conditions x(t,) = [d, Vo], d(tf) = dy, v(tf) € [Vnom — €, Vnom + €]



*  Cost Function (t) : Combination of fuel consumption, travel time, riding comfort, and value
of a safety metric.

f() = WTTq)(tf) + fotf(WFcLFc (t) + WreLgc(t) + wsLg(t))
q)(tf): = iy, Lgc(k) = u(t)zr Lec(k) = FC(Teng ®), Weng ), Ls(k) = Y(d(t), v(t))

In addition to the hard constraint on safety, a safety metric is introduced in the cost function.
Time-to-collision (TTC) and Time-headway (TH) are popular safety measures of the motion of vehicles.
However, neither is appropriate as the safety constraint for EAD problem. First, large TTC does not
necessarily mean ‘safer’. In case of vpy, = vyy, TTC can be big even if xp, = xyy, which indicates there
was a crash. Second, TH can robustly guarantee the safety, but it may discourage the performance of
EAD since TH calculate safety distance uses only vyy,. Therefore, a new safety measure for the cost
function based on both vy, and vy, is proposed [4] and used to calculate the safety set. The equations
for the three safety measures are described below. R, is the desired range (dgy — dyy), A is stand-
still separation distance, T}, is time-headway, B and C are real numbers.

XFv —Xgv —lpy

e Time-to-collision TTC:= Y vyy > Vpy
VHV~VFV
e Time-headway Rges = A+ Tpvyy
e Proposed safety measure Rges = A+ B(vyy) + Cmin(0, (vgy — Vey))

The prediction models

Predicting those of a Human-driven vehicle ahead of time is non-trivial. Since every human
driver exhibits different driving patterns, and reacts differently to traffic signals, it is hard to write
down an equation which describes the policy of Human-driven vehicles at signalized intersections.
Thus, the Human policy model is driven by data and it is unique to each signalized intersection. In this
sense, a Human acceleration policy model a = f(X) is proposed [4].

ST Test Set
ethodolo
44 MAE (m/s?) o*(m/s?) R?

SVM, Gaussian 0.44 0.55 0.31
Boosted Trees 0.37 0.46 0.45
Random Forest 0.36 0.45 0.51
Artificial Neural-net 0.36 0.45 0.50

Table 4.1. List of prediction models and their performance. Assuming that acceleration of human driver follows

a normal distribution, ¢* can be obtained from mean absolute error, ¢ = \/% E[|X|] [5].

A number of regression and classification models were obtained through supervised learning
on the SPMD data. The models that we studied include linear model, Support Vector Machine with
linear, quadratic, cubic, and gaussian kernel, decision trees, random forest, and neural-network. Then
their performances were evaluated on a test set, as described in Table 4.1.

The standard deviations provide interpretability of the numbers. Assuming a,~N (@, ¢ ), the
standard deviation of 0.45 m/s? corresponds to that of 1.42 m/s in the speed 10 seconds into the
future with the assumption of constant acceleration for t = [n,n + 1) where n is an integer. We also
assume that a, (t;) is independent of a, (t;) for all combinations of t; and t,. Since the sum of two
independent normally distributed random variables is normal, with its mean being the sum of the two
means, and its variance being the sum of the two variances, the predicted speed of a vehicleatt = k
can be obtained as below.



v(k|t) = ax(0|t) + ax(1|t) + -+ Ax(k-1|t)

v(1016) = ay(opey +  + Gxoiey = N(@xoiy 0xco1y?) + +++ + N(@oiey, Oxco10r?)

= N(ax(Olt) +t ax(9|t):0x(0|t)2 + -+ Ux(9|t)2) = N(ax(om + -+ ax(gm, 1422)

While a number of assumptions are required to obtain the above results, it provides an useful
insight on what the MAEs reveals. For example, an acceleration model with a MAE of 0.36 m/s? has a
standard deviation of 0.45 m/s?. The predicted speed into the future 10 seconds will then be normally
distributed with the standard deviation of 1.42 m/s. Given that the mean of predicted accelerations is
close enough to the true value, such predictions provide a mean of probabilistic interpretations.

The obtained models then used to predict trajectories of human vehicles at signalized
intersections. Prediction examples are given in the figure below. Note that all d(t), v(t),a(t)
described in the figure were obtained through 1 iteration of the prediction process, d(t|t, =
0),v(t|ty = 0),a(t|ty, = 0), Vt € [0,40] for the top example and Vt € [0,60] for the bottom
example. It is worth mentioning that iterative predictions significantly increase accuracy of prediction.

Among the models we studied, the neural-network is the most complex with high nonlinearity,
and the linear models are the least complex model. Based on the performance study which indicated
that the neural-net and the random forest perform the best, we selected neural-network prediction
model as our model.
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Figure 4.7. The left plots depict recorded accelerations of human-driven vehicle and predicted acceleration using
4 different prediction models listed in Table 4.1. The plots in the middle describe the predicted speed trajectories
calculated based on the predicted acceleration. The right plots calculate the predicted vehicle trajectories based
on the predicted speed profile. It is shown that the trend of the true accelerations and that of predicted
accelerations match well, allowing the model to produce accurate predictions [4].

Result for non-free-flow cases



The prediction model then was incorporated into the problem and used to formulate the
dynamics of the model and the corresponding optimization problem. Then the optimization problem
is solved using approximate dynamic programming and model predictive control. An example result is
described in Figure 4.8.
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Figure 4.8. Two exemplar cases of realistic EAD problem. The trips were sampled from naturalistic human driving
database and depicted in black. The proposed realistic EAD method first predicts the trajectory of the front
vehicle as described in the left plots. Based on the predicted trajectories, the realistic EAD algorithm produces
two optimal EAD trajectories, the fuel-optimal and the nominal policy as shown in the right plots. EAD algorithm
solve alternates the two steps until the vehicle reaches to the goal [4].

The top case of Figure 4.8 is a representative case when instantaneous predictions at t = 0
worked well for Vt. In this case, re-planning frequency barely affects the performance of EAD. On the
other hand, the bottom case represents instances when unexpected events occurred which affected
the motion of the front vehicle greatly and made the vehicle stop in the middle of the road. In this
case, an instantaneous prediction d(t|t0 = 0) will deviate greatly from the true d(t) as t increases.
The iterative prediction scheme resolves this problem. As depicted in the bottom left plot of Figure
4.8, when the re-plan frequency is short enough, the difference between predicted d(t|t;) and the
true d(t) is bounded [4].

In order to evaluate how good realistic EAD performs compared to other EAD scenarios, i.e.,
free-flow scenario, we reproduced the same problem and solved EAD problem under other scenarios.
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Figure 4.9. The comparison of the solutions of three different EAD scenarios with the same conditions. The left
plots depict the unconstrained free-flow EAD solutions, and the right plots depict the realistic EAD solutions
considering the trajectory of the front vehicle. The plots in the middle describe EAD solutions assuming the future
trajectory of the front vehicle is known [4].

The figure 4.9 shows how the presence of the front vehicle impacts the fuel and time saving of
EAD solutions compared to those of human drivers. The top three plots represent the solutions of the
problem depicted in the top of Figure 4.8, where the realistic EAD solutions is almost as good as the
free-flow solutions. The bottom three plots represent the solutions of the problem depicted in the
bottom of Figure 4.8, where the realistic EAD solutions only perform half as good as the free-flow
solutions. However, it was still able to save 38% fuel compared to human drivers while sacrificing only
6% of travel time. The center plots are the result of the scenario where we have full knowledge on the
future states of the front vehicle. They provide insight on importance of accurate predictions and
suggest the upper bound of fuel savings in realistic EAD scenarios.

Conclusion and future works

The free-flow EAD results identified the upper bound of fuel and travel time saving potentials,
thus can serve as an upper bound of fuel saving potential of the eco-driving in the vicinity of signalized
intersections. Realistic EAD results show the estimates in fuel and time saving of EAD when EAD
techniques are implemented in practice. Note that the results only stand for the predefined scenarios
of urban driving, where the vehicles go through a series of signalized intersections. The results do not
represent the fuel and travel time saving of other driving scenarios in urban cities.

Future works include development of real-time prediction algorithm and corresponding real-
time EAD algorithm. Note that the current algorithm usually takes longer than 1 minute to find an EAD
solution. The future works also include identification of impacts of EAD on the surrounding traffics.
The EAD algorithms will be implemented in traffic simulator to study how EAD vehicles impact macro-
level traffic, including impact on the fuel and travel time of the surrounding vehicles.
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Subtask 4.5 Implement and calibrate the POLARIS-Autonomie model

1 Introduction

The ultimate purpose of this task was to estimate the energy and mobility impacts under various traffic
scenarios, diverse vehicle technologies and routes in order to assist people in optimal decision making
in terms of mobility. This framework puts the energy criteria as one of the constraints to the vehicle
and route choice, a dimension that has been lacking ever since in Polaris.

We currently have in effect a learning framework to predict energy consumptions for a variety of
powertrains from cycle features or from more general route and trip features. The original work
accounted for a training set that was representative of a population driving under standard cycle
conditions. In this setting energy results were the product of pure physics based modeling and
simulations. The simulation results were Autonomie generated.

In this subtask, the intent was to build on the existing machine learning based modeling developed
and extend the decision rule scope by accounting for Real World Driving Behavior. We have in hand a
rich set of real world data of drivers from the Detroit area that has the particularity of containing real
time collected fuel points from On Board Diagnostics. The following is a walk through the data
description to the modeling and results.

2 Data Description and Wrangling
The data is in the following format: mmddyy Oneday sample raw data.csv.

The data columns are:
Vehld, Trip, TripStartUTC, TripEndUTC, Distance(mi), Timestamp(ms), Altitude[m],
Latitude[deg], Longitude[deg], Vehicle Speed[km/h], MAF[g/sec], Engine RPM[RPM], Abs
Throttle Position[%], Absolute Load[%], OAT[DegC], Fuel Rate[L/hr], HDOP,
NumberOfSatellites, Accelerator Pedal Position[%], Air Conditioning Power[kW], Air
Conditioning Power[Watts], Heater Power[Watts], Brake Pedal Position[%], HV Battery
Current[A], HV Battery SOC[%], HV Battery Voltage[V], Odometer[kilometers], C2 Input
Voltage[V], Is Driving[bool], Is Charging[bool], Fuel Rate Calc (g/s).

Random portions of the start and the end of each trip have been removed to protect Pll information.
The values of TripStartUTC, TripEndUTC, and Distance(mi) are unique to Vehld and Trip. Other fields
are updated at the rate described in figure 4.10. All fields EXCEPT Fuel Rate Calc (g/s) field are direct
OBD2 outputs. Fuel Rate Calc (g/s) is the fuel consumption estimate calculated from Mass Air
Flow(MAF).

Not all the columns are useful for a machine learning based model, the next sections will go through
the feature selection process.

The data consists of 10722029 observations of 42 variables. This file is used as an input to the map
matching algorithm, mapping every vehicle drive cycle onto the detroit area route network. This
corresponds to 3 month worth of data. Information such as route length, route speed limit and other
will be useful as additional features to a machine learning based model.



Data Name Data Type Populated % Update Period
Latitude/Longitude (deg) Float 94.2
e Altitude (m) Real 97.2 Every
HDOP Float 97.4 5 (sec)
Number of Satellites Tinyint 97.4
Vehicle Speed (km/h) Tinylnt/Float 90.6 1 (sec)
Engine RPM (rev/min) Int 90.1
Absolute Throttle Position (%) Float 2.3 2 (sec)
Fuel Info Mass Air Flow (g/s) Float 72.0
Fuel Rate (L/hr) Float 1.5
5 (sec)
Absolute Load (%) Float 74.8
Odometer (km) Float 27 30 (sec)
Ambient Temp @ Float 9.6
P AirCon Power (KW) Float 36.7
Augiliary
PHEV & {P}_(o\}\{r:;?:r) AirCon Power (Watt) Int 56.8 60 (sec)
EV Heater Power (Watt) Int 205
I
oy Battery SOC (%) Float 96.1
Battery Voltage (V) Float 88.9
S (sec)
Battery Current (A) Float 88.9
Is Driving, Charging (bool) Tinyint 22.8/63.0 -

Figure 4.10: Data collection rate

3 Map Matching

What is the map matching algorithm?
The purpose of map matching is to connect recorded GPS trip points to the links of road
networks and establish trip routes. Extensive GPS-based trip data processing requires both
accuracy and computational efficiency of the map matching code. Generally, map matching
algorithms make use of geometric methods, topological or probabilistic models for accuracy
at the expense of a very slow process.

Why make the connection?
By constructing trips from GPS data we are able to calibrate an existed agent-based
transportation model of the city of interest.

What is the problem?
In the previous section we noted that for only 3 month of data collected at rates close to 1-
10Hz that were shrank onto summary statistic quantities resulted in over 10 million points.
This is an immer- sive amount of GPS data collected from high-accuracy in-vehicle GPS.
Without shrinkage, a regular trip data set collected can amount to 50, 000, 000 points, and
processing this large amount of data could take several weeks. Therefore calibrating an agent
based model over a regular trip is unreasonable.

Solution
The developed algorithm [LAS15] is based on Multiple Hypothesis Technique, which was firstly
introduced by [PSS01]. Several routes candidates are kept in following the sequence of GPS
points, developed and scored to find the best candidate, and only determined the best path at
the end of the sequence. [MHAQ5] adopted a topological search algorithm which proved to be
more efficient for larger scale map matching problems. By limiting the number of candidates
kept in memory, computational feasibility is guaranteed.



How does it work?
The details of the map matching algorithm has thoroughly explained in [LAS15] The overall

workflow is:

1. Pre-process: trimming out irrelevant points, reduce the number of processing points,
and grouping points to each person’s trips.

2. Initialization: determining the starting links and assign routes to each candidate links.
3. Development: tracing the points sequence to add new connected links for each
route.

4, Reduction: scoring each route when adding new routes to the pool, and remove
routes with worst performance to save memory.

5. Post-process: trimming out irregular links in candidate routes through topological
criteria.

6. Selection: selecting the best route as the final result

The map matching process results in a large dataset of vehicles mapped to the Detroit roads.
Each vehicle and trip is assigned a person id a trip id and a link id A trip is a set of aggregated
links from which several parameters are known from the GPS information and the Detroit Map.
In particular, for each link we know the length of the link length link, the length of the actual
distance covered by the vehicle on the link length gps, the amount of time spend by the vehicle
of the link time spent, the amount of time the vehicle stopped on the link time stop, the
average speed of the vehicle on the link speed avg, the speed limit on the link speed limit, a
Boolean indicating whether the vehicle covered.

The entire/most of the distance for the link, the actual coverage percentage coverage which is
computed from known length link and length gps, and finally the amount of fuel consumed on the link
fuel. key is a tracking grouping key for vehicles and trips. Distances are in meters, Times in seconds,
Speeds in meters per second and Fuel amounts in g/s, other quantities are unit free.

4 Add more attributes

Polaris is a macro simulation software and the amount of information on each link is quite limited. In
this subsection we show how from the attributes generated by the map matching algorithm we can
compute extra route related features that may or may not be useful to explaining the variability in the
fuel. The section related to the model and feature selection will walk through which of those attributes
is useful to any model.

A new database is then constructed with new attributes: length link p and length link n which are
respectively the immediate length of the previous and next link. length gps p and length gps n which
are respectively the immediate actual length covered by the vehicle on the previous and next link.
Intuitively, those attributes may not be very useful as the length of the previous or next link do not
seem to interfere with the current link fuel consumption. The feature selection and analysis section
will take care of making the decision for us based on a serious analysis.

Also added attributes are speed avg p and speed avg n which are respectively the immediate average
speeds of the previous and next link, speed diff p and speed diff n which are variables describing the
differences in speed between the current link and respectively the previous and next link. Finally we
also compute a traffic load variable which, due to the lack of data, will be used as a proxy to traffic
conditions within the link. This is typically calculated by taking the ratio of speed avg/speed limit. Other
features can be also constructed as an indication to traffic conditions within the link, for example
computing the ratio time stop/time spent can be of interest however we decide to skip it in this first
path. In the future, we also could consider the effect of adding vehicle speeds of not only the links of
direct proximity but extend to links that are further away as well. This introduces a time correlation
between the links and their property and autoregressive techniques can be used in this case.



5 Maps

The ability to visualize data with geographic context is a valuable exercise to do. It can give us a sense
of what is happening behind the numbers. One of the main issues that our map matching algorithm
encounters is that several vehicles and trips go out of range, the boundaries here being the area of
Detroit for which a Polaris map is provided.

As it can be seen from the first set of plots in Figure 4.11, many vehicles go beyond Detroit area. Person
5 had one trip to Toronto, Canada. Person 255 and 362 had at least more than two long range trips, to
Ohio, Pennsylvania and other. Person 2 had only one long trip, the rest in the city of Ann Arbor as we
will see later. Unfortunately this data will be scrapped. This is valuable information that won’t be used.
We clarify here that the colors represent different trips for a same driver.
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Figure 4.11: Example of long out of Detroit range trips

The next plots in Figure 4.12 show examples of inbound drives, particularly in the city of Ann Arbor and
its surrounding. We see here that Person 211 is a good example of trips that can be categorized as
highway driving, most the trips from this person circle Ann Arbor via its highway roads and go beyond.
On the flip side Person 228 seem to have a balanced combination of city and highway driving and some
of its trip go to downtown Ann Arbor.
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Figure 4.12: Example of long out of Detroit range trips

Next in Figure 4.13 we illustrate examples of pure in city drives, in particular, in the downtown area
of Ann Arbor.
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Figure 4.13: Overview of downtown Ann Arbor for 2 drivers over multiple trips.



Subtask 4.6 Model validation with new data from field tests

We build a first model and make use of it for outlier detection purposes. The model summary suggests
that several predictors are not significant to explaining the variability in the response. We will not
worry about this now and focus and detecting outliers that may affect the model structure and
prediction power. An upcoming section will deal with the model selection problem. First we need to
check the independence, constant variance and normality of the error. Keep in mind this is not a final
model for prediction but only a model constructed for the purpose of detecting outliers. The final
prediction model is based on neural network principles and is detailed in a future section. Even so, we
note that the residual standard error for this model is of the order of 0.0063 this is relatively good and
likely to yield acceptable predictions. As a comparison below is a summary statistic of the response
variable fuel.

Figure 4.14 shows a boxplot and a violin plot for the response variable. Note the width of the boxes is
directly proportional to the quantity of data behind it, this is a very important feature as boxplots hide
the distribution and number of points behind it. The violin plot gives an additional flavor to the
distribution of the data. It is used to visualise the distribution of the data and its probability density.
Here the boxes are broken down by vehicle class. The original data is extremely skewed, right tailed,
the median fuel value averages (for some classes) at around e-5 = 0.0067, this is quite close to the
residual standard error of the model. In other words, about 50% of the fuel points could be predicted
quite accurately.
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Figure 4.14: original skewed (left) and log transformed (right) fuel data

We run a series of diagnostic plots to check several of the assumptions. The residual vs. fitted plot
shown in Figure 4.15 is of the most useful ones, it is noted that there is some clear sign of
heteroscedasticity in the vertical direction. This is an indication that some modifications need to be
done in the model towards high fitted values. High response values (which are linked to high leverage
points) seem to behave differently, it may be worthwhile to fit a different model for high response



values and have some kind of broken stick regression or apply some kind of transformation. A Box-cox
transform can help get rid of the issue. This is expected as we saw that the fuel is heavily right skewed.
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Figure 4.15: Residual plots

As matter of fact a histogram of the fuel data shows in Figure 39 that a log-normal type of model or a
generalized linear model with a log-link transform could beadequate. Since a neural network model
will be used to fit the data anyway, we only briefly go into considering those kind of models next but do
not get deep into the pain of making these models perfect; the main purpose of those models is do get
a senseofthetendencies andrelationships between the predictors and the response as well as detecting
any kind of anomalies. We also remark a few extreme points for which are suspect to outlyingness and
need some further investigation on their validity (discussed next). The scaled location plot is an
effective waytoincrease the resolution of the residual by considering the absolute value of the residuals.

Subtask 4.7 Vehicle energy consumption quantification

Artificial neural network (NN) models are used for various purposes and in different fields. In recent
years NN have been showing a large amount of hype, maybe because of the fancy name or probably
also because of the idea behind it of mimicking biological neural networks and brain functions. In
reality neural network models are just an additional methodology and is simply viewed as an algorith-
mic procedure that rivals other regression, classification and clustering methods used by statisticians.
Although NN models and more generally deep learning showed some good promises, the success and
hype surrounding deep learning is truly attributed to the specific convolutional neural network model
architecture under unsupervised learning with big data applied to image recognition.

4.7.1 Data to Prediction Routine

The process of any machine learning procedure is practically standard. The flowchart in Figure 36
illustrates the usual steps taken from A to Z. In each step, the machine learning philosophy compel us
to make sure that the ultimate purpose of each step is to serve the need of delivering a good predictive
model. Unlike in statistical fields, the prediction power is the sole purpose of the resulting model,
without a need to understand or interpret the relationships between the inputs and outputs. In this
process, it is easy to lose track of the original values or the original meaning or the units of any variable.
The very first steps of the flow diagram have already been accomplished and detailed in the previous
sections, this comprise the identification of the data sources, the data collection, the data integration
and the creation of a combined database coming from multiple sources. We also described how the
data was prepared and we went through a preliminary exploration of the data to understand the
nature of the data, the format and its quality. This step usually gives us a lot of insight and leads us to
an informative analysis and increase the chances of a successful outcome. After, we presented how
we performed many data manipulations as part of our preprocessing step. This by cleaning obvious
erroneous points, selecting variables of interest from a correlation analysis and applied many
transformation to suit our needs. This cleaned dataset was then passed on to a more elaborate analysis
and for the purpose of outlier detection which we have detailed and feature selection. The final dataset
is then ready and through the right analytical techniques an appropriate model can be built. The model



build includes a training and validation step in which model parameters are tuned and optimized and
accuracy of predictive results controlled via cross validation methods to avoid overfitting. The results
are then assessed and predictions can then be communicated. It is important to understand that
machine learning routine is an iterative process, the training and modeling may need to be revisited
many times.

We have been working on the development of a prediction tool Figure 4.16 to ease visualize
predictions. The tool is intended to provide the user with a generic data-independent interface and
guide him to create, configure, train and view machine learning models. It also allows users to visualize
and evaluate model performance. In addition, the tool also offers an automated outlier detection
process based on Random sample consensus methods (RANSAC). This feature is useful when data need
to be fit automatically without the intervention of a skilled analyst. Although useful, it is dangerous to
exclude outliers in an automatic way, and one need to be aware of this. The tool contains two several
modes: a real time and a batch mode. The real time mode is designed to make quick predictions,
visualize the results and analyze them while quickly be able to modify route, trip or vehicle inputs. The
batch mode allows the user to define a large set of inputs at a time, prediction is performed on all and
a output prediction file is generated. The latter method is appropriate to study different scenarios and
analyze the behavior of various vehicles or trips in different settings.
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Figure 4.16: Machine Learning based Prediction Tool

We have discussed the limitation of the model developed and its prediction accuracy. We have also
detailed the conditions in which the accuracy can be hindered. Figure 4.17 shows an example of a
relatively bad prediction. We see in this example that all the links are short very short in length and
the driver does not spent enough time on each. Half of the cycle can be considered as a city drive



(below 55 mph). The resulting prediction for this vehicle on the selected trip exhibit a 12% error. This
can be considered unsatisfactory to some extent.
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Figure 4.17: Example of a bad prediction

Task 5 Adaptive Signal Control

In this task, we investigate the energy savings and mobility benefits from adaptive traffic signal control
systems with varying percentage of connected and automated vehicles (CAV). There are four sub-tasks.
First, a hardware-in-the-loop (HIL) simulation environment is built and calibrated, which setup a virtual
testing environment (Task 5.1). Second, five algorithms are developed for different CAV penetration
rates under mixed traffic conditions (Task 5.2). The proposed algorithms are tested and validated in
the HIL simulation environment in terms of both mobility and energy benefits (Task 5.4). Finally, an

implementation case study is developed to conduct field experiment along a real-world corridor (Task
5.3).

Table 5.1 shows the content and schedule of each sub-task.

Table 5.1 Content and Schedule of Each Sub-task

Subtask Content Schedule
5.1 Build and calibrate the traffic simulation environment M1-M6
5.2 Develop the adaptive signal control algorithm M7-M18
5.3 Deploy and conduct field experiment at Plymouth Rd M19-M30
5.4 Evaluate the energy saving of adaptive signal control M31-M36

5.1 Traffic Simulation Environment

5.1.1 Simulation Platform Overview



A hardware-in-the-loop (HIL) simulation platform is designed to test and evaluate the models in a
microscopic simulation environment. The simulation platform aims to replicate the real-world
situation as much as possible so that models and algorithms tested in simulation can be deployed in
the filed with minimal modification. The structure of the simulation platform is shown in Figure 5.1.
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Figure 5.1: HIL Simulation Platform

The HIL simulation platform is designed for a CAV environment. There are mainly three parts: a
simulation software, a central server and two pieces of hardware device: a roadside unit (RSU) and a
data collection device.

VISSIM which is a microscopic simulation software is selected to simulate vehicle movements and
traffic signal operations. VISSIM is able to simulate individual vehicle behaviors such as car following
and lane changing as well as different types of traffic signal operations including fixed, actuated and
adaptive. VISSIM allows users to control all or part of the vehicles and change their behaviors (e.g. Eco-
departure, Eco-approaching) based on user defined models. The DriverModel.dll APl is used to
generate Basic Safety Message (BSM) for each CAV in VISSIM. Each BSM includes the real-time basic
vehicle information including vehicle ID, location, speed, heading, and acceleration etc. The
transmission frequency of BSM is 10Hz. The BSMs will be sent to RSU first and then the RSU will forward
the BSMs to the data collection device.

The signal phasing and timing (SPaT) data is sent out by the virtual signal controller in VISSIM to the
data collection device every 0.1 second including current vehicle phase status, pedestrian phase status,
overlap phase status, and estimated remaining time of each phase.

A map description file which describes the geometric structure of the intersection is a static file locally
stored in the data collection device. This file includes the GID information such as GPS coordinates of
the lane nodes, lane attributes (e.g. allowed movements) and lane to lane connection etc.

All data including BSM, SPaT and map will be sent to the central server which has three components:
data processor, performance measurement algorithm and adaptive control algorithm. The data
processor is developed to store and process all data from the data collection device for algorithm
development. The adaptive control algorithm is designed to generate optimal signal timing plans with
energy and environmental objectives such as minimization of fuel consumption and emissions. The
performance measurement algorithm is used to evaluate the performance of the adaptive control



algorithm. After a new signal timing plan is generated, this new plan will be executed through sending
National Transportation Communications for ITS Protocol (NTCIP) commands to the virtual signal
controllers in VISSIM.

5.1.2 VISSIM Simulation Model

A VISSIM (PTV, 2013) simulation model is built for the six-intersection corridor at Plymouth Rd, Ann
Arbor as shown in Figure 5.2. The six intersections are: Plymouth Rd @ Green Rd, Plymouth Rd @
Huron Pkwy, Plymouth Rd@ Nixon Rd, Plymouth Rd @ Traverwood Dr., Plymouth Rd @ Murfin Ave,
and Plymouth Rd @ Barton Dr. The Plymouth Rd has two lanes for each direction which is one of the
busiest commuting route, serving US23 to the North campus of UM and downtown Ann Arbor. Some
crossing roadways are major arterials which carry large volume of traffic (e.g. Green and Huron) and
others are side streets with less traffic demand (e.g. Traverwood Dr.). The road geometries are
calibrated with the satellite maps from Google Earth.

Figure 5.2: VISSIM Simulation Model of Plymouth Corridor

Figure 5.3 shows vehicles, traffic signals and stop-bar detector layouts of the intersection Plymouth Rd
and Huron Pkwy. The blue vehicles in the simulation are regular vehicles while the red vehicles are
CAVs. Note that only CAVs broadcast BSMs. The market penetration rates of CAVs can be modified by
setting up different vehicle compositions.

Figure 5.3: Plymouth Rd and Huron Pkwy Intersection in VISSIM
5.1.3 DriverModel.dll API

The drivermodel.dll APl is an interface to VISSIM that allows users to apply different driving behavior
models for some or all vehicles in VISSIM. The APl is implemented as a dynamic link library (DLL) written
in C/C++. The API provides several functions to create, move and delete vehicles as well as read and
set vehicle parameters for car-following and lane-changing models. Any vehicle type (e.g. CAV) can be



enabled to call the drivermodel.dll every simulation step through the vehicle type property page as
shown in Figure 5.4.

In this project, the DriverModel.dll is used to generate BSMs as mentioned above. The process of
generating BSM using the APl is described below:

Step 1: Initialization: Setup UDP socket communication and read IP address and port of the target RSU
Step 2: Read vehicle information from VISSIM through DriverModelSetValue() function

Step 3: Coordinates transformation which transform the vehicle position coordinates from local X, Y to
GPS coordinates (WGS-84) applying the transformation algorithm described in (Farrell and Barth,
1999). This algorithm first transforms local X, Y coordinates to the earth-centered earth-fixed (ECEF)
rectangular coordinates. The ECEF coordinates has its x axis extended through the intersection of the
prime meridian (0° longitude) and the equator (0° latitude). The z axis extends through the true North
Pole. The y axis completes the right-handed coordinate system, passing through the equator and 90°
longitude. Then the ECEF coordinates are transformed to GPS coordinates. The relationship among the
three coordinate systems is shown in Figure 5.5.

Step 4: Generate Society of Automotive Engineers (SAE) J2735 standard BSM using an open source
ASN.1 encoder/decoder (http://lionet.info/asnlc/compiler.html).

Step 5: Broadcast BSMs through the UDP socket.
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Figure 5.4: Vehicle Property Page for External Driver Model
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Figure 5.5: Relationship Among Local, ECEF and GPS Coordinates Systems
Source: Digital Imaging and Remote Sensing Lab (http://www.dirsig.org/docs/new/coordinates.html)

VISSIM is running in real-time and the simulation resolution is set to be 10 steps per simulation second.
As a result, every 0.1s of simulation time (also 0.1s of actual time), BSMs from all CAVs are broadcast
to the RSU which is the same frequency as the field operation.

5.1.4 Data Collection Device

The data collection device is designed to interface with both roadside unit (RSU) and traffic signal
controller to simultaneously collect DSRC messages from connected vehicles, as well as high resolution
detector and signal status data from traffic signal controller. The device can also encode signal status
and road geometry information into standard DSRC messages. These messages are sent to RSU to be
broadcast in real-time. The data collection device pre-processes the data and sends to the central
server for storage, management and visualization as shown in Figure 5.6.

The device is aimed to be developed as a universal interface device, which is compatible with various
types of RSUs, traffic signal cabinets and controllers. This device is independent of controller and RSU
vendors, and can serve as a cost-effective way to upgrade existing infrastructure without much
changes to other devices.

The RSU receives BSMs from all connected vehicles within the DSRC communication range and
forwards to the data collection device. The device receives SPaT data from the signal controller and
MAP data from a local description file and generates SAE J2735 SPaT and MAP messages and then
forwards to the RSU. The data collection device also receives the loop detector data and signal status
data from harness cables or the Synchronous Data Link Control (SDLC) port. It preprocesses all the data
including information extraction, data reduction and data re-formatting and sends to the central server
with a predefined format.



Figure 5.6: The Data collection Device

5.1.5 Central Server

The central server is designed to process and visualize data from different intersections (data collection
devices) as well as generate optimal adaptive signal timing plans regarding energy efficiency. It has
three components: a data processor, a performance measurement component and an adaptive signal
control component.

The data processor categorizes received data and saves to different databases. In addition, the data
processor calculates additional vehicle and intersection information based on received BSMs and
MAPs. For example, an algorithm is developed to locate vehicles on the roadway based on the
intersection map and the vehicle’s GPS location from BSM. Additional information including vehicle
current approach, current lane, distance to stop bar, requested signal phase and vehicle states (e.g.
approaching, leaving or in queue) are generated from the algorithm, which are critical to traffic signal
control applications.

The performance measurement component reads data from the databases and evaluate current traffic
conditions such as traffic volume, queue length, travel time and level of service (LOS) at different levels
including intersection level, corridor level and network level.

5.2 Adaptive Signal Control Algorithms

The overall algorithm development framework is shown in Figure 5.7. The algorithms are divided into
two branches: with connected and automated vehicles (CAVs) or with connected vehicles (CVs). CVs
refer to those vehicles that are able to communicate with each other and the infrastructure. However,
they are still driven by human drivers. As results, CVs are only observable but not controllable. CAVs
refers to those vehicles that have both connectivity and automated driving functions that can be
controlled by computers.
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Figure 5.7 Algorithm Development Overview

The first branch assumes all vehicles are CVs and a portion of vehicles are CAVs. Then the traffic control
framework can be expanded to two dimensions: spatial (vehicle trajectory control) and temporary
(traffic signal control). Based on this concept, we developed a spatiotemporal intersection control
framework that applies a two-stage optimization model to jointly control CAV trajectories and traffic
signals (Model 1). Further we integrated the two-stage optimization model into a unified framework
and proposed an integrated model to optimize signal timing, vehicle arrival times, and vehicle lane
changing behaviors simultaneously (Model 2).

The second branch assumes only CVs exist on the road, which implies an early deployment stage. One
of the major challenges at this stage is the low penetration rate problem. Only a small percentage of
vehicles are connected so that an estimation model is necessary to estimate the entire traffic state
based on limited CV information. To this end, we developed a model that estimates traffic volume
based on CV trajectory data (Model 3). Traffic signal optimization can be conducted based on
estimated volume. Depending on the penetration, two different optimization models are constructed.
If the penetration rate is high enough (e.g., >10%) and sufficient number of real-time CVs are observed,
a real-time adaptive signal control model was formulated (Model 4). If the penetration rate is
extremely low (e.g., <5%), so that there is not enough real time information, a semi-adaptive signal
control model was implemented (Model 5).

The following sub-sections introduce each of the model in more details.
5.2.1 Spatiotemporal Intersection Control

Current traffic signal control strategies including fixed-time, vehicle-actuated and adaptive control
allocate green times to different vehicle movements to avoid conflicts and ensure intersection safety.
With the rapid development of connected and automated vehicle (CAV) technologies, vehicles can
communicate with the RSU through dedicated short range communications (DSRC). At the same time,
data from the RSU (e.g. signal status and intersection map) can be broadcasted to vehicles within the
communication range. The two-way real-time communication between the CAVs and the
infrastructure makes the vehicles “controllable” through either speed advisory system for human-
driven vehicles or control systems in connected and automated vehicles.

Therefore, in a CAV environment, not only traffic signals but also vehicle trajectories can be controlled
to improve traffic efficiency and gain environmental benefits. Current research efforts mainly address
only one side of the control problem. For example, Eco-driving (Barth et al., 2011; Rakha and
Kamalanathsharma, 2011) and speed advisory (He et al., 2015; Wu et al., 2015) mainly focus on vehicle
trajectory control with the purpose to reduce fuel consumption or emission. These applications
assume that signal timing is fixed and known to the vehicles. Meanwhile, CAV based signal control
applications (Feng et al., 2015; Goodall et al., 2013; He et al., 2014; Lee et al., 2013) consider vehicle



trajectories as the input to signal control algorithms. The objectives of signal optimization are usually
only related to efficiency such as minimizing total vehicle delay or maximizing throughput. Energy
impacts are seldom considered.

To the best of our knowledge, there are only quite limited studies on the joint optimization of vehicle
trajectories and signal timing. (Malakorn and Park, 2010) proposes a cooperative system where a
vehicle trajectory is assumed to include an acceleration segment and a cruising segment. Vehicle arrival
windows are then calculated. On the basis of these windows, traffic signals are optimized. Simulation
analysis justifies the system in terms of both mobility and environmental impact. (Li et al., 2014)
proposes an algorithm to jointly optimize vehicle trajectories and traffic signals. A generic optimal
vehicle trajectory of four segments is assumed. The first and third segments have constant
acceleration/deceleration, while the second and the fourth segments have constant speed. If the time
durations of some segments are zero, the actual trajectory may have less segments. Owing to the
simple case in the research, signals are optimized by enumerating all feasible combinations of the
number of phases and phase splits. Obviously, the assumption of an optimal vehicle trajectory with
determined segments cannot guarantee the true optimal solution. The enumeration method may be
ineffective when complex phase structure is considered. In addition, this method requires to control
all vehicles which can only be applied in a fully automated environment.

One notable solution to the joint control problem of vehicle trajectories and traffic signals is so called
“free” intersections where the traffic signals are removed and all vehicles pass the intersection in a
self-organized way (Lee and Park, 2012; Zohdy and Rakha, 2014). However, this approach requires
100% penetration rate of fully automated vehicles, which is not realistic in the near future. Given the
update rate of vehicles in the U.S, it can be predicted that in the next ten to twenty years, traffic signals
will still play an important role in urban transportation operations.

Model Framework

The proposed joint control framework aims at improving the efficiency of green time utilization to
minimize vehicle delay and smoothing vehicle trajectories to reduce fuel consumption and emission.
Figure 5.8 shows the comparison of green time utilization between the state-of-practice signal control
and the proposed joint control.
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Figure5.8: Green Time Utilization Comparison

The blue curve shows the vehicle discharging rate at an intersection under current signal control
strategies. When the signal turns to green, the first few seconds of the green time are wasted (start-



up lost time t;) because human drivers need time to respond to signal changes and accelerate the
vehicles. Then the discharging rate starts to increase to the saturation flow rate (gs) until queued
vehicles are fully discharged. Finally, it drops to the arrival rate which is usually lower than the
saturation flow rate. The area below the curve is the vehicle demand served during the green time. In
the proposed framework, the trajectory of the leading vehicle of an approaching platoon is controlled
so that it arrives at the intersection at the beginning of the green time with an optimal speed. The
control of the leading vehicle trajectory also results in a compact platoon so that the discharging rate
keeps the saturation flow rate (as shown in the black dashed line). If Area 3 is equal to the summation
of Area 1 and Area 2, then within much shorter green time interval (gnrew), the same number of vehicles
can pass the intersection as that in the current control strategy where the green time is much longer
(gcur). As a result, the green time utilization is greatly improved. Note that the proposed framework
doesn’t increase intersection capacity by shortening the saturation headway, but by utilizing green
time more efficiently.

To achieve this goal, a two-stage optimization model is proposed. In the first stage, adaptive signal
control concept is adopted to address the flow fluctuation. Total vehicle delay is used as the objective
function (1):

IpUp

min D = ¥.D,(g, up) = Z Z dp,i(gp, up) (1)
p 1

st. g9(gpup) <0 (2)

where d,,; is the delay of vehicle i in phase p; g, is the remaining green time of phase p ; u, is the
acceleration/deceleration rate profile of the leading vehicle in phase p. u,, given the value of g,, is
the solution of the second stage problem. Note that the first-stage optimization does not generate a
fixed cycle length, but the cycle length is bounded by the minimum and maximum green times of each
phase. In the second stage, the trajectory of each leading vehicle is controlled to minimize fuel
consumption and emission in Eq. (3).

min £ (gp, ) (3)

s.t. h(g, up) <0 (4)

As shown in Figure 5.9, the objective of the trajectory control is to make the leading vehicle arrive at
the intersection (distance L) at time point t;, which is the beginning of green, with the optimal speed
vy (Figure 5.9 (b)). viris defined as the speed at which the flow rate reaches the saturation flow rate g
as shown in Figure 5.9. For simplicity, some assumptions are made. All vehicles are homogenous, which
have the same size and vehicle dynamics (e.g. acceleration, desired speed). All following vehicles obey
certain car following rules, based on which following vehicles with larger gaps will try to catch up with
their leading vehicles with safety constraints. Lane changing and overtaking behaviors are prohibited.
Therefore, a compact platoon can be generated naturally without controlling the trajectories of all
vehicles.
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Figure 5.9: Leading Vehicle Trajectory Control

Constraint (2) mainly includes signal timing parameters (e.g. minimum and maximum green time) and
car-following rules. Constraint (4) presents vehicle dynamics limits (e.g. maximum acceleration), travel
time and travel distance.

Leading vehicle Trajectory Control

The trajectories of platoon leading vehicles are controlled to arrive at the intersection at the beginning
of green with an optimal speed. An optimal control model is formulated, with the objective to minimize
acceleration fluctuation:

tr
rlgl(ltr)l] = fto [u(®)| dt (5)

Vehicle position x(t) and speed v(t) at time t are the state variables. Vehicle acceleration rate u(t) is the
control variable and is bounded by maximum deceleration —a® and acceleration rates a’. The
relationship between the state variables and the control variable defines the vehicle dynamics. Initial
and final states are defined based on vehicle’s current speed, distance to the intersection from the
current position, arrival time, and arrival speed.

The purpose of using this objective function is to derive analytical solutions by the Pontryagin’s
minimum principle (PMP) (Sethi and Thompson, 2000), which greatly reduces the computational time.
Theoretical proof shows that the optimal trajectory consists of no more than three segments. As an
example, Figure 5.10 shows a general optimal trajectory in which the switch time t; and t; can be
obtained uniquely by solving Egs. (6) and (7) with the constraint of t; < t,. The detailed model
formulations can be found in (Feng et al., 2018).
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To justify the simplification, EPA’s MOVES emission model (EPA, 2002) is applied as the objective
function for comparison as described in detail in the next section.

Benchmark Model for Objective Function Justification

To justify the simplified objective function in Eqg. (5), the multi-scale motor vehicle & equipment
emission system (MOVES) model (EPA, 2002) of U.S. Environmental Protection Agency (EPA) is applied
as the benchmark model for comparison. This model estimates vehicle specific power (VSP) with the
input from vehicle speed and acceleration values. Then VSP modes are identified through a look-up
table. Furthermore, according to different types of vehicles, engine sizes, and mileages, vehicle
emission is located in the emission table (refer to the EPA report (EPA, 2002) for more details).

With the MOVES emission model as the objective function, the analytical solution is not available.
Therefore, an approximation model (He et al., 2015) which transforms the optimal control problem to
a non-linear programming problem with much fewer decision variables is constructed for platoon
leading vehicle trajectory control. The approximation model also divides the vehicle trajectory into
three segments with constant acceleration or deceleration rates in each segment. The middle segment
is for vehicle cruising where the vehicle speed is kept as a constant. Therefore, the decision variables
in this model are reduced to four: two acceleration/deceleration rates aj, a;, and two switch time
points t;, t;. Detailed model formulations can be found in (Feng et al., 2018). Although the formulation
is simple and the number of decision variables is small, this problem is non-linear which increases the
computational burden, and yet the quality of the solutions cannot be guaranteed, which is
demonstrated in the numerical examples.

Platoon Identification

In order to identify the leading vehicle of each platoon to apply the optimal control model, a platoon
identification algorithm is developed to separate platoons for different cycles within the DSRC
communication range, as shown in Figure 5.11. Platoons are identified one by one from the stop-bar.
The number of identified platoons is related to the DSRC communication range as well as the number
of cycles planned in DP. Generally, the platoon number should be less than or equal to the cycle



number planned in DP. In reality, due to the limited range of DSRC communication (e.g. 300 m), usually
only 1 or at most 2 platoons can be identified for each phase with a reasonable cycle length. The
following illustrations are based on only one cycle planned in DP. The analysis is similar if more cycles
are planned.

The platoon size for phase p is limited by several factors:

1. The duration of the green time generated by DP in signal optimization. The maximum number
of vehicles can be calculated as floor(gy/hs), where g, is the remaining green time of phase p,
hs is the saturation headway and the floor function means rounding down to the next integer.
2. Vehicle location. If a vehicle is too far away from the stop-bar, then it may not be able to catch
the platoon. The furthest distance dm.x that a vehicle can be included in the first platoon is
calculated as dmax = (rp*+g,)x V', where r, is the remaining red time of phase p and V/ is the free
flow speed. If phase p is the current phase, then r,=0.
3. DSRC range dpsgc. If a vehicle is outside the DSRC range, then it will not be included in the
platoon identification algorithm.
In summary, if a vehicle’s sequence in the approaching vehicles is less than or equal to floor(g,/hs) and
its distance to the intersection is small than min(dmax, dbsrc), this vehicle can be included in the first
platoon. Otherwise, it should be included in other platoons and pass the intersection without stops at
the stop-bar in later cycles. Therefore, no queues will be generated at the stop-bar.
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Figure 5.11: Platoon Identification
Car-Following Model

In order to model the behaviors of following vehicles in a platoon, the Next Generation Simulation
(NGSIM) car-following model (Yeo et al., 2008) is adopted to update their trajectories. This car-
following model is based on Newell’s linear car-following (Newell, 2002) model with additional safety
constraints to avoid collisions (Gipps, 1981). The model also considers the vehicle performance limits
such as maximum acceleration and deceleration rates. The detailed model formulations can be found
in (Yeo et al., 2008).

Signal Optimization

The signal optimization is formulated as a DP problem which considers each phase as a stage in DP
(Sen and Head, 1997). A forward recursion is used to calculate the performance measures and record
the optimal value function. A backward recursion is used to retrieve the optimal solution. The detailed
model formulations can be found in (Feng et al., 2015).

Rolling Horizon Scheme

The proposed joint control algorithm is implemented in MATLAB. The flow chart of the optimization
process is shown in Figure 5.12. Time is discretized into 1s steps and signal status and vehicle
trajectories are updated every time step. A rolling horizon scheme is adopted in which the optimization
process is repeated every 5 seconds to include recent vehicle arrivals. The planning horizon for signal
optimization is two cycles, in which two cycles of signal timing are generated by DP. The generated
signal timing will be executed in the next rolling horizon (5 seconds). It also serves as the input of the
platoon identification algorithm. Then the optimal trajectories of the platoon leading vehicles are



solved analytically using the optimal control model. Similarly, the platoon leading vehicles will follow
the optimal trajectory during the next rolling horizon. Following vehicles update their trajectories
according to the car-following model. The vehicle trajectories are used to estimate the performance
function in signal optimization.
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Figure 5.12: Rolling Horizon Scheme
Numerical Examples
Simulation Setup

In the following numerical examples, a hypothetical intersection of two single-lane approaches is used.
Two signal phases are applied and no turning movements and lane changing behaviors are considered.
The DSRC range is 300 m from the center of the intersection which provides reliable communication
(Emmelmann et al., 2010). All vehicles in the communication range are controllable, although only a
few vehicles are controlled.

The default parameters for the car-following model are set as follows: 7,=2 s, 1,_4 +g,];am=6 m
(consider uniform vehicle length), a¥=2 m/s?, ak=-2 m/s?, v,{=14 m/s (~50 km/h).

In signal optimization, the two phases of a cycle are identical. The corresponding default parameters
are set as follows: the minimum green time gmin=10, the maximum green time gme=26, and the



transition interval gwen=4 which includes yellow interval and all-red clearance time. Therefore, iji"=
Gmin* Qtran and X}"ax: Gmaxt Guan. The maximum acceleration and deceleration rates for vehicle
trajectory control are set the same as those in the car-following model, and the optimal speed v, =10
m/s.

The optimal control formulation for leading vehicle trajectory control may not always have solutions.
Based on the parameters above, if the green time generated by DP is smaller or equal to 5 seconds,
the signal optimization will not be executed until the beginning of the next phase to prevent modifying
the leading vehicle trajectory when it is too close to the intersection.

Simulation Results and Discussion

Vehicle arrival conforms to the Poisson distribution. Three different traffic demand levels are tested.
The demands in the two approaches are set to be the same. The three levels are 500 veh/h/lane, 650
veh/h/lane and 800 veh/h/lane (i.e., medium, high and saturated traffic conditions). The
corresponding v/c ratios are 0.64, 0.83, and 0.97. v/c ratio is calculated based on an 1800 veh/h/lane
saturation flow rate and the effective green time is equal to the actual green time. Four different
scenarios are simulated: Fixed, Adaptive, OC and NLP. In the “Fixed” scenario, vehicle trajectories are
not controlled, and the signal timing is fixed. Each phase has 26s of green time, 4s of transition time
and 30s of red time. In the “Adaptive” scenario, vehicle trajectories are not controlled, but the signal
timing is optimized using DP. In the “OC” scenario, vehicle trajectories are controlled using the optimal
control model with simplified objective function and the signal timing is optimized using DP. In the
“NLP” scenario, vehicle trajectories are controlled using the Non-linear programming (NLP)
approximation model with MOVES model as the objective function and the signal timing is optimized
using DP. The total simulation time for each scenario is 1000s. Figure 5.13 shows the comparison of
vehicle trajectories under the four scenarios with medium demand level.
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Figure 5.13: Vehicle Trajectory Comparison under Four Scenarios

By comparing the scenarios “Fixed” and “Adaptive”, it can be seen that in some cycles of the “Fixed”
scenario, a portion of green time is wasted. The “Adaptive” scenario generates the timing plan
adaptively based on vehicle arrivals so that green time will be utilized more efficiently. Without
controlling vehicle trajectories, vehicles stop at the stop-bar for the red signals in both “Fixed” and
“Adaptive” scenarios. With vehicle trajectories controlled, leading vehicles of each platoon in the “OC”
and “NLP” scenarios slowdown in the middle of the road segment to avoid stops at the stop-bar. They
are controlled to arrive at the intersection at the beginning of the green most of the times to improve
the green time utilization. Following vehicles obey the car-following model to catch up with the
preceding vehicles so that compact platoons are generated. The figure also shows that scenarios “OC”
and “NLP” generate similar vehicle trajectories. In both scenarios, at the end of the third cycle (around
150s), there is a sudden deceleration of the leading vehicle trajectory. That’s caused by the change of
the signal timing due to adaptive signal control. In this case, the green time generated by the adaptive
control algorithm is 1 second shorter than the previous rolling horizon. As a result, the last vehicle of
the previous platoon cannot pass the intersection and it becomes the leading vehicle of a new platoon.
It is then controlled to arrive at the intersection in the next cycle. The leading vehicle of the sixth cycle
(around 270s) cannot arrive at the intersection at the beginning of the green so that it is not controlled
and it travels at free-flow speed to the intersection.

Table 5.2 shows the comparison of total vehicle delay, CO, emission and execution time of the four
scenarios under different traffic demand levels. Results of all scenarios are the average of 5 different
random seeds. CO; emission is calculated by the MOVES emission model based on the vehicle
trajectories generated in each scenario. Note that the “NLP” scenario incorporates MOVES model to
the objective function while other three scenarios just use MOVES model for evaluation. Vehicle
category 11 in MOVES model (odometer<50,000 miles and engine size <3.5 liters) is used. The
execution time to run the 1000s simulation is recorded.

Table 5. 2: Comparison of Vehicle Delay, CO, Emission and Execution Time

Demand Level: 500 veh/h/lane(v/c=0.64)*
Scenario
Delay (s) % CO; Emission (kg) % Execution time (s)
Fixed 4400.6 N/A 51.4 N/A 0.8
Adaptive 3746.4 -14.9 47.5 -7.5 6.1
ocC 3752.2 -14.7 47.2 -8.2 1.4
NLP 3851.4 -12.5 47.9 -6.7 657.8
Demand Level: 650 veh/h/lane (v/c=0.83)
Fixed 15761.0 N/A 113.5 N/A 1.1
Adaptive 14940.6 -5.2 110.1 -2.9 6.3
ocC 11981.6 -24.0 97.9 -13.8 1.6
NLP 12056.0 -23.5 99.1 -12.6 886.6




Demand Level: 800 veh/h/lane (v/c=0.97)
Fixed 31729.2 N/A 159.6 N/A 1.7
Adaptive 31549.0 -0.6 157.0 -1.6 6.6
ocC 28381.4 -10.6 150.1 -6.0 23
NLP 27635.8 -12.9 150.4 -5.8 1529.9

*v/c ratio is calculated assuming an 1800 veh/h/lane saturation flow rate and effective green time
is equal to actual green time.

Several observations can be made from the results:

1. Without vehicle trajectory control, adaptive control outperforms fixed-time control in terms

of both vehicle delay and CO; emission. The benefit decreases as traffic demand increases.
That’s because, under higher demand levels, adaptive control tends to assign maximum green
time to each phase to serve more demand which essentially turns to be fixed-time control.
With vehicle trajectory control, under saturated demand level, “OC” and “NLP” can still reduce
about 10% vehicle delay compared to “Fixed” and “Adaptive”. Because the trajectory control
eliminates the startup lost time and increases the capacity of the intersection. To better
illustrate the benefit of capacity increase, we design a special case with uniform vehicle arrival
(800 veh/h/lane) and fixed-time signal as shown in Figure 5.13. It can be seen from Figure 5.13
(a) that, without trajectory control, the intersection is oversaturated and the queue is
propagating over cycles Figure 5.13 (b) shows the vehicle trajectories under the same demand
level and the same signal plan. The gaps between each trajectory block remain the same over
cycles, which suggests no oversaturation in this case. It is well known that vehicle delay
increases dramatically under oversaturated traffic conditions, which can be avoided because
I |I|f|
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Figure 5.13 Capacity Increase with Trajectory Control



2. Both vehicle delay and emission are reduced in the “OC” and “NLP” scenarios compared to
“Fixed” and “Adaptive” scenarios by as much as 24.0% and 13.8%, respectively. More benefits
are shown under high demand level. Compared to the medium and saturated demand levels,
both the signal optimization and vehicle trajectory control have more flexibility in terms of
green time allocation and intersection capacity utilization.

3. The vehicle delays in “OC” and “NLP” scenarios are similar. But “OC” scenario generates lower
emission than “NLP” scenario in all cases. In both vehicle trajectory optimization problems,
vehicle delay is formulated as a constraint, because the arrival time at the intersection is fixed
through trajectory control As long as a feasible solution can be found, both problems generate
similar vehicle delays. However, emissions are formulated as the objective function, whose
value depends on the quality of the solution. The approximation model is a NLP problem and
no global optimality is guaranteed. In spite of the simplified objective function in the optimal
control formulation, the analytical solutions still outperform those generated using the
emission model as the objective function.

4. The execution time differs among the four scenarios. The “Fixed”, “Adaptive”, and “OC”
scenarios have similar execution times while “NLP” scenario requires significantly longer time.
In the “NLP” scenario, a long execution time is observed due to the difficulty in dealing with
nonlinearity. On the contrary, the analytical solution from the optimal control formulation
reduces computational time notably.

The results have validated the use of the simplified objective function instead of the exact but complex
emission model in terms of both computational time and solution performance.

5.2.2 Integrated Optimization

This study presents a mixed integer-linear programming (MILP) model to optimize traffic signals and
vehicle trajectories at isolated urban intersections in a unified framework. Phase sequences, green
start and duration of each phase, and cycle lengths are optimized together with vehicle lane-changing
behaviors and vehicle arrival times in the MILP model. Vehicles are guaranteed to pass through an
intersection at desired speeds and avoid stops at stop bars. A new planning horizon strategy is applied
to conduct the optimization. Platoons in each lane are identified based on the optimization results.
Exact vehicle trajectories are then generated by optimal control models and car-following models. The
trajectory of each platoon leading vehicle is optimized by an optimal control model with the objective
to minimize fuel consumption and emission. Lower and upper bounds of arrival time constraints are
imposed to the MILP model in order to generate feasible trajectories. Clearance time is considered to
eliminate conflictions between incompatible vehicle movements within an intersection area. The
proposed MILP model is similar with slot-based “signal free” models if the minimum green time
constraint is removed. However, the proposed model optimizes vehicle trajectories at the upstream
of an intersection instead of managing trajectories within an intersection area.

Problem Description

For a typical intersection, there are three vehicle movements (i.e., left-tuning, through, and right-
turning) in each arm. Each movement has a different desired speed to pass through the intersection
for safety concerns. As shown in Figure 5.14, in each arm, the approach lane index is incremented from
the left most lane. Each approach lane is dedicated to one vehicle movement. The distance between a
vehicle and the stop bar at time t is denoted as x“ (t). L; is the control zone in arm i in which vehicle
trajectories can be optimized. L? is the no-changing zone in which vehicles keep their previously
optimized trajectories. That is, only the trajectories of vehicles that are outside the no-changing zone
will be updated over time. The no-changing zone is designed to reduce computational burden but at
the cost of optimality.
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Figure 5.14 An intersection with four arms.

The task is to integrate vehicle trajectory planning into traffic signal optimization in a unified
framework to minimize vehicle delays. The model framework is shown in Figure 5.15. The trajectory
planning serves for two purposes: 1) build the relationships between vehicle arrival times in the same
lane, which helps build the arrival time constraints (e.g., upper and lower bounds) in the MILP model;
2) generate trajectories for vehicles in the same lane given their arrival times, which are supposed to
be optimized in the MILP model. Note that no exact vehicle trajectories or platooning are needed in
building the constraints of arrival times in the MILP model. The outputs of the optimization model
include signals, vehicle lane choices, and vehicle arrival times. Platoons, i.e., the vehicles that pass the
stop bar in the same lane in the same cycle, are identified based on the optimization results. However,
only vehicle lane choices and vehicle arrival times are needed in planning exact trajectories (i.e.,
acceleration, speed, and location profiles) for vehicles in each lane. Platooning is not necessarily
needed when generating exact vehicle trajectories.
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Figure 5.15 Model framework.
Model Formulation
Vehicle Trajectory Planning

The optimal control model introduced in Section 5.2.1 is applied to generate optimal trajectories for
platoon leading vehicles with the objective of minimizing fuel consumption/emission given arrival
times. The Newell’s car-following models are used to capture the trajectories of following vehicles. In
this way, the identification of vehicle trajectories is equivalent to determining the arrival times. To
guarantee the feasibility of the optimal control models, this section also helps build the constraints of
vehicle arrival times for the MILP model. The additional constraints address the problem that the speed
of an optimized trajectory may exceed the post speed limit. Two cases are considered and shown in



Figure 5.16. In the first case, the possible maximum speed never exceeds the speed limit. The vehicle
can exactly follow the optimized trajectory. In the second case, the possible maximum speed may
exceed the speed limit, then the original planned speed is replaced by the speed limit during the time
interval that the situation happens. Detailed derivation of the optimal trajectory can be found in (Yu
et al, 2018).
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Figure 5.16 lllustration of two cases: (a) Case 1, and (b) Case 2.

Optimization Model Formulation

This section presents the optimization model for vehicle arrival times and traffic signal parameters (i.e.,
phase sequences, green starts, green durations, and cycle lengths) considering lane-changing
behaviors. The objective is vehicle delay minimization. Vehicle trajectory planning is integrated by
optimizing vehicle arrival times and lane choices, which determines vehicle delays. The optimization is
conducted based on a planning horizon strategy. Basic assumptions, vehicle trajectory constraints,
signal constraints, and the objective function are introduced sequentially.

The following assumptions are made to simplify the problem:

a) Vehicles are homogeneous. The desired speed when passing the intersection is only related to its
movement direction.

b) All vehicles are controllable.

c) Vehicles and the signal controller can communicate information in real time within the control
zone.

d) Vehicles are in permitted lanes when entering the control zone in each arm. The permitted lanes
are the dedicated lanes for a certain vehicle movement.

e) Lane changing behaviors are assumed to be completed instantly.

The primary objective of the proposed optimization model is the minimization of vehicle travel
delays. The travel delay of each vehicle is defined as the difference between the actual travel time and
the free flow travel time. It is noticed that there may be multiple solutions that have the same total
vehicle delay but with different cycle lengths. Since we have no constraints of maximum cycle lengths
or maximum phase green times to make the model more flexible, a secondary objective of cycle length
minimization is added. It increases the frequency of switching right of way and potentially decreases
the delays of the incoming vehicles in the future. The proposed model is a hierarchical multi-objective
optimization model. Total vehicle delay is first minimized and then cycle lengths are minimized for the
solutions with the same minimum delay. The most common approach to such a model is the weighted
sum method (Marler and Arora, 2004). As a result, the objective function is formulated as
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where T is a subset of the trajectory variable set T (i.e., T = T — {x®(¢t),[®(t), v*(t), a®(t)}); a; and
a, are weighting parameters and a; > a, > 0. t}ﬁ" is the optimized arrival time of vehicle w; t2 is the
generation time of vehicle w; L; is the control zone in arm i in which vehicle trajectories are to be
controlled; v, 44 is the maximum allowed vehicle speed; and C is the cycle length.

Constraints include vehicle trajectory constrains (permitted occupied lanes, possible target lanes, lane
changing behaviors, gap acceptance conditions for lane changing, lower and upper bounds of vehicle
arrival times, and no-changing zones), and signal constrains (lane signal settings, green start time,
duration of green, green end time, cycle length, phase sequence, clearance time, and vehicle arrival
times at stop bars). Detailed optimization model formulation can be found in (Yu et al, 2018).

Planning Horizon Procedure

Previous models use time (in seconds) as the length of the planning horizon with a fixed number
of cycles (Feng et al., 2015), which is different in this study. The cycle number N in the planning horizon,
as shown in Figure 5.17, depends on the number of vehicles considered in the optimization. Note that
cycle lengths are optimized over time and, therefore, the total time of the planning horizon may vary
over time as well. Based on the constraints in terms of vehicle arrival times at stop bars, N needs to be
large enough so that all vehicles are planned to pass through the intersection in the N cycles. A smaller
N may render the optimization model infeasible while a larger N increases computational burden. As
a result, we choose the smallest N that makes the model feasible. Note that the choice of N has no
impacts on solution optimality under the condition that the MILP model is feasible. The planning
horizon procedure is shown in Figure 5.18, which follows:

Step 1: Initialize horizon start time t; = 0 and cycle number N = 1 at initial time 5 = 0.
Step 2: Collect information of vehicles in the control zone at time t,.
Step 3: Solve the special case of the MILP model P3 with @¢; = 1 and a, = 0.

Step 4: If the model is infeasible, then update the cycle number N =N + 1 and go to Step 3.
Otherwise, go to the next step.

Step 5: Select a; and a, so that a; /a, is large enough.
Step 6: Solve the MILP model P3.

Step 7: Update the signals and the planned vehicle trajectories in the control zone according to the
optimization results.

Step 8: Record the optimized length C? of the first cycle.
Step 9: Update time t, = ty + At, where At is the time step.
Step 10: If £, reaches the final simulation time, then end the process. Otherwise, go to the next step.

Step 11: If t, > t, + C1, then update t; = t; + C'. Go to Step 2.
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Figure 5.18 Planning horizon procedure.

Numerical Examples
Experimental Data

To evaluate the proposed models, a typical four-arm intersection with all directions of
movements is applied. The lane markings of the intersection are shown in Figure 5.18. Right-turning
vehicles are not controlled by traffic signals but they are controlled to arrive at the intersection at a
desired speed. The length L; of the control zone in each arm is 300 m which is the reliable
communication range of Dedicated Short-Range Communications (DSRC) (Emmelmann et al., 2010).
The length inj of the no-changing zone in each arm is 50 m.

The basic traffic demand and the volume/capacity (v/c) ratios are shown in Table 5.3. The v/c
ratios are calculated with the assumed green duration of 26 s for each phase and a cycle length of 120
s. The saturation flow in each lane is determined by the time headway. Vehicles are generated
according to Poisson distribution, which is a common practice for traffic control at isolated
intersections (Jiang et al., 2017; Li et al., 2014). Speed limit vy, 4, is 15 m/s. The desired speeds v}*’ of
left-turning, though, and right-turning vehicles passing through the intersection are 10 m/s, 13 m/s,
and 8 m/s, respectively. Vehicles enter the control zone at the speed of 13 m/s instead of the speed



limit. The time displacement 7* and space displacement d® in the car-following model are 0.9 s
(assuming quick reaction of CAVs) and 6 m. The minimum time interval between two lane changing
behaviors of a vehicle is 5 s. The absolute values of the maximum comfortable acceleration and
deceleration rates (a; and a;) are 2 m/s? and 4 m/s? The clearance time between incompatible traffic
flows (e.g., the traffic flow from arm 1 to arm 2 and the traffic flow from arm 2 to arm 3) is 4 s. The
minimum green time gf;{in is 6 s. The tolerance Ad of solution quality degradation is 3 s. The weighting
parameters a; and a, in the objective function Eq. (7) are 300 and 1 in each optimization. To
investigate the environmental impacts, CO; emission model in Frey et al. (2002) is employed.

Arm 2

Arm

Figure 5.18 Lane markings of a four-arm intersection.

Table 5.3 Basic traffic demand and volume/capacity ratios

Traffic demand in pcu/h (v/c) To Arm

From Arm 1 2 3 4

1 - 200 (0.38) 400 (0.35) 100 (0.21)
2 150 (0.32) - 150 (0.29) 200 (0.35)
3 380 (0.33) 150 (0.32) - 180 (0.35)
4 100 (0.19) 200 (0.35) 100 (0.21) -

The optimization models are written in C# and solved using Gurobi 7.5.1 (Gurobi Optimization
Inc., 2017). All the experiments are performed in a desktop computer with an Intel 3.6 GHz CPU and
16 GB memory. An upper limit of 1.5 s is set for real-time application. A sub-optimal solution produced
by the solver will be accepted if the solving time exceeds the time limit.

Results and Discussion

Vehicle-actuated control is applied in the simulation as the benchmark for comparison with the
proposed control method, denoted as CAV-based control. In actuated control, the maximum green
durations for arm 1 and arm 3 are 30 s, and the maximum green duration for arm 2 and arm 4 are 20
s. The minimum green duration is 4 s which is the optimal value by trial and error. The unit extension
time is 2 s. The time of each simulation scenario is 1200 s and the simulation time step is 1 s. Average



values of throughput, vehicle delays, and CO, emissions of ten different random seeds are recorded
and shown in Table 5.4-Table 5.6. Five levels of traffic demand are tested, which are the product of
the basic demand and a demand factor. The demand with the factors from 0.6 to 2.0 is under-saturated
and the demand with factors 3.0 and 4.0 are over-saturated. The under-saturated and over-saturated
traffic condition is observed with actuated control.

Table 5.4 Throughput

Throughput (veh)
Demand factor
Actuated Control CAV-based Control Increase (%)
0.6 289.60 291.20 0.55
1.0 446.00 449.20 0.72
2.0 686.00 691.50 0.80
3.0 764.60 824.80 7.87
4.0 769.70 922.10 19.80

Table 5.5 Average delay

Average Delay (s/veh)

Demand factor

Actuated Control CAV-based Control Decrease (%)
0.6 14.65 8.62 41.16
1.0 15.84 11.33 28.47
2.0 18.32 13.59 25.82
3.0 61.71 15.40 75.04
4.0 98.28 16.34 83.37

Table 5.6 Average CO, emissions

Average CO, Emissions (g/veh)

Demand factor

Actuated Control CAV-based Control Decrease (%)
0.6 123.96 114.73 7.45
1.0 126.19 123.51 2.12
2.0 134.98 132.38 1.93

3.0 212.65 133.08 37.42



4.0 267.07 135.39 49.31

Table 5.4 shows that CAV-based control improves intersection capacity. The throughput increase
under CAV-based control is insignificant with under-saturated traffic demand. This is consistent with
our intuition because demand is below intersection capacity under both control methods. When the
demand factor further increases to 3.0 and 4.0, intersection capacity is reached under actuated control
because the throughput almost remains the same. In contrast, the throughput under CAV-based
control keeps increasing noticeably. This indicates that intersection capacity under CAV-based control
is higher compared with actuated control.

Table 5.5 shows the significant decrease of vehicle delays when CAV-based control is applied,
which can reach ~40% under low traffic demand and ~80% under high demand. The benefits are mainly
due to improved intersection capacity as well as the more efficient use of green time at the
intersection. Vehicle trajectories are optimized so that all vehicles pass through the intersection at high
desired speeds without stops. Thus, no vehicle queues are generated at stop bars, either. As a result,
the green start-up lost time is eliminated and more vehicles can pass the intersection during the same
green interval compared with actuated control. One interesting observation is that the delay reduction
under CAV-based control decreases first and then rises as demand increases. Under under-saturated
demand, the benefits are more remarkable with lower demand which indicates strong flow
uncertainty. Under over-saturated demand, the delay under actuated control rises more significantly
as demand increases. Because the intersection capacity under CAV-based control is much higher than
that under actuated control.

Table 5.6 shows the comparison of CO, emissions. The results are similar to those in Table 5.5.
CAV-based control outperforms actuated control under both under- and over-saturated demand. This
is intuitive because the trajectories of platoon leading vehicles are planned with the aim of reducing
fuel consumption/emission. Following vehicles also have smoother trajectories since they do not make
complete stops at stop bars. But the benefits decrease with increasing traffic volumes under under-
saturated demand. The reason is that vehicles are likely to accelerate or decelerate more frequently
under CAV-based control when traffic condition varies. As shown in Figure 5.19, vehicles decelerate
only once before arriving at the intersection under actuated control while vehicles keep adjusting their
speeds according to varying traffic condition under CAV-based control. However, the benefits are
significant under over-saturated demand. Because intersection capacity is improved under CAV-based
control and thus vehicles experience much less delays. This indicates that vehicles spend much less
time traversing the intersection. In this way, CO, emissions are greatly reduced.
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Figure 5.19 Trajectories of left-turning vehicles in arm 1 as an example: (a) actuated control, and
(b) CAV-based control.



5.2.3 Traffic State Estimation

At signalized intersections, CVs may serve as mobile sensors, providing opportunities of
reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration
rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal
operation remains an open question.

In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or
navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent
Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed
trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem.

Methodology

In order to estimate traffic volume, our basic idea is to take advantage of vehicle arrival information in
vehicle trajectories. The arrival information can be reflected from the status whether a vehicle stopped
or not. An example is shown in Figure 5.20. In the figure, CV1 passed the intersection with a stop and
CV2 without a stop. Then, based on CV1’s stopping position or departure time, we can calculate
number of vehicles queuing in front of it. Based on the trajectory of CV2 without a stop, we know that
if vehicle queue existed, the queue would not be long enough to impact CV2. In other words, the upper
bound of possible vehicle arrivals between CV1 and CV2 can be calculated based on the trajectory of
CV2. By combining these arrival information from vehicle trajectories, volume of overall vehicle arrivals
can be estimated.

Regular Connected
cVvi Vehicle Vehicle (CV)

Figure 5.20 llIstration of Vehicle Arrival Information in Trajecotries

The vehicle arrivals are modeled as a time-dependent Poisson process. During a selected Time of Day
(TOD) period, we assume that traffic arrivals follow a time-dependent Poisson process with an arrival
rate of Ap(t(9)). Here, t(©) indicates time within a signal cycle, the superscript (¢) indicates that the
time is measured using a signal clock, k denotes the mean arrival rate, and p(t(c)) is the time
dependent factor proportional to the arrival rate at t(°), i.e., the fraction of total arrivals at t(©over
the entire signal cycle. In traffic engineering literature, Poisson process is a common choice to model
traffic arrivals at intersections. The additional assumption that arrival rates are dependent on the time
in a signal cycle is to account for impacts from signal coordination. With the signal coordination, traffic
departures at the upstream intersection would be grouped as platoons, leading to nonhomogeneous
arrivals at subject intersection. The time-dependent Poisson process is used to characterize the non-
homogeneous arrivals.

Given the Poisson arrival process, the likelihood function for observing all valid CV trajectories can be
formulated by taking advantage of the inter-arrival time and the corresponding number of non-CV
arrivals between two consecutive CV trajectories received at RSE. As mentioned earlier, two types of
CV trajectories are considered: 1. CV trajectory with a stop at an intersection, and 2. CV trajectory that
traverses the intersection without a stop. Between the projected arrival times of two stopped CVs, or
between the projected arrival time of one stopped CV and the start of a red signal, the number of non-
CV arrivals can be calculated based on the CVs’ departure time. If a CV without a stop is observed, then



gueues at intersection, if exist, are not long enough to affect the non-stopped CV. Thus, the maximum
number of vehicle arrivals before the CV can be calculated. Illustrations of the two types of CVs are
shown in Figure 5.21.

Besides these two cases, two other cases of trajectories also exist: 1. stopped CV arriving after a non-
stopped CV in the same cycle, and 2. non-stopped CV arriving after another non-stopped CV, also in
the same cycle. For the first case, the stop of the CV would not be caused by queues or red signal, but
likely by other factors, e.g., mid-block entry of other vehicles. For the second case, after the arrival of
a non-stopped CV, we know that the queues must have been cleared and the rest of CVs in the same
cycle would travel with free-flow speed. The trajectory therefore does not provide useful information
for volume estimation. Accordingly, both cases are considered as invalid or trivial observations, and
are not used in the estimation.
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Figure 5.21 lllustrations of Two Different Types of CV Trajectories

Based on the discussion, the likelihood of observing all valid CV trajectories canbe calculated. The
arrival rate 4 cen be estimated using maximum likelihood estimator (MLE) using the expectation
maximization (EM) algorithm. The EM algorithm an iterative procedure to find the MLE mostly suitable
when unobserved or partially observed variables exist. The EM algorithm consists of two main steps:
the E-step and the M-step. The E-step calculates the conditional expectation of unobserved or partially
observed variables based on initialized parameters, and the conditional expectation of the likelihood.



Then, the M-step searches for an optimal update of the parameters through
maximizing the likelihood. The two steps are iterated until updates converge. For the details of the EM
algorithm, interested readers are referred to Bilmes (1998). In our case, CV trajectories with stop
provide direct information of number of arrivals, while trajectories without a stop only provide
information of upper bounds of the number of arrivals, i.e., partial information. Considering this, the
EM algorithm would be a proper choice for our estimation.

For more details regarding the MLE formulation and the EM algorithm, please refer to (Zheng, et al.,
2017).

Case Study

In this case study, we analyzed data from Intersection of Plymouth Rd. & Green Rd., one of the
deployed intersections in the SPMD project. CV data used were collected from 04/25/16 to 05/13/16.
An illustration of the intersection geometry is shown in Figure 5.22, together with the ring-and-barrier
diagram for traffic signal in operation. Here, our investigation focused only on EB through, WB through,
as well as SB through and left-turn traffic, corresponding to phase 1, 2 and 4. The NB approach is a
single-lane road adjacent to the parking lot of a shopping plaza. At the NB approach, traffic from the
driveways and parking lots frequently affected vehicles traveling at the NB approach, resulting in
additional queues and vehicle-stops not caused by the traffic signal. Since the stop and queuing
information play key roles in our estimation, we exclude the analysis for the NB traffic, considering the
noises caused by the traffic from the parking lot.
For each interested approach, trajectories of CVs were first processed as time-space plots with time as
the horizontal axis and distance to the stop bar as the vertical axis. The trajectories are shown in Figure
5.23. With the SCOOT adaptive signal system, at this intersection, the cycle length, red and green
duration all varied from cycle to cycle. To select a common reference point in a signal cycle, we use the
start of green as time 0 in the plot for simplicity. The stop bar position is used as 0 origin along the y-
axis. The distance increases upstream along y-axis. That is, vehicles travel from locations of positive
distances to negative distances. The CV trajectories were aggregated according to different TOD
periods with 1-h intervals across different days, to first calculate time-dependent factors p(t). For
different TOD periods, substantially different p(t) were observed with two examples shown in Figure
5.23(b). The differences in p(t) are likely due to differences in both traffic patterns and signal settings
in the two different TOD periods. Then, the EM procedure was implemented for the estimation.
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Figure 5.22 lllustration of Investigated Intersection.
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Figure 5.23 lllustration of CV Trajectories (a) and time Dependent Factor (b) for EB through
Movement.

For validation purpose, hourly volumes were also manually collected for two days, i.e., 04/25/16 and
04/26/16, from 11:00 AM to 7:00 PM. Using the measured volumes, we calculated the penetration
rates of CVs, shown in Figure 5.24. Overall, the penetration rates ranged from 3% to 12%, varying over
the selected periods. The rates also varied substantially at different approaches, with lower CV
penetration rates at the EB and WB approach, i.e., the main approaches, and higher rates at the SB
approach, a minor approach. This variation could be due to that the SB approach connects to
residential areas close to the University of Michigan that would have larger population of participants
of the SPMD project. The observed volumes were then used for comparing with the estimated
volumes, with results shown in Figure 5.25. The three cases are shown in three sub-figures,
respectively. In the figure, the yellow bars show the estimated volume, and the blue bars show the
observed volumes, both in units of vehicle per hour per lane (vphpl). Substantial different traffic
patterns exist in the three cases. For example, clear afternoon peak existed in both EB and SB cases,
but not in WB case. Regarding the estimation, the estimated volumes are generally closed to the
observed volumes for all the three cases. To further quantify the accuracy, we calculated the Mean
Absolute Percentage Error (MAPE) for the estimation based on the following formula, indicated as well
in the figure.
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Figure 5.25 Comparison Between Observed Volume with Estimated Volume.
5.2.4 Real-time Adaptive Signal Control

In this section, a real-time adaptive traffic control algorithm is proposed with low penetration of
connected vehicles. Existing studies showed that although minimum required penetration rates vary
from different applications, but typically 20%-30% penetration rate is necessary (Day and Bullock,
2016). If the critical penetration rate cannot be reached, then data from traditional sources (e.g. loop-
detectors) need to be added to improve the performance (Feng et al., 2016). Despite substantial efforts



in investing and developing CV technologies in the past decade, over the next ten years or longer, the
CV penetration rate is expected to remain at a low level. Therefore, optimizing traffic signals with low
penetration rates of CVs (< 10%) is important and will make an immediate impact on the state-of- the-

practice.

Figure 5.26 shows the CV trajectories in one lane under 10% penetration rate with a demand level of
700 veh/h/In. The trajectories represent the raw data used in this paper. It shows that some CVs passed
the intersection without stop while others stopped in the queue for a red signal. Some of the vehicle
trajectories are only partial because of lane changes. Note that during most of the cycles only one or

two CVs were observed and during some cycles, there was no CV.
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Figure 5.26 lllustration of CV trajectory under 10% penetration rate.

The basic idea of using limited CV trajectories to estimate total vehicle delay is to utilize critical CV
information. Critical CVs are defined as the last stopped CV and the first non-stopped CV. The last
stopped CV provides a lower boundary of queue length while the first non-stopped CV provides an
upper boundary because the queue has to be fully discharged before the arrival of the non-stopped
CV. For those cycles that don't have any CV observed, an average hourly volume is used to generate
vehicle arrivals and departures for delay estimation. The hourly volume can be estimated from the
aggregation of historical CV trajectory data (Zheng and Liu, 2017). We assume vehicle arrival follows
Poisson process with mean arrival rate A. The cumulative number of arrivals during time t is expressed
as N(t)~Poisson(At). Four cases are identified according to the existence of observed CVs as shown in

5.27.
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Figure 5.27 Four Scenarios Based on Critical CV Trajectory.

If multiple stopped and non-stopped CVs are observed within one cycle, only the last stopped CV and
the first non-stopped CV are utilized because they represent the critical information. More details
about the estimation models can be found in (Feng et al., 2018).

To evaluate the proposed delay estimation model, a VISSIM simulation model of Plymouth and Huron

intersection was run for one hour and all vehicle trajectories were recorded and served as the ground
truth. The traffic signals were under actuated control so that the cycle lengths and phase splits changed



over time. Figure 25.28 shows the comparison of estimated total vehicle delay and true vehicle delay
of Phase 6 by lane with 10% penetration rate. There were total 31 full cycles operated within one hour.

To further quantify the accuracy, we calculated the Mean Absolute Percentage Error (MAPE) for the
estimated delay using the following equation

N e t
MAPE = § 1D — Dy
Ny Df
i=1

(8)

Where N is the total number of cycles, Df is the estimated vehicle delay of cycle i, and, Dl-t is the true
vehicle delay of cycle i. Under 10% penetration rate, the MAPE for Lane 1 and Lane 2 are 18.99% and
14.56% respectively. If two lanes are combined together, the MAPE for Phase 6 is 14.30%. We also
tested the model under 0% penetration rate, under which only hourly volume was used to generate
vehicle arrivals (always in Case 1 because of no CV). The MAPE for Lane 1 and Lane 2 are 32.60% and
28.65% respectively. If two lanes are combined together, the MAPE for Phase 6 is 30.49%. The result
indicates that using hourly volume can’t accommodate cycle-by-cycle traffic demand fluctuations well.
From Figure 26.18 (c), it can be seen that the vehicle delay of each cycle varied from less than 500
veh-s to over 2000 veh-s. However, estimation from only 10% CV’s data reduced the MAPE significantly,
from more than 30% to less than 15% percent. It suggests that only a few critical CV trajectories are
needed to estimate vehicle delay to a relatively accurate level.
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Figure 27.28: Estimated Vehicle Delay Under 10% Penetration Rate.

The adaptive control algorithm is adapted from the DP based signal optimization algorithm introduced
in Section 5.2.1. Total delay minimization is chosen as the objective function. To test the proposed
models, a SIL simulation framework is designed and implemented with VISSIM microscopic simulation
software. The SIL simulation architecture is shown in Figure 5.29.
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Figure 5.29: Software-in-the-loop Simulation Architecture.

CVs in VISSIM simulation network generate Basic Safety Messages (BSMs) at a frequency of 10Hz and
broadcast to the Data Processor application. This application also requests Signal Phasing and Timing
(SPaT) data from the Econolite ASC/3 virtual controller. Processed CV trajectory and signal information
are then sent to the Delay Estimation Model. This module generates the arrival table and sends to the
Adaptive Control Algorithm, which is responsible for producing optimal signal timing plan with the
objective to minimize total vehicle delay. The optimal signal plan will be converted into a series of
control commands by the Signal Controller Interface application and control virtual signal controllers
in VISSIM. A real-world intersection at Huron Pkwy and Plymouth Rd in Ann Arbor, Michigan is
modeled in VISSIM 9. The intersection geometry and signal phasing are shown in Figure 5.30.

Figure 5.30: Geometry and Signal Phasing at Huron Pkwy & Plymouth Rd Intersection.

Since the delay estimation algorithm generates individual vehicle arrival times, an arrival table can be
easily constructed and served as the input to the adaptive control algorithm. Two scenarios with two
different demand levels and four penetration rates are evaluated. Scenario 1 assumes that the
estimated hourly volume of each phase (or average arrival rate A) is accurate. Scenario 2 assumes the
estimated hourly volume of each phase has 10% error, which is more realistic based on field data. In
scenario 2, we add 10% of demand on phase one to four and deduct 10% of demand on phase five to
eight. The objective of such adjustment is to maximize the disturbance on the signal timing. Two
demand levels are considered as medium (critical v/c ratio 0.82) and congested (critical v/c ratio 0.93)



traffic conditions. Four penetration rates under evaluation are: 10%, 5%, 2% and 0%. Under 0%
penetration rate, the adaptive control basically becomes a fixed time signal plan, which is generated
by the hourly volume (always Case 1 in delay estimation algorithm). The traffic demands used in each
scenario are summarized in 5.7. Note that the estimated hourly volume with 10% error is only used in
the delay estimation model. The vehicle inputs in the VISSIM are the same for the two scenarios, which
is the actual hourly volume.

Table 5.7 Traffic Demands of Each Phase Under Two Scenarios and Two Demand Levels

Unit: veh/h/In P1 P2 P3 P4 P5 P6 P7 P8

Medium Demand

. 187 675 133 450 150 656 150 333
(Scenario 1)

Medium Demand

. 206 742 146 495 135 591 135 300
(Scenario 2)

Congested Demand

. 212 765 167 525 170 744 175 417
(Scenario 1)

Congested Demand

. 233 841 182 577 153 670 157 375
(Scenario 2)

A total duration of 3900s is executed in VISSIM simulation for each scenario, each demand level, and
each penetration rate, with 300s of warm-up period and 3600s of data collection time. To capture the
stochastic pattern, each simulation run is repeated with 5 different random seeds. The results are
compared to a well-tuned fully actuated control, in which the minimum green time, maximum green
time, yellow interval and all red clearance interval are set to be the same as in the adaptive control
algorithm. The unit extension time of the actuated control is set to 1.6s, which is obtained by the
recommendations from Signal Timing Manual. Table 5.8 and Table 5.9 shows the total vehicle delay
under two demand levels.

TABLE 5.8 Total Vehicle Delay in Seconds under Medium Demand Level

Random Average Delay
Seed (SD) Reduction

Scenario 1: Accurate hourly volume estimation

144311

10% PR | 143336 | 152534 | 135818 | 151338 | 137554 5.23%
(7674)
150988

5% PR | 148165 | 157135 | 141530 | 158741 | 149372 0.84%
(7034)
171835

2% PR 168963 | 190877 | 152779 | 178334 | 168224 -12.84%
(14046)

Actuated 145736 162606 150933 158352 143770 152279 N/A




(8070)
Scenario 2: 10% hourly volume estimation error
149677
10% PR 144404 | 155736 143002 | 155517 | 149726 1.71%
(5983)
156750
5% PR 157791 168744 | 146392 | 159259 | 151568 -2.94%
(8447)
165405
2% PR 164093 182495 145614 | 170820 | 164004 -8.62%
(13386)
152279
Actuated 145736 162606 150933 158352 143770 N/A
(8070)
Note: SD = Standard Deviation
TABLE 5.9 Total Vehicle Delay in Seconds under Congested Demand Level
Rand Average Del
andom 1 5 3 4 5 e aY
Seed (SD) Reduction
Scenario 1: Accurate hourly volume estimation
238129
10% PR 227684 | 248169 | 222959 | 260393 | 231441 16.33%
(15656)
242777
5% PR 240871 | 258387 | 222687 | 260856 | 231085 14.70%
(16692)
260830
2% PR 259532 | 281069 | 240524 | 280446 | 242579 8.35%
(19631)
317674
0% PR 327241 | 367273 | 288306 | 344282 | 261268 -11.62%
(42731)
284606
Actuated | 256728 | 305282 | 279268 | 330017 | 251736 N/A
(33074)
Scenario 2: 10% hourly volume estimation error
263101
10% PR 252124 | 282365 | 243068 | 279463 | 258485 7.56%
(17189)




262875
5% PR | 267432 | 283013. | 242671 | 271912 | 249347 7.64%
(16577)
292541
2%PR | 270629 | 339032 | 254176 | 317639 | 281232 -2.79%
(34897)
367979
0% PR | 346828 | 380832 | 356243 | 442983 | 313010 -29.29%
(48470)
284606
Actuated | 256728 | 305282 | 279268 | 330017 | 251736 N/A
(33074)

Note: SD = Standard Deviation

The following observations are made by analyzing the results:

1.

When the penetration rate is 10%, the proposed model outperforms well-tuned actuated control
in all cases. The total vehicle delay is decreased by 16.33% under congested demand level with
accurate volume estimation. Under medium demand level with 10% volume estimation error, the
vehicle delay is still reduced by 1.71%. As the penetration rate decreases, the total delay tends to
increase.

The hourly volume estimated from historical data has a significant impact on the performance.
Under same demand level and same penetration rate, the results with 10% volume estimation
error are all worse than no error in volume estimation. This is because the algorithms are executed
under very low penetration rates. It is common that no connected vehicle is observed within the
entire cycle. Then the hourly volume serves as the only data for determining the phase duration.
Besides penetration rate, the absolute number of observed CV is also crucial to the performance
of the algorithm. This explains why the algorithm performs better under congested demand level
than medium demand level with same penetration rate. Under congested demand level with
accurate volume estimation, even 2% penetration has a delay reduction of 8.35%. However, under
medium demand level with accurate volume estimation, model performance with 5% penetration
rate is almost the same as actuated control.

Vehicle delays with 10% and 5% penetration rates under congested demand level are similar, in
both scenarios. This indicates that a few critical vehicle trajectories are enough to make an
accurate estimation of vehicle delay. Higher penetration rate only receives marginal benefits.
When the algorithm is executed under 0% penetration rate, the adaptive control becomes a fixed
time control. Because no CV trajectory is available, the control decision is made only based
estimated hourly volume, which is a set value. The results under such conditions are significantly
worse than other cases, which supports a well-accepted argument that fixed time control can’t
accommodate short time demand fluctuation, even if the average volume is accurate. Moreover,
under congested demand level, the intersection under fixed time control may enter oversaturated
condition easily due to demand fluctuation, and the delay increases significantly. On the other
hand, actuated and adaptive control can handle the demand fluctuation better and prevent the
intersection enter the oversaturated condition.

5.2.5 Semi-adaptive Traffic Signal Control



Crowdsourced vehicle trajectory data, e.g., from connected vehicles or ride-hailing service providers
such as Uber in the U.S. or Didi in China, are increasingly available. These trajectory data would
potentially revolutionize traffic signal operation. Different from conventional detector data, trajectory
data could serve as a low-cost, continuous and reliable data source, which could advance conventional
detector-based signal control to a detector-free signal control scheme. Utilizing trajectory data as the
sole data source, this research proposes a closed-loop intelligent system for monitoring and control of
traffic signals. The concept of the system process is shown in Figure 5.31. The iteration loop consists
of totally four parts: sensing, evaluation, optimization, and implementation.

* Delay

* Stops

* Queue length
* Oversaturation

* Vehicle trajectory data *  Splits
Implementation * Cyclelength
* Offset

* Phase sequence
* Time-of-day plan

Figure 5.31 Closed-loop iterative evaluation-optimization

As a closed-loop process, the optimization and control implementation can be repeated periodically,
e.g., once every week, depending on data availability. This introduces a new signal retiming process.
Existing signal control systems can be categorized into two groups regarding retiming frequency. The
first group is represented by fixed-time traffic signals. Since one could only rely on manual data
collection, the sensing part is the bottleneck that restricts the iteration frequency of the loop. The
signal timing parameters could not be updated in a timely fashion. The second group includes vehicle
actuated control and adaptive signal control, in which signal phases can be adjusted dynamically in
response to traffic variations. However, traffic engineers need to properly maintain detectors and
correctly set a group of parameters to ensure good performance.
Different from the two types of signal systems, here, the proposed system combines fixed timing signal
with weekly parameter update. With the belief that well parameterized fixed timing control can
accommodate main traffic patterns robustly, the system may not need to respond to traffic
fluctuations frequently. Instead, it focuses on the demand change over longer terms due to seasonal
change, road construction and so on, and updates signal control parameters weekly or biweekly.

Overall, the proposed system is an integrated platform to evaluate and optimize traffic signals. With
vehicle trajectories as the sole input, the system can generate performance evaluation report, and
calculate optimal parameters of signal timings. The performance evaluation will focus on detecting
oversaturation and assessing signal coordination quality to capture key information of traffic condition
in a road network. Visualization of the performance, e.g., in the form of time-space diagram, will also
be provided so that results can be easily interpreted by traffic engineers. For signal optimization, a
hierarchical optimization process is developed to optimize signal timing plan schedule, as well as cycle
length, green split, and offset. The optimization process and control implementation can be repeated
periodically. The propose system can be used either as a supporting tool for management agencies in



their daily signal operation, or to control traffic signal system directly with periodic updates of
parameters.

Overall Framework

The overall optimization framework is shown in Figure 5.32. The framework consists of three main
components: demand estimation, performance visualization and system optimization.
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Figure 5.32 Overall design of the optimization system
Demand Estimation

The demand estimation was built upon the research of volume estimation using trajectory data
presented in Section 5.2.3. The demand estimation component will utilize traffic signal status and
vehicle trajectory data to estimate traffic volume, which is the key input for signal optimization. It was
demonstrated that good accuracy can be achieved using vehicle GPS data with penetration rates of 1%
- 6 %. Based on the estimated traffic demand, performance evaluation can be conducted with many
well-established traffic engineering tools.

Performance Visualization

The performance evaluation will focus on detecting oversaturation and assessing signal coordination
quality to capture key information of traffic condition in a road network. The estimated demand
information will be used to visualize the performance of traffic signal system, so that results can be
easily interpreted by traffic engineers. This component consists of two convenient tools: split failure
monitor and time-space diagram. The split failure monitor shows intersection status regarding
whether the allocated green times suffice to serve traffic demands for each phase, and identify
oversaturation at intersections. The time-space diagram shows how vehicles travel through
intersections along a corridor to evaluate signal coordination quality.

Parameter Optimization

The parameter optimization component consists of three modules to optimize different signal settings:
1). time of day (TOD) schedule optimization, 2). cycle length and offset optimization, and 3). green split
optimization. The overall optimization will be performed in the following fashion: first, TOD schedule
will be optimized by applying clustering technique. Then, within each TOD interval, cycle length and
offsets will be optimized considering coordination between adjacent intersections within the network.



Lastly, green splits will be optimized for each intersection to reduce oversaturation as well as to
balance green/capacity ratio across conflict movements.

Detailed optimization methodologies can be found in (Zheng et al., 2019).
Case Study

The proposed system was implemented to optimize signal timings in the City of Jinan, China. Data from
Didi drivers are used as the only input. Note that only the trajectories of Didi vehicles with at least one
passenger on board were selected. In this way, we could exclude trajectories with unusual vehicle
stops that are not caused by driver detouring for searching customer.

This case study was to optimize signal timings at JinShi Road, an important corridor in the City of Jinan.
Six intersections along the road were selected for investigation. The illustration of the selected
segment is shown in Figure 5.33.
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Figure 5.33 lllustration of intersections on JingShi

Based on detector data that are available from one intersection, we calculated the penetration rate of
Didi vehicles for every 30-min interval. As shown in Figure 5.34, the penetration rate varied from 2%
to 6%, with the peak of penetration rate occurred around 9:00 am.
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Figure 5.34 Example of penetration rate of occupied Didi vehicles

Traffic volumes were estimated based on the trajectory data. The validation of the estimation is
performed by comparing the estimated volume with detector data. The result is shown in Figure 5.35.
Overall, the mean absolute percentage error is 8.6%.
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Figure 5.35 Comparison between estimated volumes with observed volumes from detector data

Using the estimated volume, TS-diagrams were constructed to evaluate coordination performance
across six intersections. An example is illustrated in Figure 5.36. The horizontal axis represents time
and the vertical axis represents distance. The trajectories are aggregated over the study time period,
for weekday off-peak hours. The trajectories shown here are vehicles travelling downward, and those
flat trajectories indicate vehicle stopping in queues. The left figure shows the raw trajectory of Didi
vehicles, while the right figure shows the estimated trajectories of all traffic, which include both Didi
vehicles and regular vehicles.
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Figure 5.36 Time space diagram with raw trajectory (left) and estimated trajectory (right) Field
Implementation and Optimization Results

Parts of the optimization algorithms are implemented at the selected corridor. There are two
restricting characteristics of the selected segment: 1. Due to a large pedestrian traffic crossing the main
street and long crossing time, the cycle length needs to be fixed as a relatively large value (220s for
peak hours, and 210s for non-peak hours), to ensure minimum green durations for side-street phases
with small g/c ratio. 2. Due to reversible lanes used for left turn traffic at the main-street, the left-turn
phases have to be served as lead-phases at the main-street, i.e., phase sequences are fixed. Therefore,
cycle length and phase sequence were not changed. For the selected segment, we optimized three
TOD plans during the daytime, including AM peak, PM peak, and off-peak timing plan. To evaluate the
results of the changes, we calculated the relative change of three performance indexes: arterial delay,
total delay and the number of spillover vehicles during red signal, before and after the changes. In
details:



1. Total delay is the average delay time of all Didi vehicles at all movements of an intersection, and
is further averaged across all intersections.

2. Arterial delay is the vehicle delay for traveling through the corridor, averaged across the two
opposite directions.

3. The number of spillover vehicles during red light is the number of Didi vehicles stopped at the
intersection area during red light. These spillover vehicles during red light might block crossing traffic
from the side street and even cause intersection gridlock. Therefore, the spillover vehicles are a
particular concern during peak hours. The results regarding the relative changes of the performance
indexes are summarized in Table 5.10.

Table 5.10 Relative change of performance indexes for JingShi Road

AM Peak PM Peak Off-Peak
Arterial Delay +3.53% -21.87% -5.85%
Total Delay -10.73% -10.94% -6.32%
# of spillover vehicles during red -80.1% -88.2% /

As shown in the table, the majority of the performance improved, with reduction of delay and number
of spillover vehicles during red. The largest reduction exists for arterial delay during PM peak, by
21.87%, with the rest of delay reduction ranging from 5% to 11%. The number of spillover vehicles
during red reduced significantly with 80.1% reduction in AM Peak period, and 88.2% reduction in PM
Peak period. However, for AM peak, arterial delay increased slightly, with 3.53%. This is likely because,
inthe AM peak plan, the optimized timing plan was slightly adjusted to further reduce spillover vehicles
during red. The reduction of spillover vehicles during red would not be beneficial to the main-street
traffic, but helpful to facilitate crossing traffic.

The reduction of spillover vehicles during red signals is illustrated in Figure 5.37. With the original
signal timing plan, spillover vehicles indicated by those flat trajectories near the intersection area can
be clearly seen in the left figure. With the optimized signal timing plan, few spillover vehicles were
observed in the right figure. Overall, the improvements are encouraging.

Before After

Figure 5.37 lllustration of reducing spillover vehicles during red signal

5.3 Deployment and Field Experiment



In this task, we implemented the methodology developed in Section 5.2.5 to five intersections at
Plymouth Rd corridor. This experiment includes data collection, data processing, generation of
performance measures, and generation of optimal signal timing.

Ten days of trajectory and signal data from weekday PM peak hour (3:00pm — 6:00pm) are queried
from the Safety Pilot database and used for data analysis. Two types of data are used: BSM and SPaT.
The BSM data contain timestamp, vehicle ID, vehicle location (longitude, and latitude) and vehicle
speed. The SPaT data contain timestamp, intersection ID, phase status and duration. Both types are
collected at the frequency of 10Hz. A corridor of five intersections on Plymouth Rd is included in the
data analysis. A corridor lane phase mapping is constructed to map the trajectories data and signal
timing to the correct vehicle movements as shown in Figure 5.38.
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Figure 5.38 Lane Phase Mapping of the Plymouth Corridor

Figure 5.39 and Figure 5.40 show aggregated vehicle trajectories passing the intersection over the ten
days at Traverwood and Nixon intersections respectively. Blue traces indicate through movement
trajectories, red traces indicate left turn movement trajectories, and green traces indicate right turn
movement trajectories. Table 5.11 and Table 5.12 show the total number of trajectory traces for each
movement. It can be seen that through movement on the major road (westbound and westbound)
have the majority number of traces while other movements have less traces. This is consistent with
the traffic volume at each movement. In general, about 50 trajectory traces are necessary for
estimating the volume and optimizing traffic signal parameters accurately. For those movements that
have less traces, the estimation accuracy may decrease. However, those movements also have less
impact on the total traffic flow.

Figure 5.39 Aggregated Trajectory Traces at Traverwood and Plymouth Intersection

Table 5.11 Number of Trajectory Traces for Each Movement at Traverwood and Plymouth
Intersection

Through Left Right




EB 160 21 -

wB 181 - 10
NB - - -
sB - 6 1

Figure 5.40 Aggregated Trajectory Traces at Nixon and Plymouth Intersection

Table 5.12 Number of Trajectory Traces for Each Movement at Nixon and Plymouth Intersection

Through Left Right
WB 107 9 14
EB 153 63 21
NB 8 5 14
SB 14 39 0

Figure 5.41 and Figure 5.42 show a period (10 mins) of SPaT data for the Traverwood and Nixon
intersections. Different colors represent different phases. The on/off time and durations of each signal
phase can be clearly seen from the figures. Note that we only include green and red signal status in
the analysis. The yellow interval is also collected but not used directly. The yellow interval is
represented by effective green time and effective red time. This is a common practice in signal
optimization so that signal status can be treated as a binary variable. Usually the yellow interval is
divided into two portions. The first portion is considered as green and the second portion is considered
as red. It is also consistent with vehicle behaviors in the real-world.
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Figure 5.41 Phase Switch and Duration at Traverwood Intersection
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Figure 5.42 Phase Switch and Duration at Nixon Intersection

Combining BSM and SPaT data, the time space diagrams can be drawn to visualize the vehicle
behaviors at the intersections as shown in Figure 5.43 and Figure 5.44. The two figures show the
eastbound and westbound through movements, which represent the majority of traffic. The x-axis is
the time in a signal cycle and zero is the start of green signal. First, the trajectory data are grouped by
signal cycle and the absolute timestamp is then converted into its relative time offset in the cycle. The
blue traces mean that the vehicle passed the intersection without stop, the green traces mean that
the vehicle passed the intersection with one stop, and the red traces mean that the vehicle passed the
intersection with two stops. The green bar at zero distance on y-axis represents the green duration.
Since it is an aggregated diagram, the length of the green bar indicates the maximum green time
observed duration the data collection period. It can be seen from the figures that at Nixon intersection,
more than half of the vehicles need to stop once and some of them need to stop twice. At Traverwood
intersection, most of the vehicles can pass the intersection without stop. One reason is that
Traverwood is a T-intersection so that most of the green time is allocated to the eastbound and
westbound through movement (major street). Nixon is an eight phase intersection with higher volume
on side street. However, the multiple stops at Nixon implies potential room for improvement through
better signal progression.
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Figure 5.43 Time Space Diagram at Nixon Intersection
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Figure 5.44 Time Space Diagram at Traverwood Intersection

Figure 5.45 shows the delay measurements at the two intersections. Delay measurements are derived
directly from the time space diagram. It is calculated as the actual travel time minus the free flow travel

time. Similar to the time space diagram, vehicle delay at Nixon intersection is much higher than the
delay at Traverwood intersection.

Based on the analysis on the time space diagrams and delay diagrams of all the intersection, a new
signal timing plan is optimized for the corridor with the objective to reduce total delay. The new plan
keeps the signal phasing, sequence and transition time unchanged, but adjusts the green splits and
offsets at each intersection. Figure 5.46 shows the optimized signal coordination plan for the five
intersections. Due to the vehicle travel speed and distances between intersections, it is difficult to
provide two-way progression. The new signal timing provides better progression at westbound (Green
-> Murfin) direction. For westbound (Murfin -> Green), vehicles have to stop at the Nixon intersection
once. Itis mentioned above that the optimization is based on delay minimization. Since the westbound

has higher traffic volumes for the through movements during afternoon peak hours, providing better
progression on westbound has more benefit in reducing total delay.

Table 5.13 shows the complete signal timing plan for all the intersections. A uniform cycle length of
12s is applied to all the intersections. The offsets of each intersection are: Os, 36s, 47s, 31s, and 91s.
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Table 5.13 Complete Signal Timing Plan
Intersection | ID | Start |Duration| ID |Start | Duration | ID |Start | Duration | ID | Start |Duration
Murfin 2 0 60 6 0 60 1 60 12 5 0 12
Traverwood | 2 0 90 6 0 90
Nixon 2 0 54 6 0 48 1 54 12 5 48 18
Huron 2 12 48 6 0 48 1 0 12 5 48 12
Green 2 12 42 6 0 42 1 0 12 5| 54 12
Intersection | ID | Start |Duration| ID |Start | Duration | ID |Start | Duration | ID | Start |Duration
Murfin 3 72 12 7| 72 12 4 | 84 18 8 | 84 18
Traverwood | 3 90 30
Nixon 3 66 30 8 | 66 30 4 | 96 15 96 15
Huron 3 60 30 7 | 60 30 4 | 90 15 90 15
Green 3 66 18 8 | 66 18 4 | 84 30 83 30
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Figure 5.46 Optimized Signal Coordination Plan

The overall implementation process described in this section is summarized in Figure 5.47.
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Figure 5.47 Overall Implementation Process
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ridesharing with uncertain work end time. Submitted to Transportation Research Part B:
Methodological.

12. Oh, G. and Peng, H., “Eco-driving at signalized intersections: What is possible in the real-
world?” 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
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B. Technologies/Techniques:
This project produced several key outcomes, as highlighted below.

e Collected energy consumption + GPS data from ~500 vehicles, which is from 8 million
miles of naturalistic driving.

e Acalibrated Ann Arbor model in Polaris (ANL), Based on detailed analysis, the fuel
economy prediction accuracy is at about 3.9%.

e An open-source SUMO model of Ann Arbor was also developed. This is done
partially by one of the graduate student who worked on this project, as well as
another student supported by an ARPA-E NEXTCAR project.

e Eco-Routing in Ann Arbor (SUMO model) shows 6% fuel saving potential.

e Human behavior model (72% follows Eco-driving suggestions, each shared vehicle
can replace 4 individually owned vehicles).

e Human driver etiquette based on human vehicle data (how people drive), from 13
driving behavior data analysis.

e Adaptive Traffic Signal Control Algorithm was developed based on the data collected,
and traffic network of the City of Ann Arbor (For CAVs, 13% delay reduction, 10% fuel
reduction).

C. Status Reports:
This is the final report of the project.

D. Media Reports:
None

E. Invention Disclosures:
None

F. Patent Applications:
None

G. Licensed Technologies:
None

H. Networks/Collaborations Fostered:
The team has worked closely with EPA, and with significant data available from the fleet (8
million miles), test data have been shared with ANL, INL and a smaller subset of de-identified
data have been shared with EPA and UM student teams working in the TechLab program
(which pairs students with startup companies). Selected results were presented to the Mcity



leadership Circle companies in February, 2018. Ford Motor Company expressed interest in
the progress of this project and the UM research team visited Ford Research and Innovation
Center at Dearborn to provide a presentation. The Pl of this project was invited to give two
high-level presentations: the ORNL organized Smoky Mountain Mobility Summit (Oct. 3&4),
and the National Academy of Science organized Light-duty vehicle technology review (Oct
15). Key findings from this project were highlighted.
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