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Executive Summary 
 
The overarching goal of this project is to understand the potential impact of connected and 
automated vehicles.  The goal was achieved through data collection, model development, algorithm 
designs, simulations, and limited field tests. 
 
The main outcomes from this project include:  (1) we collected energy consumption and GPS data 
from 500 vehicles over one year, with a total mileage of 8 million miles; (2) Based on the collected 
data and other datasets collected at the University of Michigan, we developed a calibrated Ann Arbor 
model in Polaris (model developed by ANL), and the fuel economy accuracy was found to be around 
3.9% by comparison with field collected data; (3) An open‐source SUMO model of Ann Arbor was 
developed; (4) Eco‐Routing algorithms in Ann Arbor using the SUMO model shows 6% fuel saving 
potential; (5) Experiments conducted at the Mcity test facility shows that human drivers roughly 
follow the Eco‐driving suggestions roughly 70% of the time; (6) Based in the Ann Arbor travel 
patterns, we found that each shared automated vehicle can replace around 4 individually owned 
vehicles; and (7) Adaptive Traffic Signal Control Algorithm developed through this project has been 
validated both in simulations and preliminary test results.  For connected and automated vehicles, on 
average the performance is 13% delay reduction, and 10% fuel reduction. 
 
While connected and automated vehicles are in their early stage of deployment, the results from this 
project confirm that there is significant potential for energy saving if the technologies are developed 
and used properly.   The three main technologies studied in this project include eco‐routing, shared 
autonomous rides, and adaptive traffic signal controls.  The data collected and model developed 
through the project can be used to study many other connected and automated vehicle 
technologies.   
   



 
 

Accomplishments  
This project consists of five inter‐connected tasks.  The achievements and update on the status of the 
milestones are reported for these five tasks separately below. 

Task 1 Instrumentation and data acquisition of energy related 

information 
Task 1 is the portion of the project in which data loggers are installed on 500 vehicles in the Ann Arbor 

area  in order to generate data that will be used to calibrate the Polaris energy‐consumption model 

(Task 4),  in addition to providing naturalistic driving and energy use data that will be used  in other 

tasks.  Data collection and fusion are also developed in other tasks, but Task 1 focuses on the driving 

data collection and fusion of those data with other data.  

Overall, Task 1  is almost complete.   The remaining work  is to monitor the vehicles  in the  field and 

eventually remove the data collection equipment from the vehicles.  The task will be complete at the 

end of December 2018.  Details of the six subtasks follow. 

The table shows the six subtasks and delivery times for Task 1, with a note regarding the expected 

completion time. Four of the subtasks are complete, another (Subtask 1.5) is on time, but the Subtask 

1.6, which  addresses  the  actual  fielding  of  the  devices  on  500  vehicles,  is  continuing.    The  data 

collection has been proceeding for well over a year. 

Subtask  Subtask  Schedule  Schedule 
end date 

Status 

1.1  Coordinate and prioritize vehicle 
signals 

M1  12/5/2015  Complete 

1.2  Main data acquisition/ storage/ 
transmission hardware 
development and OBD port logger 

M2‐M12  11/5/2016  Complete 

1.3  Decode and translate vehicle 
energy usage information for 
logging   

M5‐M7  6/5/2016  Complete 

1.4  Integrate safety and other DAQ 
systems into main aggregation 
equipment 

M5‐M10  9/5/2016  Complete  

1.5  Integrate driver choice/behavioral 
model (routing) information 

(See Task 4 section) 

1.6  Data collection, instrumentation 
refinement, and QC 

M8‐M36  Complete 
Nov 15, 2018 

Complete 

 

Progress and achievements during the most recent quarter of the project are described below, by 

subtask.  

Subtask 1.1. Coordinate and prioritize vehicle signals  
This subtask has been reported upon in previous status reports, and is complete. 

Subtask 1.2 Main data acquisition/storage/transmission hardware development and 

OBD port logger 
Subtask 1.2 is considered complete. 



 
 

Previous project status reports introduced the data logger being used, which is a FleetCarma C2 OBD‐

II connector device that works with combustion only, hybrid, and pure electric vehicles.  We have 500 

devices and have installed devices into 509 vehicles, including 16 plug‐in electric vehicles.  (See more 

on current device status in Subtask 1.6.) 

Subtask 1.3 Decode and translate vehicle energy usage 

information for logging 
Subtask 1.3 is complete. 

The data collected for energy usage has been modified as the 

project has progressed, based on our growing understanding and 

negotiations with the data logger vendor.  This been reported on in 

previous quarterly reports, and will not be repeated here. 

Subtask 1.4 Integrate safety and other DAQ systems into main aggregation equipment 
This project was completed before this quarter, but a summary follows for convenience. 

This subtask addresses the need to fuse data from multiple sources into a comprehensive data set to 

support analyses for the project. The sources include: 

 Onboard  OBD‐II  logger  (basic  travel,  location,  time,  and  energy‐related  variables  for  500 

vehicles), 

 Onboard DSRC devices (basic travel, location, time on some DOE project vehicles, and onboard 

a few thousand vehicles from other ongoing projects, as appropriate), 

 Metadata for vehicles and traffic signals (e.g., driver demographics, roadway network) 

This subtask is considered complete, as the method for fusing the data is known and similar fusion has 

been done at UMTRI in the past. 

Subtask 1.5 Integrate driver choice/behavioral model (routing) information  
This  subtask  involves  providing  an  in‐vehicle  system with  information  that  would  provide  driver 

information on  the congestion  they may  face on a planned  trip, and advise a  route.   This effort  is 

reported in Task 4. 

Subtask 1.6: Data collection, instrumentation refinement, and QC  
This subtask involves the outfitting of the 500 vehicles with the ODB‐II logger, validation of the system 

– including the backhaul – and maintaining operations. To date, 7.7 million miles of data have been 

collected in this study, and data collection continues.  To date, over 787,000 ignition cycles have been 

collected across 528 vehicles.   

At this time, there are still 279 units installed and actively providing data.  The devices are used until 

the cellular data package expires, which has occurred over the past months for over one third of the 

devices.    The  remaining  devices’  cellular  data  packages  expire  early  in  November,  so  that  data 

collection was completed in November 15, 2018. 

UMTRI has provided a copy of the database to date to the Argonne National Laboratory (ANL).  This is 

the complete set of data.  This is possible because the informed consent form that the vehicle drivers 

signed stated allows this data transfer, and ANL also agreed in writing to protect the data in accordance 

to the privacy and data security requirements.  The team is considering other ways to share data while 

complying  with  the  informed  consent  agreements  with  the  drivers,  including  sing  a  three‐step 

approach to protect the starting and ending point of all trips. 



 
 

Task 2 Display energy related information to study its influence on 

the driver 

Task 2 is designed to understand drivers’ behavior and decision making when interacting with vehicle 

connectivity  technologies  through a  set of experiments.  In  the  first experiment  (task 2.1‐task 2.4), 

research  team  developed  a  flexible  driver  information module  capable  of  displaying  a  variety  of 

information  to  the vehicle operator.    Information  relevant  to  the energy  savings  functions will be 

displayed to the driver and recorded so that this information can be used for later analysis.  Through a 

display screen, we will display information (i.e., countdown to traffic signal change from green to red) 

to allow for a range of vehicle as well as driver efficiency coaching messages. The type and amount of 

information  displayed  to  the  driver  will  be  adjusted  to  aid  in  the  assessment  of  various  driver 

information strategies. In task 2.5, factors impacting on drivers’ decision making in choosing routes are 

examined through a field study.  

The table shows the proposed subtasks and delivery times for the five subtasks of Task 2.  The starting 

date of the project is taken to be November 5, 2015, the date of the kickoff meeting.  

Subtask  Subtask  Schedule  Schedule 

end date 

Status 

2.1  Identify CAV user functions, co‐

design and prioritize signals 

M1  12/5/2015  Complete 

2.2  Develop driver information display 

hardware and communication 

M2‐M7  6/6/2016  Complete 

2.3  Design vehicle information display 

screen(s) and experimental cases 

M8‐M12  12/7/2016  Completed 

2.4  Review of the finished human test 

results.  Review the field 

performance of the designed user 

interface 

M13‐M24  12/30/2018  Completed  

2.5  Driver route choice survey and 

guided‐directions application 

M30  11/30/2019  Completed 

 

Subtask 2.1.  Identify CAV user functions, co‐design and prioritize signals 

Early on in the project two key CAV functions were identified that both show significant potential, and 

had not been implemented in large‐scale experiments: eco approach and departure, and green wave 

(speed recommendation).   

This subtask is considered complete.  

Subtask 2.2.  Develop driver information display hardware and communication 

UMTRI has worked with Savari Inc. for developing hardware, software, and communication solutions 

for  the  in‐vehicle  SPaT  (Signal  Phase  and  Timing)  visualization  and  speed  recommendation  at 

intersections. The hardware include ASD (Aftermarket Safety Device), antennas, DVI display (tablet), 

WIFI dongle, and USB drive. Figure 2.1 shows the driver information display of the prototype system 

that was demonstrated at the end of June 2016. Note this prototype is mainly focused on the system 

functionalities  rather  than  the HMI. The demo HMI  is  rather crude and has been  improved during 

Subtask 2.3 for the final testing.  



 
 

   

                     (a) Recommended speed                      (b) No recommended speed needed 

    

    (c) Cannot pass on green, prepare to stop                             (d) Red light violation 

Figure 2.1 Savari prototype recommended speed application 

Subtask 2.2 is considered complete. 

Subtask 2.3 Design vehicle information display screen(s), vehicle instrumentation and 

data collection 

During  this period of  report,  tasks on data  collection, data  reduction and data analysis have been 

completed. The objective of this testing is to identify drivers’ reaction and acceptance to the energy 

related feedback system. An experiment has been conducted tin controlled field environment (MCity 

testing facility). The intersections at Mcity are equipped with DSRC Road Side Units (RSU) by using SAE 

J2735  standard  to allow communication between  the vehicles and  the  infrastructure. For Wireless 

Access in Vehicular Environments (WAVE), the SAE J2735 Standard specified a message set to utilize 

the 5.9 GHz Dedicated Short Range Communications (DSRC) (Iglesias et al., 2013). Drivers followed the 

course outlined in blue arrows (Figure 2.2). Data collection centered around the run from the green 

cone  to  the  red stop  line.  In‐vehicle  tablet device began  receiving SPAT  information  from  the RSU 

around orange box while the tablet began receiving SPAT data from RSU at about 100 meters out from 

stop line. 

The in‐vehicle DSRC‐based V2I devices, including both hardware and software pieces, were developed 
through a collaboration between  the University of Michigan Transportation Research  Institute and 
Savari  Inc. The V2I devices  received and displayed  real‐time SPAT  information and provided speed 
recommendations based on both the current SPAT information and the vehicle’s travelling speed. The 
devices included an Aftermarket Safety Device (ASD), antennas for ASD, a tablet screen, a WI‐FI dongle, 
a GPS receiver, and a USB drive (See Figure 2.3). Three cameras were used to record the vehicles’ front 
view, drivers’ face, and over the shoulder view. When the vehicle was approaching an  intersection, 
information relevant to the energy‐saving and safety‐improving functions (e.g., SPAT information and 
recommended speed) was displayed to drivers on the tablet screen. The human–machine  interface 
(HMI) tablet provided drivers with real‐time information such as the current speed, suggested speed, 
and the countdown to traffic signal change from green to red (See Figure 2.4). 

 



 
 

 

Figure 2.2 MCity test procedure 

 
Fig. 2.3 Vehicle instrumentation and HMI display 

In the experiment, a total of 32 participants from two age groups, 16 younger (20‐30 years old) and 16 
middle‐aged  (40‐50  years  old), were  recruited  through  a  random  selection method.  Gender was 
balanced within each age group. To avoid the influence of novice drivers’ lower confidence and skill 
levels on their driving behavior, all the participants had at least five years’ driving experience (mean=18 
years, SD=10, range 6‐33). Their education levels were divided into three groups: some college or lower 
(19%), bachelor’s degree (47%), and master’s degree or higher (34%). 
 
As shown in Figure 2.2, each driver was instructed to follow the course outlined in blue arrows during 
the experiment a total of 15 times: a practice drive, seven baseline drives without the DSRC device 
activated, and seven treatment drives with the DSRC devices activated. Data collection was geo‐fenced 
by  using  the  area  from  the  green  cone  to  the  red  stop  line,  to  capture  intersection  approaching 
segments. Drivers were told to arrive at the green cone with a speed of close to 25 mph (40km/h). 
DSCR devices began  receiving  SPAT  information  from  the RSU around  the orange box, which was 
located  about 100 meters out  from  the  red  stop  line  (i.e., entrance of  intersection). After getting 
familiar with the testing field, each participant experienced seven different intersection scenarios in 
both baseline and treatment conditions: 

Scenario 1: “Green Same Speed” — Current phase is green, and the vehicle can pass on green with 
current speed — No speed changes required to pass the green phase; 
Scenario 2: “Green Speed Up” —  Current phase is not green, and it requires acceleration to pass 
green light phases — Required speeding up to pass the green phase; 



 
 

Scenario 3: “Green Slow Down” — Current phase is not green, and the vehicle can pass on green 
if change its current speed by decelerating — Required slowing down to pass the upcoming green 
phase; 
Scenario 4: “Green Stop” — Current phase is green, and the vehicle cannot pass on green under 
any conditions — Impossible to pass green phase; 
Scenario 5: “Red Through” — Current phase is red, and the vehicle can pass on the next green if it 
changes its current speed — No speed changes required to pass the upcoming green phase; 
Scenario 6:  “Yellow Stop” —Yellow dilemma  zone  (less  than 8  seconds  left  for  the green  light 
phase) — Impossible to go through (i.e., make the yellow light); 
Scenario 7: “Yellow Through” — Yellow dilemma zone (more than 10 seconds  left for the green 
light phase) — Possible to go through. 
Both objective data (e.g., driving speed, throttle position, brake pedal use) and subjective data 

(e.g., user acceptance  from questionnaires) were collected and analyzed  in this study. A post‐study 
questionnaire with  14  questions  was  distributed  to  all  participants  to  collect  their  opinions  and 
acceptance of the system. 

 
Fig. 2.4 Example of video views and information displayed through HMI 

Subtask 2.3 is considered complete. 

Subtask 2.4 Data analysis and interpretation 

The research team has completed the main part of this subtask and one manuscript is accepted and 
will be presented at the 2019 Transportation Research Board Annual Meeting. The purpose of this 
analysis is to examine and predict whether and how drivers will change their behavior when provided 
with energy‐ and safety‐related strategy recommendations from V2I communication. Contributing 
factors to the potential behavior changes are explored from four aspects, including vehicle kinematic 
features, device information, driver characteristics, and subjective data. 

 

 Results on drivers’ acceptance  

To analyze how much drivers will change their behavior when they are offered speed suggestions, the 
compliance rate of recommended speed choices in the treatment group was compared with the result 
in the baseline, as shown  in the orange bars  in Figure 2.5. In the baseline, there were no suggested 
speed strategies, so recommended speed choices  in the treatment group were used as comparison 
references, after matching the constraints that include the same driver, same scenario, similar driving 
speed (speed variation within 5 mph) when DSRC devices began to receive SPAT information. Finally, 
201  valid  samples  from  the  baseline  group  were  obtained.  Results  showed  that  in  general,  the 
compliance rate during the treatment drive was much higher than in the baseline. Under scenario 2 
(“Green Speed Up”), drivers’ behavior had the largest change with a 42% increase in the compliance 



 
 

rate after drivers received suggestions from the V2I device. The second largest increase was 36% under 
scenario  5  (“Red  Through”), where  drivers were more  likely  to  keep  current  speed  to  enter  the 
intersection when  they were provided with  suggestions.  In  addition,  compared with  the baseline, 
compliance rates under both scenario 1 (“Green Same Speed”) and 7 (“Yellow Through”)  increased 
more  than 20%  recommended speed choices. However, a decline of  the compliance  rate occurred 
under scenario 4 (“Green Stop”). This might be because when information of the countdown to traffic 
signal change was provided, drivers were aware that they had a chance to enter the intersection in the 
next green phase if they decrease the driving speed dramatically and then approach the intersection 
at an extremely low speed. 
 
Mixed model  analyses were  performed  by  using  the  PROC  GLIMMIX  procedure  in  the  statistical 
software package SAS 9.2. Drivers’ compliance rate was significantly affected by scenarios (F(6, 380) = 
8.70, p<0.01), offering suggestions or not (F(1, 380) = 12.95, p<0.01), and age (F(1, 30) = 4.18, p<0.05). 
Younger drivers showed an 11% higher average compliance rate than middle‐aged drivers. In addition, 
the interaction between scenario and offering suggestions or not (F(6, 380) = 3.73, p<0.05) also led to 
obvious changes of the compliance rate. 

 
Fig. 2.5 Drivers’ compliance rate of recommended speed choices under seven scenarios 

 
Results on predicting drivers’ reactions when offered speed strategies 

To predict drivers’ reactions towards speed choice recommendations, The Random Forests Algorithm 
was applied by using the 224 samples in the treatment group were used. There were 13 independent 
variables, from four sources:  

 Vehicle kinematic features, obtained at locations where DSRC devices begin to receive SPAT 
information from the RSU: current driving speed, throttle position, and brake; 

 Device information: scenario, and V2I suggestions; 

 Driver characteristics: age, gender, driving experience, and education level;  

 Subjective  data:  Q1  (reliability  and  usefulness),  Q2  (user‐friendliness),  Q3  (suggestion 
receiving and satisfaction), and Q4 (driving risk). 

 
The detailed definitions of the input variables, together with their distributions, are presented in Table 
2.1.  The  dependent  variable  is  drivers’  reactions,  namely,  drivers’  behavior  approaching  the 
intersection. The distribution of the dependent variable  is as follows: no change (30%), acceleration 
(18%), deceleration (without completely stopping) (26%), and stopping (26%). 
 
All  224  samples  were  split  randomly  into  two  sets  by  the  ratio  of  7:3  for  training  and  testing 
respectively. A Random Forests model was built by inputting 13 independent variables and run in the 
R software. According to the stable and minimum values of the OOB error rate, ntree and mtry were 
set to 600 and 6 respectively. The prediction result of Random Forests was shown in Table 2.2. In the 



 
 

training group, the OOB error rate was 27.7%, namely, the OOB accuracy was 72.3%. In addition, the 
overall testing accuracy was 75.8% (95% CI: 63.3‐85.8%). This Random Forests model performed well 
in  predicting  the  four‐category  variable with  a  relatively high  accuracy. Using  this model, drivers’ 
reactions at the intersection could be predicted by the data obtained about 87.4m (SD=2.4, range 75.5‐
92.8) away where the vehicle started to receive signal phasing and timing information. 
 
Table 2.1. Definitions and distributions of input variables 

Input Variables  Description (Units)  Min  Max  Mean  S.D. 

Vehicle variables (obtain at the position where DSRC devices begin receiving SPAT information) 
Speed  Driving speed (mph)   20  35  26  2.6 

Throttle position 
Position of the accelerator pedal collected 
from the vehicle network and normalized 
using manufacture specs (%) 

0  17  1.9  3.1 

Brake  Pressing the brake pedal=1; otherwise 0  1 (6%); 0(94%) 

Device information 

Scenario  Seven different intersection scenarios   Each scenario (14%) 

V2I Suggestions  Recommended speed choices 
No change (30%); Acceleration (12%); 
Deceleration (15%); Stopping (43%) 

Driver characteristics 
Age  Younger:20‐30; Middle‐aged: 40‐50  Younger (50%); Middle‐aged (50%) 
Gender  Gender of drivers  Male (50%); Female (50%) 

Education  Education levels of drivers 
Some college or lower (19%);  

Bachelor (47%); 
 Master or higher (34%) 

Driving experience  Years of driving experience (years)  6  33  18  10 
Subjective data 

Q1  Reliability and usefulness  8  16  13  2.1 

Q2  User‐friendliness  8  17  14  2.3 

Q3  Suggestion receiving and satisfaction  ‐1  6  3  1.7 

Q4  Driving risk  1  6  4  1.1 

 
Table 2.2. Prediction results of Random Forests 

 
This subtasks is 100% complete.  

 

Training Set 

Predicted 
Observed  OOB  

error rate 
OOB 

 accuracy No change  Acceleration  Deceleration  Stop 

No change  39  3  4  1 

27.7%  72.3% 
Acceleration  4  21  3  2 

Deceleration  5  1  29  10 

Stopping  0  4  8  28 

Testing Set 

Predicted 
Observed 

Accuracy 
No change  Acceleration  Deceleration  Stop 

No change  18  2  0  0 

75.8% 
(95% CI: 63.3%~85.8%) 

Acceleration  1  7  0  0 

Deceleration  0  1  12  7 

Stopping  2  0  2  10 



 
 

Subtask 2.5 Driver route choice survey and guided‐directions application 
The purpose of task 2.5 is to collect naturalistic driving data and understand factors associated 
with drivers’ decision making on route choices. This task 2.5 contains four main subtasks which 
are all completed: (1) EcoRouting app development, (2) experiment design and conduction, 
(3)  data  analysis  and  results  interpretation,  and  (4)  final  report  preparation.    ANL  has 
developed the EcoRouting app that was used in this study and collaborated on preparing with 
the  final  report. UMTRI  research  team has  led  the effort of  subtask  (2),  (3),  and  (4).  The 
research team has recruited a total of 43 participants in this study and the final dataset was 
identified from 39 participants and used in the analysis, as some GPS data recording or missing 
data issues occurred during the data collection of four participants. The methods and results 
are summarized in the following sections. 
 
1. Introduction 

The main  goal  of  this  turn‐by‐turn  navigation  app was  to  collect  all  the  answers  to  the 
questions of a survey presented at the beginning of the route, the number of detours with all 
the new created directions and all the GPS coordinates followed by the driver. 
 
The app was able to provide three different routes to the driver varying the time and the fuel 
consumption on the routes (eco vs fast vs “balanced”). The app was also able to provide the 
turn‐by‐turn guidance using the selected route while recording the data gathered along the 
route.    The  route  and  navigation  services were  provided  by  the MapQuest API.  This API 
offered the route calculation after the input of the desired destination and also provided all 
the data displayed in the turn‐by‐turn navigation screen. 
 
The recording was made  locally  in a database file using SQLite API.  In the code of the app, 
there were two different databases, one was called ‘Trips.db’ and the other was ‘cars.db’. The 
database were all the data for the analysis was recorded  is  ‘Trips.db’. The  ‘cars.db’ file  just 
recorded  the  different  cars  used  in  order  to  introduce  corrections  in  the  required  fuel 
estimation made by the app at the beginning of the route. 

2. Fuel consumption estimation 

The  three  provided  routes  displayed  an  estimation  of  the  fuel  consumption  that  was 
calculated considering two main effects: the average velocity, the traffic and the car used. 
The effect of the velocity was modeled making use of the data provided by the user, since he 
was supposed to provide the MPG value in the UDDS cycle (average velocity of 21.2 mph) and 
in the HWY cycle (average velocity of 48.3 mph), these two values are easily found in the EPA 
website for different car models.  In https://www.fueleconomy.gov/feg/driveHabits.jsp,  it is 
explained that the maximum MPG occurs around 40‐50 mph with a low effect of the speed in 
this area. Also, when the speed is 80 mph there is a reduction of around 35% in the maximum 
value of the MPG. Knowing this and using the two provided values of MPG, the dependency 
of MPG with the speed observed in Figure 2.5.1 is obtained. 
 
The effect of the traffic was modeled using the data provided by MapQuest, since they were 
able to classify different segments of the route according to the traffic. The three main classes 
of traffic segments were FREE_FLOW, SLOW, and STOP_AND_GO. 



 
 

Figure 2.5. 1 Effect of the speed on the MPG during a highway driving 

With  these  two main  effects  on  the MPG,  the  calculation was made  using  the  following 
procedure after splitting the whole route into different segments according to: 
 

1. The whole route was split into different segments according to the traffic classification 

made by MapQuest. 

2. Calculation of the average MPG on each route segment with FREE_FLOW traffic was 

made knowing the average speed in the segment and using the plot of Figure 2.5.1. 

3. The global MPG of the route was estimated assuming that the vehicle had the value 

calculated before in the FREE_FLOW segments of the route, and the city cycle value in 

the  STOP_AND_GO  and  SLOW  segments.  The  value  of  all  these  segments  were 

averaged using their distances. 

 
 

3. App Functionality 

The first screen (Figure 2.5.2) that appears in the app is a list with all the recorded trips, from 
this screen the user can access to the  information gathered on each trip, and create a new 
one. When the ‘plus’ button is pressed, a screen to select the car that will be used appears. 
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Figure 2.5.2. List of trips, trip details and select car 

Once  in the screen to select the car, the user can create a new car with  its MPG values or 
directly select a previously used car to use it during the route or to edit it (Figure 2.5.3). When 
the car has been selected, the user accesses to the survey screen where all the questions to 
answer are displayed (Figure 2.5.4). 

 
Figure 2.5.3. List of cars, create new car, edit car, and survey 

 



 
 

 
Figure 2.5.4. Answering the questions 

When the user has answered all the questions, the route selection screen appears. On this 
screen,  the user  can  type  the desired  destination  and  three  routes  appear with different 
values for the distance, required time to complete and required fuel.  The user can select the 
desired route and pressing the ‘START NAVIGATION’ button, the navigation screen will start 
(Figure 2.5.5). 

 
Figure 2.5.5. Route selection 

The Navigation display shows the meters left to complete the route with an estimated time to 
arrive. The user can also find all the directions that he will find by pressing the ‘List’ button 
(Figure 2.5.6).  In addition,  it has  to be noticed  that each  time  that  the  ‘Pause’ button was 
pressed, an instance of the trip was generated. 



 
 

 
Figure 2.5.6. Navigation screen 

Data Collection 
Data Collection 

Forty‐three participants were given a cell phone handset for two weeks and asked to interact 

with  a  custom‐designed  and  built  “Eco‐Routing”  application.  This  interaction  included 

completing a route‐choice survey and selecting  from recommended driving routes prior  to 

beginning of  some of  their driving  trips over a 2‐week period. Participants who were also 

participating  in  UMTRI’s  Ann  Arbor  Connected  Vehicle  Test  Environment  (AACVTE) were 

recruited  to  receive  the  cellular  device  with  the  custom‐designed,  Eco‐routing  software 

application (Eco‐routing device.)   

 

Participants first came to UMTRI to pick‐up the Eco‐routing Device and to learn how to operate 

it.  Upon arriving at UMTRI for their visit, participants were presented with the requirements 

for  participating  in  the  Eco‐routing  effort.  They  reviewed  and  completed  the  Eco‐routing 

Informed Consent document if they accepted the terms of the project.  The expectations for 

the interaction process with the Eco‐routing cell phone application were then explained to the 

participant.  They were walked through setting up the application, inputting a trip, choosing a 

suggested route and using the navigation function. 

 

Application 

Set‐up for the Eco‐routing application on the cell phone included having the participant name 

their  vehicle  (in  case  they  used more  than  one  vehicle,)  and  input  the  gas mileage  they 

experience in their personal vehicle for both city and highway driving.  Then they were walked 

through the pre‐drive survey questions and asked if they needed any clarification.  Finally they 



 
 

were shown how to  initiate a new trip, and enter a destination  into the application.   They 

could either tap on a map on the screen or directly input an address to enter the location of 

the desired destination.  

 

Before each trip began, the  interaction with the cell phone application  included answering 

questions  about  the  nature  of  the  trip  and  the  participant's  trip  planning  process  via  a 

short, eight question  survey  embedded  in  the application. After answering  a  few of  these 

survey questions, participants then input their desired destination for their planned trip.  Next, 

the application offered them one, two or three different driving routes to their destination 

from which to choose.  Each suggested route was listed with its expected distance, expected 

fuel consumption and expected time duration.  Participants were instructed: "The application 

will provide  you with  the distance,  time  and  estimated  fuel  consumption  for up  to  three 

routes.  Choose the route that is most desirable to you (Figure 2.5.7).  It is likely that one of 

these routes is the best route for you to take, but you are not required to follow them."  After 

choosing a route, the device provided route guidance to the participant via both live turn‐by‐

turn directions on the screen and via verbal directions from the cell phone speaker.  Maps and 

navigation used the MapQuest API.  

 

 

The number of suggested routes was a function of the complexity of the route.  For a very 

short route, there was likely to be only one reasonable route as this would be the quickest 

temporally, the shortest distance‐wise and most economical for fuel consumption.  For more 

complex routes there could be more fundamental differences between route choices, often 

such as whether to take the highway or surface streets, where to get on or off of the highway, 

or sometimes two opposing directions around a city area.  

Figure 2.5.7. Screenshot of Route Selection Screen 



 
 

 

 

 

 

Once the participant arrived at the destination they received a message indicating as such.  If 

they deviated from the Recommended Route directions while driving, new directions were 

created  instantly,  in  real‐time starting  from  the current location  (treated as a new starting 

location) and presented to the participant through the interface (as well as recorded  in the 

data file.), as shown in Figure 2.5.8. 

 

The  application  displayed  how  many  trips  the  participant  had  input  data  for  and 

“completed.”  Participants were expected  to  record data  for 20  trips over  their  two‐week 

exposure period. At  the end of  the  exposure period participants  returned  the device  and 

UMTRI researchers downloaded the data to UMTRI servers.  Participants were paid $100 for 

their  two‐week participation  if  they  completed  the  survey  for all 20  trips and did at  least 

enough driving that the application gave them credit for completing a trip.  

 

Data Collected 

A total of 43 participants were originally recruited. The data  included the responses to the 

questionnaire questions for each trip as well as the route chosen and the GPS data collected 

on the device for the specific trips.  

 

Data Reduction 

Data was parsed and loaded onto UMTRI servers and was generally accessed using Microsoft 

Transact‐SQL.  Data was aggregated and analyzed to determine which trips were "Valid" in the 

sense that they were comprised of complete and correctly collected data from a participant.   

 

Valid  trips were  first  identified  as  having  a  completed  survey  and  a  fairly  complete  GPS 

dataset.  Trips that were duplicates of other trips (potentially where a participant entered the 

same trip twice) were also flagged as "invalid."  Finally, later in the analysis if it was found that 

the participant did not travel to their inputted destination, the trip was also flagged as invalid 

and removed from the dataset used for this analysis.   

 

Figure 2.5. 8. Treatment Route (actual GPS data from the participant,) and 
Recommended Route (trace route created in Ovitalmaps.)  This is an example 
of a simple route for which the participant did not follow the Recommended 

Route. 



 
 

The GPS data from the Treatment Trips was mapped for each valid trip for each participant to 

produce the Treatment Route Maps.  Data for the Recommended Route was in the form of 

turn‐by‐turn directions, so in order to compare the two routes, a trace map was made for each 

valid Recommended Route chosen by a participant before a Treatment Trip.   The Ovitalmaps 

software was used to create the trace maps of the Recommended Route.  These trace maps 

were created by stepping through the turn‐by‐turn directions and placing pins at critical points 

on a map to create a trace of the Recommended Route.  Researchers creating the trace maps 

began with the GPS  location of the beginning and end of each trip and connected the two 

points. 

 

To  determine  if  the  participant  followed  the  Recommended  Route  for  a  given  trip,  the 

Treatment  Route  and  the  Recommended  Route  trace  map  were  visually  inspected  to 

determine if the exact same roads and turns that were recommended in the Recommended 

Route were actually  followed  in  the Treatment Route.  Any deviation on surface streets or 

highways from the Recommended Route would result in a trip being scored as "Did not Follow 

Route."  Slight deviations within parking lots, shopping centers, apartment communities and 

small, unmarked subdivisions at the beginning and end of a trip were outside of the scope of 

directions and would not result in a route being scored "Did not Follow Route."  Table 2.5.1 

presents a summary of the data collected.  Forty‐three participants received an Eco‐Routing 

device.   Valid Trips were  collected  from  thirty‐nine participants.     Participants on average 

recorded data for 26.8 trips but only contributed valid data for 18.9 trips. Overall, participants 

followed the Recommended Route in 434 of 738 valid trips or 58.8 percent of valid trips.   

 
Table 2.5.1. Information on Participants’ Valid trips and route choices 

Participant ID  All Surveys  Valid Trips  Followed Route  Did Not Follow 

1  25  12  7  5 

2  27  17  7  10 

3  21  17  6  11 

6  21  14  11  3 

7  22  22  14  8 

8  22  19  13  6 

10  16  15  8  7 

11  31  14  8  6 

12  51  30  16  14 

13  29  15  4  11 

14  28  24  11  13 

15  20  16  9  7 

16  26  19  14  5 

17  40  37  26  11 

18  28  20  15  5 

19  24  19  12  7 

20  25  22  11  11 

21  6  3  0  3 

22  69  20  17  3 



 
 

23  29  10  7  3 

24  37  23  15  8 

25  25  22  15  7 

26  50  46  29  17 

27  32  13  4  9 

28  21  18  11  7 

29  27  18  15  3 

30  20  19  9  10 

31  20  15  9  6 

32  21  20  18  2 

33  20  17  8  9 

34  22  22  13  9 

35  39  24  10  14 

36  22  20  12  8 

37  24  20  8  12 

38  20  12  10  2 

39  20  17  10  7 

41  19  11  2  9 

42  32  24  13  11 

43  16  12  7  5 

Total  1047  738  434  304 

Mean  26.8  18.9  11.1  7.8 

 

  

Figure 2.5. 9 One example of “followed trip” 



 
 

 

Figure 2.5.10 An example of “un‐followed trip” (red is recommended route, purple is actual driving) 

 

Data Analysis and Results 
There are two main purposes in this analysis: One is to investigate and predict what kind of 
recommended route drivers will choose from eco, fast, and balanced options; The other is to 
explore whether and why drivers will follow the recommended route.  Impacting factors on 
the driver’s route choices and  following are examined  from  three aspects,  including driver 
characteristics, subjective data, and route information. 
 
Modelling driver’s route choice 
Since each  recommended  route may have several different  features at  the same  time,  for 
example one recommended route is the most fuel efficient as well as the fast one, the driver’s 
route choice is a multi‐label problem. To mitigate the effects of unbalanced sample sizes for 
different drivers, the average probability of route choice was calculated based on each driver, 
as shown in Figure 2.5.11. In general, drivers were more likely to choose the fast route, having 
the highest average probability 83.4%, followed by the eco route with a selection probability 
around  78.6%, while  the  routes with  the  balanced  feature  had  the  least  likelihood  to  be 
selected, averagely 70.7% for each driver. There were totally 18 variables coded for each trip, 
derived from driver characteristics, subjective data, and route information. After eliminating 
the highly correlated variables, such as gas consumption and driving time of the selected route 
were excluded due to their high correlations with distance, 14 variables were finally chosen 
as the input variables for further analysis. Table 2.5.2 demonstrates the detailed descriptions 
and distributions for all these candidate variables. 
 



 
 

 
Figure 2.5. 11. The average probability of route choice 

 
Table 2.5. 2 Definitions and distributions of input variables 

Variables  Description (units)  Min  Max  Mean  S.D. 

Route information 

Distance 
Distance for the selected route 
(mile) 

0.30  132.60  9.34  11.87 

Distance saving 
Distance differences between the 
longest and the shortest 
recommended routes (mile) 

0  13.70  0.82  1.39 

Average gas 
consumption 

Gas consumption per mile for the 
selected route (gallon per mile) 

0.02  0.09  0.04  0.01 

Sequence 
The recommendation sequence 
for different routes 

1st (75.88%), 2nd (19.78%), 3rd 
(4.34%) 

Number of routes 
The number of recommended 
routes 

1 (36.45%), 2(47.94%), 3(15.58%) 

           

Driver characteristics 
Age  Younger: 20~50, Older:50~75  Younger (48.72%), Older (51.28%) 
Gender  Gender of drivers  Male (43.59%), Female (56.41%) 
           

Subjective data 

Purpose  Purpose of this trip 

Household errands (5.01%), Personal 
business (9.08%), Picking 

up/dropping off (3.52%), Recreation 
(9.62%), Returning home (29.27%), 
Shopping (11.11%), Socialization 
(6.10%), School /work (19.24%), 

Other (7.04%) 

Decision time 
When did the driver decide to 
take this trip? 

Earlier today (10.43%), Several days 
or longer (8.54%), Just now 

(18.56%), Not sure (0.41%), Routine 
(56.37%), Yesterday (5.59%) 

Household 
passenger 

How many household passengers 
were traveling with the driver? 

0 (85.09%), 1 (9.49%), 2 (3.52%), 3 or 
more (1.90%) 



 
 

Non‐household 
passenger 

How many non‐household 
passengers were traveling with 
the driver? 

0 (95.93%), 1 (3.79%), 2 (0), 3 or 
more (0.27%) 

Flexibility 
How flexible was the driver's 
arrival time at the destination? 

Whenever (18.70%), Within 15 ‐ 30 
mins (4.20%), Within 5 ‐ 15 mins 
(9.08%), Within 5 mins (68.02%) 

Prior activity 
What activity where the driver 
engaged in prior to this trip? 

Household errands (9.89%), Personal 
business (13.41%), Picking 

up/dropping off (2.30%), Recreation 
(9.21%), Returning home (6.37%), 
Shopping (10.43%), Socialization 
(6.64%), School/work (26.70%), 

Other (15.04%) 

Leave earlier 
Were the driver able to leave 
earlier from the prior activity? 

Maybe (9.89%), No (23.31%), Yes 
(66.80%) 

 
Eco‐route choice 
To further explore the impacting factors on the eco‐route choice, mixed model analyses were 
conducted in the statistical software package SAS 9.2 by using the PROC GLIMMIX procedure. 
All the input variables and their interactions were chosen as the fixed effects, while individual 
driver and interactions between driver and any fixed effects were treated as random effects. 
The  dependent  variable  was  whether  choose  the  eco  route  or  not.  After  excluding  the 
insignificant  factors, the  final model was shown  in the Table 2.5.3 Distance had a negative 
impact  on  the  eco  route  choice  (t(643)=‐5.56,  p<0.001), while  average  gas  consumption 
positively affected the eco route choice (t(643)=2.35, p=0.019),  indicating that drivers were 
more  likely to select the eco route when  its distance was shorter and gas consumption per 
mile was higher. In addition, the route recommendation sequence also had a significant effect 
on choosing the eco route (all p<0.001), and giving priority to recommend the eco route could 
guide drivers to choose the eco way. 
 
Table 2.5.3 Mixed model results for the eco‐route choice 

Effect  Estimate  Standard error  DF  t Value  Pr>|t| 

Intercept  1.139  0.715  38  1.59  0.119 
Distance  ‐0.056  0.010  643  ‐5.56  0.019 
Average gas consumption  40.868  17.395  643  2.35  <0.001 
Sequence           
1st*  0         
2nd  ‐1.925  0.316  52  ‐6.10  <0.001 
3rd  ‐2.518  0.491  52  ‐5.13  <0.001 

Note: * denotes reference group for categorical variables; only significant factors were 
demonstrated in this Table  

 
To predict driver’s  route  choice behavior,  a multi‐label Random  Forests  (RF)  classification 
model was established by using the “scikit‐learn” package  in Python software (version 3.6). 
Those 14  variables mention  above were  selected  as  the  independent  variables, while  the 
independent  variable  is what  kind  of  route  drivers would  choose, which  is  a multi‐label 
variable with  three  candidate  features,  i.e., eco,  fast, and balanced. All 737  samples were 



 
 

partitioned randomly into 70% for training and 30% for testing.  After 5‐ fold cross‐validation, 
the parameters in the multi‐label Random Forests were determined, i.e., the number of trees 
was 550 and the number of variables considered in each split was 4. The final prediction result 
was shown  in Table 2.5.4.  In the training group, the out‐of‐bag (OOB) accuracy was 87.0%, 
and the overall testing accuracy was 79.3%. As for the prediction results in each label, their 
precisions were greater than 80%.  For comparison, several other machine learning methods 
that are commonly‐used multi‐label classification were also tried  in this study,  including K‐
Neighbors Classifier  (KNC), Support Vector Classification (SVC); Neural Network Multi‐Layer 
Perceptron Classifier (NNMLPC). The area under the Receiver Operating Characteristic (ROC) 
Curve (AUC) was used to evaluate the performance of different algorithms, and the ROC curve 
in the multi‐label classification was measured by the average value of all labels. As shown in 
Figure 2.5.12, the AUC of the multi‐label Random Forests classification was 0.86 which was 
greater than others, indicating that the multi‐label Random Forests classification had a better 
performance. 
 
Table 2.5.4 Prediction results of the multi‐label Random Forests. 

Label  Precision  Recall  f1‐score 

Eco  0.86  0.85  0.86 
Fast  0.90  0.95  0.92 
Balanced  0.81  0.77  0.78 
Overall accuracy  Training (OOB): 0.870; Testing: 0.793 

Note:  Precision=TP/(TR+FP);  Recall=TP/(TP+FN);  f1‐score  =2*(Precision*Recall)  / 
(Precision+Recall) 
 

 
Figure 2.5.12 ROC curves for multi‐label classifiers 

 
Figure  2.5.13  illustrates  the  variable  importance  which  represented  the  statistical 
prioritization of variables regarding their contribution to the prediction model. Variables from 
route  information  showed  the  largest  impacts  on  the  driver’s  route  choice,  i.e.,  distance 
saving, recommendation sequence, distance, average gas consumption, and the number of 
recommended  routes,  ranking  the  top  five of  the  feature  importance. The  following were 
subjective data, such as prior activities, the purposes of this trip, decision time, etc. However, 
no obvious relationships were found in demographic data, indicating that driver’s route choice 
were less likely be affected by age and gender differences. 



 
 

 
Figure 2.5. 13. Variable importance of the multi‐label Random Forests 

 
Impacting factors on following the recommended route 
Generally, the average probability that drivers would actually follow the route after they chose 
from the recommended options was 56.7%, as shown in Figure 2.5.13. The detailed results of 
following probability when they selected different categories of recommended routes were 
illustrated in Figure 2.5.14. When drivers chose the eco, they had the largest likelihood (61.6%) 
to following the route, followed by selecting the fast one with an averaged probability 61.1%. 
When  drivers  selected  the  route with  the  balanced  feature,  they were  the  least  likely  to 
comply with their option (59.9%). 
 

 
Figure 2.5. 14. The average probability of following the recommended route 

 



 
 

 
Figure 2.5. 15. The average following probability of each recommended route 

 
To explore the impacting factors on following the recommended route, mixed model analyses 
were carried out by using the PROC GLIMMIX procedure. In total, 12 candidate variables were 
obtained from three sources: 

 Route information: eco, fast, and balanced routes; 

 Driver characteristics: age and gender; 

 Subjective data: purpose, decision time, household passenger, non‐household passenger, 
flexibility, prior activity, and leave earlier. 

 
These  variables  together with  interactions among  them were  treated as  the  fixed effects, 
while individual driver and interactions between driver and any fixed effects were regarded 
as  random  effects. Whether  driver’s  following  the  selected  route  was  the  independent 
variable.  Results  were  demonstrated  in  Table  2.5.5.  If  drive  choose  the  eco  (t(32)=3.61, 
p=0.001) or  fast    (t(31)=4.68, p<0.001) routes,  they are more  likely  to  fully drive along  the 
recommended route. Additionally, compared with driving alone (t(22)=‐2.81, p=0.01) or with 
only  one  household  passenger  (t(22)=‐2.95,  p=0.007),  drivers  will  comply  with  the 
recommended route when there were three or more household passengers. 
 
Table 2.5. 5 Mixed model results for the recommended route following 

Effect  Estimate  Standard error  DF  t Value  Pr>|t| 

Intercept  ‐1.199  0.257  22  ‐4.67  <0.001 
Eco route  0.776  0.215  32  3.61  0.001 
Fast route  1.071  0.229  31  4.68  <0.001 
Household member           
0  ‐2.394  0.852  22  ‐2.81  0.010 
1  ‐2.635  0.893  22  ‐2.95  0.007 
2  ‐2.003  0.989  22  ‐2.02  0.055 
3 or more*  0         

Note: * denotes reference group for categorical variables; only significant factors were 
demonstrated in this Table. 
 

Conclusions 
This  study was  conducted  to  collect  naturalistic  driving  study  data  and  understand what 

factors are impacting on drivers’ decision making on route choices. A total of 738 valid trips 

from  39  participants  were  recorded  and  used  in  the  final  analysis.  Overall,  participants 



 
 

followed the Recommended Route in 434 of 738 valid trips or 58.8 percent of the valid trips. 

Both Random Forest Tree algorithm and mixed models were applied in the analysis. In general, 

this study found that drivers would change their route choices under certain conditions, when 

they were  provided with  information  related  to  different  routes.  Results  of  the  analysis 

showed that drivers were more likely to select the eco route when  its distance was shorter 

and gas consumption per mile was higher. It was also found that giving priority to recommend, 

the eco route could guide drivers to choose the eco way. If drive choose the eco or fast routes, 

they are more likely to fully drive along the recommended route while compared with driving 

alone or with only one household passenger, drivers will comply with the recommended route 

when there were three or more household passengers.  

 

Task 3: Travel Behavior Modeling 

The objective of task 3 is to study the impact of CAVs on travelers’ travel behaviors, including 

departure time choice, route choice, willingness to ridesharing, etc. 

Subtask  Content  Schedule  End date  Status 

3.1  Experiment and survey design  M1  12/5/2015  Completed 

3.2  Model departure‐time choice behavior  M2‐M6  5/5/2016  Completed 

3.3  Model route choice behavior  M7‐M12  11/5/2016  Completed 

3.4  Model travel activity pattern change  M13‐M20  7/5/2017  Completed 

3.5  Calibration of POLARIS traveler behavior model  M21‐M24  11/5/2017  Completed 

 

Subtask 3.1. Experiment and survey design 

A survey was designed to characterize the possible change of travel behaviors introduced by CAVs. The 

survey was conducted among the participants of the Safety Pilot project. In total, 396 responses were 

collected.  

There are two types of questions in the questionnaire. The first type of the questions is related to the 

participants’ demographic characteristics, such as gender, age, level of education, employment status, 

etc. The other type of questions is about the information of their households, for instance, number of 

cars, number of children, etc. Some of the questions are listed in Table 3.1. 

Table 3.1 Sample questions in the survey 

Questions  Values 

Gender  1=Male, 2=Female 

Age  1=25‐34, 2=35‐44, 3=45‐54, 4=55‐64, 5=65+ 

Primary driver of the vehicle  1=Yes, 2=No 

Number of vehicles in the household  Integer 

Number of adults in the household  Integer 

Number of children in the household  1=0  children,  2=1  child,  3=2  children,  4=3 
children, 5=4 children, 6=5+ children 

Number of licensed drivers in the household  Integer 

Status of Employment  1=Full time, 2=Part time, 3=No 

Consistent work schedule   1=No, 2=Yes 

Start time of work hours  Numerical 

End time of work hours  Numerical 



 
 

Primary mode of travel to work  1=Drive Alone, 2=Carpool, 3=AATA Bus, 4=U 
of M Bus, 5=Bicycle, 6=Walk, 7=Other 

Status of student  1=Full time, 2=Part Time, 3=No 

Highest level of education  2: Did not complete High School 
3: High School/GED 
4: Some college 
5: Associate degree 
6: Bachelor's Degree 
7: Master's Degree 

Bicycle  1=Yes, 2=No 

Transit/bus pass  1=Yes, 2=No 

Free parking at the place of employment  1=Yes, 2=No 

Hours per week driving in Ann Arbor area  1=30 minutes  or  less,  2=1‐4  hours,  3=5‐9 
hours,  4=10‐14  hours,  5=15‐20  hours, 
6=Over 20 hours 

 

This survey can be regarded as a benchmark when analyzing the possible change of travel behaviors. 

In subtask 3.3, when mining activity patterns, the data collected in this survey will be combined with 

the household activity data extracted from the Safety Pilot project database, to cluster the participants 

and analyze their similarities within each cluster.  

Subtask 3.2. Departure time choice and traffic demand 

3.2.1 Introduction 

Traffic congestion and air pollution have become severe problems, especially in big cities. Ridesharing 

(Shaheen  at  al.,  2015)  is  commonly  recognized  as  an  effective  solution  to  reduce  congestion  and 

transport  emission  (Caulfield,  2009).   Among  all  the  factors  that  influence people’s willingness  to 

ridesharing, incompatible work schedules and loss of privacy are the top ones (Baldassare et al., 1998; 

Koppelman et al., 1993; Teal, 1987). Time savings from the usage of HOV lanes and monetary savings 

from  the evenly  shared  tolls, parking  fees, and gasoline costs are  the main  incentives  to motivate 

people to share rides (Yang and Huang, 1999). 

Autonomous vehicle (AV) technology can be a potential disrupter of the current mobility system. Since 

AV can reposition themselves, the negative effect of incompatible work schedules on ridesharing might 

be alleviated: when two commuters share a ride from home to attend two different activities, if their 

activity durations result in a long wait between the two when they would like to go home, an AV can 

be called to pick one of them up. However, with traditional vehicles, one has to either bear the long 

wait or use  expensive  taxi  service.  This observation  implies  that AV has  a potential  to encourage 

ridesharing when activity uncertainty is considered.  

The goal of this subsection is to study the impact of AVs on travel mode and departure time choices 

during peak hours. We demonstrate  the  impact of AV  in a simple scenario. The scenario considers 

round‐trip commute with congestions at a single bottleneck and random work end time in the evening. 

In  this  scenario, a  commuter  can  share a  ride with another  commuter  from home  to work  in  the 

morning, and either share a ride or call an AV to take her from workplace to home  in the evening, 

depending on the actual work end time of her and her ridesharing partner. Dynamic user equilibria of 

the bottleneck congestion are analyzed for three cases: no ridesharing, ridesharing without AV, and 

ridesharing with AV.  



 
 

3.2.2 Problem statement and classical bottleneck model 

During the morning peak hours, in a lot of cities, for instance in New York, traffic flows mainly from 

outside of the city to the center of the city. Because of the huge traffic demand within a short period, 

congestion occurs easily. For simplicity, such transportation networks during the morning peak hours 

can be modeled as the graph shown on the left‐hand of Figure 3.1. In the graph, “H” represents home 

(residential areas), and “W” represents workplace. Then, because all “H”‐“W” pairs are independent 

from each other, we can just focus on one of the pairs, shown on the right‐hand side of Figure 3.1. 

 
Figure 3.1 Simplification of transportation network with one center 

In the standard bottleneck model proposed by Vikery (1969), commuters drive from “H” to “W” in the 

morning and wish to arrive at their workplace at a certain time point in the morning. “H” and “W” are 

connected by a  road with  capacity  𝑠. Since  the  capacity of  the  road  is  limited, once demand  rate 

exceeds  the  capacity,  there  will  be  congestion.  The  commuters  choose  their  departure  time  to 

minimize their travel costs.  It  is a tradeoff between suffering congestion and being early or  late to 

arrive at workplace. 

In the evening, similarly, most of the traffic flows from the city center to the outside. However, the 

difference  is  that  commuters’ departure  time  choice  could be  influenced by  their work end  time. 

Suppose two commuters go to work by ridesharing in the morning. If their work end time turns out to 

be very different, one of them must wait for the other for a long time. This effect of incompatible work 

schedule is one of the obstacles for ridesharing. To capture the effect of different work end time on 

commuters’ travel behaviors, the work end time  is modeled as a random variable distributed  in an 

interval. Here provides a formal description of the model for the evening commute. 

During the evening rush hours, a sufficiently large number, 𝑁, of commuters travel from work (𝑊) to 

home (𝐻). Each commuter can depart from (𝑊) only after her work ends. The commuters’ work end 

time  is uniformly distributed  in  the  time  interval  ሾ𝑡௔, 𝑡௕ሿ,  i.e., 𝑡௘~𝒰ሺ𝑡௔ , 𝑡௕ሻ. There  is only one  road 
connecting  (𝐻)  and  (𝑊), with  a  single  bottleneck whose  capacity  is  𝑠.  If  the  arrival  rate  at  the 
bottleneck exceeds 𝑠, a queue will form. If two commuters share a ride when they go to work in the 

morning,  they  should  go  home  by  ridesharing  with  each  other  as  well.  It’s  also  assumed  that 

ridesharing partners equally share their total travel costs. 

Similar with the definitions in Vikery (1969) and Arnott et al. (1990), the cost of a trip, 𝐶, is expressed 
as a combination of the travel time spent on road, the travel time spent in office, and the fixed cost 

such as tolls. Specifically,  

 
𝐶 ൌ travel time cost ൅ waiting time cost ൅ Fixed cost 

ൌ 𝛼ሺtravel timeሻ ൅ 𝛽ሺwaiting timeሻ ൅ Fixed cost, 

where 𝛼 is the shadow value of the travel time when suffering from congestions on the road, and 𝛽 is 
the shadow value of the time spent in the office after one’s work ends. The fixed travel time cost is set 

to zero, which does not change the nature of the problem. 



 
 

Considering  both  the  realistic  situations  and  the  simplifications  of  the  problem,  the  following 

assumptions are made. 

 𝛼 ൐ 𝛽. Suffering from congestion on the road is costlier than waiting in the office. 

 ே

௧್ି௧ೌ
൐ 𝑠. Peak demand density is larger than the capacity of bottleneck, otherwise no 

congestion will form, and each commuter will go home as soon as her work ends. 

 Each commuter is rational and has complete information. 

3.2.3 Round-trip bottleneck model without autonomous vehicles 

To analyze the equilibrium of round‐trip commute, we can study the behaviors of a pair of 

commuters in the following two cases. 

Case 1: All the other commuters drive alone 
Suppose all the other commuters share rides and then investigate the choice of a pair of commuters, 

by comparing the expected cost of ridesharing 𝔼ሺ𝐶ଶሻ with the expected cost of driving alone  𝔼ሺ𝐶ଵሻ. If 
ridesharing is costlier, it is an equilibrium; if traveling alone is costlier, then it is not an equilibrium. In 

other words, an equilibrium obtains only if the two commuters have no incentive to share rides, i.e.,  

   𝔼ሺ𝐶ଵሻ ൏  𝔼ሺ𝐶ଶሻ. 

Case 2: All the commuters share rides 
Suppose all the other commuters share rides and then compare the costs for the two commuters when 

sharing a ride and when driving alone. If traveling alone is costlier, then an equilibrium obtains when 

all the people share rides.  If ridesharing  is costlier, then  it  is not an equilibrium.  In other words, an 

equilibrium obtains only if the two commuters have no incentive to travel alone, i.e.,  

   𝔼ሺ𝐶ଵሻ ൐  𝔼ሺ𝐶ଶሻ. 

3.2.4 Round-trip bottleneck model with autonomous vehicles 

If all the regular vehicles are replaced by autonomous vehicles, the traffic pattern would be different. 

In the morning, all the commuters will go to work by ridesharing, because even if their work end time 

𝑡ଵ, 𝑡ଶ turn out to be very different from their partners’, they can reposition an AV in advance to pick 

them up. The resultant total cost is still no more than the case when traveling alone during the round‐

trip commute.  

In the evening, different from the case without autonomous vehicles, in this case, commuters can not 

only choose departure time but also decide if ridesharing or not. Their willingness to ridesharing will 

change the traffic demand and influence their departure time choice. On the contrary, their departure 

time  choice  can  also  change  the  traffic  pattern  and  influence  their  willingness  to  ridesharing. 

Apparently, the fixed cost of a trip with an autonomous vehicle, 𝐹஺௏, could change the equilibrium as 

well.  

Due to the complexity of the problem, simulation‐based method is applied. It basically simulates the 

process to achieve equilibrium. In each iteration, all the commuters choose their departure time and 

travel modes based on the observed traffic condition in the current iteration. Then, due to the choices 

made by the commuters, the traffic condition  is also updated. After several  iterations, commuters’ 

choices and the corresponding traffic condition will converge, which means an equilibrium is achieved. 

Figure 3.2 shows  the distribution of  the  travel modes  in  the ሺ𝑡ଵ, 𝑡ଶሻ space, with 𝛽/𝛼 ൌ 0.5, 𝑠ሺ𝑡௕ െ
𝑡௔ሻ/𝑁 ൌ 0.5, 𝑠𝐹஺௏/𝛼𝑁 ൌ 0.05. If the work end time of the two commuters lies in the green area, then 

they will still share a ride in the evening commute; otherwise, they will travel alone. 



 
 

 
Figure 3.2 Travel mode in equilibrium considering AV 

Figure 3.3 shows the percentage of ridesharing commuters during the evening commute for the three 

cases of equilibria when the vehicle related travel cost (fuel, mileage, tolls) varies. It can be easily seen 

that when  the  fixed  cost  is  low, which our  real‐world  situation usually  is, AV  can encourage more 

ridesharing. This is because with AV, commuters can go to work by ridesharing in the morning, without 

worrying about the potential  incompatible work end time with their partners  in the evening. In the 

evening, those pairs of commuters whose work end time turn out to be very close can still go home by 

ridesharing. However, when the fixed cost of an AV is high, AV can potentially discourage ridesharing. 

This is because with AV, those whose work end time is much earlier than their ridesharing partners can 

call AV to pick them up, without staying in the workplace and waiting for their partners.  

 
Figure 3.3 Percentage of ridesharing trips under different conditions 

 

3.2.5 Summary 

The objective of this study  is to  investigate the  impact of autonomous vehicles on peak‐hour traffic 

congestions.  First,  the  congestion  during  peak  hours  is  explained  by  bottleneck  models.  As  an 

extension to the classical bottleneck model which focuses on morning commute only, the methodology 

is also applied to the evening trip and thus the round‐trip commute. Then, the equilibria of departure 

time and travel mode choices are established for both regular vehicle case and autonomous vehicle 

case. It is shown that in equilibria, AV could encourage ridesharing if its fixed cost is low enough but 

discourage ridesharing if its cost is high.  



 
 

It should also be noted that this study has limitations that future work may overcome. On one hand, 

in this study, a simplified transportation network is used. In real world, a transportation system can be 

very large and complicated. It may also contain HOV lanes, public transportation, parking constraints, 

etc. On the other hand, all the commuters in this study are assumed to be rational and homogeneous. 

In real life, commuters may have bounded rationality and different values of time.  

Subtask 3.3‐3.5. Activity patterns and travel behaviors 

3.3.1 Activity pattern mining 

Introduction 

To understand  the potential  changes of departure‐time  choices,  route  choices,  and  travel  activity 

patterns after CAVs are in place, the first step is to understand how people travel now when CAVs are 

not prevalent. To this end, analyzing the baseline travel pattern using Safety Pilot data is essential. At 

this  stage,  we  hope  to  travel  patterns  (including  departure‐time,  route  choice,  activities,  and 

destinations)  from  the Safety Pilot database, conducting  statistical analysis and build a connection 

between the trajectory data and the travelers’ demographic factors. 

Traveling  is  a  derived  demand  and  the  internal motivation  for  traveling  is  to  accomplish  certain 

activities.  Therefore,  the  activity‐based  approach  provides  a  more  realistic  and  enriched 

representation  of  how  people  travel  compared  to  the  traditional  trip‐based  approach. With  the 

emergence of the trajectory data collection devices, such as GPS devices, smart phones, Bluetooth, or 

connected  vehicles,  the  activity‐based  approach  becomes  increasingly  popular  in  travel  demand 

modeling and forecasting because of its power in accommodating these disaggregated travel data. 

Data description 

Specifically, we will  introduce the data collected  from the first nationwide scaled‐down testbed  for 

connected vehicles in Ann Arbor, Michigan. “Stay points” along a GPS trace (i.e., a static point with a 

staying duration of more than a certain threshold) contains importation travel “semantic” information, 

including the type of the land use for each stay point, the activity one performs at that location, and 

the activity schedule for each individual traveler. Such rich information can benefit various research 

topics, including: activity travel pattern identification, hotspot analysis (i.e., a region with concentrated 

travel  demands),  travel  recommendation,  life  pattern  understanding,  user  similarity,  and  location 

prediction (Zheng, 2015).  

One trip is defined as one segment of travel starting from when the engine is turned on until it is off. 

Literally, the first GPS point along one trip is the origin while the last is the destination (see Figure 3.4). 

If a driver is assumed not to stop in the middle of a trip, the origins and destinations are treated as the 

major stay points for each individual.  



 
 

   
 (a)                                                                (b) 

Figure 3.4 Sample travel-activity pattern: (a) Conceptual trip chain; (b)Time-space trajectory 

However, GPS trajectories are generally quite noisy and thus in many cases, we cannot directly adopt 

the first (or  last) points of a trip as the origins (or destinations). Especially when the car engine just 

starts, it takes a while for GPS devices to connect to satellites and thus make origin points particularly 

difficult to identify. To more accurately capture origins and destinations, we used both speed, denoted 

by 𝑣, and the number of satellite, denoted by 𝑛. The rationale of using speed is that when a trip just 
starts or is about to end, its speed must be lower than a threshold speed 𝑣௛. The number of satellites 

attached to one GPS point indicates its measurement accuracy. The more satellites, the more accurate 

the point is. In other words, assume the optimal number of satellites to ensure a GPS measure is 𝑛௦, 
the closer  the actual satellite number  is  from 𝑛௦,  the more accurate  this point  is. Accordingly,  the 

confidence of the accuracy of a GPS point is defined as the weighted average of the speed difference 

from the threshold speed and the satellite number difference from the optimal number: 

𝑄 ൌ 𝛼 ൬
𝑣௛ െ 𝑣
𝑣௛

൰ ൅ 𝛽 ൬
𝑛௦ െ 𝑛
𝑛௦

൰ 

where 𝛼 and 𝛽 are weight parameters.  

Built upon the confidence of a point, now we are ready to define a set of rules to identify the origin 

𝑂ሺ𝑖ሻ and the destination 𝐷ሺ𝑖ሻ for a trip 𝑇௜. If the confidence of the first (or last) point is greater than 
0.6, it will be used as the origin (or destination) point. However, if its confidence is lower than 0.6, it is 

inappropriate to use. Given that an individual’s travel trajectories are continuous, the origin of the trip 

𝑇௜   is the destination of the trip 𝑇௜ିଵ and the destination of the trip 𝑇௜   is the origin of the trip 𝑇௜ାଵ. 
Therefore,  if the confidence of the destination (or origin) of the  last (or next) trip is higher than the 

first (or last) point of this trip, we will use the destination (or origin) of the last (or next) trip. Otherwise 

we will not consider this trip. These rules can be expressed as follows: 

𝑂ሺ𝑖ሻ ൌ ቐ
firstሺ𝑇௜ሻ 𝑄൫firstሺ𝑇௜ሻ൯ ൒ 0.6

𝐷ሺ𝑖 െ 1ሻ 𝑄൫Dሺ𝑖 െ 1ሻ൯ ൒ 𝑄൫firstሺ𝑇௜ሻ൯ 
∅              𝑜𝑡ℎ𝑒𝑟

&  𝑄൫firstሺ𝑇௜ሻ൯ ൏ 0.6, 

 

𝐷ሺ𝑖ሻ ൌ ቐ
lastሺ𝑇௜ሻ   𝑄൫lastሺ𝑇௜ሻ൯ ൒ 0.6

𝑂ሺ𝑖 ൅ 1ሻ 𝑄൫Oሺ𝑖 ൅ 1ሻ൯ ൒ 𝑄൫lastሺ𝑇௜ሻ൯ 
∅               𝑜𝑡ℎ𝑒𝑟

&  𝑄൫lastሺ𝑇௜ሻ൯ ൏ 0.6, 



 
 

where  firstሺ𝑇௜ሻ represents  the  first  point  of  trip  𝑇௜;  lastሺ𝑇௜ሻ represents  the  last  point  of  trip  𝑇௜; 
𝐷ሺ𝑖 െ 1ሻ  and  𝑂ሺ𝑖 ൅ 1ሻ  represent  destination  of  the  trip  𝑇௜ିଵ  and  the  origin  of  the  trip  𝑇௜ାଵ 
respectively. 

Using the above rules, all the stay points of each driver can be extracted. Here the data used is from 

April 1 to October 30, 2013. Figure 3.5 illustrates one driver’s stay points during this period where x‐

axis and y‐axis represent longitude and latitude respectively. Clearly these points are highly scattered, 

mainly because of  the GPS errors or because drivers may stop  in multiple places  in one mall area. 

DBSCAN (Density‐based spatial clustering of applications with noise) method (Ester et al., 1996) is first 

applied in MATLAB if points are within the range of 50 meters. As illustrated, the blue cross in the circle 

is the center of a cluster of multiple points. If a point is visited at least once a week, it is a frequently 

visited place (in blue), otherwise it is an infrequently visited place (in red). 
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Figure 3.5 Density cluster of the origins and the destinations for one driver 

To identify the land use types of these points, they are then imported to ArcGIS (www.argcis.com) and 
the “spatial union” tool is used to map points to the shape file of the City of Ann Arbor land use with 

the threshold value set as 100 meters. There are 13 land use types, as shown in Table 3.2. 

Table 3.2 Land use types 

Index Lane use type 
0 On road 
1 Single-family/ Multiple-family residential 
2 Commercial 
3 Industrial 
4 Governmental / Institutional 
5 Parks, Recreation, and Open Space 
6 Transportation/communication/utilities (TCU) 
7 Water 
8 Agricultural 
9 Airport 
10 Others 
11 Home 



 
 

12 Work 
 
In a period of 7‐month travel history, a set of time stamps to visit one cluster can be extracted.  In 

Figure 3.6, the x‐axis and y‐axis are longitude and latitude respectively while z‐axis represents the time 

stamp. Denote the coordinate of the cluster center by ሺ𝑥ଵ,𝑦ଵሻ. Denote the earliest time to arrive at 

one cluster and the latest time to leave the cluster by 𝑡ଵ and 𝑡ଵ
ᇱ  respectively. Therefore, one frequently 

visited place can be denoted by 𝑃ሺ𝑥ଵ,𝑦ଵ, ሾ𝑡ଵ, 𝑡ଵ
ᇱ ሿሻ. A traveler’s activity pattern (𝑃1→ 𝑃2→ 𝑃3→ 𝑃4) is 

obtained when time 𝑡௜ାଵ ൐ 𝑡௜
ᇱሺ𝑖 ൌ 1,2, … ሻ, where 𝑡௜ାଵ is the earliest time to reach the activity 𝑖 ൅ 1 

and 𝑡௜
ᇱ is the latest time to leave activity 𝑖. 

 (a) A cluster of frequently visited places            (b) Activity chain 
 

Figure 3.6 Schematic diagram of frequently visited places and activity pattern 

To understand the evolution of the activity patterns, the dynamic activity patterns are presented over 

the map of the city of Ann Arbor on Friday September 13, 2013 using a professional data visualization 

tool “Processing” (www.processing.org). Figure 3.7 shows the traffic density during a one‐hour period 

(on the left column) and the activity type of each participant’s residing location at a given time (on the 

right column). As time elapses, the cars start leaving residential areas and stay in the land use types 

related to work from 8 am. After 5 pm, more cars are on road during the evening peak hour. At 8 pm, 

there is a growing number of cars on commercial or recreational land use.  

 



 
 

 

      (a) Traffic volume                     (b) Activity patterns 

Figure 3.7 Schematic diagram of frequently visited places and activity pattern 

Similarity analysis among activity patterns 

Similarity is a quantitative measure of the extent to which patterns from two sources are alike. Cosine 

similarity,  measuring  the  cosine  of  the  angle  between  two  vectors,  is  widely  used  in  revealing 

connections in the social network (Toole et al., 2015).  

In this study, we aim to define a similarity  index measuring  individual’s activity sequence similarity. 

Travel activity pattern similarity is a quantitative measure of the extent to which travel activity patterns 

of  two households or  individuals are alike. To  find an appropriate similarity measure between two 

activity patterns, we first define the longest common sequence between two sequences 𝑎௜  and 𝑎௝. For 
instance,  if  individual  𝑖’s pattern  is  ‘home‐work‐institution‐home’ and  individual  𝑗’s  is  ‘home‐work‐

shops‐work‐home’,  then  their  longest  common  sequence  is  ‘home‐work‐home’.  Accordingly,  the 

travel pattern similarity is defined as:  

𝑠௜௝ ൌ
𝑙𝑒𝑛𝑔𝑡ℎ൫𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎௜  𝑎𝑛𝑑 𝑎௝൯

max ሼ𝑙𝑒𝑛𝑔𝑡ℎሺ𝑎௜ሻ, 𝑙𝑒𝑛𝑔𝑡ℎ൫𝑎௝൯ሽ
 

Note  that  𝑠௜௝   is  always equal  to  𝑠௝௜   so  the  similarity matrix  is  symmetric. This definition does not 

consider where and when each activity is conducted but only the sequence.  

Built upon the similarity calculated between every two travelers, we will group them by their similarity 

values and then compare their demographic features within each cluster. The similarity value 𝑠௜௝  for 
individual  𝑖 and 𝑗 can be used to construct a similarity graph, denoted as 𝐺, which  is composed of 

nodes and edges 𝐺 ൌ ሺ𝑉,𝐸ሻ, where 𝑉 is the set of households and 𝐸 is the set of weighted edges. The 



 
 

weight of the edge 𝑖𝑗 is 𝑠௜௝, representing the similarity between 𝑖 and 𝑗. Spectral clustering method is 

implemented to cluster travelers sharing similar travel patterns (Von Luxburg, 2007).  

Applying the clustering method to the Safety Pilot dataset, 3 major clusters are identified. Looking into 

the demographic characteristics, significant difference among the clusters can be observed, as shown 

in Figure 3.8. For instance, people in cluster 1 spent a lot of time at school. In fact, all the travelers in 

cluster 1 have child/children in their households. In cluster 2, travelers spent more time at workplace. 

In fact, all of them are employed, as the survey tells. People in Cluster 3 spent more time at home. In 

fact, they are mostly senior people according to the survey. 

 

Figure 3.8 Histogram of household features within five clusters 

Other  than  inspecting  features within each  cluster using histograms,  it  is also  interesting  to know 

whether travel activity similarity is correlated with any demographic features quantitatively. There are 

many machine  learning techniques which can be used to establish the mapping  from demographic 

features to travel behavioral similarity. For simplicity, the linear regression model, i.e., 𝑆 ൌ 𝜙𝑋 ൅ 𝑏, is 
used.   As 𝑆,𝑋  are matrices,  they  are  first  vectorized  and  then  the  regression  is performed  in  the 

corresponding vector space. The elements in 𝑋 are categorical variables, so they are first converted to 
factors and then multiple  linear regression is employed  in R using “lm” routine. Table 3.3  illustrates 

the estimation results using 396 samples. 

Table 3.3 Estimation of coefficients 

   Estimate  Std. Error  t value  p value   Significance level 

Intercept  0.615548  0.002234  275.516  < 2e‐16   *** 

Gender2  ‐0.00509  0.001303  ‐3.911  9.21E‐05  *** 

Age2  ‐0.00176  0.001635  ‐1.077  0.2814    

Age3  0.00329  0.001856  1.773  0.07627  . 

Age4  0.01238  0.002554  4.848  1.25E‐06   *** 

Age5  ‐0.01552  0.005181  ‐2.995  0.00274  ** 

Adults2  0.003693  0.001499  2.463  0.01377  * 

Adults3  0.006318  0.002273  2.78  0.00544  ** 

Adults4  0.015908  0.003711  4.287  1.81E‐05  *** 



 
 

Adults5  0.036668  0.008661  4.234  2.30E‐05  *** 

Children2  ‐0.01623  0.001539  ‐10.546  < 2e‐16  *** 

Children3  ‐0.04346  0.001802  ‐24.116  < 2e‐16  *** 

Children4  ‐0.03711  0.002717  ‐13.66  < 2e‐16  *** 

Children5  ‐0.03272  0.010595  ‐3.088  0.00201  ** 

Children6  ‐0.01508  0.006015  ‐2.508  0.01215  *  

Vehicles2  ‐0.00846  0.001539  ‐5.493  3.95E‐08  *** 

Vehicles3  ‐0.02018  0.002138  ‐9.442  < 2e‐16  *** 

Vehicles4  ‐0.00926  0.003455  ‐2.68  0.00737  ** 

Vehicles5  0.012982  0.00584  2.223  0.02622  * 

Vehicles6  ‐0.00338  0.012988  ‐0.261  0.79442    

Employed2  ‐0.0319  0.001502  ‐21.236  < 2e‐16  *** 

Schedule2  ‐0.02041  0.001349  ‐15.134  < 2e‐16  *** 

Mode2  ‐0.02563  0.002999  ‐8.544  < 2e‐16  *** 

Mode3  0.016646  0.002921  5.698  1.21E‐08    

Mode4  ‐0.00146  0.007034  ‐0.208  0.83522    

Mode5  ‐0.00054  0.003439  ‐0.156  0.87572    

Mode6  ‐0.05617  0.002975  ‐18.879  < 2e‐16  *** 

Mode7  ‐0.07191  0.002231  ‐32.227  < 2e‐16  *** 

Student2  ‐0.02562  0.002804  ‐9.138  < 2e‐16  *** 

Student3  ‐0.06731  0.003754  ‐17.93  < 2e‐16  *** 

Education3  ‐0.00452  0.001529  ‐2.958  0.0031  ** 

Education4  ‐0.00386  0.001924  ‐2.007  0.04474  * 

Education5  ‐0.00852  0.002772  ‐3.075  0.0021  ** 

Education6  0.005668  0.00439  1.291  0.19665    

Education7  ‐0.0299  0.014079  ‐2.124  0.03371  * 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Because all the explanatory variables are categorical  factors, the first  level  is used as the reference 

level. The number after the variable name represents each level other than the reference  level. For 

example, gender has two  levels: 1 (male) and 2 (female). In R, gender=1  is treated as the reference 

level and therefore the coefficient (i.e.,  ‐0.00509)  in front of “Gender2”  is estimated relative to the 

reference level, meaning that when the gender is changed from 1 to 2, the similarity measure will be 

reduced by a magnitude of 0.00509. Most coefficients are significant because of the small p‐value, 

indicating that an individual’s travel activity is indeed correlated to demographic features.  

3.3.2 Household activity pattern optimization model 

Introduction 

The goal of this subsection is to investigate the impact of automated vehicles on daily traffic and energy 

consumption. The model  is activity‐based because the presence of automated vehicles will not only 

change people’s travel experience on road, but also change their departure time and travel mode. To 

this end, we should change our focus from how people finish their daily travels to how people finish 

their daily activities. 

The household activity pattern optimization problem is defined as follows. For a household that has 𝑀 

members  and 𝑉  vehicles,  given  the daily  activity of each member, determine  the optimal activity 

sequence  for  each member/vehicle  as well  as  the  start  and  end  time of  each  activity,  so  that  all 

activities  can  be  finished,  and  the  system  cost  is minimized.  The  system  cost  could  be  one  or  a 



 
 

combination of the followings: total travel time, total waiting time, total travel distance, total energy 

consumption and so on. There can also be some constraints, such as 

• Travel time between different locations of activities  

• Feasible time windows for start/end of each activity 

• Some activities must be performed by certain members 

• Some activities must be performed using certain vehicles 

• Some members can only drive certain vehicles 

Optimization model 

The problem is formulated using a network flow model. The start or the end of each activity is modeled 

as a node, and connections between each pair of nodes are the links. Note that the links in this model 

have two categories. If the link is from the start of an activity to the end of the same activity, the weight 

on the link is the duration of the activity; if the link is from the start/end of one activity to the start/end 

of another activity, the weight on the link is the travel time between two locations. With these nodes 

and links, the goal of the problem is to find an optimal path for each member and each vehicle to finish 

all activities with minimal cost. The notations are summarized in Table 3.4. 

Table 3.4 Notations used in the household activity pattern optimization model 

Input parameters 

AV  The set of indicators whether each vehicle is an autonomous vehicle. AV(v)=1, if 
vehicle v is an automated vehicle. AV(v)=0, otherwise. 

RS  The matrix of indicators whether a member is willing to share a ride with 
another member. RS(m,n)=1, if member m want to share ride with member n. 
RS(m,n)=0, otherwise. 

MA  Member‐activity matrix. MA(m,a)=1, if member m is eligible to perform activity 
a. MA(m,a)=0, if member m is not eligible to perform activity a. 

VA  Vehicle‐activity matrix. VA(v,a)=1, if vehicle v can be used to perform activity a. 
VA(v,a)=0, otherwise. 

MVc  Member‐vehicle matrix of capability. MVc(m,v)=1, if member m can drive vehicle 
v. MAc(m,v)=0, otherwise. 

MVo  Member‐vehicle matrix of ownership. MVo(m,v)=1, if member m own vehicle v. 
MAo(m,v)=0, otherwise. Here we assume that each vehicle must stay with one of 
its owners at the beginning and the end of the day.  

VC  The set of vehicle capacities. VC(v) denotes the capacity of vehicle v. 

P+  The set of spatial‐temporal nodes corresponding to arriving at the locations of 
activities. P+(a) denotes arriving at the location of activity a. 

P‐  The set of spatial‐temporal nodes corresponding to leaving from the locations of 
activities. P‐(a) denotes leaving from the location of activity a. 

FP  For any activity a, if u=P+(a), then FP(u)=P‐(a). 

P  P= P+∪P‐. 

Q+  The set of spatial‐temporal nodes corresponding to returning home, including 
the final return home and midday return home. Q+(m,k) denotes the kth return 
home for member m, k=1,2,…, K, K+1, where K is the maximum number of 
midday return home, Q+(m, K+1) denotes the final return home for member m. 

Q‐  The set of spatial‐temporal nodes corresponding to midday leaving home, 
including the first departure from home and midday departure from home. Q‐

(m,k) denotes the kth leaving home for member m, k=0,1,2,…, K, where K is the 
maximum number of midday leaving home, Q‐(m,0) denotes the first departure 
from home for member m. 

N  The set of all spatial‐temporal nodes. N={P+, P‐, Q+, Q‐}. 



 
 

t  Time matrix. tu,w is a large number L if w=u or u=FP(w), or the activity execution 

time if w=FP(u), or the travel time between the location of node u to location of 

node w for all other cases. 

c  Cost matrix. cvu,w denotes the vehicle cost (e.g., fuel consumption) if vehicle v is 
used to travel from node u to node w. 

TW  The matrix of time window for all the nodes including the first departure and the 
final return. Specifically, TW=[TWa TWb], where [TWa(u) TWb(u)] gives the time 
window for activity u. 

Decision variables 

Xmu,w  Binary variable indicating whether link (u,w) from node u to node w is on the 
path of member m. Xmu,w=1, if link (u,w) from node u to node w is on the path of 
member m. Xmu,w=0, otherwise. 

Xvu,w  Binary variable indicating whether link (u,w) from node u to node w is on the 
path of vehicle v. Xvu,w=1, if link (u,w) from node u to node w is on the path of 
vehicle v. Xvu,w=0, otherwise. 

Tu  Continuous variable denoting the time of each spatial‐temporal node. 

 
The constraints in this problem include: 

1) Each activity must be performed by at least one eligible member. 
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2) Each activity must be performed by an eligible vehicle. 
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3) Midday return home trips may or may not happen for each member or vehicle. 
The number of midday return home  trips  for each member or vehicle  is  restricted to a certain 

maximum value, K. One obvious upper bound is the total number of locations for all activities and 

homes, NA+NM. However, it is usually much lower than that. 

4) Flow conservation for each member. 
For the ease of composition, we assume there is always a dummy link between node Q+(m,K+1) 

and node Q‐(m,0) for member m, i.e., Xmu,w=1, if u=Q+(m,K+1) and w=Q‐(m,0). The physical meaning 

of this link is that member m should stay at his/her home from the final return home time on one 

day to the first departure time on the following day. With that, we can complete the following 

conservation equation for member m. 
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5) Flow conservation for each vehicle. 
Similarly, assume that Xvu,w=1, if u=Q+(m,K+1), w=Q‐(m,0) and MVo(m,v)=1, for any vehicle v and 

one of its owner m. The flow conservation equation for vehicle v is  
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6) Each node should be visited at most once for any member or vehicle. 
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7) Driver on board. 
For any trip of a regular vehicle v, it must be guaranteed that at least one feasible driver of that 

vehicle  is  on  board. However,  if  vehicle  v  itself  is  an  automated  vehicle,  there would  be  no 

constrained on human drivers. 
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8) Travel with vehicle. 
For any link that is part of any member’s path, it must be guaranteed that there is one vehicle 

traveling on the same link. 
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Note that there is no need to let two vehicles travel on the same link, because each node in the 

model is specific for one member. 

9) Vehicle capacity constraint. 
The number of occupants of any vehicle at any time must be less than or equal to its capacity. 
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10) Ride‐sharing. 
Each member m will not visit any activity that is not on his/her list. However, if member m wants 

to share a ride with another member n, then member m may also visit member n’s activities and 

member n’s home.  
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Similarly, each vehicle v will not visit any activity or home location that is not on the list of any of 

its owners or its owners’ ride‐mates. 
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11) Time constraints. 
For any node, its time must be within the feasible time window. 
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For any link connecting two consecutive spatial‐temporal nodes, except for the dummy link, the 

time difference between them must be greater or equal to the time needed to finish the trip or 

activity.  
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where  𝑡௨,௪  is a  large number 𝐿  if 𝑤 ൌ 𝑢 or 𝑢 ൌ 𝐹𝑃ሺ𝑤ሻ, or  the activity execution  time  if 𝑤 ൌ
𝐹𝑃ሺ𝑢ሻ, or the travel time between the location of node u to location of node w for all other cases. 

Cost functions could include one or more of the following: 
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  Final return home time. 
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Total waiting time. 
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Approximated total waiting time* 
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*   Here we approximate  the waiting  time  for any additional member engaged  in an activity as  the 

activity execution time. When this approximate total waiting time is minimized, it is very likely that the 

actual total waiting time is also minimized. 

** Note  that  the  out‐of‐home  time  for  all members  is  comprised  of  the  total  travel  time  for  all 

members,  the  total execution  time  for all activities  (a constant), and  the  total waiting  time  for all 

members.  

3.3.3 Minimum fleet problem 

Problem statement 

If multiple families share a fleet of autonomous vehicles, what is the minimum fleet size required to 

satisfy their travel demand? Specifically, given a set of origins and destinations of all the trips, how 

many vehicles are needed to serve the trips? How will the vehicle miles travelled (VMT) change? 

Data description 

The data used are the high‐resolution trajectory data collected by both on‐board units and road side 

units. Given the trajectories, we can extract the origins and destinations (ODs) of the trips, which could 

be regarded as the first and the last locations of the trajectories. Due to the precision of the GPS devices 

and the “cold start” effect, the destination of the current trip might not match with the origin of the 

next trip of the same traveler. This is not a big issue in this context because it does not influence the 

general framework of the problem. 

The left part of Figure 3.9 shows the distribution of the ODs of the trips in southeast Michigan collected 

from 2014 to 2018. The area with the highest travel demand of the Safety Pilot participants is the Ann 

Arbor‐Ypsilanti area, highlighted by the red rectangle. Within all the trips, 79% of them has either origin 

or  destination  in  the  highlighted  area,  and within  these  trips,  81% of  them  have  both origin  and 

destination in the area. Therefore, our focus is on the highlighted area. By focusing on this area, the 

scale of the problem and the computational time required to solve the problem can be significantly 

reduced. The right part of Figure 3.9  shows the distribution of ODs in the selected area. 

 
Figure 3.9 ODs of all the trips 

Offline minimum fleet problem 

Denote the set of trips by 𝒯. For any trip 𝑇௜ ∈ 𝒯, it can be represented by a tuple ሺ𝑡௜
௣, 𝑡௜

ௗ , 𝑙௜
௣, 𝑙௜

ௗሻ, where 
the  elements  represent  pick‐up  time,  drop‐off  time,  pick‐up  location,  and  drop‐off  location, 

respectively. 

Vehicle shareability network is a directed network whose nodes are the trips in 𝒯 (Vazifeh et al., 
2018). Two trips 𝑇௜  and  𝑇௝  are connected by an arc from 𝑇௜  to 𝑇௝ , if 



 
 

𝑡௜
ௗ ൅ 𝑡௜௝ ൑ 𝑡௝

௣, 

where 𝑡௜௝  is the minimum connection time between 𝑙௜
ௗ  and 𝑙௝

௣
. In other words, arc ሺ𝑇௜ ,𝑇௝ሻ means that 

it is possible for a vehicle to pick up the passenger of trip 𝑇௝  after dropping off the passenger of trip 
𝑇௜.  

A path cover of a network is a set of paths by which all the nodes are covered. A node‐disjoint path 

cover is a path cover that any two paths in it share no common node. Solving the minimum fleet size 

problem  is  equivalent  to  solving  the minimum  node‐disjoint  path  cover  problem  of  the  vehicle 

shareability  network.  The  number  of  paths  in  the  resultant  path  cover  represents  the minimum 

number of vehicles needed. Each path  indicates the route the corresponding vehicle should follow. 

Figure 3.10 shows a vehicle shareability network for five trips. The arcs in red represent a minimum 

node‐disjoint  path  cover  of  the  network.  Solving  the minimum  path  cover  problem  is NP‐hard  in 

general.  However,  since  the  vehicle  shareability  network  is  acyclic,  it  can  be  transformed  into  a 

bipartite matching problem which can be solved efficiently. 

 
Figure 3.10 Vehicle shareability network and its node-disjoint path cover 

Both the left column and the right column of the bipartite consist of the trips in 𝒯. Based on the vehicle 
shareability  network,  the  edges  of  the  bipartite  can  be  constructed  correspondingly.  Denote  the 

cardinality of the max matching of the bipartite by 𝑚. Then, the minimum fleet size is |𝒯| െ𝑚. This is 

because  in  the  left  (right)  column  of  the  bipartite,  there  are    |𝒯| െ𝑚  nodes with  zero  degree, 

representing the end (start) of the  |𝒯| െ𝑚 routes. All the other nodes have a degree of two, indicating 

that they are in the middle of the routes. The maximal matching problem can be solved efficiently by 

Hopcroft‐Karp algorithm (unweighted) or Kuhn‐Munkres algorithm (weighted).  

By setting the weights on edge ሺ𝑇௜ ,𝑇௝′ሻ of the bipartite as 𝑁 െ 𝑑௜௝, the solution can guarantee both 
minimum fleet size and minimum connection distance, where 𝑁 is a sufficiently large number and 𝑑௜௝  

denotes the distance between 𝑙௜
ௗ  and 𝑙௝

௣
,. Formally, the maximal matching problem can be expressed 

as  

maximize ෍൫𝑁 െ 𝑑௜௝൯𝑥௜௝
௜௝

subject to ෍𝑥௜௝ ൑ 1,∀𝑖
௜

 ෍𝑥௜௝ ൑ 1
௝

,∀𝑗

 𝑥௜௝ ∈ ሼ0,1ሽ,∀𝑖, 𝑗

, 

where 𝑥௜௝ ൌ 1 if the edge between trip 𝑇௜  in the left column and trip 𝑇௝′ in the right column is in the 

matching, 0 otherwise. 



 
 

In Figure 3.11, the edges in red represent a max matching of the bipartite. Similarly, if the weights on 

the edges of the bipartite are set as 𝑁 െ ሺ𝑡௝
௣ െ 𝑡௜

ௗሻ, then the solution of the max matching problem 

guarantees both minimum fleet size and minimum connection time. 

 
Figure 3.11 The equivalent bipartite and its maximal matching 

Online minimum fleet problem 

In the offline case, the ODs of all the trips are known in advance. In the online case, the information of 

the trips can only be known when a traveler sends a request to the fleet management system. Once 

there is a vehicle that can serve the request, the system will route the vehicle to pick up the traveler 

and deliver  the passenger  to  the destination. The matching between vehicles and  travelers can be 

formulated as an assignment problem and solved by bipartite matching algorithms (for instance, Kuhn‐

Munkres algorithm) efficiently. 

When ridesharing is allowed, i.e., when a vehicle take two or more passengers at the same time, it is 

not  a  bipartite matching  problem  anymore.  Denote  the  set  of  vehicles  by  𝑉;  denote  the  set  of 
passengers by 𝑅; denote the set of trips by 𝑇. A trip is a subset of 𝑉, in which all the passengers’ trips 
are shareable with each other. In other words, they can be potentially picked up by the same vehicle 

without violating any capacity or waiting time constraints.   

Then an RTV graph can be built, as shown in Figure 3.12. In this graph, a passenger node is connected 

to a trip  if  it  is a member of the trip; a vehicle and a trip  is connected if the vehicle can take all the 

passengers in the trip (Alonso‐mora et al., 2017).  

 
Figure 3.12 RTV graph in the online mode 



 
 

For trip 𝑡 ∈ 𝑇 and vehicle 𝑣 ∈ 𝑉, set the weight on edge ሺ𝑡, 𝑣ሻ as 𝑤ሺ𝑡, 𝑣ሻ which is usually related to 
distance or time between 𝑡 and 𝑣. The goal is to maximize the sum of the weights, without violating 

any constraints. Formally, the problem can be formulated as the following mixed integer programming 

problem. 

minimize ෍ 𝑤ሺ𝑡,𝑣ሻ𝑥௧௩
ሺ௧,௩ሻ∈஺೅ೇ

subject to ෍ 𝑥௧௩ ൑ 1,∀𝑣 ∈ 𝑉
௧:ሺ௧,௩ሻ∈஺೅ೇ

 ෍ ෍ 𝑥௧௩ ൑ 1
௩:ሺ௧,௩ሻ∈஺೅ೇ௧:ሺ௧,௥ሻ∈஺೅ೃ

,∀𝑟 ∈ 𝑅

 𝑥௧௩ ∈ ሼ0,1ሽ,∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉

, 

where binary  variable 𝑥௧௩ ൌ 1  if  trip  𝑡 ∈ 𝑇  and  vehicle 𝑣 ∈ 𝑉 are matched, 0 otherwise.  The  first 

constraint ensures that each vehicle can serve at most one trip at the same time. The second constraint 

guarantees each passenger can only be assigned to at most one vehicle. For instance, the arcs in red 

in Figure 3.12 form a feasible solution of the problem. 

Application to the Safety Pilot data 

The methodology was applied to Safety Pilot Data collected during the year of 2015. All the ODs were 

extracted  from  the  GPS  trajectories.  For  the  purpose  of  privacy  protection,  the  real  origins  and 

destinations of the participants’ trips were mapped to the closest intersections on the transportation 

network. 

Figure 3.13 shows the comparison between the actual number of vehicles and the ideal minimum fleet 

size  in each day of 2015.  In  the  figure on  the  left‐hand  side,  the blue curve  represents  the actual 

number of vehicles recorded in the Safety Pilot database. The orange curve represents the minimum 

fleet size required to complete all the trips if different families share vehicles. The peaks represent the 

weekdays and the valleys represent the weekends. The figure on the right‐hand side  implies that a 

fleet with 200 vehicles could almost satisfy the transportation demand every day. One can see that, 

ideally,  vehicle  sharing  could  significantly  reduce  the number of  vehicles.  The  average number of 

vehicles could drop from 443.9 to 111.1.  

       
Figure 3.13 Actual number of vehicles and minimum fleet size 

However, in terms of VMT, if different families share vehicles but do not share rides, the vehicles have 
to travel more because of the connections between different trips. Figure 3.14 shows the change of 
VMT. On average, VMT would increase by 25.6%. 



 
 

        
Figure 3.14 Actual VMT and VMT of minimum fleet size 

Further  analysis  shows  that  to  a  large  extent,  the minimum  fleet  size  is  determined  by  the  peak 
demand rate in each day. Figure 3.15 shows the correlation between the minimum fleet size and the 
maximum hourly demand in each day. The corresponding 𝑅ଶ is 0.93, which implies a strong correlation. 

 
Figure 3.15 Correlation between min fleet size and max hourly demand 

The extracted data are also used for the online case, where the ODs of all the trips are not known in 
advance. The left part of Figure 3.16 shows the number of served trips with different maximum waiting 
time, using the trip data on Feb 2, 2015 (Monday). Apparently, the more time the travelers are willing 
to wait,  the more  likely  their  requests will be served.  It  implies  that even  in  the online mode, 120 
vehicles are able to serve almost all the transportation demand, with a ten‐minute max waiting time. 

The right part of Figure 3.16 shows the results when not only are vehicles shared but also ridesharing 
is allowed. In general, the fleet size could be further reduced. 



 
 

 
Figure 3.16 Trip service rate with different fleet size and waiting time (online mode and rideshare mode) 

The  above  results  are  for  the data  collected  from  the  Safety Pilot project, whose participants are 
sparsely distributed  in southeastern Michigan.  If the population density  is higher, the effect can be 
even  more  significant.  To  further  verify  the  methodology,  it  is  applied  to  the  taxi  trip  data  in 
Manhattan, New York. Figure 3.17 shows the result for New York taxis. When ridesharing is allowed, 
the same  fleet size can serve much more  trips.  In other words, the  fleet size could be significantly 
reduced as well. 

 
Figure 3.17 The effect of ridesharing on New York taxis 

Summary 

This section studies the potential change of the fleet size and VMT if different families share a fleet of 
vehicles. The offline problem is formulated as a node‐disjoint path cover problem which is equivalent 
to  solving  for a weighted maximal matching on a bipartite. The  solution of  the bipartite matching 
problem can guarantee both minimum  fleet  size and minimum connection distance  (or  time). The 
online versions of the minimum fleet problem are also studied. 

After applying the methodology to all the trips collected by the Safety Pilot project in 2015, the results 
show that if different families share a fleet of vehicles, the total number of vehicles needed could be 
significantly reduced (by 75.0%). However, the VMT would increase by 25.6%, due to the connections 
between different trips. Even  in the online case, when the  information of the trips  is known  in real 
time, 120 vehicles could serve almost all the trips if the travelers are willing to wait for ten minutes. 
Further  analysis  also  shows  that  the minimum  fleet  size  has  a  strong  correlation with  peak‐hour 
demand rate.  
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Task 4 System model development and Validation 
The objective of Task 4  is to develop and validate a transportation system model of the Ann Arbor 
region,  both  for  baseline  analysis  as well  as  CAV  scenario  analysis.    Task  4 will  incorporate  data 
collected as a part of Task 1 and Task 2, as well as behavioral models developed  in Task 3  into an 
integrated travel behavior and transportation system simulation model using the POLARIS software.  
The updated POLARIS model will then be used to simulate various connected vehicle technologies and 
quantify changes in energy consumption resulting from those scenarios. 
 
The table shows the proposed subtasks and delivery times for the seven subtasks of Task 4, with a note 
regarding  the  expected  completion  time.    The  subtasks  for  Task  4  have  not  presented  major 
unexpected obstacles. 
 

Subtask  Subtask  Schedule  Schedule 
end date 

Status 



 
 

4.1  Implement baseline POLARIS model  M1‐M12  9/16  Completed 

4.2  Determine data needs for further 
model development 

M1‐M12  9/16  Completed 

4.3  Query, collect and process data 
from the connected vehicle fleet 

M13‐M24  9/17  Completed 

4.4  Implement traveler and CAV agent 
behavior rules 

M25‐26  11/17  Completed 

4.5  Implement and calibrate the 
POLARIS‐Autonomie model 

M27‐M30  3/18  Completed 

4.6  Model validation with new data 
from field tests 

M31‐M32  5/18  Completed 

4.7  Vehicle energy consumption 
quantification 

M31‐M36  8/18  Completed 

 
 

Subtask 4.1. Implement baseline POLARIS model 
The baseline POLARIS model for Ann Arbor has been fully implemented. Further development of the 
model will occur within task 4.4 and validation of the model will be completed under task 4.5 
 

Subtask 4.2. Determine data needs for further model development 
Completed  

 

Subtask 4.3. Query, collect and process data from the connected vehicle fleet  
The target is the development of a process querying, collecting and processing the data from 

vehicle  test  data  in  order  to  define  the  baseline  for  all  our  CAV  &  ML  fuel 
consumption  validation work.  The  procedure  requires many  database  analysis, 
cleaning and restructuration.  

 

4.3.1 Vehicles medialization 

The University of Michigan provided so far 154 conventional vehicles, 52 HEVs, 13 PHEVs and 2 
EVs which the manufacturing years are  from 2011 and over  (manufacturing before 2011  is not 
taken in consideration). 

 59 conventional vehicles are now modeled and validated (less 5% Fuel economy difference 

on the regulatory EPA cycles).  

 24 conventional vehicles and 30 HEVs are in validation process (Fuel economy difference on 

the regulatory EPA cycles between 5% and 10%) 

4.3.2 On-road test data 

 Some inconsistencies found on data acquisitions and address to University of Michigan: 

o Potential errors in data acquisition  

o Some vehicle speed trace remains at zero 

o Some vehicles are not moving for the most part of the trip 

o Acceleration grade issues on cycles 



 
 

 Validation of Autonomie’s vehicle models on four real world driving cycles is shown in the 

table below 

 

4.3.3 Next steps 

 Continue models building and validation (on the regulatory EPA cycles & the Real World 

cycle) 

 Work with University of Michigan on fixing the potential inconsistencies from on‐road test 

data 

 Run large scale simulation and validate the energy consumption 

 

Subtask 4.4 Implement traveler and CAV agent behavior rules 

4.4.1 Eco‐Mobility on Demand Service with Ridesharing 
Mesoscopic fuel consumption model 
To evaluate the network‐wide impact of Eco‐Routing, an Eco‐Routing algorithm is going to be 
implemented in POLARIS, as discussed in the previous quarterly update. In the application, the 
connected vehicles serve as probed vehicles and send motion information such as speed and 
acceleration to traffic management center, and the traffic management center broadcasts the 
vehicle motion  information  to  the network. Host  vehicle  can use  the broadcasted  vehicle 
motion information and fuel consumption model to estimate the fuel‐optimized route. One 
of  the  core  functions  is  the  fuel  consumption  model,  which  takes  the  vehicle  motion 
information as input and output estimated fuel consumption for host vehicle on the links. The 
model  need  to  have  the  ability  for  online  calculation  and  accurate  enough  for  route 
optimization.  
The fuel consumption is obtained with Gaussian Mixture Regression[1].  With the objective of 
regression to maximize the conditional likelihood of output on the input variables as shown in 
equation (0.1), based on Bayesian law (0.2), maximizing total likelihood is equivalent since the 
input  variable  is  independent  of model  parameter. With     denote  as  the  set  of model 
parameter,  X  denote as the input, and Y  denote as the output 

  * arg max ( | , ) arg max ( | , )i i
i

l Y X p Y X         (0.1) 

  ( , | ) ( | , ) ( | ) ( | , )p Y X P Y X P X P Y X        (0.2) 

In  this way,  instead of minimizing  the  squared error of model output, a Gaussian Mixture 
Model (GMM) is obtained by maximizing the total likelihood of input and output. Since each 
component of the GMM is multivariate Gaussian distribution, the conditional distribution of 
output for each component also follows Gaussian (0.3) 

Cycle id Distance [km]
Real world fuel cons 

[l/100km]

Autonomie fuel 

cons  [l/100km]
Diff [%]

Real world fuel 

eco [mpg]

Autonomie fuel 

eco [mpg]

cycle_473_1 7.1 0.6 0.5 16.2% 28.2 31.3

cycle_473_2 13.4 1.0 1.0 7.0% 33.1 30.8

cycle_473_3 12.9 1.0 1.0 0.0% 30.0 29.9

cycle_473_13 14.0 1.0 1.0 0.1% 32.8 32.7
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For GMM where the probability density function is the weighted sum of individual Gaussian 
component, the expectation of output is  

  0 0 0 0 0( | ) ( | ) ( ) ( ) ( | )i i i i iE Y X x E y x x w x E y x        (0.4) 

where  0( )iw x  is the posterior of component probability based on marginal distribution of the 

input  variable,  and  0( | )iE y x   is  the  expectation  from  individual  components.  The  input 

variables  to  the model  are  shown  in  Table  4.5. Model  parameters  for  road  sections with 
different speed limits are obtained individually. 

Table 4.5 Fuel consumption Model Inputs 

Model layer input 

Motion related features  Link related features 

Average speed  Average grade 
Speed change  Link Length 

The  model  performance  is  evaluated  against  average  speed  model[2],  power  balance 
model[3] and Neural Network. The equations of the benchmarks are shown in Table 4.6. 

Table 4.6 Benchmark Models 

Average speed model  2 3 4
0 1 2 3 4 5exp( )f t v v v v s             

Power balance model  3
0 1 2 3( )kf t v va sv v         

Neural Network   

where f is the expected fuel consumption, v is average speed, a is average acceleration, s is 
average grade, t is travel time on the road section, βi are model parameters. The performance 
of  the models  is  tested with  expected  fuel  consumption  estimated  from microscopic  fuel 
consumption model simulated data with real  life speed and grade trajectories. The relative 
error distribution of the proposed model and the benchmarks are shown in Figure 4.18 and 
Table 4.7. The mean absolute percentage error of our proposed model  is 10%. For R2, our 
model and Neural network show close performance, and  further  fine  tuning of  the Neural 
network has potential to achieve better performance. However, compared with the enormous 
number of parameters to  tune  in the neural network, our model  is non‐parametric,  in  this 
way, there is no need for parameter tuning. 

 
Figure 4.18 Model Performance Comparison 

Table 4.7 Model Performance Comparison 

  R
2
  MAPE [%] 

Average 
Speed 

0.77  37.63 

Power 
Balance 

0.86  46.22 

Neural 
Network 

0.98  15.60 

GMR  0.98  10.08 
 

 



 
 

The  fuel  consumption estimation  function  is going  to be  implemented  in POLARIS as  cost 
estimation  function  in  routing  library  and  used  together with  current  time‐dependent A* 
routing policy to calculate eco route. Further  investigation  includes eco‐routing with travel 
time constraint. 
 
Constrained Eco Routing  
To evaluate the benefit of eco‐routing, a preliminary eco routing algorithm  is  implemented 
with Ann Arbor network in Matlab based on Dynamic Programming. Dynamic programming 
solves the optimization problem recursively based on Bellman principle 

 
1

* *
( ) 1arg min ( ) ( )

ont ii x adj x i ix g x f x
      (0.5) 

 
2

* *
1 ( ) 1 2( ) min ( ) ( )

ont ii x adj x i if x g x f x
        (0.6) 

where  ix  is the optimal next link location,  1ix   is the last link location,  *
1( )if x   is the optimal 

value function at last link,  ( )ig x  is the transition cost based on fuel consumption in traditional 

eco routing and weighted sum of travel time and fuel consumption in travel time constrained 
eco routing which is defined as  

  1( ) (1 ) ( , ) ( )i t i i t ig x w c x x wt x      (0.7) 

where  1( , )i ic x x   is the estimated fuel consumption and  ( )it x  is the estimated travel time for 

current link. To address the travel time constraint, a soft constraint  tw  is defined with respect 

to time limit  ct  as shown in Figure 4.19.  

 
Figure 4.19 Soft constraint for travel time 

The travel time constraint is defined as  

  *( ) (1 ) ( )c i it x t x     (0.8) 

where   is a relaxation constant and  *( )it x  is the travel time for shortest time path from origin 

to current link. Currently the fuel consumption and travel time are based on speed limit, and 
in the next step, real time traffic information is going to be taken into consideration. A case 
study comparing shortest path, fast path, eco‐routing and constrained eco‐routing are shown 
below in Figure 4.3. 



 
 

 
Figure 4.20 Routing results from different routing strategy 

Table  4.8  Performance  for  different 
routing strategy in case study 

  Fuel[kg]  Time[s] 

Shortest  0.903  1050 

Fastest  1.149  885 

Eco Route  0.855  1081 

Constrained  0.869  893 
 

From  the  case  study,  it’s  shown  that  for  the  selected  origin‐destination  pair,  constrained 
routing has 24.4% reduction  in fuel with 0.9%  increase  in time compared with fastest path. 
The routing results from one‐to‐all pairs are also evaluated as shown in Figure 4.21. The fuel 
consumption and travel time are normalized with fuel consumption of eco routing and travel 
time of fastest path respectively. The constrained eco routing can have a maximum 45% fuel 
consumption  reduction with  a maximum  4.4%  increase  in  travel  time  compared with  the 
fastest path. 

 
Figure 4.21 Normalized travel and fuel consumption from different routing strategy 

In the preliminary implementation, the results are evaluated based on one‐to‐all route results, 
which means route from a single origin link to all other links. The next step is to evaluate the 
algorithm with the origin‐destination pairs  identified through Ann Arbor Connected Vehicle 
Pilot database and implement the routing algorithm in POLARIS to evaluate the benefit under 
real time traffic states. 
 
Expected Benefit Estimation 



 
 

To  estimate  the  expected  fuel  consumption  and  travel  time  for  different  routing 
algorithms, we use travel origin‐destination pairs  from real‐world driving data. We assume 
that  the number of  vehicles using proposed  routing algorithm  is  limited,  i.e.,  the  vehicles 
cannot cause notable change to the travel speed of the links in the traffic network. The data 
to  estimate  travel demand  is during May  2013  to October  2013,  from  17:00  to  19:00 on 
weekdays. 25,001 trips were identified within the specified time. The origin and destination 
locations  are  identified  through  a  density  based  cluster  algorithm  called  OPTICS[4].  The 
advantage of this algorithm compared with other distance based clustering algorithms such 
as DBSCAN [5] is that it can cluster data with density change. This is critical in our analysis since 
the spatial densities of trip origin and destination locations can be affected by multiple factors 
such as parking  lot size. We only  include trips happening at  least once per week. There are 
3,031  frequently  visited origin‐destination pairs  identified,  and  the  identified  starting  and 
ending locations are shown in Figure 4.22. 

The studied Ann Arbor traffic network consists of 21,569 directed  links with variate  link 
types  including  local, minor, major, collector, ramp, and highway. The computation time to 
solve all‐to‐one routing result is around 13 s on a computer with Intel Core i7 and 16 G RAM. 
Considering requirement for the travel time of shortest‐time routing, the computation time 
for constrained eco‐routing is about 26 s. The routing cost are evaluated based on historical 
average speed during the studied hours. The uncovered links are imputed with their posted 
speed  limits.  Since  they  are  never  traveled  by  the  sample  vehicles  over  6  months,  we 
hypothesize  these  links  are  less  traveled  and  the  posted  speed  limit  is  a  reasonable 
approximation for the free flow speed. To get the historical average speed, we use GMM to 
approximate  average  speed  distribution  of  individual  links  and  estimate  the  posterior  of 
mixing coefficient based on speed during the sampled hours. The expectation of travel speed 
is estimated with the estimated posterior of the mixing coefficient.  

To compare travel time and fuel consumption for different routing strategies, travel time 
and  fuel consumption of different strategies are normalized with the  travel time of  fastest 
route  and  the  fuel  consumption  of  unconstrained  eco‐route  respectively.  The  normalized 
costs are shown in Figure 4.23. The scatter plot is overlaid with expectation of cost estimated 
with the OD pair travel frequency. The error bars for each routing solution are 10% and 90% 
percentiles respectively. The expectation of travel time and fuel consumption are summarized 
in Table 4.9.  

(a) (b) 
Figure 4.22 Trip locations identified with OPTICS: (a) Trip starting locations; (b) Trip ending locations 



 
 

 From the results, we can see that the shortest path consumed less fuel compared with the 
fastest path algorithm, while the travel time is increased significantly. Also, with a maximum 
of 6.48% increase in travel time, the constrained eco‐routing solution has expected fuel saving 
of 5.16% and maximum saving of 51.8%, compared with the  fastest‐path solution.  It’s also 
noted that for the given OD pairs, 28% of the eco‐routing solution are the same as the fastest‐
path solution, and 27% is the same as the shortest‐path solution. For constrained eco‐routing 
results, 55% is the same as the fastest‐route solution and 27% is the same as the shortest‐path 
solution. Besides  that, 28% of shortest path and  fastest‐path are  the same. The difference 
between eco‐routing and constrained eco‐routing is due to the travel time constraints. 
 
Eco‐Mobility‐on‐Demand Service with Ridesharing 

As a start point, we reproduce the work in [6]  by assuming the road network is static and 
solving all optimal routes considering travel time and fuel consumption offline. Travel time 
and  fuel  consumption  of  corresponding  routing  strategy  is  used  for  cost  and  constraints 
evaluation in assignment. Including dynamic road network information is done later. The trip 
assignment algorithm  is based on a shareability graph. The graph  is defined as undirected 

graph with nodes defined as customers and vehicles. An edge exists between two customers 
if a vehicle can depart from the origin of one of the customers and fulfill the travel demands 
of both customers without violating travel time constraints. An edge exists between a vehicle 
and a  customer  if  the demand  can be  served by  the  vehicle without  violating  travel  time 
constraints. Then a necessary condition for a trip to be feasible is that the customers of the 
trip  can  form  a  clique with one  vehicle present  in  the  shareability network. A  clique  is  a 
subgraph such that every node is connected to every other node within the same clique. It’s 
noted  that  the  cliques do not need  to be maximum  cliques  in  the  shareability graph. The 
cliques  in  a  graph  can  be  found with  Bron‐Kerbosch  algorithm  [7] with worst  case  time 

complexity 𝑂ሺ𝑑𝑛3ௗ/ଷሻ where 𝑛  is  the number of nodes and 𝑑  is degeneracy of  the graph, 
which  is a measure of sparseness.  In  this way,  instead of evaluating cost of  trips  for every 
possible  combination  of  customers  and  vehicles,  one  can  solve  single‐vehicle‐multiple‐
customer problems for every clique. 

Trip scheduling for each clique is a traveling salesman problem with pickup and delivery. 
The problem can be solved with multiple algorithms. If the number of customers is small, (e.g., 
less than 5), the exact solution can be found by Dynamic Programming in less than 1 sec on a 
standard desktop computer. Heuristic based algorithms such as T‐share [8] can be used to find 
the solution if the problem size is large.  

After all feasible trips were found through solving the scheduling problem for all cliques, 
the optimal  trip assignment problem can be  formulated and solved  through  Integer Linear 
Programming (ILP). In this Section, we briefly summarize the formulation from [6]. 

Figure  4.23  Normalized  travel  time  and  fuel 
consumption for different routing strategies 

Table  4.9  Expected  travel  time  and  fuel 
consumption of different routing strategies 

 
Fuel 

consumption 
[kg] 

Travel 
Time 
[s] 

Shortest  0.4809  611.37 

Fastest  0.5312  554.45 

Eco‐routing  0.4576  601.04 

Constrained 
eco‐routing 

0.5038  559.49 
 



 
 

The cost for each customer consists of wait time and delay time. Wait time is defined as 
time between the customer travel request and time of pickup. Delay time  is defined as the 
difference between planned travel time and the shortest travel time after pickup, which  is 
from the fastest path solution from origin to destination. The cost of a trip is defined as wait 
time plus delay time for all customers if fastest routing strategy is used, and fuel consumption 

if eco‐routing strategy  is selected, denoted as 𝑐௧
௜   for trip 𝑖. The states of the system are 𝛿௧ 

which  is  the  indicator  variable  for  trip/clique  and 𝛿௖ which  is  the  indicator  variable  for  a 
customer.  If  at  an  assignment  instant,  there  are 𝑚  feasible  trips  from  TSP  step  and  𝑛 
customers, then 𝛿௧ ൌ ሼ𝛿௧

௜ ∈ ሼ0,1ሽ, 𝑖 ∈ ℕ, 1 ൑ 𝑖 ൑ 𝑚ሽ and 𝛿௖ ൌ ሼ𝛿௖௜ ∈ ሼ0,1ሽ, 𝑖 ∈ ℕ, 1 ൑ 𝑖 ൑ 𝑛ሽ. 
𝛿௧
௜ is 1 if trip 𝑖 is selected and 𝛿௖௜  is 1 if customer 𝑖 is assigned. The objective function is  

෍𝑐௧
௜𝛿௧

௜

௠

௜ୀଵ

൅෍𝐷൫1 െ 𝛿௖௜൯

௡

௜ୀଵ

, ሺ0.9ሻ 

where 𝐷 is the penalty for unserved customers. The constraint for vehicle is that each vehicle 
can only serve one trip  

෍𝑎௝
௜𝛿௧

௜

௠

௜ୀଵ

൑ 1,∀𝑗, ሺ0.10ሻ 

where 𝑎௝
௜  is the indicator variable for vehicle 𝑗 and trip 𝑖, 𝑎௝

௜ ൌ 1 if vehicle 𝑗 can serve trip 𝑖. 
The constraint for customer is that a customer is either assigned or ignored 

෍𝑏௝
௜𝛿௧

௜

௠

௜ୀଵ

൅ ൫1 െ 𝛿௖
௝൯ ൌ 1,∀𝑗, ሺ0.11ሻ 

where 𝑏௝
௜  is the indicator variable for customer 𝑗 and trip 𝑖, 𝑏௝

௜ ൌ 1 if customer 𝑗 can be served 
by trip 𝑖. With linear constraints and the objective function, the trip assignment problem is an 
integer linear programming. For online optimization, we follow [6] to keep a pool of customers 
and a customer is removed from the pool if it’s picked up by vehicle or cannot be served within 
the time constraint. If a customer is ignored, a vehicle from the idling fleet is assigned to serve 
the vehicle with minimum wait time as the objective.  

We randomly selected 4% of the trips generated during the studied time as demand for the 
shared mobility fleet. The trip generation rate is 35~40 new trips every 30 sec and we follow 
the re‐optimization strategy every 30 sec from [6]. The simulation period for our study is 30 
min. We fix the fleet size at 900 and the vehicle capacity is 4. The wait time constraint is 3 min, 
and  the delay  time constraint  is 3 min. The benchmark algorithm  is  the non‐sharing  case, 
where  everyone  drives  their  own  cars.  For  ridesharing  control,  3  different  strategies  are 
selected and the routing strategies in corresponding phase are summarized in Table 4.10. 

Table 4.10 Routing Strategy of Different MOD Control Strategies 

MoD Control Strategy  Assignment  Rebalance 

Fastest routing  Time  Time  

Eco‐routing   Fuel  Fuel 

Hybrid routing  Fuel  Time  

No sharing (baseline)  Time  ‐ 



 
 

 
(a) 

 
(b) 

 
(c) 

 

(d) 
Figure 4.24 Simulation Results (a) Average customer number per vehicle; (b) Total travel time (c) 
Fleet fuel consumption per customer; (d) On‐time served customer ratio and fleet fuel reduction 
compared with non‐sharing baseline 
 

During  the  simulated  period,  all  customers  are  served.  As  shown  Figure  4.24(a),  our 
proposed algorithm results in 1.36 customers per vehicle, indicating more efficient usage of 
the fleet. Besides that, as shown in Figure 4.24 (c), with normalized fuel defined by fleet total 
fuel consumption normalized with number of served customers, the MOD service reduces the 
operation cost  for  the service provider. The  total  travel  time  increased as shown  in Error! 
Reference source not  found.(b), however,  it should be noted  that all algorithms can serve 
more than 94% of customers within the time constraints. With travel time as cost, the total 
fuel consumption is increased by 3% due to the increased vehicle travel mileage in rebalancing 
and picking‐up. If fuel consumption cost is considered by the service provider, the total fuel 
consumption can be reduced by more than 30%. 
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4.4.2 Eco‐approach and Departure (EAD) 
Motivation for Eco‐approach and Departure 

Traffic congestion in urban driving environments costs Americans an extra 6.9 billion hours of 
time and $160 billion worth of fuel annually [1]. Intersections where drivers rapidly decelerate to obey 
the traffic signals are among the most common area that result in increased fuel use and travel time. 
Connected  Vehicle  (CV)  technologies  offer  an  opportunity  to  resolve  this  problem  by  connecting 
vehicles and traffic infrastructure through wireless communication methods such as Dedicated Short 
Range Communications (DSRC). In this setting, vehicles can obtain information of other vehicles, and 
of traffic infrastructures, such as signal phasing and timing (SPaT) information of adjacent traffic lights. 
An  eco‐driving  concept  at  signalized  intersections,  commonly  called  Eco‐approach  and  Departure 
(EAD), has been proposed to solve the aforementioned problem by utilizing SPaT. The goal of EAD is 
to determine energy efficient trajectories of a vehicle as it passes through signalized intersections. 

 

Motivation for the case study 
Recent  research  which  utilized  SPaT  on  eco‐driving  at  urban‐driving  environments  have 

verified its potential to reduce fuel consumption, however, the results have been limited to simulations 
and controlled  lab tests. The goal of the case study  is a two‐fold. First goal  is to develop a realistic 
algorithm for eco‐driving at urban‐driving environments. The second goal is to verify and validate the 
benefits of the proposed algorithm in realistic settings.  

In order to achieve the first objective, a realistic EAD algorithm should consider not only the 
host  vehicle, but  also  surrounding environments  such as  the  vehicles  in  front of  the host  vehicle, 
queues at  the signalized  intersections, vehicles  in  the next  lanes, and stochasticity of  traffic  lights. 
Accordingly, we propose a novel EAD algorithm which takes the vehicles in front of the host vehicle, 
the queue length, and stochasticity of traffic lights into account. 
  For the second objective, we verify the benefits of the proposed method by comparing them 
to naturalistic human driving records at signalized intersections,  instead of comparing the results to 
simulation models or controlled  lab tests. Hundreds of human‐driven trips made on Plymouth Road 
and Fuller Road, Ann Arbor, MI were extracted from the Safety Pilot Model Deployment (SPMD) [2] 
database, which contains naturalistic driving records of roughly 3,000 drivers  in Ann Arbor, MI. The 
uniqueness  of  each  driving  records  and  SPaT makes  each  trip  a  unique  problem.  For  each  trip 
undertaken by a human driver, the proposed EAD method is used to produce a solution given the same 
initial and final conditions. 
 

The EAD algorithm for free‐flow traffic 
We  first  propose  a Dynamic  Programming‐based  algorithm  for  free‐flow  traffic.  Then, we 

compare its solutions to real‐world results obtained for 609 human‐driven trips in Ann Arbor, MI.  
The problem is formulated as a non‐linear optimization problem in which the objective is to 

find  a  fuel‐efficient  speed profile.  It’s  system dynamics,  cost  function, and equality  and  inequality 
constraints of the problems are elaborated below. It is assumed that the vehicle is operating in free‐
flow traffic and equipped with a continuously variable transmission and an internal combustion engine 
whose fuel consumption is represented by a static brake specific fuel consumption map. 

• State 𝑥ሺ𝑡ሻ ≔ ሾ𝑑ሺ𝑡ሻ,  𝑣ሺ𝑡ሻሿ′  
• Input 𝑢ሺ𝑡ሻ :ൌ 𝑎ሺ𝑡ሻ 
• System Dynamics 𝑀𝑎ሺ𝑘ሻ ൌ 𝐹ሺ𝑘ሻ െ𝑀𝑔𝑓 െ 0.5𝜌𝐶ௗ𝐴𝑣ሺ𝑘ሻଶ (zero‐grade & zero‐wind speed) 



 
 

• Constraints  𝑎௕௥௔௞௘, ௠௔௫ ൑ 𝑢ሺ𝑡ሻ ൑ 𝑎௔௖௖௘௟,  ௠௔௫,  0 ൑ 𝑣ሺ𝑡ሻ ൑ 𝑣௠௔௫, 

  𝑑ሺ𝑡௜ሻ ൌ 𝑑௜ ,  𝑡௜ ∈ 𝑡௚௥௘௘௡,  ௜ ,  𝑖 ൌ 1,2, …𝑛,     𝑡௙ ൑ 𝑡௠௔௫, ௦௜௠௨௟௔௧௜௢௡ 

• Initial & Final Conditions 𝑥ሺ𝑡଴ሻ ൌ ሾ𝑑଴, 𝑣଴ሿ,  𝑑൫𝑡௙൯ ൒ 𝑑௙, 𝑣൫𝑡௙൯ ∈ ሾ𝑣௡௢௠ െ 𝜖 , 𝑣௡௢௠ ൅ 𝜖]  
• Cost Function 𝑓ሺ𝑡ሻ : Combination of fuel consumption, travel time, and riding comfort 

 𝑓ሺ𝑡ሻ ≔ 𝑤்்Φ൫𝑡௙൯ ൅ ׬ ሺ𝑤ி஼𝐿ி஼ሺ𝑡ሻ ൅ 𝑤ோ஼𝐿ோ஼ሺ𝑡ሻሻ
௧೑
଴  

Φ൫𝑡௙൯:ൌ 𝑡௙,  𝐿ோ஼ሺ𝑘ሻ ≔ 𝑢ሺ𝑡ሻଶ,  𝐿ி஼ሺ𝑘ሻ = FCሺ𝜏௘௡௚ሺ𝑡ሻ,  𝑤௘௡௚ሺ𝑡ሻሻ  
Results for free‐flow traffic 

For each human‐driven trip, the proposed method uses Dynamic Programming to determine 
globally optimal trajectories of three different eco‐driving policies: fuel‐optimal policy (DP WS1), 
time‐optimal policy (DP WS3), and nominal eco‐driving policy (DP WS2). Given the same initial and 
the final conditions as those of a human driving record, comparisons are made across the driving 
records and the eco‐driving policies to demonstrate the real‐world benefits. Among 609 trips, two 
representative cases were selected and depicted in Figure 4.1, and Figure 4.2. 
 

           
Figure 4.1. A representative trip on Fuller Rd, Ann Arbor [3]   Figure 4.2. A representative trip on Plymouth Rd, Ann Arbor [3] 

As shown in the above figures, the amounts of fuel saving that the fuel‐optimal policy and the 
nominal policy have are significant. Two explanations for how the proposed method saves fuel are as 
follows: First, EAD utilizes SPaT in planning the trajectories to minimize unnecessary acceleration and 
deceleration. Second, EAD searches solutions over the BSFC map of a vehicle and runs the engine of 
the vehicle at highly efficient engine operating points. The Figure 4.3 compares the engine operation 
points of a human driver and those of the nominal EAD policy for the trip depicted in Figure 4.2. 

 



 
 

 

Figure 4.3. The engine operation points on BSFC map of the trip Figure 4.2. The engine operation points of the human driver 
are colored yellow, and those of the nominal EAD solution are depicted in purple. 

 
It is shown that the human driver runs the engine at less fuel‐efficient operating points, as he 

or she hit the idling engine operation point far longer than the EAD solution. The nominal EAD policy 
instead either coasts consuming its kinetic energy (thus consuming zero fuel) or hit one of the highly 
efficient operation points in the fuel map.  

Total 287 and 322 human‐driven trips were made on Fuller and Plymouth Road are compared 
with the three EAD policies. The fleet statistics on the nominal EAD policy are described in Figure 4.4 
and 4.5, showing the potential fuel savings of 40‐50% while matching human travel time. 

 
Figure 4.4. The nominal EAD policy solutions are compared with 287 human‐driven trips undertaken on Fuller 
Road. For the Lawful case, EAD saves roughly 40% of fuel on average, while sacrificing travel time only 2.5%. For 
the cases of Unlawful human  trips & Lawful EAD,  the  fuel  saving benefit becomes smaller. For  the Unlawful 
human and EAD case, the fuel saving greatly increases to achieve 48% [3] 

 
In Figure 4.4 and 4.5, the first and the fourth box plots represent comparisons between fuel 

consumption and travel times of 'Lawful' EAD and 'Lawful' human drivers, i.e. those drivers who abided 
by the operating speed limit of 40 mph. The second and the fifth box plots represent those of 'Lawful' 
EAD and 'Unlawful' human drivers who exceeded 40 mph at some point over the trip. In order to draw 
a consistent comparison, the third and the sixth plots, represent the results when EAD is allowed to 
exceed the limit and its maximum speed is set to be the same as that of the human driving record. 

Idling; FC = 0.198(g/s) 
Coasting; FC = 0 



 
 

 

Figure 4.5. Comparisons between the nominal EAD policy solutions and 322 human‐driven trips undertaken on 
Plymouth Road. Because of more frequent changes in traffic signals and longer red lights, the fuel and travel 
time saving potential is greater than that of Fuller Road. For the Lawful case, EAD not only saves fuel by 49% on 
average but also travel time by 10% [3] 

The realistic EAD algorithm 
The proposed eco‐driving method for free‐flow traffic showed potential fuel savings of 40‐50% 

while matching human travel time when compared to roughly 600 naturalistic Human driving data. 
While the results can serve as an upper bound of 
fuel  saving  potential  of  the  eco‐driving  in  the 
vicinity  of  signalized  intersections,  they  are 
limited  to  free‐flow  scenarios  where  the  EAD 
vehicle  is  unconstrained  by  other  vehicles.  In 
many  urban  driving  scenarios,  the motion  of  a 
vehicle is constrained by other vehicles. The most 
important factor which constrains the motion of 
an  EAD  vehicle  is  the  presence  of  a  vehicle  in 
front. The  figure on  the  left  illustrates how  the 
presence  of  a  front  vehicle  can  affect  the 
operation of the host vehicle, and how EAD path 
is changed accordingly.    

Here, we assume that the front vehicle is a 
Human‐driven vehicle. In order to find the optimal 

trajectory of the host EAD vehicle, the path of the Human‐driven front vehicle should be obtained to 
calculate a safe set 𝑆ሺ𝑡ሻ of the host vehicle. A safe set describes combinations of the state, and the 
input which does not jeopardize the safety of EAD vehicle. The front vehicle EAD problem is formulated 
similar to the free‐flow problem. An additional constraint on the state and the input is added to ensure 
the safety.  

 
• State 𝑥ሺ𝑡ሻ ≔ ሾ𝑑ሺ𝑡ሻ,  𝑣ሺ𝑡ሻሿ′  
• Input 𝑢ሺ𝑡ሻ :ൌ 𝑎ሺ𝑡ሻ 
• System Dynamics 𝑀𝑎ሺ𝑘ሻ ൌ 𝐹ሺ𝑘ሻ െ𝑀𝑔𝑓 െ 0.5𝜌𝐶ௗ𝐴𝑣ሺ𝑘ሻଶ (zero‐grade & zero‐wind speed) 
• Constraints  𝑎௕௥௔௞௘, ௠௔௫ ൑ 𝑢ሺ𝑡ሻ ൑ 𝑎௔௖௖௘௟,  ௠௔௫,  0 ൑ 𝑣ሺ𝑡ሻ ൑ 𝑣௠௔௫, 

  𝑑ሺ𝑡௜ሻ ൌ 𝑑௜ ,  𝑡௜ ∈ 𝑡௚௥௘௘௡,  ௜ ,  𝑖 ൌ 1,2, …𝑛,     𝑡௙ ൑ 𝑡௠௔௫, ௦௜௠௨௟௔௧௜௢௡ 

• Safety Constraints  ሾ𝑑ሺ𝑡ሻ,  𝑣ሺ𝑡ሻ, 𝑎ሺ𝑡ሻሿ ∈ 𝑆ሺ𝑡ሻ  ∀𝑡 
• Initial & Final Conditions 𝑥ሺ𝑡଴ሻ ൌ ሾ𝑑଴, 𝑣଴ሿ,  𝑑൫𝑡௙൯ ൒ 𝑑௙, 𝑣൫𝑡௙൯ ∈ ሾ𝑣௡௢௠ െ 𝜖 , 𝑣௡௢௠ ൅ 𝜖]  

Figure 4.6. Illustration of different EAD solutions 
with/without a front vehicle [4] 



 
 

• Cost Function ሺ𝑡ሻ : Combination of fuel consumption, travel time, riding comfort, and value 
of a safety metric. 

 𝑓ሺ𝑡ሻ ≔ 𝑤்்Φ൫𝑡௙൯ ൅ ׬ ሺ𝑤ி஼𝐿ி஼ሺ𝑡ሻ ൅ 𝑤ோ஼𝐿ோ஼ሺ𝑡ሻ ൅ 𝑤ௌ𝐿ௌሺ𝑡ሻሻ
௧೑
଴  

Φ൫𝑡௙൯:ൌ 𝑡௙,  𝐿ோ஼ሺ𝑘ሻ ≔ 𝑢ሺ𝑡ሻଶ,  𝐿ி஼ሺ𝑘ሻ = FCሺ𝜏௘௡௚ሺ𝑡ሻ,  𝑤௘௡௚ሺ𝑡ሻሻ , 𝐿௦ሺ𝑘ሻ ൌ Yሺ𝑑ሺ𝑡ሻ,  𝑣ሺ𝑡ሻሻ 
 

In addition to the hard constraint on safety, a safety metric is introduced in the cost function. 
Time‐to‐collision (TTC) and Time‐headway (TH) are popular safety measures of the motion of vehicles. 
However, neither  is appropriate as the safety constraint for EAD problem. First,  large TTC does not 
necessarily mean ‘safer’. In case of 𝑣ி௏ ൎ 𝑣ு௏, TTC can be big even if  𝑥ி௏ ൎ 𝑥ு௏, which indicates there 
was a crash. Second, TH can robustly guarantee the safety, but it may discourage the performance of 
EAD since TH calculate safety distance uses only 𝑣ு௏. Therefore, a new safety measure for the cost 
function based on both 𝑣ு௏  and 𝑣ி௏  is proposed [4] and used to calculate the safety set. The equations 
for the three safety measures are described below. 𝑅ௗ௘௦ is the desired range (𝑑ி௏ െ 𝑑ு௏ሻ, 𝐴 is stand‐
still separation distance, 𝑇௛ is time‐headway, 𝐵 and C are real numbers. 

 

 Time‐to‐collision      𝑇𝑇𝐶:ൌ  
௫ಷೇ ି௫ಹೇି௟ಹೇ

௩ಹೇି௩ಷೇ
      ∀ 𝑣ு௏ ൐ 𝑣ி௏  

 Time‐headway         𝑅ௗ௘௦ ≔ 𝐴 ൅  𝑇௛𝑣ு௏ 
 Proposed safety measure    𝑅ௗ௘௦ ≔ 𝐴 ൅ 𝐵ሺ𝑣ு௏ሻ ൅  𝐶𝑚𝑖𝑛ሺ0, ሺ𝑣ு௏ െ 𝑣ி௏ሻሻ  

 

The prediction models 
Predicting those of a Human‐driven vehicle ahead of time is non‐trivial. Since every human 

driver exhibits different driving patterns, and reacts differently to traffic signals, it is hard to write 
down an equation which describes the policy of Human‐driven vehicles at signalized intersections. 
Thus, the Human policy model is driven by data and it is unique to each signalized intersection. In this 
sense, a Human acceleration policy model 𝑎 ൌ 𝑓ሺ𝑋ሻ is proposed [4].  

 

 
Table 4.1. List of prediction models and their performance. Assuming that acceleration of human driver follows 

a normal distribution, 𝜎∗ can be obtained from mean absolute error, 𝜎 ൌ ට
గ

ଶ
Eሾ|X|ሿ [5].  

 
A number of regression and classification models were obtained through supervised learning 

on the SPMD data. The models that we studied  include  linear model, Support Vector Machine with 
linear, quadratic, cubic, and gaussian kernel, decision trees, random forest, and neural‐network. Then 
their performances were evaluated on a test set, as described in Table 4.1.  

The standard deviations provide interpretability of the numbers. Assuming 𝑎௫~𝑁ሺ𝑎௫തതത,𝜎 ሻ, the 
standard deviation of 0.45 𝑚/𝑠ଶ corresponds to that of 1.42 𝑚/𝑠  in the speed 10 seconds  into the 
future with the assumption of constant acceleration for 𝑡 ൌ ሾ𝑛, 𝑛 ൅ 1ሻ where 𝑛 is an integer. We also 
assume that 𝑎௫ሺ𝑡ଵሻ is independent of 𝑎௫ሺ𝑡ଶሻ for all combinations of 𝑡ଵ and 𝑡ଶ. Since the sum of two 
independent normally distributed random variables is normal, with its mean being the sum of the two 
means, and its variance being the sum of the two variances, the predicted speed of a vehicle at 𝑡 ൌ 𝑘  
can be obtained as below. 

 



 
 

𝑣ሺ𝑘|𝑡ሻ ൌ 𝑎௫൫0ห𝑡൯ ൅ 𝑎௫൫1ห𝑡൯ ൅ ⋯൅ 𝑎௫ሺ௞ିଵ|௧ሻ 

𝑣ሺ10|𝑡ሻ ൌ 𝑎௫൫0ห𝑡൯ ൅ ⋯൅ 𝑎௫ሺଽ|௧ሻ ൌ 𝑁൫𝑎௫ሺ଴|௧ሻതതതതതതതത,𝜎௫ሺ଴|௧ሻ
ଶ൯ ൅ ⋯൅ 𝑁൫𝑎௫ሺଽ|௧ሻതതതതതതതത,𝜎௫ሺଽ|௧ሻ

ଶ൯ 

            ൌ 𝑁൫𝑎௫ሺ଴|௧ሻതതതതതതതത ൅ ⋯൅ 𝑎௫ሺଽ|௧ሻതതതതതതതത,𝜎௫ሺ଴|௧ሻ
ଶ ൅ ⋯൅ 𝜎௫ሺଽ|௧ሻ

ଶ൯ ൌ 𝑁൫𝑎௫ሺ଴|௧ሻതതതതതതതത ൅ ⋯൅ 𝑎௫ሺଽ|௧ሻതതതതതതതത,𝟏.𝟒𝟐ଶ൯ 

 
While a number of assumptions are required to obtain the above results, it provides an useful 

insight on what the MAEs reveals. For example, an acceleration model with a MAE of 0.36 𝑚/𝑠ଶ has a 
standard deviation of 0.45 𝑚/𝑠ଶ. The predicted speed into the future 10 seconds will then be normally 
distributed with the standard deviation of 1.42 𝑚/𝑠. Given that the mean of predicted accelerations is 
close enough to the true value, such predictions provide a mean of probabilistic interpretations. 

The  obtained  models  then  used  to  predict  trajectories  of  human  vehicles  at  signalized 
intersections.  Prediction  examples  are  given  in  the  figure  below.  Note  that  all  𝑑ሺ𝑡ሻ,  𝑣ሺ𝑡ሻ,𝑎ሺ𝑡ሻ 
described  in  the  figure  were  obtained  through  1  iteration  of  the  prediction  process,  𝑑ሺ𝑡|𝑡଴ ൌ
0ሻ, 𝑣ሺ𝑡|𝑡଴ ൌ 0ሻ,𝑎ሺ𝑡|𝑡଴ ൌ 0ሻ,  ∀𝑡 ∈ ሾ0,40ሿ  for  the  top  example  and  ∀𝑡 ∈ ሾ0,60ሿ  for  the  bottom 
example. It is worth mentioning that iterative predictions significantly increase accuracy of prediction.  

Among the models we studied, the neural‐network is the most complex with high nonlinearity, 
and the linear models are the least complex model. Based on the performance study which indicated 
that the neural‐net and the random forest perform the best, we selected neural‐network prediction 
model as our model. 

 

 
Figure 4.7. The left plots depict recorded accelerations of human‐driven vehicle and predicted acceleration using 
4 different prediction models listed in Table 4.1. The plots in the middle describe the predicted speed trajectories 
calculated based on the predicted acceleration. The right plots calculate the predicted vehicle trajectories based 
on  the  predicted  speed  profile.  It  is  shown  that  the  trend  of  the  true  accelerations  and  that  of  predicted 
accelerations match well, allowing the model to produce accurate predictions [4]. 

 

Result for non‐free‐flow cases 



 
 

The prediction model  then was  incorporated  into  the problem  and used  to  formulate  the 
dynamics of the model and the corresponding optimization problem. Then the optimization problem 
is solved using approximate dynamic programming and model predictive control. An example result is 
described in Figure 4.8.  
 

 

Figure 4.8. Two exemplar cases of realistic EAD problem. The trips were sampled from naturalistic human driving 
database and depicted  in black. The proposed  realistic EAD method  first predicts  the  trajectory of  the  front 
vehicle as described in the left plots. Based on the predicted trajectories, the realistic EAD algorithm produces 
two optimal EAD trajectories, the fuel‐optimal and the nominal policy as shown in the right plots. EAD algorithm 
solve alternates the two steps until the vehicle reaches to the goal [4]. 

The top case of Figure 4.8  is a representative case when  instantaneous predictions at 𝑡 ൌ 0 
worked well for ∀𝑡. In this case, re‐planning frequency barely affects the performance of EAD. On the 
other hand, the bottom case represents instances when unexpected events occurred which affected 
the motion of the front vehicle greatly and made the vehicle stop  in the middle of the road.  In this 

case, an instantaneous prediction 𝑑መሺ𝑡|𝑡଴ ൌ 0ሻ will deviate greatly from the true 𝑑ሺ𝑡ሻ as 𝑡 increases. 
The  iterative prediction scheme resolves this problem. As depicted  in the bottom  left plot of Figure 

4.8, when the re‐plan frequency  is short enough, the difference between predicted 𝑑መሺ𝑡|𝑡௞ሻ and the 
true 𝑑ሺ𝑡ሻ is bounded [4].  

In order to evaluate how good realistic EAD performs compared to other EAD scenarios, i.e., 
free‐flow scenario, we reproduced the same problem and solved EAD problem under other scenarios. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

    
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4.9. The comparison of the solutions of three different EAD scenarios with the same conditions. The left 
plots depict  the unconstrained  free‐flow EAD solutions, and  the  right plots depict  the  realistic EAD solutions 
considering the trajectory of the front vehicle. The plots in the middle describe EAD solutions assuming the future 
trajectory of the front vehicle is known [4]. 

 
The figure 4.9 shows how the presence of the front vehicle impacts the fuel and time saving of 

EAD solutions compared to those of human drivers. The top three plots represent the solutions of the 
problem depicted in the top of Figure 4.8, where the realistic EAD solutions is almost as good as the 
free‐flow solutions. The bottom three plots represent the solutions of the problem depicted  in the 
bottom of Figure 4.8, where  the  realistic EAD solutions only perform half as good as  the  free‐flow 
solutions. However, it was still able to save 38% fuel compared to human drivers while sacrificing only 
6% of travel time. The center plots are the result of the scenario where we have full knowledge on the 
future  states of  the  front vehicle. They provide  insight on  importance of accurate predictions and 
suggest the upper bound of fuel savings in realistic EAD scenarios. 

Conclusion and future works 
The free‐flow EAD results identified the upper bound of fuel and travel time saving potentials, 

thus can serve as an upper bound of fuel saving potential of the eco‐driving in the vicinity of signalized 
intersections. Realistic  EAD  results  show  the  estimates  in  fuel  and  time  saving of  EAD when  EAD 
techniques are implemented in practice. Note that the results only stand for the predefined scenarios 
of urban driving, where the vehicles go through a series of signalized intersections. The results do not 
represent the fuel and travel time saving of other driving scenarios in urban cities. 

Future works include development of real‐time prediction algorithm and corresponding real‐
time EAD algorithm. Note that the current algorithm usually takes longer than 1 minute to find an EAD 
solution. The future works also  include  identification of  impacts of EAD on the surrounding traffics. 
The EAD algorithms will be implemented in traffic simulator to study how EAD vehicles impact macro‐
level traffic, including impact on the fuel and travel time of the surrounding vehicles. 
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Subtask 4.5 Implement and calibrate the POLARIS‐Autonomie model 
 
1  Introduction 
The ultimate purpose of this task was to estimate the energy and mobility impacts under various traffic 
scenarios, diverse vehicle technologies and routes in order to assist people in optimal decision making 
in terms of mobility. This framework puts the energy criteria as one of the constraints to the vehicle 
and route choice, a dimension that has been lacking ever since in Polaris. 
 
We currently have  in effect a  learning  framework  to predict energy  consumptions  for a variety of 
powertrains  from  cycle  features  or  from more  general  route  and  trip  features.  The  original work 
accounted  for a  training  set  that was  representative of  a population driving under  standard  cycle 
conditions.  In  this  setting  energy  results were  the  product  of  pure  physics  based modeling  and 
simulations. The simulation results were Autonomie generated. 
 
In this subtask, the  intent was to build on the existing machine  learning based modeling developed 
and extend the decision rule scope by accounting for Real World Driving Behavior. We have in hand a 
rich set of real world data of drivers from the Detroit area that has the particularity of containing real 
time  collected  fuel  points  from  On  Board  Diagnostics.  The  following  is  a walk  through  the  data 
description to the modeling and results. 
 
2  Data Description and Wrangling 
The data is in the following format: mmddyy Oneday sample raw data.csv. 
 
The data columns are: 

VehId, Trip, TripStartUTC, TripEndUTC, Distance(mi), Timestamp(ms), Altitude[m], 
Latitude[deg], Longitude[deg], Vehicle Speed[km/h], MAF[g/sec], Engine RPM[RPM], Abs 
Throttle Position[%], Absolute Load[%], OAT[DegC], Fuel Rate[L/hr], HDOP, 
NumberOfSatellites, Accelerator Pedal Position[%], Air Conditioning Power[kW], Air 
Conditioning Power[Watts], Heater Power[Watts], Brake Pedal Position[%], HV Battery 
Current[A], HV Battery SOC[%], HV Battery Voltage[V], Odometer[kilometers], C2 Input 
Voltage[V], Is Driving[bool], Is Charging[bool], Fuel Rate Calc (g/s). 

 
Random portions of the start and the end of each trip have been removed to protect PII information. 
The values of TripStartUTC, TripEndUTC, and Distance(mi) are unique to VehId and Trip. Other fields 
are updated at the rate described in figure 4.10. All fields EXCEPT Fuel Rate Calc (g/s) field are direct 
OBD2  outputs.  Fuel  Rate  Calc  (g/s)  is  the  fuel  consumption  estimate  calculated  from Mass  Air 
Flow(MAF). 
 
Not all the columns are useful for a machine learning based model, the next sections will go through 
the feature selection process.  
 
The data consists of 10722029 observations of 42 variables. This file  is used as an  input to the map 
matching  algorithm, mapping  every  vehicle  drive  cycle  onto  the  detroit  area  route  network.  This 
corresponds to 3 month worth of data. Information such as route length, route speed limit and other 
will be useful as additional features to a machine learning based model. 
 

 



 
 

 
Figure 4.10:  Data collection rate 

 
3  Map Matching 
What is the map matching algorithm? 

The purpose of map matching  is  to  connect  recorded GPS  trip points  to  the  links of  road 
networks and establish  trip  routes. Extensive GPS‐based  trip data processing  requires both 
accuracy and computational efficiency of the map matching code. Generally, map matching 
algorithms make use of geometric methods, topological or probabilistic models for accuracy 
at the expense of a very slow process. 

 
Why make the connection? 

By  constructing  trips  from  GPS  data  we  are  able  to  calibrate  an  existed  agent‐based 
transportation model of the city of interest. 

 
What is the problem? 

In the previous section we noted that for only 3 month of data collected at rates close to 1‐
10Hz that were shrank onto summary statistic quantities resulted  in over 10 million points. 
This  is  an  immer‐  sive  amount  of  GPS  data  collected  from  high‐accuracy  in‐vehicle  GPS. 
Without shrinkage, a regular trip data set collected can amount to 50, 000, 000 points, and 
processing this large amount of data could take several weeks. Therefore calibrating an agent 
based model over a regular trip is unreasonable. 

 
Solution 

The developed algorithm [LAS15] is based on Multiple Hypothesis Technique, which was firstly 
introduced by [PSS01]. Several routes candidates are kept  in following the sequence of GPS 
points, developed and scored to find the best candidate, and only determined the best path at 
the end of the sequence. [MHA05] adopted a topological search algorithm which proved to be 
more efficient for larger scale map matching problems. By limiting the number of candidates 
kept in memory, computational feasibility is guaranteed. 



 
 

 
How does it work? 

The details of the map matching algorithm has thoroughly explained in [LAS15] The overall 
workflow is: 
1.  Pre‐process: trimming out irrelevant points, reduce the number of processing points, 
and grouping points to each person’s trips. 
2.  Initialization: determining the starting links and assign routes to each candidate links. 
3.  Development: tracing the points sequence to add new connected links for each 
route. 
4.  Reduction: scoring each route when adding new routes to the pool, and remove 
routes with worst performance to save memory. 
5.  Post‐process: trimming out irregular links in candidate routes through topological 
criteria. 
6.  Selection: selecting the best route as the final result 
The map matching process results in a large dataset of vehicles mapped to the Detroit roads. 
Each vehicle and trip is assigned a person id a trip id and a link id A trip is a set of aggregated 
links from which several parameters are known from the GPS information and the Detroit Map. 
In particular, for each link we know the length of the link length link, the length of the actual 
distance covered by the vehicle on the link length gps, the amount of time spend by the vehicle 
of  the  link  time  spent,  the amount of  time  the vehicle  stopped on  the  link  time  stop,  the 
average speed of the vehicle on the link speed avg, the speed limit on the link speed limit, a 
Boolean indicating whether the vehicle covered. 

 
The  entire/most  of  the  distance  for  the  link,  the  actual  coverage  percentage  coverage  which  is 
computed from known length link and length gps, and finally the amount of fuel consumed on the link 
fuel. key is a tracking grouping key for vehicles and trips. Distances are in meters, Times in seconds, 
Speeds in meters per second and Fuel amounts in g/s, other quantities are unit free. 
 
4  Add more attributes 
Polaris is a macro simulation software and the amount of information on each link is quite limited.  In 
this subsection we show how from the attributes generated by the map matching algorithm we can 
compute extra route related features that may or may not be useful to explaining the variability in the 
fuel. The section related to the model and feature selection will walk through which of those attributes 
is useful to any model. 
 
A new database  is  then constructed with new attributes:  length  link p and  length  link n which are 
respectively the immediate length of the previous and next link. length gps p and length gps n which 
are respectively the  immediate actual  length covered by the vehicle on the previous and next  link. 
Intuitively, those attributes may not be very useful as the  length of the previous or next link do not 
seem to interfere with the current link fuel consumption. The feature selection and analysis section 
will take care of making the decision for us based on a serious analysis. 
 
Also added attributes are speed avg p and speed avg n which are respectively the immediate average 
speeds of the previous and next link, speed diff p and speed diff n which are variables describing the 
differences in speed between the current link and respectively the previous and next link. Finally we 
also compute a traffic  load variable which, due to the  lack of data, will be used as a proxy to traffic 
conditions within the link. This is typically calculated by taking the ratio of speed avg/speed limit. Other 
features can be also constructed as an  indication  to  traffic conditions within  the  link,  for example 
computing the ratio time stop/time spent can be of interest however we decide to skip it in this first 
path. In the future, we also could consider the effect of adding vehicle speeds of not only the links of 
direct proximity but extend to links that are further away as well. This introduces a time correlation 
between the links and their property and autoregressive techniques can be used in this case. 



 
 

 
 
5  Maps 
The ability to visualize data with geographic context is a valuable exercise to do. It can give us a sense 
of what is happening behind the numbers. One of the main issues that our map matching algorithm 
encounters  is that several vehicles and trips go out of range, the boundaries here being the area of 
Detroit for which a Polaris map is provided. 
 
As it can be seen from the first set of plots in Figure 4.11, many vehicles go beyond Detroit area. Person 
5 had one trip to Toronto, Canada. Person 255 and 362 had at least more than two long range trips, to 
Ohio, Pennsylvania and other. Person 2 had only one long trip, the rest in the city of Ann Arbor as we 
will see later. Unfortunately this data will be scrapped. This is valuable information that won’t be used. 
We clarify here that the colors represent different trips for a same driver. 
 

Figure 4.11:  Example of long out of Detroit range trips 

 
The next plots in Figure 4.12 show examples of inbound drives, particularly in the city of Ann Arbor and 
its surrounding. We see here that Person 211  is a good example of trips that can be categorized as 
highway driving, most the trips from this person circle Ann Arbor via its highway roads and go beyond. 
On the flip side Person 228 seem to have a balanced combination of city and highway driving and some 
of its trip go to downtown Ann Arbor. 
 



 
 

 

Figure 4.12: Example of long out of Detroit range trips 
 
Next in Figure 4.13 we illustrate examples of pure in city drives, in particular, in the downtown area 
of Ann Arbor. 
 

 
Figure 4.13: Overview of downtown Ann Arbor for 2 drivers over multiple trips. 

 



 
 

 

 

Subtask 4.6 Model validation with new data from field tests 
We build a first model and make use of it for outlier detection purposes.  The model summary suggests 
that several predictors are not significant  to explaining  the variability  in  the  response. We will not 
worry  about  this  now  and  focus  and  detecting  outliers  that may  affect  the model  structure  and 
prediction power. An upcoming section will deal with the model selection problem. First we need to 
check the independence, constant variance and normality of the error. Keep in mind this is not a final 
model  for prediction but only a model constructed  for  the purpose of detecting outliers. The  final 
prediction model is based on neural network principles and is detailed in a future section. Even so, we 
note that the residual standard error for this model is of the order of 0.0063 this is relatively good and 
likely to yield acceptable predictions. As a comparison below  is a summary statistic of the response 
variable fuel. 
 
Figure 4.14 shows a boxplot and a violin plot for the response variable. Note the width of the boxes is 
directly proportional to the quantity of data behind it, this is a very important feature as boxplots hide 
the  distribution  and  number  of  points  behind  it.  The  violin  plot  gives  an  additional  flavor  to  the 
distribution of the data. It is used to visualise the distribution of the data and its probability density. 
Here the boxes are broken down by vehicle class. The original data is extremely skewed, right tailed, 
the median fuel value averages (for some classes) at around e−5 = 0.0067, this  is quite close to the 
residual standard error of the model. In other words, about 50% of the fuel points could be predicted 
quite accurately. 

 
Figure 4.14: original skewed (left) and log transformed (right) fuel data 
 
We run a series of diagnostic plots to check several of the assumptions. The residual vs.  fitted plot 
shown  in  Figure  4.15  is  of  the  most  useful  ones,  it  is  noted  that  there  is  some  clear  sign  of 
heteroscedasticity  in the vertical direction. This  is an  indication that some modifications need to be 
done in the model towards high fitted values. High response values (which are linked to high leverage 
points) seem to behave differently,  it may be worthwhile to fit a different model for high response 



 
 

values and have some kind of broken stick regression or apply some kind of transformation. A Box‐cox 
transform can help get rid of the issue. This is expected as we saw that the fuel is heavily right skewed. 

 
Figure 4.15: Residual plots 

 
As matter of fact a histogram of the fuel data shows in Figure 39 that a log‐normal type of model or a 
generalized linear model with a log‐link transform could be adequate. Since a neural network model 
will be used to fit the data anyway, we only briefly go into considering those kind of models next but do 
not get deep into the pain of making these models perfect; the main purpose of those models is do get 
a sense of the tendencies and relationships between the predictors and the response as well as detecting 
any kind of anomalies. We also remark a few extreme points for which are suspect to outlyingness and 
need  some  further  investigation  on  their  validity  (discussed  next).  The  scaled  location  plot  is  an 
effective way to increase the resolution of the residual by considering the absolute value of the residuals. 
 

Subtask 4.7 Vehicle energy consumption quantification 
Artificial neural network (NN) models are used for various purposes and in different fields. In recent 
years NN have been showing a large amount of hype, maybe because of the fancy name or probably 
also because of  the  idea behind  it of mimicking biological neural networks and brain  functions.  In 
reality neural network models are just an additional methodology and is simply viewed as an algorith‐ 
mic procedure that rivals other regression, classification and clustering methods used by statisticians. 
Although NN models and more generally deep learning showed some good promises, the success and 
hype surrounding deep learning is truly attributed to the specific convolutional neural network model 
architecture under unsupervised learning with big data applied to image recognition. 
 
4.7.1  Data to Prediction Routine 
The process of any machine  learning procedure  is practically  standard. The  flowchart  in Figure 36 
illustrates the usual steps taken from A to Z. In each step, the machine learning philosophy compel us 
to make sure that the ultimate purpose of each step is to serve the need of delivering a good predictive 
model. Unlike  in statistical  fields,  the prediction power  is  the sole purpose of  the  resulting model, 
without a need to understand or interpret the relationships between the inputs and outputs. In this 
process, it is easy to lose track of the original values or the original meaning or the units of any variable. 
The very first steps of the flow diagram have already been accomplished and detailed in the previous 
sections, this comprise the identification of the data sources, the data collection, the data integration 
and the creation of a combined database coming from multiple sources. We also described how the 
data was prepared and we went  through a preliminary exploration of  the data  to understand  the 
nature of the data, the format and its quality. This step usually gives us a lot of insight and leads us to 
an  informative analysis and increase the chances of a successful outcome. After, we presented how 
we performed many data manipulations as part of our preprocessing step. This by cleaning obvious 
erroneous  points,  selecting  variables  of  interest  from  a  correlation  analysis  and  applied  many 
transformation to suit our needs. This cleaned dataset was then passed on to a more elaborate analysis 
and for the purpose of outlier detection which we have detailed and feature selection. The final dataset 
is then ready and through the right analytical techniques an appropriate model can be built. The model 



 
 

build includes a training and validation step in which model parameters are tuned and optimized and 
accuracy of predictive results controlled via cross validation methods to avoid overfitting. The results 
are  then  assessed  and predictions  can  then be  communicated.  It  is  important  to understand  that 
machine learning routine is an iterative process, the training and modeling may need to be revisited 
many times. 
 
We  have  been  working  on  the  development  of  a  prediction  tool  Figure  4.16  to  ease  visualize 
predictions. The tool  is  intended to provide the user with a generic data‐independent  interface and 
guide him to create, configure, train and view machine learning models. It also allows users to visualize 
and evaluate model performance.  In addition,  the  tool also offers an automated outlier detection 
process based on Random sample consensus methods (RANSAC). This feature is useful when data need 
to be fit automatically without the intervention of a skilled analyst. Although useful, it is dangerous to 
exclude outliers in an automatic way, and one need to be aware of this.  The tool contains two several 
modes:   a real time and a batch mode. The real time mode  is designed to make quick predictions, 
visualize the results and analyze them while quickly be able to modify route, trip or vehicle inputs. The 
batch mode allows the user to define a large set of inputs at a time, prediction is performed on all and 
a output prediction file is generated. The latter method is appropriate to study different scenarios and 
analyze the behavior of various vehicles or trips in different settings. 
 
 

Figure 4.16: Machine Learning based Prediction Tool 
 
We have discussed the limitation of the model developed and its prediction accuracy. We have also 
detailed the conditions  in which the accuracy can be hindered. Figure 4.17 shows an example of a 
relatively bad prediction. We see in this example that all the links are short very short in length and 
the driver does not spent enough time on each. Half of the cycle can be considered as a city drive 



 
 

(below 55 mph). The resulting prediction for this vehicle on the selected trip exhibit a 12% error. This 
can be considered unsatisfactory to some extent. 
 

Figure 4.17: Example of a bad prediction 
 

 

Task 5 Adaptive Signal Control 

In this task, we investigate the energy savings and mobility benefits from adaptive traffic signal control 

systems with varying percentage of connected and automated vehicles (CAV). There are four sub‐tasks. 

First, a hardware‐in‐the‐loop (HIL) simulation environment is built and calibrated, which setup a virtual 

testing environment (Task 5.1). Second, five algorithms are developed for different CAV penetration 

rates under mixed traffic conditions (Task 5.2). The proposed algorithms are tested and validated in 

the HIL simulation environment  in terms of both mobility and energy benefits (Task 5.4). Finally, an 

implementation case study is developed to conduct field experiment along a real‐world corridor (Task 

5.3).  

Table 5.1 shows the content and schedule of each sub‐task. 

Table 5.1 Content and Schedule of Each Sub‐task 

Subtask  Content  Schedule 

5.1  Build and calibrate the traffic simulation environment  M1‐M6 

5.2  Develop the adaptive signal control algorithm  M7‐M18 

5.3  Deploy and conduct field experiment at Plymouth Rd  M19‐M30 

5.4  Evaluate the energy saving of adaptive signal control  M31‐M36 

 

5.1 Traffic Simulation Environment 

5.1.1 Simulation Platform Overview 



 
 

A hardware‐in‐the‐loop  (HIL)  simulation platform  is designed  to  test and evaluate  the models  in a 

microscopic  simulation  environment.  The  simulation  platform  aims  to  replicate  the  real‐world 

situation as much as possible so that models and algorithms tested in simulation can be deployed in 

the filed with minimal modification. The structure of the simulation platform is shown in Figure 5.1. 

 

Figure 5.1:  HIL Simulation Platform 

The HIL  simulation  platform  is  designed  for  a  CAV  environment.  There  are mainly  three  parts:  a 

simulation software, a central server and two pieces of hardware device: a roadside unit (RSU) and a 

data collection device. 

VISSIM which  is a microscopic  simulation  software  is  selected  to  simulate vehicle movements and 

traffic signal operations. VISSIM is able to simulate individual vehicle behaviors such as car following 

and lane changing as well as different types of traffic signal operations including fixed, actuated and 

adaptive. VISSIM allows users to control all or part of the vehicles and change their behaviors (e.g. Eco‐

departure,  Eco‐approaching)  based  on  user  defined models.  The  DriverModel.dll  API  is  used  to 

generate Basic Safety Message (BSM) for each CAV in VISSIM. Each BSM includes the real‐time basic 

vehicle  information  including  vehicle  ID,  location,  speed,  heading,  and  acceleration  etc.  The 

transmission frequency of BSM is 10Hz. The BSMs will be sent to RSU first and then the RSU will forward 

the BSMs to the data collection device.  

The signal phasing and timing (SPaT) data is sent out by the virtual signal controller in VISSIM to the 

data collection device every 0.1 second including current vehicle phase status, pedestrian phase status, 

overlap phase status, and estimated remaining time of each phase. 

A map description file which describes the geometric structure of the intersection is a static file locally 

stored in the data collection device. This file includes the GID information such as GPS coordinates of 

the lane nodes, lane attributes (e.g. allowed movements) and lane to lane connection etc. 

All data including BSM, SPaT and map will be sent to the central server which has three components: 

data  processor,  performance  measurement  algorithm  and  adaptive  control  algorithm.  The  data 

processor  is developed  to  store and process all data  from  the data collection device  for algorithm 

development. The adaptive control algorithm is designed to generate optimal signal timing plans with 

energy and environmental objectives such as minimization of  fuel consumption and emissions. The 

performance measurement algorithm  is used  to evaluate  the performance of  the adaptive control 



 
 

algorithm. After a new signal timing plan is generated, this new plan will be executed through sending 

National  Transportation  Communications  for  ITS  Protocol  (NTCIP)  commands  to  the  virtual  signal 

controllers in VISSIM.  

5.1.2 VISSIM Simulation Model 

A VISSIM (PTV, 2013) simulation model is built for the six‐intersection corridor at Plymouth Rd, Ann 

Arbor as shown  in Figure 5.2. The six  intersections are: Plymouth Rd @ Green Rd, Plymouth Rd @ 

Huron Pkwy, Plymouth Rd@ Nixon Rd, Plymouth Rd @ Traverwood Dr., Plymouth Rd @ Murfin Ave, 

and Plymouth Rd @ Barton Dr. The Plymouth Rd has two lanes for each direction which is one of the 

busiest commuting route, serving US23 to the North campus of UM and downtown Ann Arbor. Some 

crossing roadways are major arterials which carry large volume of traffic (e.g. Green and Huron) and 

others  are  side  streets with  less  traffic  demand  (e.g.  Traverwood  Dr.).  The  road  geometries  are 

calibrated with the satellite maps from Google Earth. 

 

Figure 5.2: VISSIM Simulation Model of Plymouth Corridor 

Figure 5.3 shows vehicles, traffic signals and stop‐bar detector layouts of the intersection Plymouth Rd 

and Huron Pkwy. The blue vehicles  in the simulation are regular vehicles while the red vehicles are 

CAVs. Note that only CAVs broadcast BSMs. The market penetration rates of CAVs can be modified by 

setting up different vehicle compositions.  

 

Figure 5.3: Plymouth Rd and Huron Pkwy Intersection in VISSIM 

5.1.3 DriverModel.dll API 

The drivermodel.dll API is an interface to VISSIM that allows users to apply different driving behavior 

models for some or all vehicles in VISSIM. The API is implemented as a dynamic link library (DLL) written 

in C/C++. The API provides several functions to create, move and delete vehicles as well as read and 

set vehicle parameters for car‐following and lane‐changing models. Any vehicle type (e.g. CAV) can be 



 
 

enabled to call the drivermodel.dll every simulation step through the vehicle type property page as 

shown in Figure 5.4. 

In  this project,  the DriverModel.dll  is used  to generate BSMs as mentioned above. The process of 

generating BSM using the API is described below: 

Step 1: Initialization: Setup UDP socket communication and read IP address and port of the target RSU 

Step 2: Read vehicle information from VISSIM through DriverModelSetValue() function 

Step 3: Coordinates transformation which transform the vehicle position coordinates from local X, Y to 

GPS  coordinates  (WGS‐84)  applying  the  transformation  algorithm  described  in  (Farrell  and  Barth, 

1999). This algorithm first transforms local X, Y coordinates to the earth‐centered earth‐fixed (ECEF) 

rectangular coordinates. The ECEF coordinates has its x axis extended through the intersection of the 

prime meridian (0° longitude) and the equator (0° latitude). The z axis extends through the true North 

Pole. The y axis completes the right‐handed coordinate system, passing through the equator and 90° 

longitude. Then the ECEF coordinates are transformed to GPS coordinates. The relationship among the 

three coordinate systems is shown in Figure 5.5.  

Step 4: Generate Society of Automotive Engineers  (SAE) J2735 standard BSM using an open source 

ASN.1 encoder/decoder (http://lionet.info/asn1c/compiler.html). 

Step 5: Broadcast BSMs through the UDP socket. 

 

Figure 5.4: Vehicle Property Page for External Driver Model 



 
 

 

Figure 5.5: Relationship Among Local, ECEF and GPS Coordinates Systems 

Source: Digital Imaging and Remote Sensing Lab (http://www.dirsig.org/docs/new/coordinates.html) 

VISSIM is running in real‐time and the simulation resolution is set to be 10 steps per simulation second. 

As a result, every 0.1s of simulation time (also 0.1s of actual time), BSMs from all CAVs are broadcast 

to the RSU which is the same frequency as the field operation. 

5.1.4 Data Collection Device 

The data collection device  is designed  to  interface with both  roadside unit  (RSU) and  traffic  signal 

controller to simultaneously collect DSRC messages from connected vehicles, as well as high resolution 

detector and signal status data from traffic signal controller. The device can also encode signal status 

and road geometry information into standard DSRC messages. These messages are sent to RSU to be 

broadcast  in  real‐time. The data collection device pre‐processes  the data and  sends  to  the central 

server for storage, management and visualization as shown in Figure 5.6. 

The device is aimed to be developed as a universal interface device, which is compatible with various 

types of RSUs, traffic signal cabinets and controllers. This device is independent of controller and RSU 

vendors,  and  can  serve  as  a  cost‐effective way  to  upgrade  existing  infrastructure without much 

changes to other devices. 

The  RSU  receives  BSMs  from  all  connected  vehicles  within  the  DSRC  communication  range  and 

forwards to the data collection device. The device receives SPaT data from the signal controller and 

MAP data  from a  local description  file and generates SAE  J2735 SPaT and MAP messages and then 

forwards to the RSU. The data collection device also receives the loop detector data and signal status 

data from harness cables or the Synchronous Data Link Control (SDLC) port. It preprocesses all the data 

including information extraction, data reduction and data re‐formatting and sends to the central server 

with a predefined format. 



 
 

 

Figure 5.6: The Data collection Device 

5.1.5 Central Server 

The central server is designed to process and visualize data from different intersections (data collection 

devices) as well as generate optimal adaptive signal timing plans regarding energy efficiency.  It has 

three components: a data processor, a performance measurement component and an adaptive signal 

control component.  

The data processor categorizes received data and saves to different databases. In addition, the data 

processor  calculates  additional  vehicle  and  intersection  information  based  on  received  BSMs  and 

MAPs.  For  example,  an  algorithm  is  developed  to  locate  vehicles  on  the  roadway  based  on  the 

intersection map and the vehicle’s GPS  location from BSM. Additional  information  including vehicle 

current approach, current lane, distance to stop bar, requested signal phase and vehicle states (e.g. 

approaching, leaving or in queue) are generated from the algorithm, which are critical to traffic signal 

control applications. 

The performance measurement component reads data from the databases and evaluate current traffic 

conditions such as traffic volume, queue length, travel time and level of service (LOS) at different levels 

including intersection level, corridor level and network level. 

 

5.2 Adaptive Signal Control Algorithms 

The overall algorithm development framework is shown in Figure 5.7. The algorithms are divided into 

two branches: with connected and automated vehicles (CAVs) or with connected vehicles (CVs). CVs 

refer to those vehicles that are able to communicate with each other and the infrastructure. However, 

they are still driven by human drivers. As results, CVs are only observable but not controllable. CAVs 

refers  to  those  vehicles  that have both  connectivity  and  automated driving  functions  that  can be 

controlled by computers. 



 
 

 

Figure 5.7 Algorithm Development Overview 

The first branch assumes all vehicles are CVs and a portion of vehicles are CAVs. Then the traffic control 

framework can be expanded  to  two dimensions: spatial  (vehicle  trajectory control) and  temporary 

(traffic  signal  control). Based on  this  concept, we developed a  spatiotemporal  intersection  control 

framework that applies a two‐stage optimization model to jointly control CAV trajectories and traffic 

signals (Model 1). Further we integrated the two‐stage optimization model into a unified framework 

and proposed an  integrated model to optimize signal timing, vehicle arrival times, and vehicle  lane 

changing behaviors simultaneously (Model 2). 

The second branch assumes only CVs exist on the road, which implies an early deployment stage. One 

of the major challenges at this stage is the low penetration rate problem. Only a small percentage of 

vehicles are connected so that an estimation model  is necessary to estimate the entire traffic state 

based on  limited CV  information. To this end, we developed a model that estimates traffic volume 

based  on  CV  trajectory  data  (Model  3).  Traffic  signal  optimization  can  be  conducted  based  on 

estimated volume. Depending on the penetration, two different optimization models are constructed. 

If the penetration rate is high enough (e.g., >10%) and sufficient number of real‐time CVs are observed, 

a  real‐time  adaptive  signal  control model  was  formulated  (Model  4).  If  the  penetration  rate  is 

extremely  low (e.g., <5%), so that there  is not enough real time  information, a semi‐adaptive signal 

control model was implemented (Model 5). 

The following sub‐sections introduce each of the model in more details. 

5.2.1 Spatiotemporal Intersection Control  

Current  traffic  signal  control  strategies  including  fixed‐time,  vehicle‐actuated  and adaptive  control 

allocate green times to different vehicle movements to avoid conflicts and ensure intersection safety. 

With  the  rapid development of connected and automated vehicle  (CAV)  technologies, vehicles can 

communicate with the RSU through dedicated short range communications (DSRC). At the same time, 

data from the RSU (e.g. signal status and intersection map) can be broadcasted to vehicles within the 

communication  range.  The  two‐way  real‐time  communication  between  the  CAVs  and  the 

infrastructure makes  the vehicles  “controllable”  through either  speed advisory  system  for human‐

driven vehicles or control systems in connected and automated vehicles. 

Therefore, in a CAV environment, not only traffic signals but also vehicle trajectories can be controlled 

to improve traffic efficiency and gain environmental benefits. Current research efforts mainly address 

only  one  side  of  the  control  problem.  For  example,  Eco‐driving  (Barth  et  al.,  2011;  Rakha  and 

Kamalanathsharma, 2011) and speed advisory (He et al., 2015; Wu et al., 2015) mainly focus on vehicle 

trajectory  control with  the  purpose  to  reduce  fuel  consumption  or  emission.  These  applications 

assume that signal timing  is  fixed and known to the vehicles. Meanwhile, CAV based signal control 

applications (Feng et al., 2015; Goodall et al., 2013; He et al., 2014; Lee et al., 2013) consider vehicle 
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trajectories as the input to signal control algorithms. The objectives of signal optimization are usually 

only  related  to efficiency  such as minimizing  total vehicle delay or maximizing  throughput. Energy 

impacts are seldom considered.  

To the best of our knowledge, there are only quite limited studies on the joint optimization of vehicle 

trajectories  and  signal  timing.  (Malakorn  and Park, 2010) proposes a  cooperative  system where  a 

vehicle trajectory is assumed to include an acceleration segment and a cruising segment. Vehicle arrival 

windows are then calculated. On the basis of these windows, traffic signals are optimized. Simulation 

analysis  justifies  the  system  in  terms of both mobility  and environmental  impact.  (Li  et  al., 2014) 

proposes an algorithm to  jointly optimize vehicle trajectories and traffic signals.   A generic optimal 

vehicle  trajectory  of  four  segments  is  assumed.  The  first  and  third  segments  have  constant 

acceleration/deceleration, while the second and the fourth segments have constant speed. If the time 

durations of some segments are zero,  the actual  trajectory may have  less segments. Owing  to  the 

simple case  in  the  research, signals are optimized by enumerating all  feasible combinations of  the 

number of phases and phase splits. Obviously, the assumption of an optimal vehicle trajectory with 

determined segments cannot guarantee the true optimal solution. The enumeration method may be 

ineffective when complex phase structure is considered. In addition, this method requires to control 

all vehicles which can only be applied in a fully automated environment. 

One notable solution to the joint control problem of vehicle trajectories and traffic signals is so called 

“free”  intersections where the traffic signals are removed and all vehicles pass the  intersection  in a 

self‐organized way  (Lee and Park, 2012; Zohdy and Rakha, 2014). However,  this approach  requires 

100% penetration rate of fully automated vehicles, which is not realistic in the near future. Given the 

update rate of vehicles in the U.S, it can be predicted that in the next ten to twenty years, traffic signals 

will still play an important role in urban transportation operations. 

Model Framework 

The proposed  joint control  framework aims at  improving the efficiency of green  time utilization to 

minimize vehicle delay and smoothing vehicle trajectories to reduce fuel consumption and emission. 

Figure 5.8 shows the comparison of green time utilization between the state‐of‐practice signal control 

and the proposed joint control. 
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Figure5.8: Green Time Utilization Comparison 

The blue  curve  shows  the  vehicle discharging  rate  at  an  intersection under  current  signal  control 

strategies. When the signal turns to green, the first few seconds of the green time are wasted (start‐



 
 

up  lost time tsl) because human drivers need time to respond to signal changes and accelerate the 

vehicles. Then  the discharging  rate  starts  to  increase  to  the  saturation  flow  rate  (qs) until queued 

vehicles  are  fully  discharged.  Finally,  it  drops  to  the  arrival  rate which  is  usually  lower  than  the 

saturation flow rate. The area below the curve is the vehicle demand served during the green time. In 

the proposed framework, the trajectory of the leading vehicle of an approaching platoon is controlled 

so that  it arrives at the  intersection at the beginning of the green time with an optimal speed. The 

control of the leading vehicle trajectory also results in a compact platoon so that the discharging rate 

keeps the saturation flow rate (as shown in the black dashed line). If Area 3 is equal to the summation 

of Area 1 and Area 2, then within much shorter green time interval (gnew), the same number of vehicles 

can pass the intersection as that in the current control strategy where the green time is much longer 

(gcur). As a result, the green time utilization  is greatly  improved. Note that the proposed framework 

doesn’t  increase  intersection capacity by shortening the saturation headway, but by utilizing green 

time more efficiently.  

To achieve this goal, a two‐stage optimization model  is proposed.  In the first stage, adaptive signal 

control concept is adopted to address the flow fluctuation. Total vehicle delay is used as the objective 

function (1): 

  min
௚೛,௨೛

𝐷 ൌ ∑𝐷௣൫𝑔௣,𝑢௣൯ ൌ෍෍𝑑௣,௜ሺ𝑔௣,𝑢௣ሻ
௜௣

  (1)

  s.t. 𝒈൫𝑔௣,𝑢௣൯ ൑ 0  (2)

where 𝑑௣,௜  is the delay of vehicle 𝑖 in phase 𝑝; 𝑔௣ is the remaining green time of phase p ; 𝑢௣ is the 
acceleration/deceleration rate profile of the leading vehicle in phase p.  𝑢௣, given the value of  𝑔௣, is 
the solution of the second stage problem. Note that the first‐stage optimization does not generate a 

fixed cycle length, but the cycle length is bounded by the minimum and maximum green times of each 

phase.    In  the  second  stage,  the  trajectory  of  each  leading  vehicle  is  controlled  to minimize  fuel 

consumption and emission in Eq. (3). 

  min
௨೛

𝐸ሺ𝑔௣,𝑢௣ሻ  (3)

  s.t. 𝒉൫𝑔௣, 𝑢௣൯ ൑ 0  (4)

As shown in Figure 5.9, the objective of the trajectory control is to make the leading vehicle arrive at 

the intersection (distance L) at time point tf, which is the beginning of green, with the optimal speed 

vtf (Figure 5.9 (b)). vtf is defined as the speed at which the flow rate reaches the saturation flow rate qs 

as shown in Figure 5.9. For simplicity, some assumptions are made. All vehicles are homogenous, which 

have the same size and vehicle dynamics (e.g. acceleration, desired speed). All following vehicles obey 

certain car following rules, based on which following vehicles with larger gaps will try to catch up with 

their leading vehicles with safety constraints. Lane changing and overtaking behaviors are prohibited. 

Therefore, a compact platoon can be generated naturally without controlling  the trajectories of all 

vehicles. 
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Figure 5.9: Leading Vehicle Trajectory Control 

Constraint (2) mainly includes signal timing parameters (e.g. minimum and maximum green time) and 

car‐following rules. Constraint (4) presents vehicle dynamics limits (e.g. maximum acceleration), travel 

time and travel distance.  

Leading vehicle Trajectory Control 

The trajectories of platoon leading vehicles are controlled to arrive at the intersection at the beginning 

of green with an optimal speed. An optimal control model is formulated, with the objective to minimize 

acceleration fluctuation: 

  min
௨ሺ௧ሻ

𝐽 ൌ න |𝑢ሺ𝑡ሻ|
௧೑

௧బ

𝑑𝑡  (5)

Vehicle position x(t) and speed v(t) at time t are the state variables. Vehicle acceleration rate u(t) is the 

control  variable  and  is  bounded  by maximum  deceleration  െ𝑎௅  and  acceleration  rates  𝑎௎.  The 
relationship between the state variables and the control variable defines the vehicle dynamics. Initial 

and final states are defined based on vehicle’s current speed, distance to the  intersection from the 

current position, arrival time, and arrival speed. 

The  purpose  of  using  this  objective  function  is  to  derive  analytical  solutions  by  the  Pontryagin’s 

minimum principle (PMP) (Sethi and Thompson, 2000), which greatly reduces the computational time. 

Theoretical proof shows that the optimal trajectory consists of no more than three segments. As an 

example, Figure 5.10 shows a general optimal  trajectory  in which  the switch  time  t1 and  t2 can be 

obtained  uniquely  by  solving  Eqs.  (6)  and  (7) with  the  constraint  of  𝑡ଵ ൏ 𝑡ଶ.  The  detailed model 

formulations can be found in (Feng et al., 2018). 
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Figure 5.10 A General Optimal Trajectory 
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൫𝑡௙ െ 𝑡ଶ൯ ൌ 𝐿  (6)

  𝑣௖ ൌ 𝑣଴ െ 𝑎௅𝑡ଵ ൌ 𝑣௧௙ ൅ 𝑎௅ሺ𝑡௙ െ 𝑡ଶሻ  (7)

To justify the simplification, EPA’s MOVES emission model (EPA, 2002) is applied as the objective 

function for comparison as described in detail in the next section. 

Benchmark Model for Objective Function Justification 

To  justify  the  simplified  objective  function  in  Eq.  (5),  the multi‐scale motor  vehicle &  equipment 

emission system (MOVES) model (EPA, 2002) of U.S. Environmental Protection Agency (EPA) is applied 

as the benchmark model for comparison. This model estimates vehicle specific power (VSP) with the 

input from vehicle speed and acceleration values. Then VSP modes are  identified through a look‐up 

table.  Furthermore,  according  to  different  types  of  vehicles,  engine  sizes,  and mileages,  vehicle 

emission is located in the emission table (refer to the EPA report (EPA, 2002) for more details).  

With  the MOVES emission model as  the objective  function,  the analytical solution  is not available. 

Therefore, an approximation model (He et al., 2015) which transforms the optimal control problem to 

a non‐linear programming problem with much  fewer decision variables  is  constructed  for platoon 

leading vehicle trajectory control. The approximation model also divides the vehicle trajectory  into 

three segments with constant acceleration or deceleration rates in each segment. The middle segment 

is for vehicle cruising where the vehicle speed is kept as a constant. Therefore, the decision variables 

in  this model are  reduced  to  four:  two acceleration/deceleration  rates a1, a2, and  two switch  time 

points t1, t2. Detailed model formulations can be found in (Feng et al., 2018). Although the formulation 

is simple and the number of decision variables is small, this problem is non‐linear which increases the 

computational  burden,  and  yet  the  quality  of  the  solutions  cannot  be  guaranteed,  which  is 

demonstrated in the numerical examples. 

Platoon Identification 

In order to identify the leading vehicle of each platoon to apply the optimal control model, a platoon 

identification  algorithm  is  developed  to  separate  platoons  for  different  cycles  within  the  DSRC 

communication range, as shown in Figure 5.11. Platoons are identified one by one from the stop‐bar. 

The number of identified platoons is related to the DSRC communication range as well as the number 

of  cycles planned  in DP. Generally,  the platoon number  should be  less  than or equal  to  the  cycle 



 
 

number planned in DP. In reality, due to the limited range of DSRC communication (e.g. 300 m), usually 

only 1 or at most 2 platoons can be  identified  for each phase with a  reasonable cycle  length. The 

following illustrations are based on only one cycle planned in DP. The analysis is similar if more cycles 

are planned. 

The platoon size for phase p is limited by several factors: 

1. The duration of the green time generated by DP in signal optimization. The maximum number 

of vehicles can be calculated as floor(gp/hs), where gp is the remaining green time of phase p, 

hs is the saturation headway and the floor function means rounding down to the next integer. 

2. Vehicle location. If a vehicle is too far away from the stop‐bar, then it may not be able to catch 

the platoon. The  furthest distance dmax that a vehicle can be  included  in the first platoon  is 

calculated as dmax = (rp+gp)× vf , where rp is the remaining red time of phase p and vf is the free 

flow speed. If phase p is the current phase, then rp=0.  

3. DSRC  range dDSRC.  If a vehicle  is outside  the DSRC  range, then  it will not be  included  in  the 

platoon identification algorithm. 

In summary, if a vehicle’s sequence in the approaching vehicles is less than or equal to floor(gp/hs) and 

its distance to the  intersection  is small than min(dmax, dDSRC), this vehicle can be  included  in the first 

platoon. Otherwise, it should be included in other platoons and pass the intersection without stops at 

the stop‐bar in later cycles. Therefore, no queues will be generated at the stop‐bar. 

DSRC Range

Platoon i Platoon 1Platoon 2……

 

Figure 5.11: Platoon Identification 

Car‐Following Model 

In order to model the behaviors of  following vehicles  in a platoon, the Next Generation Simulation 

(NGSIM)  car‐following model  (Yeo  et  al.,  2008)  is  adopted  to  update  their  trajectories.  This  car‐

following model is based on Newell’s linear car‐following (Newell, 2002) model with additional safety 

constraints to avoid collisions (Gipps, 1981). The model also considers the vehicle performance limits 

such as maximum acceleration and deceleration rates. The detailed model formulations can be found 

in (Yeo et al., 2008). 

Signal Optimization 

The signal optimization  is formulated as a DP problem which considers each phase as a stage  in DP 

(Sen and Head, 1997). A forward recursion is used to calculate the performance measures and record 

the optimal value function. A backward recursion is used to retrieve the optimal solution. The detailed 

model formulations can be found in (Feng et al., 2015). 

Rolling Horizon Scheme 

The proposed joint control algorithm is implemented in MATLAB. The flow chart of the optimization 

process  is  shown  in  Figure  5.12.  Time  is  discretized  into  1s  steps  and  signal  status  and  vehicle 

trajectories are updated every time step. A rolling horizon scheme is adopted in which the optimization 

process is repeated every 5 seconds to include recent vehicle arrivals. The planning horizon for signal 

optimization  is two cycles,  in which two cycles of signal timing are generated by DP. The generated 

signal timing will be executed in the next rolling horizon (5 seconds). It also serves as the input of the 

platoon  identification  algorithm.  Then  the optimal  trajectories of  the platoon  leading  vehicles  are 



 
 

solved analytically using the optimal control model. Similarly, the platoon leading vehicles will follow 

the optimal  trajectory during  the next  rolling horizon.  Following  vehicles update  their  trajectories 

according to the car‐following model. The vehicle trajectories are used to estimate the performance 

function in signal optimization.  

 

Figure 5.12: Rolling Horizon Scheme 

Numerical Examples 

Simulation Setup 

In the following numerical examples, a hypothetical intersection of two single‐lane approaches is used. 

Two signal phases are applied and no turning movements and lane changing behaviors are considered. 

The DSRC range is 300 m from the center of the intersection which provides reliable communication 

(Emmelmann et al., 2010). All vehicles in the communication range are controllable, although only a 

few vehicles are controlled. 

The  default  parameters  for  the  car‐following model  are  set  as  follows:  𝜏௡=2  s,  𝑙௡ିଵ ൅ 𝑔௡
௝௔௠

=6 m 

(consider uniform vehicle length), 𝑎௡௎=2 m/s2,  𝑎௡௅=‐2 m/s2, 𝑣௡
௙
=14 m/s (~50 km/h).  

In signal optimization, the two phases of a cycle are identical. The corresponding default parameters 

are  set  as  follows:  the minimum  green  time  gmin=10,  the maximum  green  time  gmax=26,  and  the 



 
 

transition interval gtran=4 which includes yellow interval and all‐red clearance time. Therefore, 𝑋௝
௠௜௡= 

gmin+  gtran  and  𝑋௝
௠௔௫=  gmax+  gtran.  The maximum  acceleration  and  deceleration  rates  for  vehicle 

trajectory control are set the same as those in the car‐following model, and the optimal speed 𝑣௧௙=10 
m/s. 

The optimal control formulation for leading vehicle trajectory control may not always have solutions. 

Based on the parameters above, if the green time generated by DP is smaller or equal to 5 seconds, 

the signal optimization will not be executed until the beginning of the next phase to prevent modifying 

the leading vehicle trajectory when it is too close to the intersection. 

Simulation Results and Discussion 

Vehicle arrival conforms to the Poisson distribution. Three different traffic demand levels are tested. 

The demands in the two approaches are set to be the same. The three levels are 500 veh/h/lane, 650 

veh/h/lane  and  800  veh/h/lane  (i.e.,  medium,  high  and  saturated  traffic  conditions).  The 

corresponding v/c ratios are 0.64, 0.83, and 0.97. v/c ratio is calculated based on an 1800 veh/h/lane 

saturation  flow  rate and  the effective green  time  is equal  to  the actual green  time. Four different 

scenarios are simulated: Fixed, Adaptive, OC and NLP. In the “Fixed” scenario, vehicle trajectories are 

not controlled, and the signal timing is fixed. Each phase has 26s of green time, 4s of transition time 

and 30s of red time. In the “Adaptive” scenario, vehicle trajectories are not controlled, but the signal 

timing is optimized using DP. In the “OC” scenario, vehicle trajectories are controlled using the optimal 

control model with simplified objective function and the signal timing  is optimized using DP.  In the 

“NLP”  scenario,  vehicle  trajectories  are  controlled  using  the  Non‐linear  programming  (NLP) 

approximation model with MOVES model as the objective function and the signal timing is optimized 

using DP. The total simulation time for each scenario is 1000s. Figure 5.13 shows the comparison of 

vehicle trajectories under the four scenarios with medium demand level. 

   

(a) Fixed             (b) Adaptive 

   

   (c) OC                                                              (d) NLP 



 
 

Figure 5.13: Vehicle Trajectory Comparison under Four Scenarios 

By comparing the scenarios “Fixed” and “Adaptive”, it can be seen that in some cycles of the “Fixed” 

scenario,  a  portion  of  green  time  is wasted.  The  “Adaptive”  scenario  generates  the  timing  plan 

adaptively  based  on  vehicle  arrivals  so  that  green  time will  be  utilized more  efficiently. Without 

controlling vehicle trajectories, vehicles stop at the stop‐bar for the red signals  in both “Fixed” and 

“Adaptive” scenarios. With vehicle trajectories controlled, leading vehicles of each platoon in the “OC” 

and “NLP” scenarios slowdown in the middle of the road segment to avoid stops at the stop‐bar. They 

are controlled to arrive at the intersection at the beginning of the green most of the times to improve 

the  green  time  utilization.  Following  vehicles  obey  the  car‐following model  to  catch  up with  the 

preceding vehicles so that compact platoons are generated. The figure also shows that scenarios “OC” 

and “NLP” generate similar vehicle trajectories. In both scenarios, at the end of the third cycle (around 

150s), there is a sudden deceleration of the leading vehicle trajectory. That’s caused by the change of 

the signal timing due to adaptive signal control. In this case, the green time generated by the adaptive 

control algorithm is 1 second shorter than the previous rolling horizon. As a result, the last vehicle of 

the previous platoon cannot pass the intersection and it becomes the leading vehicle of a new platoon. 

It is then controlled to arrive at the intersection in the next cycle. The leading vehicle of the sixth cycle 

(around 270s) cannot arrive at the intersection at the beginning of the green so that it is not controlled 

and it travels at free‐flow speed to the intersection. 

Table 5.2 shows the comparison of total vehicle delay, CO2 emission and execution time of the four 

scenarios under different traffic demand levels. Results of all scenarios are the average of 5 different 

random  seeds.  CO2  emission  is  calculated  by  the MOVES  emission model  based  on  the  vehicle 

trajectories generated in each scenario. Note that the “NLP” scenario incorporates MOVES model to 

the  objective  function while  other  three  scenarios  just  use MOVES model  for  evaluation. Vehicle 

category  11  in MOVES model  (odometer<50,000 miles  and  engine  size  <3.5  liters)  is  used.  The 

execution time to run the 1000s simulation is recorded. 

Table 5. 2: Comparison of Vehicle Delay, CO2 Emission and Execution Time 

Scenario 
Demand Level: 500 veh/h/lane(v/c=0.64)* 

Delay (s)  %  CO2 Emission (kg)  %  Execution time (s) 

Fixed  4400.6  N/A  51.4  N/A  0.8 

Adaptive  3746.4  ‐14.9  47.5  ‐7.5  6.1 

OC  3752.2  ‐14.7  47.2  ‐8.2  1.4 

NLP  3851.4  ‐12.5  47.9  ‐6.7  657.8 

  Demand Level: 650 veh/h/lane (v/c=0.83) 

Fixed  15761.0  N/A  113.5  N/A  1.1 

Adaptive  14940.6  ‐5.2  110.1  ‐2.9  6.3 

OC  11981.6  ‐24.0  97.9  ‐13.8  1.6 

NLP  12056.0  ‐23.5  99.1  ‐12.6  886.6 



 
 

  Demand Level: 800 veh/h/lane (v/c=0.97) 

Fixed  31729.2  N/A  159.6  N/A  1.7 

Adaptive  31549.0  ‐0.6  157.0  ‐1.6  6.6 

OC  28381.4  ‐10.6  150.1  ‐6.0  2.3 

NLP  27635.8  ‐12.9  150.4  ‐5.8  1529.9 

*v/c ratio is calculated assuming an 1800 veh/h/lane saturation flow rate and effective green time 

is equal to actual green time. 

Several observations can be made from the results: 

1. Without vehicle trajectory control, adaptive control outperforms fixed‐time control in terms 

of both vehicle delay and CO2 emission. The benefit decreases as traffic demand  increases. 

That’s because, under higher demand levels, adaptive control tends to assign maximum green 

time to each phase to serve more demand which essentially turns to be fixed‐time control. 

With vehicle trajectory control, under saturated demand level, “OC” and “NLP” can still reduce 

about 10% vehicle delay compared to “Fixed” and “Adaptive”. Because the trajectory control 

eliminates  the  startup  lost  time  and  increases  the  capacity  of  the  intersection.  To  better 

illustrate the benefit of capacity increase, we design a special case with uniform vehicle arrival 

(800 veh/h/lane) and fixed‐time signal as shown in Figure 5.13. It can be seen from Figure 5.13 

(a)  that,  without  trajectory  control,  the  intersection  is  oversaturated  and  the  queue  is 

propagating over cycles Figure 5.13 (b) shows the vehicle trajectories under the same demand 

level and the same signal plan. The gaps between each trajectory block remain the same over 

cycles, which  suggests  no  oversaturation  in  this  case.  It  is well  known  that  vehicle  delay 

increases dramatically under oversaturated traffic conditions, which can be avoided because 

of the increased capacity. 

 

(a) (b) 

Figure 5.13 Capacity Increase with Trajectory Control 



 
 

2. Both vehicle delay and emission are reduced  in the “OC” and “NLP” scenarios compared to 

“Fixed” and “Adaptive” scenarios by as much as 24.0% and 13.8%, respectively. More benefits 

are shown under high demand level. Compared to the medium and saturated demand levels, 

both the signal optimization and vehicle trajectory control have more  flexibility  in terms of 

green time allocation and intersection capacity utilization.  

3. The vehicle delays in “OC” and “NLP” scenarios are similar. But “OC” scenario generates lower 

emission than “NLP” scenario  in all cases.  In both vehicle trajectory optimization problems, 

vehicle delay is formulated as a constraint, because the arrival time at the intersection is fixed 

through trajectory control As long as a feasible solution can be found, both problems generate 

similar vehicle delays. However, emissions are  formulated as the objective  function, whose 

value depends on the quality of the solution. The approximation model is a NLP problem and 

no global optimality is guaranteed. In spite of the simplified objective function in the optimal 

control  formulation,  the  analytical  solutions  still  outperform  those  generated  using  the 

emission model as the objective function. 

4. The  execution  time  differs  among  the  four  scenarios.  The  “Fixed”,  “Adaptive”,  and  “OC” 

scenarios have similar execution times while “NLP” scenario requires significantly longer time. 

In the “NLP” scenario, a long execution time is observed due to the difficulty in dealing with 

nonlinearity. On  the contrary,  the analytical  solution  from  the optimal  control  formulation 

reduces computational time notably. 

The results have validated the use of the simplified objective function instead of the exact but complex 

emission model in terms of both computational time and solution performance. 

5.2.2 Integrated Optimization 

This study presents a mixed integer‐linear programming (MILP) model to optimize traffic signals and 

vehicle  trajectories at  isolated urban  intersections  in a unified  framework. Phase sequences, green 

start and duration of each phase, and cycle lengths are optimized together with vehicle lane‐changing 

behaviors and vehicle arrival times  in the MILP model. Vehicles are guaranteed to pass through an 

intersection at desired speeds and avoid stops at stop bars. A new planning horizon strategy is applied 

to conduct the optimization. Platoons  in each  lane are  identified based on the optimization results. 

Exact vehicle trajectories are then generated by optimal control models and car‐following models. The 

trajectory of each platoon leading vehicle is optimized by an optimal control model with the objective 

to minimize fuel consumption and emission. Lower and upper bounds of arrival time constraints are 

imposed to the MILP model in order to generate feasible trajectories. Clearance time is considered to 

eliminate  conflictions  between  incompatible  vehicle movements within  an  intersection  area.  The 

proposed MILP model  is  similar with  slot‐based  “signal  free” models  if  the minimum  green  time 

constraint is removed. However, the proposed model optimizes vehicle trajectories at the upstream 

of an intersection instead of managing trajectories within an intersection area. 

Problem Description 

For a  typical  intersection,  there are  three vehicle movements  (i.e.,  left‐tuning,  through, and  right‐

turning) in each arm. Each movement has a different desired speed to pass through the intersection 

for safety concerns. As shown in Figure 5.14, in each arm, the approach lane index is incremented from 

the left most lane. Each approach lane is dedicated to one vehicle movement. The distance between a 

vehicle and the stop bar at time 𝑡 is denoted as 𝑥ఠሺ𝑡ሻ. 𝐿௜  is the control zone in arm 𝑖 in which vehicle 
trajectories  can be optimized.  𝐿௜

௣
  is  the  no‐changing  zone  in which  vehicles  keep  their previously 

optimized trajectories. That is, only the trajectories of vehicles that are outside the no‐changing zone 

will be updated over time. The no‐changing zone is designed to reduce computational burden but at 

the cost of optimality. 



 
 

 

Figure 5.14 An intersection with four arms. 

The  task  is  to  integrate  vehicle  trajectory  planning  into  traffic  signal  optimization  in  a  unified 

framework to minimize vehicle delays. The model framework is shown in Figure 5.15. The trajectory 

planning serves for two purposes: 1) build the relationships between vehicle arrival times in the same 

lane, which helps build the arrival time constraints (e.g., upper and lower bounds) in the MILP model; 

2) generate trajectories for vehicles in the same lane given their arrival times, which are supposed to 

be optimized in the MILP model. Note that no exact vehicle trajectories or platooning are needed in 

building the constraints of arrival times  in the MILP model. The outputs of the optimization model 

include signals, vehicle lane choices, and vehicle arrival times. Platoons, i.e., the vehicles that pass the 

stop bar in the same lane in the same cycle, are identified based on the optimization results. However, 

only  vehicle  lane  choices  and  vehicle  arrival  times  are  needed  in  planning  exact  trajectories  (i.e., 

acceleration,  speed,  and  location  profiles)  for  vehicles  in  each  lane.  Platooning  is  not  necessarily 

needed when generating exact vehicle trajectories. 

 

Figure 5.15 Model framework. 

Model Formulation 

Vehicle Trajectory Planning 

The optimal control model introduced in Section 5.2.1 is applied to generate optimal trajectories for 

platoon  leading  vehicles with  the objective of minimizing  fuel  consumption/emission  given  arrival 

times. The Newell’s car‐following models are used to capture the trajectories of following vehicles. In 

this way, the  identification of vehicle trajectories  is equivalent to determining the arrival  times. To 

guarantee the feasibility of the optimal control models, this section also helps build the constraints of 

vehicle arrival times for the MILP model. The additional constraints address the problem that the speed 

of an optimized trajectory may exceed the post speed limit. Two cases are considered and shown in 



 
 

Figure 5.16. In the first case, the possible maximum speed never exceeds the speed limit. The vehicle 

can exactly  follow  the optimized  trajectory.  In  the  second case,  the possible maximum speed may 

exceed the speed limit, then the original planned speed is replaced by the speed limit during the time 

interval that the situation happens. Detailed derivation of the optimal trajectory can be found in (Yu 

et al, 2018). 

 

                     (a)                                    (b) 

Figure 5.16 Illustration of two cases: (a) Case 1, and (b) Case 2. 

 

Optimization Model Formulation 

This section presents the optimization model for vehicle arrival times and traffic signal parameters (i.e., 

phase  sequences,  green  starts,  green  durations,  and  cycle  lengths)  considering  lane‐changing 

behaviors. The objective  is vehicle delay minimization. Vehicle  trajectory planning  is  integrated by 

optimizing vehicle arrival times and lane choices, which determines vehicle delays. The optimization is 

conducted based on a planning horizon  strategy. Basic assumptions, vehicle  trajectory constraints, 

signal constraints, and the objective function are introduced sequentially. 

The following assumptions are made to simplify the problem:  

a) Vehicles are homogeneous. The desired speed when passing the intersection is only related to its 

movement direction. 

b) All vehicles are controllable. 

c) Vehicles and the signal controller can communicate  information  in real time within the control 

zone. 

d) Vehicles are in permitted lanes when entering the control zone in each arm. The permitted lanes 

are the dedicated lanes for a certain vehicle movement. 

e) Lane changing behaviors are assumed to be completed instantly. 

The primary objective of the proposed optimization model is the minimization of vehicle travel 

delays. The travel delay of each vehicle is defined as the difference between the actual travel time and 

the free flow travel time. It is noticed that there may be multiple solutions that have the same total 

vehicle delay but with different cycle lengths. Since we have no constraints of maximum cycle lengths 

or maximum phase green times to make the model more flexible, a secondary objective of cycle length 

minimization is added. It increases the frequency of switching right of way and potentially decreases 

the delays of the incoming vehicles in the future. The proposed model is a hierarchical multi‐objective 

optimization model. Total vehicle delay is first minimized and then cycle lengths are minimized for the 

solutions with the same minimum delay. The most common approach to such a model is the weighted 

sum method (Marler and Arora, 2004). As a result, the objective function is formulated as 



 
 

  min
𝑽ୀሺ𝑻ഥ,𝑺ሻ

𝛼ଵ෍ ෍ ൬𝑡௙
ఠ െ 𝑡௘ఠ െ

𝐿௜
𝑣௠௔௫

൰
ఠ∈𝛀೔௜∈𝐈

൅ 𝛼ଶ ෍𝐶௡
ே

௡ୀଵ

  (7)

where 𝑻ഥ is a subset of the trajectory variable set 𝑻 (i.e., 𝑻ഥ ൌ 𝑻 െ ሼ𝑥ఠሺ𝑡ሻ, 𝑙ఠሺ𝑡ሻ, 𝑣ఠሺ𝑡ሻ,𝑎ఠሺ𝑡ሻሽ); 𝛼ଵ and 
𝛼ଶ are weighting parameters and 𝛼ଵ ≫ 𝛼ଶ ൐ 0. 𝑡௙

ఠ is the optimized arrival time of vehicle 𝜔; 𝑡௘ఠ is the 
generation time of vehicle 𝜔; 𝐿௜   is the control zone  in arm 𝑖  in which vehicle trajectories are to be 
controlled; 𝑣௠௔௫  is the maximum allowed vehicle speed; and 𝐶 is the cycle length. 

Constraints include vehicle trajectory constrains (permitted occupied lanes, possible target lanes, lane 

changing behaviors, gap acceptance conditions for lane changing, lower and upper bounds of vehicle 

arrival  times, and no‐changing  zones), and  signal constrains  (lane  signal  settings, green  start  time, 

duration of green, green end time, cycle length, phase sequence, clearance time, and vehicle arrival 

times at stop bars). Detailed optimization model formulation can be found in (Yu et al, 2018). 

Planning Horizon Procedure 

Previous models use time (in seconds) as the length of the planning horizon with a fixed number 

of cycles (Feng et al., 2015), which is different in this study. The cycle number N in the planning horizon, 

as shown in Figure 5.17, depends on the number of vehicles considered in the optimization. Note that 

cycle lengths are optimized over time and, therefore, the total time of the planning horizon may vary 

over time as well. Based on the constraints in terms of vehicle arrival times at stop bars, N needs to be 

large enough so that all vehicles are planned to pass through the intersection in the N cycles. A smaller 

N may render the optimization model infeasible while a larger N increases computational burden. As 

a result, we choose the smallest N that makes the model feasible. Note that the choice of N has no 

impacts on  solution optimality under  the  condition  that  the MILP model  is  feasible. The planning 

horizon procedure is shown in Figure 5.18, which follows: 

Step 1: Initialize horizon start time 𝑡௦ ൌ 0 and cycle number 𝑁 ൌ 1 at initial time 𝑡଴ ൌ 0. 

Step 2: Collect information of vehicles in the control zone at time 𝑡଴. 

Step 3: Solve the special case of the MILP model P3 with 𝛼ଵ ൌ 1 and 𝛼ଶ ൌ 0. 

Step  4:  If  the model  is  infeasible,  then  update  the  cycle  number 𝑁 ൌ 𝑁 ൅ 1  and  go  to  Step  3. 
Otherwise, go to the next step. 

Step 5: Select 𝛼ଵ and 𝛼ଶ so that 𝛼ଵ/𝛼ଶ is large enough. 

Step 6: Solve the MILP model P3. 

Step 7: Update the signals and the planned vehicle trajectories  in the control zone according to the 

optimization results. 

Step 8: Record the optimized length 𝐶ଵ of the first cycle. 

Step 9: Update time 𝑡଴ ൌ 𝑡଴ ൅ Δ𝑡, where Δ𝑡 is the time step. 

Step 10: If 𝑡଴ reaches the final simulation time, then end the process. Otherwise, go to the next step. 

Step 11: If 𝑡଴ ൒ 𝑡௦ ൅ 𝐶ଵ, then update 𝑡௦ ൌ 𝑡௦ ൅ 𝐶ଵ. Go to Step 2. 



 
 

 

Figure 5.17 Illustration of planning horizon. 

 

 

Figure 5.18 Planning horizon procedure. 

Numerical Examples 

Experimental Data 

To  evaluate  the  proposed  models,  a  typical  four‐arm  intersection  with  all  directions  of 

movements is applied. The lane markings of the intersection are shown in Figure 5.18. Right‐turning 

vehicles are not controlled by traffic signals but they are controlled to arrive at the intersection at a 

desired  speed.  The  length  𝐿௜   of  the  control  zone  in  each  arm  is  300  m  which  is  the  reliable 

communication range of Dedicated Short‐Range Communications (DSRC) (Emmelmann et al., 2010). 

The length 𝐿௜
௣
 of the no‐changing zone in each arm is 50 m. 

The basic traffic demand and the volume/capacity (𝑣/𝑐) ratios are shown in Table 5.3. The 𝑣/𝑐 
ratios are calculated with the assumed green duration of 26 s for each phase and a cycle length of 120 

s.  The  saturation  flow  in  each  lane  is  determined  by  the  time  headway.  Vehicles  are  generated 

according  to  Poisson  distribution,  which  is  a  common  practice  for  traffic  control  at  isolated 

intersections (Jiang et al., 2017; Li et al., 2014). Speed limit 𝑣௠௔௫  is 15 m/s. The desired speeds 𝑣௙
ఠ  of 

left‐turning, though, and right‐turning vehicles passing through the intersection are 10 m/s, 13 m/s, 

and 8 m/s, respectively. Vehicles enter the control zone at the speed of 13 m/s instead of the speed 



 
 

limit. The  time displacement  𝜏ఠ  and  space displacement 𝑑ఠ  in  the  car‐following model  are 0.9  s 

(assuming quick reaction of CAVs) and 6 m. The minimum time  interval between two lane changing 

behaviors  of  a  vehicle  is  5  s.  The  absolute  values  of  the maximum  comfortable  acceleration  and 

deceleration rates (𝑎௎ and 𝑎௅) are 2 m/s2 and 4 m/s2. The clearance time between incompatible traffic 

flows (e.g., the traffic flow from arm 1 to arm 2 and the traffic flow from arm 2 to arm 3) is 4 s. The 

minimum green time 𝑔௠௜௡
௜,௝

 is 6 s. The tolerance Δ𝑑 of solution quality degradation is 3 s. The weighting 
parameters  𝛼ଵ  and  𝛼ଶ  in  the  objective  function  Eq.  (7)  are  300  and  1  in  each  optimization.  To 

investigate the environmental impacts, CO2 emission model in Frey et al. (2002) is employed. 

 

Figure 5.18 Lane markings of a four‐arm intersection. 

Table 5.3 Basic traffic demand and volume/capacity ratios 

Traffic demand in pcu/h (𝑣/𝑐)    To Arm 

From Arm    1  2  3  4 

1    ‐  200 (0.38)  400 (0.35)  100 (0.21) 

2    150 (0.32)  ‐  150 (0.29)  200 (0.35) 

3    380 (0.33)  150 (0.32)  ‐  180 (0.35) 

4    100 (0.19)  200 (0.35)  100 (0.21)  ‐ 

The optimization models are written  in C# and solved using Gurobi 7.5.1 (Gurobi Optimization 

Inc., 2017). All the experiments are performed in a desktop computer with an Intel 3.6 GHz CPU and 

16 GB memory. An upper limit of 1.5 s is set for real‐time application. A sub‐optimal solution produced 

by the solver will be accepted if the solving time exceeds the time limit. 

Results and Discussion 

Vehicle‐actuated control is applied in the simulation as the benchmark for comparison with the 

proposed control method, denoted as CAV‐based control.  In actuated control, the maximum green 

durations for arm 1 and arm 3 are 30 s, and the maximum green duration for arm 2 and arm 4 are 20 

s. The minimum green duration is 4 s which is the optimal value by trial and error. The unit extension 

time is 2 s. The time of each simulation scenario is 1200 s and the simulation time step is 1 s. Average 



 
 

values of throughput, vehicle delays, and CO2 emissions of ten different random seeds are recorded 

and shown in Table 5.4–Table 5.6. Five levels of traffic demand are tested, which are the product of 

the basic demand and a demand factor. The demand with the factors from 0.6 to 2.0 is under‐saturated 

and the demand with factors 3.0 and 4.0 are over‐saturated. The under‐saturated and over‐saturated 

traffic condition is observed with actuated control. 

Table 5.4 Throughput 

Demand factor 
Throughput (veh) 

Actuated Control  CAV‐based Control  Increase (%) 

0.6  289.60  291.20  0.55 

1.0  446.00  449.20  0.72 

2.0  686.00  691.50  0.80 

3.0  764.60  824.80  7.87 

4.0  769.70  922.10  19.80 

Table 5.5 Average delay 

Demand factor 
Average Delay (s/veh) 

Actuated Control  CAV‐based Control  Decrease (%) 

0.6  14.65  8.62  41.16 

1.0  15.84  11.33  28.47 

2.0  18.32  13.59  25.82 

3.0  61.71  15.40  75.04 

4.0  98.28  16.34  83.37 

Table 5.6 Average CO2 emissions 

Demand factor 
Average CO2 Emissions (g/veh) 

Actuated Control  CAV‐based Control  Decrease (%) 

0.6  123.96  114.73  7.45 

1.0  126.19  123.51  2.12 

2.0  134.98  132.38  1.93 

3.0  212.65  133.08  37.42 



 
 

4.0  267.07  135.39  49.31 

Table 5.4 shows that CAV‐based control improves intersection capacity. The throughput increase 

under CAV‐based control is insignificant with under‐saturated traffic demand. This is consistent with 

our intuition because demand is below intersection capacity under both control methods. When the 

demand factor further increases to 3.0 and 4.0, intersection capacity is reached under actuated control 

because  the  throughput  almost  remains  the  same.  In  contrast,  the  throughput  under  CAV‐based 

control keeps increasing noticeably. This indicates that intersection capacity under CAV‐based control 

is higher compared with actuated control. 

Table 5.5 shows the significant decrease of vehicle delays when CAV‐based control  is applied, 

which can reach ~40% under low traffic demand and ~80% under high demand. The benefits are mainly 

due  to  improved  intersection  capacity  as  well  as  the  more  efficient  use  of  green  time  at  the 

intersection. Vehicle trajectories are optimized so that all vehicles pass through the intersection at high 

desired speeds without stops. Thus, no vehicle queues are generated at stop bars, either. As a result, 

the green start‐up lost time is eliminated and more vehicles can pass the intersection during the same 

green interval compared with actuated control. One interesting observation is that the delay reduction 

under CAV‐based control decreases first and then rises as demand increases. Under under‐saturated 

demand,  the  benefits  are  more  remarkable  with  lower  demand  which  indicates  strong  flow 

uncertainty. Under over‐saturated demand, the delay under actuated control rises more significantly 

as demand increases. Because the intersection capacity under CAV‐based control is much higher than 

that under actuated control. 

Table 5.6 shows the comparison of CO2 emissions. The results are similar to those in Table 5.5. 

CAV‐based control outperforms actuated control under both under‐ and over‐saturated demand. This 

is intuitive because the trajectories of platoon leading vehicles are planned with the aim of reducing 

fuel consumption/emission. Following vehicles also have smoother trajectories since they do not make 

complete stops at stop bars. But the benefits decrease with increasing traffic volumes under under‐

saturated demand. The reason is that vehicles are likely to accelerate or decelerate more frequently 

under CAV‐based control when traffic condition varies. As shown  in Figure 5.19, vehicles decelerate 

only once before arriving at the intersection under actuated control while vehicles keep adjusting their 

speeds  according  to  varying  traffic  condition under CAV‐based  control. However,  the benefits  are 

significant under over‐saturated demand. Because intersection capacity is improved under CAV‐based 

control and thus vehicles experience much  less delays. This  indicates that vehicles spend much  less 

time traversing the intersection. In this way, CO2 emissions are greatly reduced. 

   

              (a)                                                                      (b) 

Figure 5.19 Trajectories of left‐turning vehicles in arm 1 as an example: (a) actuated control, and 

(b) CAV‐based control. 



 
 

5.2.3 Traffic State Estimation 

At  signalized  intersections,  CVs  may  serve  as  mobile  sensors,  providing  opportunities  of 
reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration 

rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal 

operation remains an open question.  

In  this work, we develop an approach  to estimate  traffic volume, a key  input  to many signal optimization algorithms, using GPS  trajectory data  from CV or 

navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time‐dependent 

Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed 

trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. 

Methodology 

In order to estimate traffic volume, our basic idea is to take advantage of vehicle arrival information in 

vehicle trajectories. The arrival information can be reflected from the status whether a vehicle stopped 

or not. An example is shown in Figure 5.20. In the figure, CV1 passed the intersection with a stop and 

CV2 without  a  stop.  Then, based on CV1’s  stopping position or departure  time, we  can  calculate 

number of vehicles queuing in front of it. Based on the trajectory of CV2 without a stop, we know that 

if vehicle queue existed, the queue would not be long enough to impact CV2. In other words, the upper 

bound of possible vehicle arrivals between CV1 and CV2 can be calculated based on the trajectory of 

CV2. By combining these arrival information from vehicle trajectories, volume of overall vehicle arrivals 

can be estimated. 

 

Figure 5.20 Illstration of Vehicle Arrival Information in Trajecotries 

The vehicle arrivals are modeled as a time‐dependent Poisson process. During a selected Time of Day 

(TOD) period, we assume that traffic arrivals follow a time‐dependent Poisson process with an arrival 

rate of 𝜆𝑝ሺ𝑡ሺ௖ሻሻ. Here, 𝑡ሺ௖ሻ indicates time within a signal cycle, the superscript ሺ𝑐ሻ indicates that the 
time  is measured  using  a  signal  clock,  k  denotes  the mean  arrival  rate,  and  𝑝ሺ𝑡ሺ௖ሻሻ  is  the  time 

dependent factor proportional to the arrival rate at 𝑡ሺ௖ሻ, i.e., the fraction of total arrivals at 𝑡ሺ௖ሻover 
the entire signal cycle. In traffic engineering literature, Poisson process is a common choice to model 

traffic arrivals at intersections. The additional assumption that arrival rates are dependent on the time 

in a signal cycle is to account for impacts from signal coordination. With the signal coordination, traffic 

departures at the upstream intersection would be grouped as platoons, leading to nonhomogeneous 

arrivals at subject intersection. The time‐dependent Poisson process is used to characterize the non‐

homogeneous arrivals. 

Given the Poisson arrival process, the likelihood function for observing all valid CV trajectories can be 

formulated by  taking advantage of the  inter‐arrival time and the corresponding number of non‐CV 

arrivals between two consecutive CV trajectories received at RSE. As mentioned earlier, two types of 

CV trajectories are considered: 1. CV trajectory with a stop at an intersection, and 2. CV trajectory that 

traverses the intersection without a stop. Between the projected arrival times of two stopped CVs, or 

between the projected arrival time of one stopped CV and the start of a red signal, the number of non‐

CV arrivals can be calculated based on the CVs’ departure time. If a CV without a stop is observed, then 



 
 

queues at intersection, if exist, are not long enough to affect the non‐stopped CV. Thus, the maximum 

number of vehicle arrivals before the CV can be calculated. Illustrations of the two types of CVs are 

shown in Figure 5.21. 

Besides these two cases, two other cases of trajectories also exist: 1. stopped CV arriving after a non‐

stopped CV in the same cycle, and 2. non‐stopped CV arriving after another non‐stopped CV, also in 

the same cycle. For the first case, the stop of the CV would not be caused by queues or red signal, but 

likely by other factors, e.g., mid‐block entry of other vehicles. For the second case, after the arrival of 

a non‐stopped CV, we know that the queues must have been cleared and the rest of CVs in the same 

cycle would travel with free‐flow speed. The trajectory therefore does not provide useful information 

for volume estimation. Accordingly, both cases are considered as  invalid or trivial observations, and 

are not used in the estimation. 

 

(a)  CV with a Stop 

 

(b) CV without a Stop 

Figure 5.21 Illustrations of Two Different Types of CV Trajectories 

Based on  the discussion,  the  likelihood of observing all valid CV  trajectories canbe calculated. The 

arrival  rate  𝜆  cen  be  estimated  using maximum  likelihood  estimator  (MLE)  using  the  expectation 

maximization (EM) algorithm. The EM algorithm an iterative procedure to find the MLE mostly suitable 

when unobserved or partially observed variables exist. The EM algorithm consists of two main steps: 

the E‐step and the M‐step. The E‐step calculates the conditional expectation of unobserved or partially 

observed variables based on initialized parameters, and the conditional expectation of the likelihood. 



 
 

Then,  the  M‐step  searches  for  an  optimal  update  of  the  parameters  through 

maximizing the likelihood. The two steps are iterated until updates converge. For the details of the EM 

algorithm,  interested  readers are  referred  to Bilmes  (1998).  In our  case, CV  trajectories with  stop 

provide  direct  information  of  number  of  arrivals,  while  trajectories  without  a  stop  only  provide 

information of upper bounds of the number of arrivals, i.e., partial information. Considering this, the 

EM algorithm would be a proper choice for our estimation. 

For more details regarding the MLE formulation and the EM algorithm, please refer to (Zheng, et al., 

2017). 

Case Study 

In  this  case  study, we  analyzed  data  from  Intersection  of  Plymouth  Rd. & Green  Rd.,  one  of  the 

deployed intersections in the SPMD project. CV data used were collected from 04/25/16 to 05/13/16. 

An illustration of the intersection geometry is shown in Figure 5.22, together with the ring‐and‐barrier 

diagram for traffic signal in operation. Here, our investigation focused only on EB through, WB through, 

as well as SB through and  left‐turn traffic, corresponding to phase 1, 2 and 4. The NB approach  is a 

single‐lane road adjacent to the parking lot of a shopping plaza. At the NB approach, traffic from the 

driveways  and parking  lots  frequently  affected  vehicles  traveling  at  the NB  approach,  resulting  in 

additional  queues  and  vehicle‐stops  not  caused  by  the  traffic  signal.  Since  the  stop  and  queuing 

information play key roles in our estimation, we exclude the analysis for the NB traffic, considering the 

noises  caused  by  the  traffic  from  the  parking  lot. 

For each interested approach, trajectories of CVs were first processed as time‐space plots with time as 

the horizontal axis and distance to the stop bar as the vertical axis. The trajectories are shown in Figure 

5.23. With  the SCOOT adaptive  signal  system, at  this  intersection,  the  cycle  length,  red and green 

duration all varied from cycle to cycle. To select a common reference point in a signal cycle, we use the 

start of green as time 0 in the plot for simplicity. The stop bar position is used as 0 origin along the y‐

axis. The distance  increases upstream along y‐axis. That  is, vehicles travel from  locations of positive 

distances  to  negative  distances.  The  CV  trajectories were  aggregated  according  to  different  TOD 

periods with 1‐h  intervals across different days,  to  first calculate  time‐dependent  factors 𝑝ሺ𝑡ሻ. For 
different TOD periods, substantially different 𝑝ሺ𝑡ሻ were observed with two examples shown in Figure 

5.23(b). The differences in 𝑝ሺ𝑡ሻ are likely due to differences in both traffic patterns and signal settings 
in the two different TOD periods. Then, the EM procedure was implemented for the estimation. 

 



 
 

Figure 5.22 Illustration of Investigated Intersection. 

 

(a) Sample CV Trajectories 

 

(b) Time Dependent factor for 11AM‐12 PM period (left) and 6 PM‐7PM period (right) 

Figure 5.23 Illustration of CV Trajectories (a) and time Dependent Factor (b) for EB through 

Movement. 

For validation purpose, hourly volumes were also manually collected for two days, i.e., 04/25/16 and 

04/26/16, from 11:00 AM to 7:00 PM. Using the measured volumes, we calculated the penetration 

rates of CVs, shown in Figure 5.24. Overall, the penetration rates ranged from 3% to 12%, varying over 

the  selected  periods.  The  rates  also  varied  substantially  at  different  approaches,  with  lower  CV 

penetration rates at the EB and WB approach, i.e., the main approaches, and higher rates at the SB 

approach,  a minor  approach.  This  variation  could  be  due  to  that  the  SB  approach  connects  to 

residential areas close to the University of Michigan that would have larger population of participants 

of  the  SPMD  project.  The  observed  volumes  were  then  used  for  comparing with  the  estimated 

volumes,  with  results  shown  in  Figure  5.25.  The  three  cases  are  shown  in  three  sub‐figures, 

respectively. In the figure, the yellow bars show the estimated volume, and the blue bars show the 

observed  volumes,  both  in  units of  vehicle per hour per  lane  (vphpl).  Substantial  different  traffic 

patterns exist in the three cases. For example, clear afternoon peak existed in both EB and SB cases, 

but not  in WB  case. Regarding  the estimation,  the estimated volumes are generally  closed  to  the 

observed volumes for all the three cases. To further quantify the accuracy, we calculated the Mean 

Absolute Percentage Error (MAPE) for the estimation based on the following formula, indicated as well 

in the figure. 



 
 

 

Figure 5.24 CV Penetration Rates Over Time of Day. 

 

                   (a) EB‐Through Movement                               (b) WB‐Through Movement 

 

(c) SB‐Through and Left‐Turn Movement 

Figure 5.25 Comparison Between Observed Volume with Estimated Volume. 

5.2.4 Real‐time Adaptive Signal Control 

In  this  section,  a  real‐time  adaptive  traffic  control  algorithm  is proposed with  low penetration of 

connected vehicles. Existing studies showed that although minimum required penetration rates vary 

from different applications, but  typically 20%‐30% penetration  rate  is necessary  (Day and Bullock, 

2016). If the critical penetration rate cannot be reached, then data from traditional sources (e.g. loop‐

detectors) need to be added to improve the performance (Feng et al., 2016). Despite substantial efforts 



 
 

in investing and developing CV technologies in the past decade, over the next ten years or longer, the 

CV penetration rate is expected to remain at a low level. Therefore, optimizing traffic signals with low 

penetration rates of CVs (< 10%) is important and will make an immediate impact on the state‐of‐ the‐

practice. 

Figure 5.26 shows the CV trajectories in one lane under 10% penetration rate with a demand level of 

700 veh/h/ln. The trajectories represent the raw data used in this paper. It shows that some CVs passed 

the intersection without stop while others stopped in the queue for a red signal. Some of the vehicle 

trajectories are only partial because of lane changes. Note that during most of the cycles only one or 

two CVs were observed and during some cycles, there was no CV. 

 

Figure 5.26 Illustration of CV trajectory under 10% penetration rate. 

The basic  idea of using  limited CV trajectories to estimate total vehicle delay  is to utilize critical CV 

information. Critical CVs are defined as  the  last stopped CV and  the  first non‐stopped CV. The  last 

stopped CV provides a  lower boundary of queue  length while the first non‐stopped CV provides an 

upper boundary because the queue has to be fully discharged before the arrival of the non‐stopped 

CV. For those cycles that don't have any CV observed, an average hourly volume is used to generate 

vehicle arrivals and departures  for delay estimation. The hourly volume can be estimated  from the 

aggregation of historical CV trajectory data (Zheng and Liu, 2017). We assume vehicle arrival follows 

Poisson process with mean arrival rate λ. The cumulative number of arrivals during time t is expressed 

as N(t)~Poisson(λt).  Four cases are identified according to the existence of observed CVs as shown in 

5.27.  

 

Time (s)

S
pace (m

)

de

tr tg

n

C

 

(a) No CV 



 
 

Time (s)

S
pace (m

)

de

tr tgt

n1 n2

ds

t1 t2

 

(b) Only Stopped CV 

Time (s)

S
pace (m

)

de

tr tg t

n1 n2

t1 t2

td

 

(c) Only Non‐stopped CV 

Time (s)

S
pace (m

)

de

tr tg t

n1 n2

ds

n3

t1 t2 t3

 

(d) Both Stopped and Non‐stopped CV 

Figure 5.27 Four Scenarios Based on Critical CV Trajectory. 

 

If multiple stopped and non‐stopped CVs are observed within one cycle, only the last stopped CV and 

the  first non‐stopped CV are utilized because  they  represent  the critical  information. More details 

about the estimation models can be found in (Feng et al., 2018). 

To evaluate the proposed delay estimation model, a VISSIM simulation model of Plymouth and Huron 

intersection was run for one hour and all vehicle trajectories were recorded and served as the ground 

truth. The traffic signals were under actuated control so that the cycle lengths and phase splits changed 



 
 

over time. Figure 25.28 shows the comparison of estimated total vehicle delay and true vehicle delay 

of Phase 6 by lane with 10% penetration rate. There were total 31 full cycles operated within one hour.  

To further quantify the accuracy, we calculated the Mean Absolute Percentage Error (MAPE) for the 

estimated delay using the following equation 

𝑀𝐴𝑃𝐸 ൌ
1
𝑁
෍

|𝐷௜
௘ െ 𝐷௜

௧|
𝐷௜
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௜ୀଵ

 

(8) 

Where N is the total number of cycles, 𝐷௜
௘  is the estimated vehicle delay of cycle i, and, 𝐷௜

௧ is the true 

vehicle delay of cycle i.  Under 10% penetration rate, the MAPE for Lane 1 and Lane 2 are 18.99% and 

14.56% respectively.  If two  lanes are combined together, the MAPE for Phase 6  is 14.30%. We also 

tested the model under 0% penetration rate, under which only hourly volume was used to generate 

vehicle arrivals (always in Case 1 because of no CV). The MAPE for Lane 1 and Lane 2 are 32.60% and 

28.65% respectively. If two lanes are combined together, the MAPE for Phase 6 is 30.49%. The result 

indicates that using hourly volume can’t accommodate cycle‐by‐cycle traffic demand fluctuations well. 

From Figure 26.18 (c),  it can be seen that the vehicle delay of each cycle varied from  less than 500 

veh∙s to over 2000 veh∙s. However, estimation from only 10% CV’s data reduced the MAPE significantly, 

from more than 30% to less than 15% percent. It suggests that only a few critical CV trajectories are 

needed to estimate vehicle delay to a relatively accurate level. 
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(b) Lane 2 

 

 

(c) Combination of both lanes 

Figure 27.28: Estimated Vehicle Delay Under 10% Penetration Rate. 

 

The adaptive control algorithm is adapted from the DP based signal optimization algorithm introduced 

in Section 5.2.1. Total delay minimization  is chosen as the objective  function. To test the proposed 

models, a SIL simulation framework is designed and implemented with VISSIM microscopic simulation 

software. The SIL simulation architecture is shown in Figure 5.29. 
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Figure 5.29: Software‐in‐the‐loop Simulation Architecture. 

CVs in VISSIM simulation network generate Basic Safety Messages (BSMs) at a frequency of 10Hz and 

broadcast to the Data Processor application. This application also requests Signal Phasing and Timing 

(SPaT) data from the Econolite ASC/3 virtual controller. Processed CV trajectory and signal information 

are then sent to the Delay Estimation Model. This module generates the arrival table and sends to the 

Adaptive Control Algorithm, which  is  responsible  for producing optimal signal  timing plan with  the 

objective to minimize total vehicle delay. The optimal signal plan will be converted  into a series of 

control commands by the Signal Controller Interface application and control virtual signal controllers 

in  VISSIM.    A  real‐world  intersection  at Huron  Pkwy  and  Plymouth  Rd  in  Ann  Arbor, Michigan  is 

modeled in VISSIM 9. The intersection geometry and signal phasing are shown in Figure 5.30. 

 

Figure 5.30: Geometry and Signal Phasing at Huron Pkwy & Plymouth Rd Intersection. 

Since the delay estimation algorithm generates individual vehicle arrival times, an arrival table can be 

easily constructed and served as the input to the adaptive control algorithm. Two scenarios with two 

different  demand  levels  and  four  penetration  rates  are  evaluated.  Scenario  1  assumes  that  the 

estimated hourly volume of each phase (or average arrival rate λ) is accurate. Scenario 2 assumes the 

estimated hourly volume of each phase has 10% error, which is more realistic based on field data. In 

scenario 2, we add 10% of demand on phase one to four and deduct 10% of demand on phase five to 

eight. The objective of  such  adjustment  is  to maximize  the disturbance on  the  signal  timing. Two 

demand levels are considered as medium (critical v/c ratio 0.82) and congested (critical v/c ratio 0.93) 



 
 

traffic  conditions.  Four  penetration  rates  under  evaluation  are:  10%,  5%,  2%  and  0%. Under  0% 

penetration rate, the adaptive control basically becomes a fixed time signal plan, which is generated 

by the hourly volume (always Case 1 in delay estimation algorithm). The traffic demands used in each 

scenario are summarized in 5.7. Note that the estimated hourly volume with 10% error is only used in 

the delay estimation model. The vehicle inputs in the VISSIM are the same for the two scenarios, which 

is the actual hourly volume. 

Table 5.7 Traffic Demands of Each Phase Under Two Scenarios and Two Demand Levels 

Unit: veh/h/ln  P1  P2  P3  P4  P5  P6  P7  P8 

Medium Demand 

(Scenario 1) 
187  675  133  450  150  656  150  333 

Medium Demand 

(Scenario 2) 
206  742  146  495  135  591  135  300 

Congested Demand 

(Scenario 1) 
212  765  167  525  170  744  175  417 

Congested Demand 

(Scenario 2) 
233  841  182  577  153  670  157  375 

A total duration of 3900s is executed in VISSIM simulation for each scenario, each demand level, and 

each penetration rate, with 300s of warm‐up period and 3600s of data collection time. To capture the 

stochastic pattern, each simulation  run  is  repeated with 5 different  random seeds. The  results are 

compared to a well‐tuned fully actuated control, in which the minimum green time, maximum green 

time, yellow interval and all red clearance interval are set to be the same as in the adaptive control 

algorithm. The unit extension  time of  the actuated control  is  set  to 1.6s, which  is obtained by  the 

recommendations from Signal Timing Manual. Table 5.8 and Table 5.9 shows the total vehicle delay 

under two demand levels.  

TABLE 5.8 Total Vehicle Delay in Seconds under Medium Demand Level  

Random 

Seed 
1  2  3  4  5 

Average 

(SD) 

Delay 

Reduction 

Scenario 1: Accurate hourly volume estimation 

10% PR  143336  152534  135818  151338  137554 
144311 

(7674) 
5.23% 

5% PR  148165  157135  141530  158741  149372 
150988 

(7034) 
0.84% 

2% PR  168963  190877  152779  178334  168224 
171835 

(14046) 
‐12.84% 

Actuated  145736  162606  150933  158352  143770  152279  N/A 



 
 

(8070) 

Scenario 2: 10% hourly volume estimation error 

10% PR  144404  155736  143002  155517  149726 
149677 

(5983) 
1.71% 

5% PR  157791  168744  146392  159259  151568 
156750 

(8447) 
‐2.94% 

2% PR  164093  182495  145614  170820  164004 
165405 

(13386) 
‐8.62% 

Actuated  145736  162606  150933  158352  143770 
152279 

(8070) 
N/A 

Note: SD = Standard Deviation 

 

TABLE 5.9 Total Vehicle Delay in Seconds under Congested Demand Level 

Random 

Seed 
1  2  3  4  5 

Average 

(SD) 

Delay 

Reduction 

Scenario 1: Accurate hourly volume estimation 

10% PR  227684  248169  222959  260393  231441 
238129 

(15656) 
16.33% 

5% PR  240871  258387  222687  260856  231085 
242777 

(16692) 
14.70% 

2% PR  259532  281069  240524  280446  242579 
260830 

(19631) 
8.35% 

0% PR  327241  367273  288306  344282  261268 
317674 

(42731) 
‐11.62% 

Actuated  256728  305282  279268  330017  251736 
284606 

(33074) 
N/A 

Scenario 2: 10% hourly volume estimation error 

10% PR  252124  282365  243068  279463  258485 
263101 

(17189) 
7.56% 



 
 

5% PR  267432  283013.  242671  271912  249347 
262875 

(16577) 
7.64% 

2% PR  270629  339032  254176  317639  281232 
292541 

(34897) 
‐2.79% 

0% PR  346828  380832  356243  442983  313010 
367979 

(48470) 
‐29.29% 

Actuated  256728  305282  279268  330017  251736 
284606 

(33074) 
N/A 

Note: SD = Standard Deviation 

 

The following observations are made by analyzing the results: 

1. When the penetration rate is 10%, the proposed model outperforms well‐tuned actuated control 

in all cases. The total vehicle delay  is decreased by 16.33% under congested demand  level with 

accurate volume estimation. Under medium demand level with 10% volume estimation error, the 

vehicle delay is still reduced by 1.71%. As the penetration rate decreases, the total delay tends to 

increase.  

2. The hourly volume estimated from historical data has a significant  impact on the performance. 

Under same demand  level and same penetration rate, the results with 10% volume estimation 

error are all worse than no error in volume estimation. This is because the algorithms are executed 

under very low penetration rates. It is common that no connected vehicle is observed within the 

entire cycle. Then the hourly volume serves as the only data for determining the phase duration. 

3. Besides penetration rate, the absolute number of observed CV is also crucial to the performance 

of the algorithm. This explains why the algorithm performs better under congested demand level 

than medium demand  level with  same penetration  rate. Under  congested demand  level with 

accurate volume estimation, even 2% penetration has a delay reduction of 8.35%. However, under 

medium demand level with accurate volume estimation, model performance with 5% penetration 

rate is almost the same as actuated control. 

4. Vehicle delays with 10% and 5% penetration rates under congested demand level are similar, in 

both  scenarios.  This  indicates  that  a  few  critical  vehicle  trajectories  are  enough  to make  an 

accurate estimation of vehicle delay. Higher penetration rate only receives marginal benefits. 

5. When the algorithm is executed under 0% penetration rate, the adaptive control becomes a fixed 

time  control.  Because  no  CV  trajectory  is  available,  the  control  decision  is made  only  based 

estimated hourly volume, which is a set value. The results under such conditions are significantly 

worse than other cases, which supports a well‐accepted argument that fixed time control can’t 

accommodate short time demand fluctuation, even if the average volume is accurate. Moreover, 

under congested demand level, the intersection under fixed time control may enter oversaturated 

condition easily due to demand  fluctuation, and  the delay  increases significantly. On the other 

hand, actuated and adaptive control can handle the demand fluctuation better and prevent the 

intersection enter the oversaturated condition. 

 

5.2.5 Semi‐adaptive Traffic Signal Control 



 
 

Crowdsourced vehicle trajectory data, e.g., from connected vehicles or ride‐hailing service providers 

such  as Uber  in  the U.S.  or Didi  in  China,  are  increasingly  available.  These  trajectory  data would 

potentially revolutionize traffic signal operation. Different from conventional detector data, trajectory 

data could serve as a low‐cost, continuous and reliable data source, which could advance conventional 

detector‐based signal control to a detector‐free signal control scheme. Utilizing trajectory data as the 

sole data source, this research proposes a closed‐loop intelligent system for monitoring and control of 

traffic signals. The concept of the system process is shown in Figure 5.31. The iteration loop consists 

of totally four parts: sensing, evaluation, optimization, and implementation. 

 

Figure 5.31 Closed‐loop iterative evaluation‐optimization 

As a closed‐loop process, the optimization and control implementation can be repeated periodically, 

e.g., once every week, depending on data availability. This introduces a new signal retiming process. 

Existing signal control systems can be categorized into two groups regarding retiming frequency. The 

first  group  is  represented  by  fixed‐time  traffic  signals.  Since  one  could  only  rely  on manual  data 

collection,  the sensing part  is  the bottleneck  that  restricts the  iteration  frequency of  the  loop. The 

signal timing parameters could not be updated in a timely fashion. The second group includes vehicle 

actuated control and adaptive signal control,  in which signal phases can be adjusted dynamically  in 

response  to  traffic variations. However,  traffic engineers need  to properly maintain detectors and 

correctly  set  a  group  of  parameters  to  ensure  good  performance. 

Different from the two types of signal systems, here, the proposed system combines fixed timing signal 

with weekly  parameter  update. With  the  belief  that well  parameterized  fixed  timing  control  can 

accommodate  main  traffic  patterns  robustly,  the  system  may  not  need  to  respond  to  traffic 

fluctuations frequently. Instead, it focuses on the demand change over longer terms due to seasonal 

change, road construction and so on, and updates signal control parameters weekly or biweekly. 

Overall, the proposed system is an integrated platform to evaluate and optimize traffic signals. With 

vehicle trajectories as the sole  input, the system can generate performance evaluation report, and 

calculate optimal parameters of signal  timings. The performance evaluation will  focus on detecting 

oversaturation and assessing signal coordination quality to capture key information of traffic condition 

in a road network. Visualization of the performance, e.g., in the form of time‐space diagram, will also 

be provided so that results can be easily  interpreted by traffic engineers. For signal optimization, a 

hierarchical optimization process is developed to optimize signal timing plan schedule, as well as cycle 

length, green split, and offset. The optimization process and control implementation can be repeated 

periodically. The propose system can be used either as a supporting tool for management agencies in 



 
 

their  daily  signal  operation,  or  to  control  traffic  signal  system  directly  with  periodic  updates  of 

parameters. 

Overall Framework 

The overall optimization  framework  is shown  in Figure 5.32. The  framework consists of three main 

components: demand estimation, performance visualization and system optimization. 

TOD Schedule

Traffic Volume 
Estimation

Cycle Length 
Optimization

Offset Optimization

Green Split 
Optimization

Split Failures 
Monitor

Trajectory Data 
Collection

Signal Setting 
Implementation

Performance 
Visualization

Optimization

Demand Estimation

Time-Space 
Diagram

Implementation

 

Figure 5.32 Overall design of the optimization system 

Demand Estimation 

The  demand  estimation was  built  upon  the  research  of  volume  estimation  using  trajectory  data 

presented  in Section 5.2.3. The demand estimation component will utilize  traffic  signal  status and 

vehicle trajectory data to estimate traffic volume, which is the key input for signal optimization. It was 

demonstrated that good accuracy can be achieved using vehicle GPS data with penetration rates of 1% 

‐ 6 %. Based on the estimated traffic demand, performance evaluation can be conducted with many 

well‐established traffic engineering tools. 

Performance Visualization 

The performance evaluation will focus on detecting oversaturation and assessing signal coordination 

quality  to  capture  key  information of  traffic  condition  in  a  road network.  The  estimated  demand 

information will be used to visualize the performance of traffic signal system, so that results can be 

easily interpreted by traffic engineers. This component consists of two convenient tools: split failure 

monitor  and  time‐space  diagram.  The  split  failure  monitor  shows  intersection  status  regarding 

whether  the  allocated  green  times  suffice  to  serve  traffic  demands  for  each  phase,  and  identify 

oversaturation  at  intersections.  The  time‐space  diagram  shows  how  vehicles  travel  through 

intersections along a corridor to evaluate signal coordination quality.  

Parameter Optimization 

The parameter optimization component consists of three modules to optimize different signal settings: 

1). time of day (TOD) schedule optimization, 2). cycle length and offset optimization, and 3). green split 

optimization. The overall optimization will be performed in the following fashion: first, TOD schedule 

will be optimized by applying clustering technique. Then, within each TOD interval, cycle length and 

offsets will be optimized considering coordination between adjacent intersections within the network. 



 
 

Lastly,  green  splits will  be  optimized  for  each  intersection  to  reduce  oversaturation  as well  as  to 

balance green/capacity ratio across conflict movements. 

Detailed optimization methodologies can be found in (Zheng et al., 2019). 

Case Study 

The proposed system was implemented to optimize signal timings in the City of Jinan, China. Data from 

Didi drivers are used as the only input. Note that only the trajectories of Didi vehicles with at least one 

passenger on board were selected.  In  this way, we could exclude  trajectories with unusual vehicle 

stops that are not caused by driver detouring for searching customer. 

This case study was to optimize signal timings at JinShi Road, an important corridor in the City of Jinan. 

Six  intersections  along  the  road  were  selected  for  investigation.  The  illustration  of  the  selected 

segment is shown in Figure 5.33. 

 

Figure 5.33 Illustration of intersections on JingShi 

Based on detector data that are available from one intersection, we calculated the penetration rate of 

Didi vehicles for every 30‐min interval. As shown in Figure 5.34, the penetration rate varied from 2% 

to 6%, with the peak of penetration rate occurred around 9:00 am. 

 

Figure 5.34 Example of penetration rate of occupied Didi vehicles 

Traffic  volumes were  estimated  based  on  the  trajectory  data.  The  validation  of  the  estimation  is 

performed by comparing the estimated volume with detector data. The result is shown in Figure 5.35. 

Overall, the mean absolute percentage error is 8.6%. 



 
 

 

Figure 5.35 Comparison between estimated volumes with observed volumes from detector data 

Using  the estimated volume, TS‐diagrams were constructed  to evaluate coordination performance 

across six  intersections. An example  is  illustrated  in Figure 5.36. The horizontal axis represents time 

and the vertical axis represents distance. The trajectories are aggregated over the study time period, 

for weekday off‐peak hours. The trajectories shown here are vehicles travelling downward, and those 

flat trajectories  indicate vehicle stopping  in queues. The  left figure shows the raw trajectory of Didi 

vehicles, while the right figure shows the estimated trajectories of all traffic, which include both Didi 

vehicles and regular vehicles. 

 

Figure 5.36 Time space diagram with raw trajectory (left) and estimated trajectory (right) Field 

Implementation and Optimization Results 

Parts  of  the  optimization  algorithms  are  implemented  at  the  selected  corridor.  There  are  two 

restricting characteristics of the selected segment: 1. Due to a large pedestrian traffic crossing the main 

street and long crossing time, the cycle length needs to be fixed as a relatively large value (220s for 

peak hours, and 210s for non‐peak hours), to ensure minimum green durations for side‐street phases 

with small g/c ratio. 2. Due to reversible lanes used for left turn traffic at the main‐street, the left‐turn 

phases have to be served as lead‐phases at the main‐street, i.e., phase sequences are fixed. Therefore, 

cycle  length and phase sequence were not changed. For the selected segment, we optimized three 

TOD plans during the daytime, including AM peak, PM peak, and off‐peak timing plan. To evaluate the 

results of the changes, we calculated the relative change of three performance indexes: arterial delay, 

total delay and the number of spillover vehicles during red signal, before and after the changes.  In 

details: 



 
 

     1. Total delay is the average delay time of all Didi vehicles at all movements of an intersection, and 

is further averaged across all intersections. 

     2. Arterial delay  is  the vehicle delay  for traveling through the corridor, averaged across the two 

opposite directions. 

     3. The number of spillover vehicles during red  light is the number of Didi vehicles stopped at the 

intersection area during red light. These spillover vehicles during red light might block crossing traffic 

from  the  side  street  and  even  cause  intersection  gridlock.  Therefore,  the  spillover  vehicles  are  a 

particular concern during peak hours. The results regarding the relative changes of the performance 

indexes are summarized in Table 5.10. 

Table 5.10 Relative change of performance indexes for JingShi Road 

  AM Peak  PM Peak  Off‐Peak 

Arterial Delay  +3.53%  ‐21.87%  ‐5.85% 

Total Delay  ‐10.73%  ‐10.94%  ‐6.32% 

# of spillover vehicles during red  ‐80.1%  ‐88.2%  / 

As shown in the table, the majority of the performance improved, with reduction of delay and number 

of  spillover  vehicles during  red. The  largest  reduction exists  for arterial delay during PM peak, by 

21.87%, with the rest of delay reduction ranging from 5% to 11%. The number of spillover vehicles 

during red reduced significantly with 80.1% reduction in AM Peak period, and 88.2% reduction in PM 

Peak period. However, for AM peak, arterial delay increased slightly, with 3.53%. This is likely because, 

in the AM peak plan, the optimized timing plan was slightly adjusted to further reduce spillover vehicles 

during red. The reduction of spillover vehicles during red would not be beneficial to the main‐street 

traffic, but helpful to facilitate crossing traffic. 

 

The reduction of spillover vehicles during red signals is illustrated in Figure 5.37. With the original 

signal timing plan, spillover vehicles indicated by those flat trajectories near the intersection area can 

be clearly seen in the left figure. With the optimized signal timing plan, few spillover vehicles were 

observed in the right figure. Overall, the improvements are encouraging. 

 

Figure 5.37 Illustration of reducing spillover vehicles during red signal 

 

5.3 Deployment and Field Experiment 



 
 

In  this  task, we  implemented  the methodology developed  in  Section 5.2.5  to  five  intersections  at 

Plymouth  Rd  corridor.  This  experiment  includes  data  collection,  data  processing,  generation  of 

performance measures, and generation of optimal signal timing.  

Ten days of trajectory and signal data from weekday PM peak hour (3:00pm – 6:00pm) are queried 

from the Safety Pilot database and used for data analysis. Two types of data are used: BSM and SPaT. 

The BSM data contain  timestamp, vehicle  ID, vehicle  location  (longitude, and  latitude) and vehicle 

speed. The SPaT data contain timestamp, intersection ID, phase status and duration. Both types are 

collected at the frequency of 10Hz. A corridor of five intersections on Plymouth Rd is included in the 

data analysis. A corridor  lane phase mapping  is constructed to map the trajectories data and signal 

timing to the correct vehicle movements as shown in Figure 5.38. 

 

Figure 5.38 Lane Phase Mapping of the Plymouth Corridor 

Figure 5.39 and Figure 5.40 show aggregated vehicle trajectories passing the intersection over the ten 

days  at  Traverwood  and Nixon  intersections  respectively. Blue  traces  indicate  through movement 

trajectories, red traces indicate left turn movement trajectories, and green traces indicate right turn 

movement trajectories. Table 5.11 and Table 5.12 show the total number of trajectory traces for each 

movement.  It can be seen that through movement on the major road (westbound and westbound) 

have the majority number of traces while other movements have less traces. This is consistent with 

the  traffic  volume  at  each movement.  In  general,  about  50  trajectory  traces  are  necessary  for 

estimating the volume and optimizing traffic signal parameters accurately. For those movements that 

have  less traces, the estimation accuracy may decrease. However, those movements also have  less 

impact on the total traffic flow.  

 

Figure 5.39 Aggregated Trajectory Traces at Traverwood and Plymouth Intersection 

Table 5.11 Number of Trajectory Traces for Each Movement at Traverwood and Plymouth 

Intersection 

  Through  Left  Right 



 
 

EB  160  21  ‐ 

WB  181  ‐  10 

NB  ‐  ‐  ‐ 

SB  ‐  6  1 

 

 

Figure 5.40 Aggregated Trajectory Traces at Nixon and Plymouth Intersection 

Table 5.12 Number of Trajectory Traces for Each Movement at Nixon and Plymouth Intersection 

 
Through  Left  Right 

WB  107  9  14 

EB  153  63  21 

NB  8  5  14 

SB  14  39  0 

 

Figure 5.41  and  Figure 5.42  show  a period  (10 mins) of  SPaT data  for  the  Traverwood  and Nixon 

intersections. Different colors represent different phases. The on/off time and durations of each signal 

phase can be clearly seen from the figures. Note that we only include green and red signal status in 

the  analysis.  The  yellow  interval  is  also  collected  but  not  used  directly.  The  yellow  interval  is 

represented  by  effective  green  time  and  effective  red  time.  This  is  a  common  practice  in  signal 

optimization so that signal status can be treated as a binary variable. Usually the yellow  interval  is 

divided into two portions. The first portion is considered as green and the second portion is considered 

as red. It is also consistent with vehicle behaviors in the real‐world.  



 
 

 

Figure 5.41 Phase Switch and Duration at Traverwood Intersection 

 

Figure 5.42 Phase Switch and Duration at Nixon Intersection   

Combining  BSM  and  SPaT  data,  the  time  space  diagrams  can  be  drawn  to  visualize  the  vehicle 

behaviors at  the  intersections as  shown  in Figure 5.43 and Figure 5.44. The  two  figures  show  the 

eastbound and westbound through movements, which represent the majority of traffic. The x‐axis is 

the time in a signal cycle and zero is the start of green signal. First, the trajectory data are grouped by 

signal cycle and the absolute timestamp is then converted into its relative time offset in the cycle. The 

blue traces mean that the vehicle passed the  intersection without stop, the green traces mean that 

the vehicle passed the intersection with one stop, and the red traces mean that the vehicle passed the 

intersection with two stops. The green bar at zero distance on y‐axis represents the green duration. 

Since  it  is an aggregated diagram,  the  length of  the green bar  indicates  the maximum green  time 

observed duration the data collection period. It can be seen from the figures that at Nixon intersection, 

more than half of the vehicles need to stop once and some of them need to stop twice. At Traverwood 

intersection,  most  of  the  vehicles  can  pass  the  intersection  without  stop.  One  reason  is  that 

Traverwood  is  a  T‐intersection  so  that most of  the  green  time  is  allocated  to  the  eastbound  and 

westbound through movement (major street). Nixon is an eight phase intersection with higher volume 

on side street. However, the multiple stops at Nixon implies potential room for improvement through 

better signal progression. 



 
 

 

                           Eastbound                                                                Westbound 

Figure 5.43 Time Space Diagram at Nixon Intersection 

 
                           Eastbound                                                                       Westbound 

Figure 5.44 Time Space Diagram at Traverwood Intersection 

Figure 5.45 shows the delay measurements at the two intersections. Delay measurements are derived 

directly from the time space diagram. It is calculated as the actual travel time minus the free flow travel 

time. Similar to the time space diagram, vehicle delay at Nixon intersection is much higher than the 

delay at Traverwood intersection. 

Based on the analysis on the time space diagrams and delay diagrams of all the  intersection, a new 

signal timing plan is optimized for the corridor with the objective to reduce total delay. The new plan 

keeps the signal phasing, sequence and transition time unchanged, but adjusts the green splits and 

offsets at each  intersection. Figure 5.46  shows  the optimized  signal  coordination plan  for  the  five 

intersections. Due  to  the vehicle  travel speed and distances between  intersections,  it  is difficult  to 

provide two‐way progression. The new signal timing provides better progression at westbound (Green 

‐> Murfin) direction. For westbound (Murfin ‐> Green), vehicles have to stop at the Nixon intersection 

once. It is mentioned above that the optimization is based on delay minimization. Since the westbound 

has higher traffic volumes for the through movements during afternoon peak hours, providing better 

progression on westbound has more benefit in reducing total delay.  

Table 5.13 shows the complete signal timing plan for all the intersections. A uniform cycle length of 

12s is applied to all the intersections. The offsets of each intersection are: 0s, 36s, 47s, 31s, and 91s. 



 
 

  

                          Nixon Eastbound                                                    Traverwood Eastbound 

Figure 5.45 Delay Diagram at Nixon and Traverwood Intersections 

Table 5.13 Complete Signal Timing Plan 

Intersection  ID  Start  Duration  ID  Start  Duration  ID  Start  Duration  ID  Start  Duration 

Murfin  2  0  60  6  0  60  1  60  12  5  0  12 

Traverwood  2  0  90  6  0  90             
Nixon  2  0  54  6  0  48  1  54  12  5  48  18 

Huron  2  12  48  6  0  48  1  0  12  5  48  12 

Green  2  12  42  6  0  42  1  0  12  5  54  12 

Intersection  ID  Start  Duration  ID  Start  Duration  ID  Start  Duration  ID  Start  Duration 

Murfin  3  72  12  7  72  12  4  84  18  8  84  18 

Traverwood  3  90  30                   
Nixon  3  66  30  8  66  30  4  96  15  7  96  15 

Huron  3  60  30  7  60  30  4  90  15  8  90  15 

Green  3  66  18  8  66  18  4  84  30  7  83  30 

 



 
 

 

Figure 5.46 Optimized Signal Coordination Plan 

The overall implementation process described in this section is summarized in Figure 5.47.  

 



 
 

Figure 5.47 Overall Implementation Process 
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B. Technologies/Techniques:  

This project produced several key outcomes, as highlighted below. 

 Collected energy consumption + GPS data from ~500 vehicles, which is from 8 million 

miles of naturalistic driving. 

 A calibrated Ann Arbor model in Polaris (ANL), Based on detailed analysis, the fuel 

economy prediction accuracy is at about 3.9%.  

 An open‐source SUMO model of Ann Arbor was also developed.  This is done 

partially by one of the graduate student who worked on this project, as well as 

another student supported by an ARPA‐E NEXTCAR project. 

 Eco‐Routing in Ann Arbor (SUMO model) shows 6% fuel saving potential.  

 Human behavior model (72% follows Eco‐driving suggestions, each shared vehicle 

can replace 4 individually owned vehicles). 

 Human driver etiquette based on human vehicle data (how people drive), from 13 

driving behavior data analysis. 

 Adaptive Traffic Signal Control Algorithm was developed based on the data collected, 

and traffic network of the City of Ann Arbor (For CAVs, 13% delay reduction, 10% fuel 

reduction). 

 

C. Status Reports:  

This is the final report of the project. 
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H. Networks/Collaborations Fostered: 

The team has worked closely with EPA, and with significant data available from the fleet (8 

million miles), test data have been shared with ANL, INL and a smaller subset of de‐identified 

data have been shared with EPA and UM student teams working in the TechLab program 

(which pairs students with startup companies).  Selected results were presented to the Mcity 



 
 

leadership Circle companies in February, 2018.  Ford Motor Company expressed interest in 

the progress of this project and the UM research team visited Ford Research and Innovation 

Center at Dearborn to provide a presentation.  The PI of this project was invited to give two 

high‐level presentations: the ORNL organized Smoky Mountain Mobility Summit (Oct. 3&4), 

and the National Academy of Science organized Light‐duty vehicle technology review (Oct 

15).  Key findings from this project were highlighted. 
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