

1 **Remote entanglement via adiabatic passage using a tunably-dissipative quantum**
2 **communication system**

3 H.-S. Chang,¹ Y. P. Zhong,¹ A. Bienfait,^{1,*} M.-H. Chou,^{1,2} C. R. Conner,¹ É. Dumur,^{1,3,†}
4 J. Grebel,¹ G. A. Pears,^{4,1} R. G. Povey,^{1,2} K. J. Satzinger,^{4,1,‡} and A. N. Cleland^{1,3}

5 ¹*Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA*

6 ²*Department of Physics, University of Chicago, Chicago IL 60637, USA*

7 ³*Argonne National Laboratory, Argonne IL 60439, USA*

8 ⁴*Department of Physics, University of California, Santa Barbara CA 93106, USA*

9 (Dated: May 22, 2020)

10 Effective quantum communication between remote quantum nodes requires high fidelity quantum
11 state transfer and remote entanglement generation. Recent experiments have demonstrated that
12 microwave photons, as well as phonons, can be used to couple superconducting qubits, with a
13 fidelity limited primarily by loss in the communication channel [1–6]. Adiabatic protocols can
14 overcome channel loss by transferring quantum states without populating the lossy communication
15 channel. Here we present a unique superconducting quantum communication system, comprising
16 two superconducting qubits connected by a 0.73 m-long communication channel. Significantly,
17 we can introduce large tunable loss to the channel, allowing exploration of different entanglement
18 protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate
19 an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the
20 deterministic generation of entangled Bell states with a fidelity of 96%, all without populating
21 the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay
22 method. We also explore the performance of the adiabatic protocol in the presence of significant
23 channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving
24 higher state transfer and entanglement fidelities than the relay method.

25 Remote entanglement of superconducting qubits has recently been demonstrated using both microwave photon-
26 and phonon-mediated communication [1–6]. Many of these demonstrations are limited by loss in the communication
27 channel, due to loss in the various microwave components or intrinsic to the channel itself [1, 4, 6]; similar limitations
28 apply to e.g. optically-based quantum communication systems. Adiabatic protocols analogous to stimulated Raman
29 adiabatic passage (STIRAP) [7, 8] can mitigate such loss by adiabatically evolving an eigenstate of the system, using
30 states that are “dark” with respect to the communication channel. These enable the high-fidelity coherent transfer
31 of quantum states between sender and receiver nodes, even in the presence of large channel loss. Despite their use in
32 a number of localized systems, such protocols have not been used for the generation of remote entangled states [7, 8].

33 In this Letter, we present a unique experimental system comprising a pair of superconducting transmon-style
34 qubits linked by an on-chip, 0.73 m-long superconducting microwave transmission line. By changing the coupling of
35 the transmission line to a resistive load, we can vary the transmission line’s energy lifetime T_{1r} over two orders of
36 magnitude. We demonstrate an adiabatic protocol for quantum communication between the qubit nodes, compare
37 its performance to a qubit-transmission mode-qubit relay method [5, 9, 10], and explore the performance of both

38 protocols as a function of transmission loss.

39 We first describe the experimental device, then the two-state transfer methods. We test the performance of each
 40 protocol in the low-loss limit, then as a function of transmission loss. The adiabatic process achieves significantly
 41 improved performance compared to the relay method, especially at intermediate levels of loss in the channel.

42 The two quantum state transfer methods, and the device we use to test them, are shown in Fig. 1. The device
 43 comprises two frequency-tunable superconducting xmon qubits [11, 12], Q_1 and Q_2 , each coupled to one end of the
 44 on-chip transmission line via an electrically-controlled tunable coupler [13], G_1 and G_2 respectively (Fig. 1b). We use
 45 the qubit ground $|g\rangle$ and excited $|e\rangle$ states, whose transition frequency is tunable from ~ 3 to 6 GHz. Qubit control is
 46 via low-frequency flux-tuning for Z control and quadrature-resolved microwave pulses for XY control. We read out
 47 the qubit states using standard dispersive measurements [14–16], via a capacitively-coupled readout resonator and a
 48 traveling-wave parametric amplifier. We projectively measure the excited state probability P_e of each qubit with a
 49 fidelity of $88.8 \pm 0.8\%$.

50 The tunable couplers G_1 and G_2 allow us to externally control the coupling $g_{1,2}$ of each qubit to the individual
 51 resonant modes in the transmission line. A variable control consisting of two additional tunable couplers, D_1 and
 52 D_2 , is integrated into the transmission line, 1.6 mm from the coupler G_1 and its associated qubit Q_1 . This circuit
 53 element provides electrically-controlled coupling between its input port and two output ports [17]. The coupler D_2 is
 54 placed inline with the transmission line and is always set to provide maximum coupling (and minimal reflection) to
 55 the remaining length of transmission line. The other coupler D_1 connects to port 1 on the sample mount, which is
 56 terminated by a lumped 50Ω microwave load outside the sample box. Varying the coupling to this load allows us to
 57 set the loss in the transmission line, quantified by the energy lifetime T_{1r} of each resonant mode.

58 The transmission line of length $\ell = 0.73$ m supports multiple resonant modes, separated in frequency by the free
 59 spectral range $\omega_{\text{FSR}}/2\pi = 1/2T_\ell = 84$ MHz, where $T_\ell = 5.9$ ns is the photon one-way transit time in the channel. For
 60 sufficiently small qubit-resonator coupling, $g_{1,2} \ll \omega_{\text{FSR}}$, each qubit can be selectively coupled to a single resonant
 61 mode in the transmission line. This is shown in Fig. 2a, where the transition frequency $\omega_{ge}/2\pi$ of qubit Q_1 is tuned
 62 over 400 MHz, yielding four separate vacuum Rabi swap resonances spaced by the free spectral range $\omega_{\text{FSR}}/2\pi$.
 63 The loss coupler D_1 was set to minimum coupling, so the transmission line is limited only by its intrinsic loss. All
 64 experiments here were done with the mode at 5.351 GHz, just to the right of center in Fig. 2a.

65 In Fig. 2b, we demonstrate tunable control over the channel loss, using qubit Q_1 to measure the lifetime of the
 66 resonant mode at 5.531 GHz as we vary the coupler D_1 and thus the transmission line loss. The pulse sequence for
 67 this measurement is shown inset in Fig. 2b. The mode energy decay time T_{1r} for each loss setting (controlled by
 68 the D_1 flux) is shown in Fig. 2b. With no coupling through D_1 , we measure the intrinsic resonant mode lifetime
 69 $T_{1r} \approx 3410 \pm 40$ ns (orange), comparable to similar transmission lines without variable loss [5]. With maximum
 70 coupling to the load, we measure a lifetime $T_{1r} \approx 28.7 \pm 0.2$ ns (blue), corresponding to a loaded quality factor
 71 $Q_r = 960$, about 120 times smaller than the intrinsic quality factor of 1.1×10^5 . We also measure the resonant
 72 mode's Ramsey dephasing time T_{2r} at various D_1 flux bias points, and find $T_{2r} \approx 2T_{1r}$, indicating the coupler D_1
 73 introduces negligible additional phase decoherence. One non-ideality with this system is that qubit Q_1 , due to its close
 74 proximity to the loss coupler D_1 , also has its lifetime reduced when the couplers G_1 and D_1 are both set to non-zero

75 coupling, allowing energy loss from Q_1 to the external load; this limits Q_1 ’s performance, and is discussed further in
 76 the Supplementary Information [17–36]. This additional loss pathway could be reduced by placing the loss coupler
 77 D_1 in the center of transmission line, as the transmission line would then protect both qubits from the external load.

78 We used two different communication protocols, adiabatic transfer and a qubit-resonant mode-qubit relay method.
 79 Both methods were used for qubit state transfer via the transmission line as well as Bell state generation, both as a
 80 function of loss in the communication channel. The relay method uses a single extended mode in the transmission
 81 line, swapping an excitation from one qubit into that mode and subsequently swapping the excitation from that mode
 82 to the other qubit. This method is described in detail elsewhere [5]; here it achieves an intrinsic loss-limited state
 83 transfer efficiency of $\eta = 0.95 \pm 0.01$ and a Bell state fidelity of $\mathcal{F}_s = \langle \psi^- | \rho | \psi^- \rangle = 0.941 \pm 0.005$, where ρ is the
 84 measured density matrix and $|\psi^-\rangle = (|eg\rangle - |ge\rangle)/\sqrt{2}$ is the reference Bell singlet state.

85 The adiabatic method uses the variable coupling of each qubit to the transmission line. When qubits Q_1 and Q_2
 86 are set to the same frequency and couple to the same resonant mode in the channel with strengths $g_1(t)$ and $g_2(t)$,
 87 the single-excitation Hamiltonian for the system can be written in the rotating frame as

$$H/\hbar = g_1(t) (|e0g\rangle\langle g1g| + |g1g\rangle\langle e0g|) + g_2(t) (|g0e\rangle\langle g1g| + |g1g\rangle\langle g0e|), \quad (1)$$

88 where $|aNb\rangle$ corresponds to Q_1 (Q_2) in $|a\rangle$ ($|b\rangle$) with N photons in the resonant transmission line mode. This
 89 Hamiltonian supports a “dark” eigenstate $|D\rangle$ that has no occupancy in the resonant mode,

$$|D(t)\rangle = \frac{1}{\sqrt{2}} (\cos \theta(t) |e0g\rangle - \sin \theta(t) |g0e\rangle), \quad (2)$$

90 where the mixing angle θ is given by $\tan \theta(t) = g_1(t)/g_2(t)$. With g_1 set to zero and g_2 to its maximum, the dark state
 91 is $|D\rangle = |e0g\rangle$, while exchanging the coupling values $g_1 \leftrightarrow g_2$ yields the dark state $|g0e\rangle$. By adiabatically varying
 92 the ratio $g_1(t)/g_2(t)$ in time from zero to its maximum, the system will swap the excitation from Q_1 to Q_2 , without
 93 populating the lossy intermediate channel [7, 37].

94 Here, we implement a simple adiabatic scheme [37, 38], where we vary the couplings in time according to $g_1(t) =$
 95 $\bar{g} \sin(\pi t/2t_f)$ and $g_2(t) = \bar{g} \cos(\pi t/2t_f)$. We choose the parameters $\bar{g}/2\pi = 15$ MHz and $t_f = 132$ ns, minimizing
 96 the impact of finite qubit coherence while maintaining sufficient adiabaticity (see [18]). We note that the adiabatic
 97 protocol supports better than 90% transfer efficiency even when $\bar{g} = 0.4 \omega_{\text{FSR}}$; see [18].

98 In Fig. 3a, we demonstrate deterministic adiabatic state transfer from Q_1 to Q_2 . With Q_1 in $|e\rangle$ and Q_1 and Q_2
 99 set on-resonance with a single mode in the channel, we adjust the couplers G_1 and G_2 adiabatically to complete the
 100 state transfer. We show the excited state population of each qubit as a function of time t , measured with the resonant
 101 mode loss at its intrinsic minimum. We observe the expected gradual population transfer from Q_1 to Q_2 , with Q_2 ’s
 102 population reaching its maximum at $t = t_f$, with a transfer efficiency $\eta = P_{e,Q_2}(t = t_f)/P_{e,Q_1}(t = 0) = 0.99 \pm 0.01$.
 103 We further characterize the state transfer by carrying out quantum process tomography [39], yielding the process
 104 matrix χ shown inset in Fig. 3a, with a process fidelity $\mathcal{F}_p = 0.96 \pm 0.01$, limited by qubit decoherence. The process
 105 matrix calculated from a master equation simulation displays a small trace distance to the measured χ matrix of
 106 $\mathcal{D} = \sqrt{\text{Tr}([\chi - \chi_{\text{sim}}]^2)} = 0.02 \pm 0.01$, indicating excellent agreement with experiment.

107 The adiabatic protocol can also be used to generate remote entanglement between Q_1 and Q_2 . With Q_1 prepared
 108 in $|e\rangle$, we share half its excitation with Q_2 using the adiabatic protocol, by stopping the transfer at its midpoint

¹⁰⁹ $t = t_f/2$. This generates a Bell singlet state $|\psi^-\rangle = (|eg\rangle - |ge\rangle)/\sqrt{2}$. The qubit excited state population is shown as
¹¹⁰ function of time t in Fig. 3b. We further characterize the Bell state by quantum state tomography [40, 41], and the
¹¹¹ reconstructed density matrix ρ is shown inset in Fig. 3b. We find a Bell state fidelity $\mathcal{F}_s = \langle \psi^- | \rho | \psi^- \rangle = 0.964 \pm 0.007$,
¹¹² referenced to the ideal Bell singlet state ψ^- , and a concurrence $\mathcal{C} = 0.95 \pm 0.01$ (see [18]). The density matrix ρ_{sim}
¹¹³ calculated from a master equation simulation shows a small trace distance to the measured ρ , $\sqrt{\text{Tr}(|\rho - \rho_{\text{sim}}|^2)} = 0.01$,
¹¹⁴ indicating excellent agreement with experiment.

¹¹⁵ We explore the impact of loss on both the relay method and the adiabatic protocol, with results shown as a function
¹¹⁶ of the resonant channel mode energy lifetime T_{1r} in Fig 4. For the highest level of dissipation, with $T_{1r} = 28.7$ ns, we
¹¹⁷ measure an adiabatic transfer efficiency $\eta = 0.67 \pm 0.01$, even though the transfer time t_f is four times the resonant
¹¹⁸ mode lifetime. The efficiency is primarily limited by loss in qubit Q_1 due to its spurious coupling loss through D_1
¹¹⁹ to the 50Ω load (see [18]), in good agreement with master equation simulations. Results from a simulation without
¹²⁰ the spurious coupling are plotted as black dashed lines in Fig 4a, limited by a small channel occupation due to the
¹²¹ finite adiabaticity of the sequence. We compare these results to the relay method, where we use a weak coupling
¹²² $|g_{1,2}|/2\pi = 5.0$ MHz to ensure the qubits only couple to a single transmission line mode; this results in a total transfer
¹²³ time $2\tau_{\text{swap}} = 100$ ns. We find the adiabatic protocol consistently performs better than the relay method, with a
¹²⁴ $2.6 \times$ higher transfer efficiency η ($2.3 \times$ reduction in transfer loss) and $1.5 \times$ higher process fidelity \mathcal{F}_p ($2.3 \times$ reduction
¹²⁵ in process infidelity) compared to the relay method in the most dissipative case; the adiabatic protocol is primarily
¹²⁶ limited by spurious coupling loss in Q_1 , while the relay method is limited by loss in the channel (see [18]).

¹²⁷ In Fig. 4b, we display the entanglement fidelity using the adiabatic protocol with different levels of channel loss,
¹²⁸ and compare to the relay method. The adiabatic protocol outperforms the relay method in all levels of dissipation.
¹²⁹ At the highest loss level, where $T_{1r} = 28.7$ ns, the adiabatic protocol achieves $1.2 \times$ higher Bell state fidelity \mathcal{F}_s ($1.5 \times$
¹³⁰ reduction in Bell state infidelity) and $1.3 \times$ higher concurrence \mathcal{C} ($1.7 \times$ reduction in concurrence infidelity) compared
¹³¹ to the relay method; the spurious-coupling-free simulation result for the adiabatic protocol is shown by the black
¹³² dashed lines, limited by a small channel occupation due to the finite adiabaticity of the sequence.

¹³³ In conclusion, we describe a unique experimental system in which we can explore the performance of quantum
¹³⁴ communication protocols in the presence of controllable communication loss. We demonstrate an adiabatic protocol
¹³⁵ that realizes high-fidelity transfer of quantum states and entangled Bell states, limited mostly by spurious coupling
¹³⁶ of one qubit to the controlled transmission line loss. The platform we have developed is well-suited to explore the
¹³⁷ impact of channel loss on other error-protecting quantum communication protocols, such as heralding [42–44] and
¹³⁸ entanglement distillation [45–47]. The ability to introduce controlled loss dynamically into the system opens the door to
¹³⁹ study dissipative dynamics in non-equilibrium systems, enabling approaches such as reservoir engineering [48, 49]. The
¹⁴⁰ adiabatic protocol demonstrated here is applicable to other quantum communication systems, for example phonon-
¹⁴¹ based systems where the communication channel is significantly more lossy [6, 50, 51]. Future demonstrations could
¹⁴² employ more advanced adiabatic protocols such as shortcuts to adiabaticity [52, 53] and composite adiabatic passage
¹⁴³ [54, 55] to further improve fidelity.

FIG. 1. Experimental device. (a) Optical micrograph of the device (left), with magnified views of one qubit and its associated tunable coupler (right top), and one variable loss coupler (right bottom). (b) A simplified circuit schematic, with two superconducting qubits (Q_1 and Q_2 , blue), coupled by tunable couplers (G_1 and G_2 , purple) to a 0.73 m-long superconducting transmission line (orange). The transmission line is interrupted near Q_1 by a tunable switch. The switch comprises two tunable couplers D_1 (red) and D_2 (teal), with D_1 connected to an external $50\ \Omega$ load to ground (dashed box), while D_2 connects to the remainder of the transmission line. Complete circuit diagram and parameters are provided in [18].

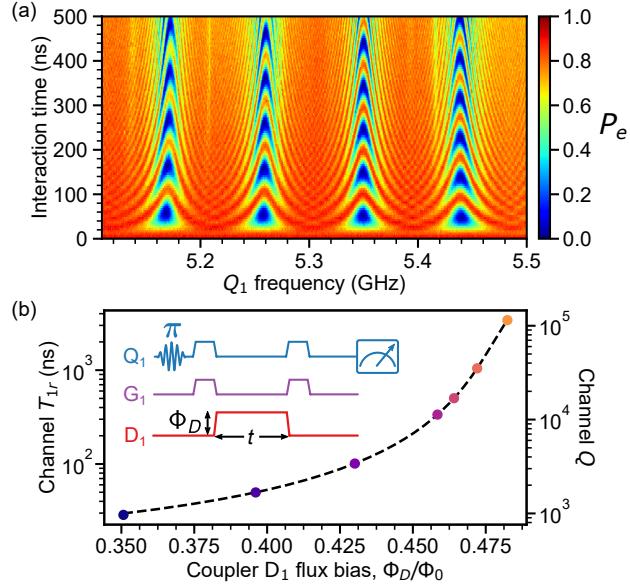


FIG. 2. Variable loss transmission channel. (a) Vacuum Rabi swaps between qubit Q_1 and four sequential resonant transmission line modes. The coupling is set to $|g_1|/2\pi = 5.0 \pm 0.1$ MHz $\ll \omega_{\text{FSR}}/2\pi$. (b) Measurement of the energy lifetime T_{1r} of one resonant mode in the transmission line, at 5.351 GHz, with equivalent quality factors Q shown on right; inset shows pulse sequence. A π pulse to qubit Q_1 puts it in the excited state, and this excitation is swapped into the resonant mode for a time t , after which it is recovered and the qubit P_e measured. The corresponding lifetime is measured as a function of transmission line loss, controlled during the lifetime measurement using coupler D_1 . With D_1 turned off, we find the intrinsic lifetime $T_{1r} = 3410 \pm 40$ ns (orange); with maximum loss, we find $T_{1r} = 28.7 \pm 0.2$ ns (blue). The standard deviation of each data point is smaller than the points. Dashed lines are results calculated with a circuit model; see [18].

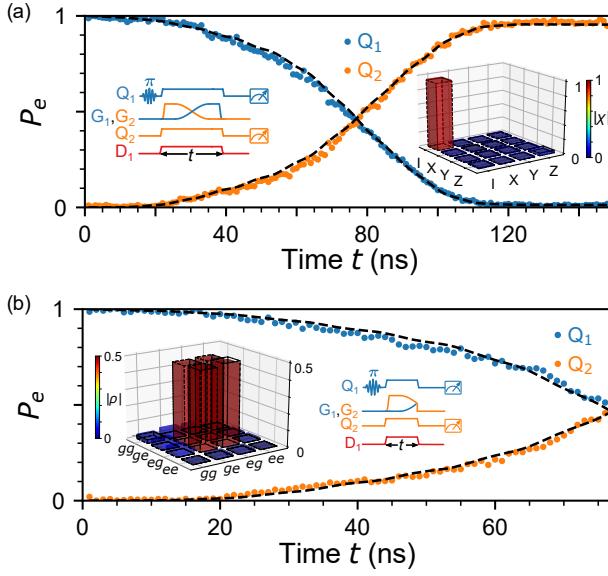


FIG. 3. Quantum state transfer and remote entanglement using the adiabatic protocol. (a) Adiabatic state transfer between qubits Q_1 and Q_2 , measured with intrinsic loss in the transmission line. Blue (orange) circles represent excited state populations of Q_1 (Q_2) measured simultaneously at time t . Left inset: Control pulse sequence. The couplers are set so that coupling g_2 starts at its maximum with g_1 set to zero. Dissipation in the resonant channel mode is controlled using D_1 , here set to zero coupling. Right inset: Quantum process tomography, yielding a process fidelity $\mathcal{F}_p = 0.96 \pm 0.01$. (b) Adiabatic remote entanglement. Right inset shows control pulse sequence: With Q_1 initially prepared in $|e\rangle$, G_1 and G_2 are controlled using the adiabatic protocol to share half of Q_1 's excitation with Q_2 , resulting in a Bell singlet state $|\psi^-\rangle = (|eg\rangle - |ge\rangle)/\sqrt{2}$. Blue (orange) circles represent excited state populations of Q_1 (Q_2) measured simultaneously at time t . Left inset: Reconstructed density matrix of the final Bell state, yielding a state fidelity $\mathcal{F}_s = 0.964 \pm 0.007$ and concurrence $\mathcal{C} = 0.95 \pm 0.01$. In all panels, dashed lines are from master equation simulations accounting for channel dissipation and qubit imperfections (see [18]).

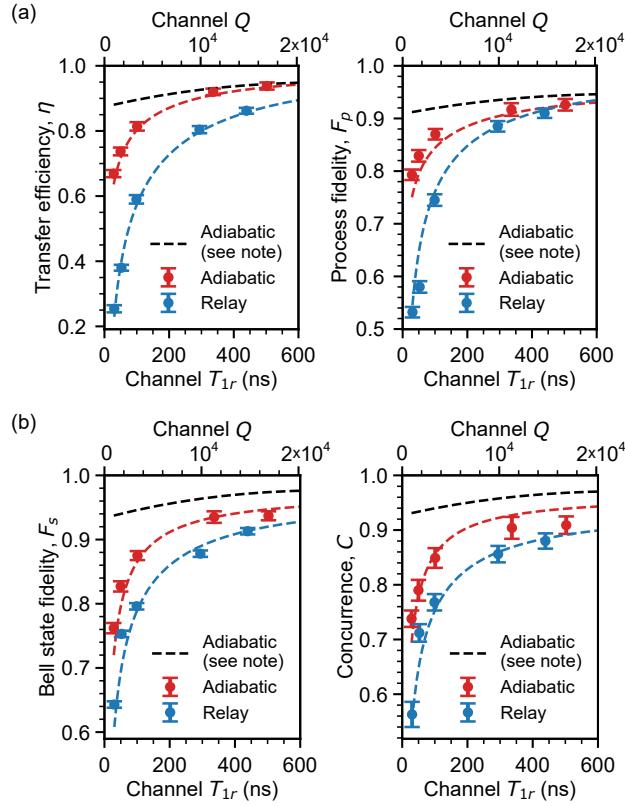


FIG. 4. Quantum communication in the presence of channel loss, using both the relay method and adiabatic protocol. (a) Measured transfer efficiency η (left) and process fidelity \mathcal{F}_p (right) for the adiabatic protocol (red) and the relay method (blue), for different resonant channel mode lifetimes T_{1r} , with equivalent quality factors Q shown on top. (b) Measured Bell state fidelity \mathcal{F}_s (left) and concurrence \mathcal{C} (right) for adiabatic protocol (red) and relay method (blue). In all panels, error bars are one standard deviation; red and blue dashed lines are from simulations including all sources of loss and black dashed lines are from a master equation simulation for the adiabatic protocol with no Q_1 spurious coupling loss (see [18]).

144

ACKNOWLEDGEMENTS

145 The authors thank A. A. Clerk, P. J. Duda, and B. B. Zhou for helpful discussions. We thank W. D. Oliver and
146 G. Calusine at MIT Lincoln Lab for providing the traveling-wave parametric amplifier (TWPA) used in this work.
147 Devices and experiments were supported by the Air Force Office of Scientific Research and the Army Research Labo-
148 ratory. K.J.S. was supported by NSF GRFP (NSF DGE-1144085), É.D. was supported by LDRD funds from Argonne
149 National Laboratory; A.N.C. was supported in part by the DOE, Office of Basic Energy Sciences. This work was
150 partially supported by the UChicago MRSEC (NSF DMR-1420709) and made use of the Pritzker Nanofabrication
151 Facility, which receives support from SHyNE, a node of the National Science Foundation's National Nanotechnology
152 Coordinated Infrastructure (NSF NNCI-1542205). The authors declare no competing financial interests. Correspon-
153 dence and requests for materials should be addressed to A. N. Cleland (anc@uchicago.edu).

¹⁵⁴ * Present address: Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342
¹⁵⁵ Lyon, France

¹⁵⁶ † Present address: Université Grenoble Alpes, CEA, INAC-Phelip, 38000 Grenoble, France

¹⁵⁷ ‡ Present address: Google, Santa Barbara CA 93117, USA.

¹⁵⁸ [1] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathe, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Deterministic quantum state transfer and remote entanglement using microwave photons, *Nature* **558**, 264 (2018).

¹⁶¹ [2] C. J. Axline, L. D. Burkhardt, W. Pfaff, M. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, On-demand quantum state transfer and entanglement between remote microwave cavity memories, *Nature Physics* **14**, 705 (2018).

¹⁶⁴ [3] P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhardt, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions, *Physical Review Letters* **120**, 200501 (2018).

¹⁶⁷ [4] N. Leung, Y. Lu, S. Chakram, R. K. Naik, N. Earnest, R. Ma, K. Jacobs, A. N. Cleland, and D. I. Schuster, Deterministic bidirectional communication and remote entanglement generation between superconducting qubits, *npj Quantum Information* **5**, 18 (2019).

¹⁷⁰ [5] Y. P. Zhong, H.-S. Chang, K. J. Satzinger, M.-H. Chou, A. Bienfait, C. R. Conner, É. Dumur, J. Grebel, G. A. Pears, R. G. Povey, D. I. Schuster, and A. N. Cleland, Violating Bell's inequality with remotely connected superconducting qubits, *Nature Physics* **15**, 741 (2019).

¹⁷³ [6] A. Bienfait, K. J. Satzinger, Y. P. Zhong, H.-S. Chang, M.-H. Chou, C. R. Conner, É. Dumur, J. Grebel, G. A. Pears, R. G. Povey, and A. N. Cleland, Phonon-mediated quantum state transfer and remote qubit entanglement, *Science* **364**, 368 (2019).

¹⁷⁶ [7] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, *Reviews of Modern Physics* **89**, 015006 (2017).

¹⁷⁸ [8] K. Bergmann, H.-C. Nagerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann, S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro, B. Hillebrands, X.-F. Zhu, J. Zhu, M. Drewsen, W. K. Hensinger, S. Weidt, T. Halfmann, H.-L. Wang, G. S. Paraoanu, N. V. Vitanov, J. Mompart, T. Busch, T. J. Barnum, D. D. Grimes, R. W. Field, M. G. Raizen, E. Narevicius, M. Auzinsh, D. Budker, A. Pálffy, and C. H. Keitel, Roadmap on STIRAP applications, *Journal of Physics B: Atomic, Molecular and Optical Physics* **52**, 202001 (2019).

¹⁸³ [9] M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, *Nature* **449**, 438 (2007).

¹⁸⁵ [10] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O'Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M. Martinis, Violation of Bell's inequality in Josephson phase qubits, *Nature* **461**, 504 (2009).

¹⁸⁸ [11] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, *Physical Review A* **76**, 042319 (2007).

¹⁹⁰ [12] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O'Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, *Physical Review Letters* **111**, 080502 (2013).

¹⁹³ [13] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth,

194 E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
 195 M. R. Geller, A. N. Cleland, and J. M. Martinis, Qubit architecture with high coherence and fast tunable coupling, Physical
 196 Review Letters **113**, 220502 (2014).

197 [14] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. M. Girvin, and R. J. Schoelkopf, ac Stark shift
 198 and dephasing of a superconducting qubit strongly coupled to a cavity field, Physical Review Letters **94**, 123602 (2005).

199 [15] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Approaching
 200 unit visibility for control of a superconducting qubit with dispersive readout, Physical Review Letters **95**, 060501 (2005).

201 [16] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting
 202 electrical circuits: An architecture for quantum computation, Physical Review A **69**, 062320 (2004).

203 [17] H.-S. Chang, Y. P. Zhong, K. J. Satzinger, M.-H. Chou, A. Bienfait, C. R. Conner, É. Dumur, J. Grebel, G. A. Pairs,
 204 R. G. Povey, and A. N. Cleland, In preparation (2020).

205 [18] See supplementary material, which includes further information as well as Refs. [19-36], (2020).

206 [19] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
 207 A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, Fast
 208 accurate state measurement with superconducting qubits, Physical Review Letters **112**, 190504 (2014).

209 [20] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen,
 210 Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher,
 211 J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting
 212 quantum circuit, Nature **519**, 66 (2015).

213 [21] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, A near-
 214 quantum-limited Josephson traveling-wave parametric amplifier, Science **350**, 307 (2015).

215 [22] D. M. Pozar, *Microwave Engineering*, 4th ed. (Wiley, Hoboken, NJ, 2012).

216 [23] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and
 217 R. J. Schoelkopf, Detecting highly entangled states with a joint qubit readout, Physical Review A **81**, 062325 (2010).

218 [24] H. K. Xu, C. Song, W. Y. Liu, G. M. Xue, F. F. Su, H. Deng, Y. Tian, D. N. Zheng, S. Han, Y. P. Zhong, H. Wang, Y.-x. Liu,
 219 and S. P. Zhao, Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting
 220 qutrits, Nature Communications **7**, 11018 (2016).

221 [25] K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules,
 222 Reviews of Modern Physics **70**, 1003 (1998).

223 [26] B. W. Shore, *Manipulating Quantum Structures Using Laser Pulses* (Cambridge University Press, Cambridge, UK ; New
 224 York, 2011).

225 [27] M. O. Scully and M. S. Zubairy, *Quantum Optics* (Cambridge University Press, Cambridge ; New York, 1997).

226 [28] G. S. Vasilev, A. Kuhn, and N. V. Vitanov, Optimum pulse shapes for stimulated Raman adiabatic passage, Physical
 227 Review A **80**, 013417 (2009).

228 [29] S. Guerin, S. Thomas, and H. R. Jauslin, Optimization of population transfer by adiabatic passage, Physical Review A
 229 **65**, 023409 (2002).

230 [30] T. Pellizzari, Quantum networking with optical fibers, Physical Review Letters **79**, 5242 (1997).

231 [31] B. Vogell, B. Vermersch, T. E. Northup, B. P. Lanyon, and C. A. Muschik, Deterministic quantum state transfer between
 232 remote qubits in cavities, Quantum Science and Technology **2**, 045003 (2017).

233 [32] G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics **48**, 119
 234 (1976).

235 [33] D. F. Walls and G. J. Milburn, *Quantum Optics*, 2nd ed. (Springer, Berlin, 2008).

236 [34] J. Johansson, P. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum

systems, Computer Physics Communications **183**, 1760 (2012).

[35] W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters **80**, 2245 (1998).

[36] M. B. Plenio and S. Virmani, An introduction to entanglement measures, arXiv:quant-ph/0504163 (2006), arXiv: quant-ph/0504163.

[37] Y.-D. Wang and A. A. Clerk, Using dark modes for high-fidelity optomechanical quantum state transfer, New Journal of Physics **14**, 105010 (2012).

[38] Y.-D. Wang, R. Zhang, X.-B. Yan, and S. Chesi, Optimization of STIRAP-based state transfer under dissipation, New Journal of Physics **19**, 093016 (2017).

[39] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nature Physics **4**, 523 (2008).

[40] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Measurement of the entanglement of two superconducting qubits via state tomography, Science **313**, 1423 (2006).

[41] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature **467**, 570 (2010).

[42] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, Heralded generation of ultrafast single photons in pure quantum states, Physical Review Letters **100**, 133601 (2008).

[43] K. Azuma, K. Tamaki, and H.-K. Lo, All-photonic quantum repeaters, Nature Communications **6**, 6787 (2015).

[44] P. Kurpiers, M. Pechal, B. Royer, P. Magnard, T. Walter, J. Heinsoo, Y. Salathe, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Quantum communication with time-bin encoded microwave photons, Physical Review Applied **12**, 044067 (2019).

[45] P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, Experimental entanglement distillation and hidden non-locality, Nature **409**, 1014 (2001).

[46] R. Dong, M. Lassen, J. Heersink, C. Marquardt, R. Filip, G. Leuchs, and U. L. Andersen, Experimental entanglement distillation of mesoscopic quantum states, Nature Physics **4**, 919 (2008).

[47] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, Entanglement distillation from Gaussian input states, Nature Photonics **4**, 178 (2010).

[48] J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser-cooled trapped ions, Physical Review Letters **77**, 4728 (1996).

[49] M. B. Plenio and S. F. Huelga, Entangled light from white noise, Physical Review Letters **88**, 197901 (2002).

[50] S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D. Wieck, L. Saminadayar, C. Bauerle, and T. Meunier, Electrons surfing on a sound wave as a platform for quantum optics with flying electrons, Nature **477**, 435 (2011).

[51] R. P. G. McNeil, M. Kataoka, C. J. B. Ford, C. H. W. Barnes, D. Anderson, G. A. C. Jones, I. Farrer, and D. A. Ritchie, On-demand single-electron transfer between distant quantum dots, Nature **477**, 439 (2011).

[52] A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up adiabatic quantum state transfer by using dressed states, Physical Review Letters **116**, 230503 (2016).

[53] B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nature Physics **13**, 330 (2017).

[54] B. T. Torosov, S. Guerin, and N. V. Vitanov, High-fidelity adiabatic passage by composite sequences of chirped pulses, Physical Review Letters **106**, 233001 (2011).

280 [55] A. Bruns, G. T. Genov, M. Hain, N. V. Vitanov, and T. Halfmann, Experimental demonstration of composite stimulated
281 Raman adiabatic passage, *Physical Review A* **98**, 053413 (2018).