



---

---

## **Sandia National Laboratories/New Mexico Environmental Restoration Operations**

### **SUMMARY REPORT FOR BURN SITE GROUNDWATER CHARACTERIZATION FIELD PROGRAM**

**Installation of  
Groundwater Monitoring  
Wells CYN-MW9,  
CYN-MW10, CYN-MW11,  
and CYN-MW12**

**Collection of  
Subsurface Soil Samples  
at Boreholes BSG-BH001  
through BSG-BH010**

**January 2012**



**United States Department of Energy  
Sandia Site Office**

---

---

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



## TABLE OF CONTENTS

|                                                                                         |      |
|-----------------------------------------------------------------------------------------|------|
| LIST OF FIGURES .....                                                                   | iii  |
| LIST OF TABLES.....                                                                     | v    |
| LIST OF APPENDICES .....                                                                | vii  |
| ACRONYMS AND ABBREVIATIONS.....                                                         | ix   |
| 1.0 INTRODUCTION.....                                                                   | 1-1  |
| 1.1 Regulatory Action .....                                                             | 1-1  |
| 1.2 Site Description and History .....                                                  | 1-3  |
| 1.3 Geologic Setting .....                                                              | 1-5  |
| 1.4 Project Objectives .....                                                            | 1-7  |
| 2.0 DRILLING AND SAMPLING OF DEEP BOREHOLES .....                                       | 2-1  |
| 2.1 Drilling and Sampling .....                                                         | 2-1  |
| 2.2 Soil Sampling Analytical Results .....                                              | 2-5  |
| 2.3 Extent of Constituents of Concern in Burn Site Groundwater Study Area<br>Soil ..... | 2-12 |
| 3.0 MONITORING WELL DRILLING, INSTALLATION, AND DEVELOPMENT .....                       | 3-1  |
| 3.1 General Procedures .....                                                            | 3-1  |
| 3.2 Wellhead Construction .....                                                         | 3-2  |
| 3.3 Well Development .....                                                              | 3-2  |
| 4.0 MONITORING WELL LAND SURVEYING .....                                                | 4-1  |
| 5.0 WASTE MANAGEMENT.....                                                               | 5-1  |
| 6.0 HYDRAULIC CONDUCTIVITY ANALYSIS.....                                                | 6-1  |
| 7.0 VARIANCES .....                                                                     | 7-1  |
| 8.0 GROUNDWATER MONITORING.....                                                         | 8-1  |
| 8.1 Burn Site Groundwater Monitoring, Fourth Quarter, Fiscal Year 2010.....             | 8-1  |
| 8.2 Burn Site Groundwater Monitoring, First Quarter, Fiscal Year 2011 .....             | 8-2  |
| 8.3 Burn Site Groundwater Monitoring Summary.....                                       | 8-3  |
| 9.0 REFERENCES.....                                                                     | 9-1  |

**This page intentionally left blank.**

## LIST OF FIGURES

### Figure

|       |                                                                                                                    |      |
|-------|--------------------------------------------------------------------------------------------------------------------|------|
| 1.2-1 | Location of the Burn Site Groundwater Study Area.....                                                              | 1-4  |
| 1.3-1 | Burn Site Groundwater Monitoring Well Network and Potentiometric Surface Map (October 2010).....                   | 1-8  |
| 2.1-1 | Burn Site Groundwater Characterization Soil Sampling Locations, July 2010 .....                                    | 2-2  |
| 2.3-1 | Nitrate plus Nitrite (NPN) Results (mg/kg) for Burn Site Groundwater Characterization Soil Samples, July 2010..... | 2-13 |
| 2.3-2 | bis(2-Ethylhexyl)phthalate Results (µg/kg) for Burn Site Groundwater Characterization Soil Samples, July 2010..... | 2-14 |
| 2.3-3 | Toluene Results (µg/kg) for Burn Site Groundwater Characterization Soil Samples, July 2010 .....                   | 2-15 |
| 2.3-4 | Xylene (Total Xylenes) Results (µg/kg) for Burn Site Groundwater Characterization Soil Samples, July 2010.....     | 2-16 |

**This page intentionally left blank.**

## LIST OF TABLES

### Table

|       |                                                                                                                              |      |
|-------|------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1-1 | Summary of Burn Site Groundwater Characterization Soil Samples, July 2010 .....                                              | 2-3  |
| 2.1-2 | Analytical Parameters for Burn Site Groundwater Characterization Soil Samples .....                                          | 2-4  |
| 2.1-3 | Location Data for July 2010 Boreholes in the Burn Site Groundwater Study Area.....                                           | 2-5  |
| 2.2-1 | Summary of 2010 Soil Sample Nitrate plus Nitrite Analytical Results for the Burn Site Groundwater Study Area .....           | 2-6  |
| 2.2-2 | Summary of 2010 Soil Sample Semivolatile Organic Compound Analytical Results for the Burn Site Groundwater Study Area.....   | 2-8  |
| 2.2-3 | Summary of 2010 Soil Sample Volatile Organic Compound Analytical Results for the Burn Site Groundwater Study Area.....       | 2-10 |
| 3.3-1 | Final Water Quality Parameters Measured During Well Development.....                                                         | 3-3  |
| 4-1   | Survey Data for All Wells Currently in the Burn Site Groundwater Monitoring Network .....                                    | 4-1  |
| 6-1   | Average Hydraulic Conductivity Values for Burn Site Groundwater Monitoring Wells Tested, December 2010 and January 2011..... | 6-1  |

**This page intentionally left blank.**

## LIST OF APPENDICES

### Appendix

- A Well Data for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- B Lithologic Logs for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- C Well Construction Diagrams for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- D Video Borehole Logs for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- E Well Development Forms for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- F Slug Test Field Report for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12
- G Groundwater Analytical Results for Samples Collected During Fourth Quarter of Fiscal Year 2010
- H Groundwater Analytical Results for Samples Collected During First Quarter of Fiscal Year 2011

**This page intentionally left blank.**

## ACRONYMS AND ABBREVIATIONS

|        |                                          |
|--------|------------------------------------------|
| AOC    | area of concern                          |
| AOP    | administrative operating procedure       |
| ARCH   | air-rotary casing hammer                 |
| bgs    | below ground surface                     |
| BH     | borehole                                 |
| BSG    | Burn Site Groundwater                    |
| °C     | (degrees) Celsius                        |
| CME    | Corrective Measures Evaluation           |
| CSS    | Colorado Silica Sand                     |
| CYN    | Canyons (Burn Site Groundwater)          |
| DAF    | dilution attenuation factor              |
| DOE    | U.S. Department of Energy                |
| DRO    | diesel range organics                    |
| EFO    | Environmental Field Office               |
| EPA    | U.S. Environmental Protection Agency     |
| ER     | Environmental Restoration                |
| FOP    | field operating procedure                |
| ft/min | feet per minute                          |
| GEL    | GEL Laboratories LLC                     |
| GRO    | gasoline range organics                  |
| HE     | high explosives                          |
| HSA    | hollow-stem auger                        |
| HSWA   | Hazardous and Solid Waste Amendments     |
| IMWP   | Interim Measures Work Plan               |
| KAFB   | Kirtland Air Force Base                  |
| MCL    | maximum contaminant level                |
| MDA    | minimum detectable activity              |
| MDL    | method detection limit                   |
| µg/kg  | microgram(s) per kilogram                |
| µg/L   | microgram(s) per liter                   |
| mg/kg  | milligram(s) per kilogram                |
| mg/L   | milligram(s) per liter                   |
| NAD    | North American Datum                     |
| NMED   | New Mexico Environment Department        |
| NMOSE  | New Mexico Office of the State Engineer  |
| NMSPC  | New Mexico State Plane Coordinates       |
| NPN    | nitrate plus nitrite                     |
| OD     | outside diameter                         |
| PPE    | personal protective equipment            |
| PQL    | practical quantitation limit             |
| PVC    | polyvinyl chloride                       |
| RCRA   | Resource Conservation and Recovery Act   |
| RPD    | relative percent difference              |
| Sandia | Sandia Corporation                       |
| SC     | specific conductivity                    |
| SNL/NM | Sandia National Laboratories, New Mexico |
| SSL    | soil screening level                     |

## **ACRONYMS AND ABBREVIATIONS (Concluded)**

|      |                                 |
|------|---------------------------------|
| SWMU | Solid Waste Management Unit     |
| SVOC | semivolatile organic compound   |
| TAL  | Target Analyte List             |
| TPH  | total petroleum hydrocarbons    |
| VOC  | volatile organic compound       |
| WDC  | WDC Exploration and Wells, Inc. |

## 1.0 INTRODUCTION

This report documents the activities for soil sampling and installation of groundwater monitoring wells at the Burn Site Groundwater (BSG) area of concern (AOC) (hereafter referred to as the Study Area) at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's (DOE) National Nuclear Security Administration under contract DE-AC04-94AL85000.

The project activities were performed from July through August 2010 by SNL/NM Environmental Restoration (ER) Operations (formerly ER Project) personnel and the SNL/NM drilling contractor, WDC Exploration and Wells Inc. (WDC). Drilling activities began with borehole drilling and sampling during the week of July 5, 2010. Well construction and development fieldwork was completed at the end of July 2010. Land surveys of the four new wells to establish the location coordinates and elevations were completed on August 16, 2010, and transmitted to SNL/NM personnel on August 26, 2010. This report also discusses the results for hydrologic slug tests and two quarters of groundwater monitoring data obtained from the newly installed wells.

### 1.1 Regulatory Action

The New Mexico Environment Department (NMED) Hazardous Waste Bureau provides regulatory oversight of SNL/NM ER Operations and implements and enforces federal regulations mandated by the Resource Conservation and Recovery Act (RCRA). All ER Operations Solid Waste Management Units (SWMUs) and AOCs are listed in Module IV of the SNL/NM RCRA Part B Operating Permit, "Special Conditions Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA for Sandia National Laboratories" (NMED 1993).

In April 2004, the Compliance Order on Consent (the Order) (NMED April 2004) between the NMED, DOE, and Sandia became effective, which specifically identified the Study Area as requiring a corrective measure. The groundwater monitoring activities for the Study Area are not associated with a single SWMU, but are more regional in nature. Before the finalization of the Order in April 2004, groundwater investigations at the Study Area had been conducted voluntarily by SNL/NM ER Operations.

Initially, groundwater monitoring in the Study Area was initiated to satisfy the requirements of the SNL/NM HSWA Permit. The Order transferred regulatory authority for this corrective action from the HSWA module of the Permit to the Order. The corrective action of the Study Area must comply with requirements set forth in the Order for site characterization and the development of a Corrective Measures Evaluation (CME).

In response to the Order, the DOE and Sandia initially submitted the following two documents to the NMED: (1) "Current Conceptual Model of Groundwater Flow and Contaminant Transport at Sandia National Laboratories/New Mexico Burn Site" (current conceptual model [SNL/NM June 2004a]), and (2) "Corrective Measures Evaluation Work Plan for Sandia National Laboratories/New Mexico Burn Site" (SNL/NM June 2004b). The current conceptual model provides site-specific characteristics by which remedial alternatives were evaluated. The

CME Work Plan provides a description and justification of which remedial alternatives were considered and the methods and criteria to be used in the evaluation. The CME Work Plan was completed to comply with both the requirements set forth in the Order and guidance provided by the U.S. Environmental Protection Agency's (EPA) RCRA Corrective Action Plan (EPA 1994).

On March 1, 2005, the DOE and Sandia received a letter from the NMED (February 2005) that rejected the CME Work Plan and stipulated the following requirements for DOE and Sandia completion:

- Prepare and submit an Interim Measures Work Plan (IMWP) within 90 days from the receipt of the letter (by May 30, 2005).
- Perform additional characterization of the nitrate-contaminated groundwater near the Burn Site. Specifically, the downgradient extent of groundwater with nitrate concentrations greater than 10 milligrams per liter (mg/L) shall be determined.
- Install one additional monitoring well "adjacent to SWMU-94F in order to establish groundwater conditions in this petroleum-contamination source area."

The DOE and Sandia submitted the IMWP to the NMED in May 2005 that proposed the installation of additional groundwater monitoring wells to characterize the extent of nitrate contamination in the aquifer downgradient of CYN-MW1D and fuel-related compounds downgradient of SWMU 94F (SNL/NM May 2005). (The Study Area was formerly referred to as the "Canyons Area Groundwater"; therefore, "CYN" is the prefix used to identify the groundwater monitoring wells.) The selected interim measures described in the IMWP included installation of three additional groundwater monitoring wells, groundwater monitoring, and institutional controls.

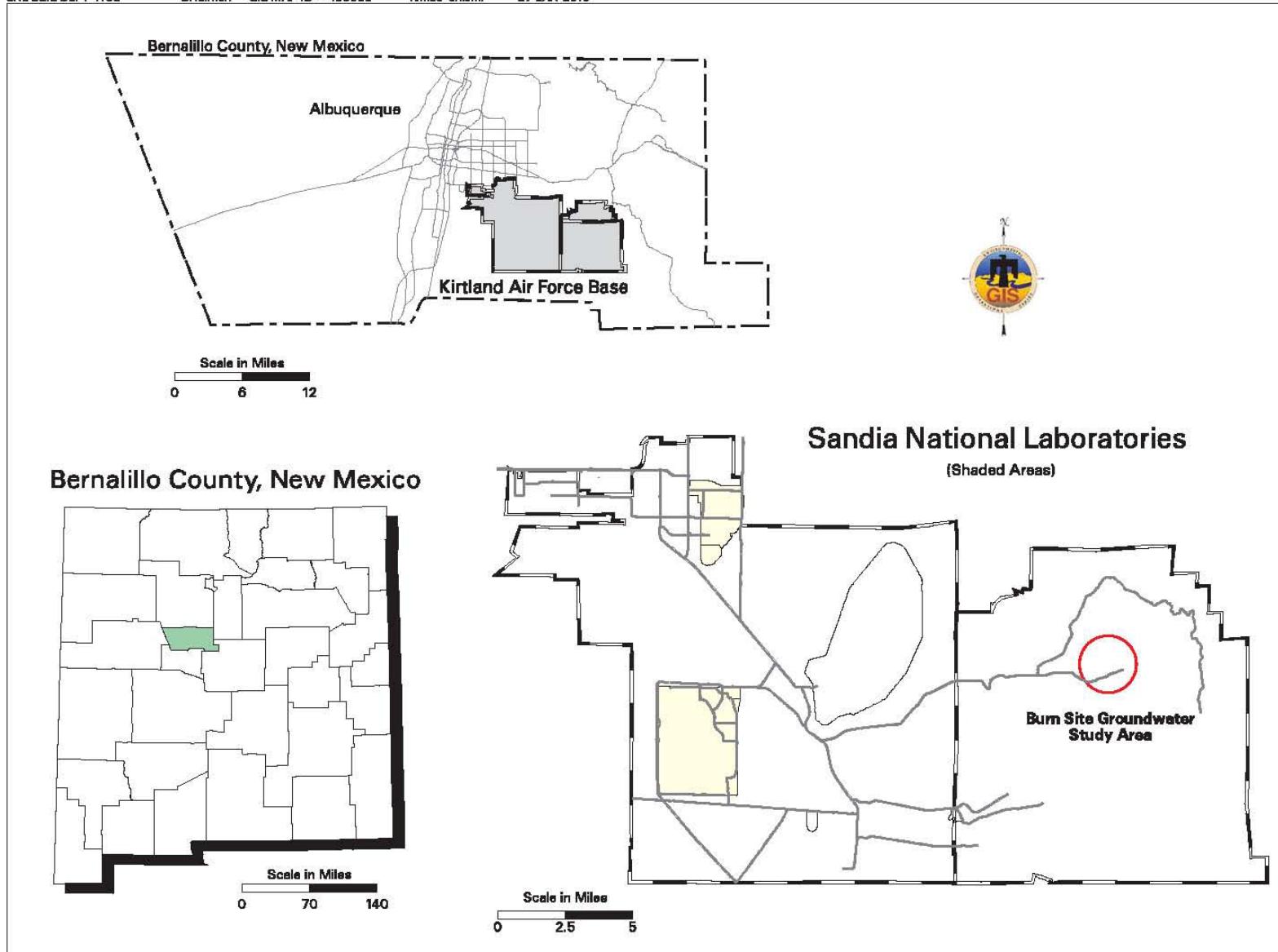
Data collected as part of additional characterization required by the IMWP were incorporated into an updated version of the current conceptual model (SNL/NM April 2008a). The revised conceptual model provides the basis for a technically defensible remediation program that was developed and documented in the CME Work Plan (SNL/NM April 2008b), the results of which will eventually be documented in the CME Report. The April 2008 CME Work Plan was developed to address the concerns outlined in the letter from the NMED (February 2005) and comply with requirements of the Order. The CME Work Plan presents information and data gathered during interim measures, performance and compliance goals, as well as objectives for the remediation of the BSG.

A letter to the DOE and Sandia was received from the NMED on April 30, 2009 (NMED April 2009) entitled, "Perchlorate Contamination in Groundwater, Sandia National Laboratories, EPA ID# NM5890110518." The NMED's letter discussed the occurrence of perchlorate in groundwater at concentrations at or greater than 1 microgram per liter ( $\mu\text{g/L}$ ) at various locations at SNL/NM. The letter states:

Perchlorate contamination occurs in groundwater at or near the Lawrence [sic] Canyon Burn Site (CYN-MW6) at about 6-9  $\mu\text{g/L}$  [micrograms per liter]. Pursuant to Section VI.K.1.b of the Consent Order, the Permittees must characterize the nature and extent of the perchlorate contamination at or near the Lawrence [sic] Canyon Burn Site. The Permittees must submit to the NMED a plan for such characterization within 90 days of receipt of this letter. The plan shall include a schedule for implementation of the characterization work that is planned.

The “Burn Site Groundwater Characterization Work Plan, Installation of Groundwater Monitoring Wells CYN-MW9, CYN-MW10, and CYN-MW11; Collection of Subsurface Soil Samples” (hereafter referred to as “the Characterization Work Plan”) (SNL/NM November 2009) was prepared in response to the NMED’s April 2009 letter. The April 2009 NMED letter required that the DOE and Sandia prepare the Characterization Work Plan for NMED approval by July 30, 2009. The DOE and Sandia requested an extension of the due date for a response to the April 2009 NMED letter in order to meet with the NMED to review existing data and outline further characterization strategies. DOE and Sandia personnel met with NMED representatives in June and July 2009 (SNL/NM June 2009a and SNL/NM July 2009) and submitted a letter requesting an extension to November 30, 2009 (DOE July 2009). The results of the discussions at the June and July meetings (SNL/NM June 2009a and July 2009) were incorporated in the Characterization Work Plan.

In February 2010, the DOE and Sandia received the “Notice of Conditional Approval, Burn Site Groundwater Characterization Work Plan” from the NMED (February 2010). The conditions of approval included the following requirements:


- Install the new groundwater monitoring well CYN-MW11 within 10 feet of the existing Burn Site Production Well
- Install polyvinyl chloride (PVC) well screens that are no longer than 20 feet in length
- Provide clarification on the information to be submitted with the Field Report and subsequent reports

## **1.2 Site Description and History**

SNL/NM personnel manage the Coyote Canyon Test Area in the eastern portion of Kirtland Air Force Base (KAFB) (Figure 1.2-1). The Study Area is located in Lurance Canyon, one of three canyons that are located on the eastern edge of the Coyote Canyon Test Area within the Manzanita Mountains. Two other canyons, Madera Canyon and Sol se Mete Canyon, intersect Lurance Canyon to the west of the Study Area. These three canyons are the headwaters of Arroyo del Coyote.

The Study Area is located along the eastern margin of the Albuquerque Basin, and the terrain is characterized by large topographic relief, exceeding 500 feet. Lurance Canyon provides local westward drainage of ephemeral surface-water flows to Arroyo del Coyote and deeply cuts through Paleozoic and Precambrian rocks.

The Lurance Canyon Burn Site (SWMU 94) and the collocated Lurance Canyon Explosive Test Site (SWMU 65) have been used since 1967. Most research has involved testing the fire survivability of transportation containers, weapon components, simulated weapons, and satellite components. Historical operations also include open detonation of high explosives (HE) and the open burning of HE materials, liquid propellants, and solid propellants. Most HE testing occurred between 1967 and 1975 and was completely phased out by the 1980s. Burn testing began in the early 1970s and has continued to the present.



**Figure 1.2-1**  
**Location of the Burn Site Groundwater Study Area**

Early burn testing was conducted in unlined pits excavated in native soil. By 1975, portable steel burn pans were used for open burning operations primarily conducted with JP-4 (jet fuel composition 4). The Light Air Transport Accident Resistant Container Unit was constructed in 1980, and other engineered burn units were constructed by 1983. These burn units used jet fuel, gasoline, and diesel for the burn tests.

Groundwater samples collected during 1996 from the Burn Site Well (a nonpotable production well used for fire suppression) contained elevated concentrations of nitrate (24.3 mg/L in November 1996). In 1997, the NMED, DOE, and Sandia agreed to investigate the source of this contamination. Later in 1997, monitoring well CYN-MW1D and piezometer CYN-MW2S were installed downgradient of the Burn Site well. Samples from well CYN-MW1D contained nitrate concentrations above the maximum contaminant level (MCL) of 10 mg/L. Two more wells, CYN-MW3 and CYN-MW4 were installed between 1999 and 2001 to further characterize the Study Area. Based on further regulatory requirements, monitoring wells CYN-MW6, CYN-MW7, and CYN-MW8 were installed in 2006.

Since the initial discovery of nitrate at the Study Area, numerous characterization activities have been conducted. The results of these characterization activities are summarized in two versions of the "Current Conceptual Model of Groundwater Flow and Contaminant Transport at Sandia National Laboratories/New Mexico Burn Site" (SNL/NM June 2004a and April 2008a). These two versions of the Burn Site conceptual model provide a comprehensive list of groundwater monitoring data sources used to support the summary of investigations.

Routine sampling of the six wells in the Study Area revealed that CYN-MW6 had reported perchlorate detections above the screening level specified in the Order (NMED April 2004). Based on these perchlorate detections, SNL/NM personnel were required to sample site soil and install the groundwater monitoring wells described in this report (NMED April 2009).

### **1.3 Geologic Setting**

The Manzanita Mountains are composed of a complex sequence of uplifted Precambrian metamorphic and granitic units that were subjected to significant deformation. These units are capped by Paleozoic sandstones, shales, and limestones of the Sandia Formation and Madera Group. The geologic history of the Manzanita Mountains is thoroughly described in the *Groundwater Investigation, Canyons Test Area, Operable Unit 1333 Burn Site, Lurance Canyon* (SNL/NM November 2001) and utilizes the model presented by Brown et al. (1999). The local geology is also summarized in two versions of the current conceptual model of the Study Area (SNL/NM June 2004a and April 2008a).

Groundwater in the Manzanita Mountains predominantly occurs in fractured metamorphic and intrusive units that consist of metavolcanics, quartzite, metasediments (schists and phyllites), and the Manzanita Granite. Groundwater migrates through bedrock fractures in a generally westward direction. The Burn Site Spring is the only perennial spring in the area and is located upgradient of the testing facilities at a limestone outcrop. The permeability of the fractured bedrock units is low and well yields are small. Groundwater discharges to small ephemeral springs located at the base of the Manzanita Mountains approximately 3 miles west of the Burn Site. Additionally, some groundwater may discharge as underflow to unconsolidated sedimentary deposits of the Albuquerque Basin.

The Precambrian metamorphic rocks are typically fractured as a result of the long and complex history of regional deformation. Drill core samples and surface exposures indicate that the fractures in shallow bedrock are filled with chemical precipitates such as calcium carbonate. The carbonate precipitation likely occurred when the water table was elevated prior to the development of the Rio Grande. As chemical precipitates filled the fractures, permeability was effectively reduced, creating a semiconfined unit above underlying bedrock with open fractures.

The Study Area is bisected by a north-south-trending system of faults, consisting locally of several high-angle normal faults that are downfaulted to the east. Faults (where exposed) are characterized by zones of crushing and brecciation. The Burn Site fault exhibits a north to south trend in the vicinity of the Burn Site Well and monitoring well CYN-MW4. Nearby outcrops indicate that the fault displacement is approximately 160 feet.

The canyon floor at the Study Area consists of unconsolidated alluvial fill deposits over bedrock. Typically, these deposits are composed of sand and gravel derived from the erosion of upslope colluvium and bedrock. Based on borehole data, alluvial thickness in the Study Area ranges from 21 to 55 feet.

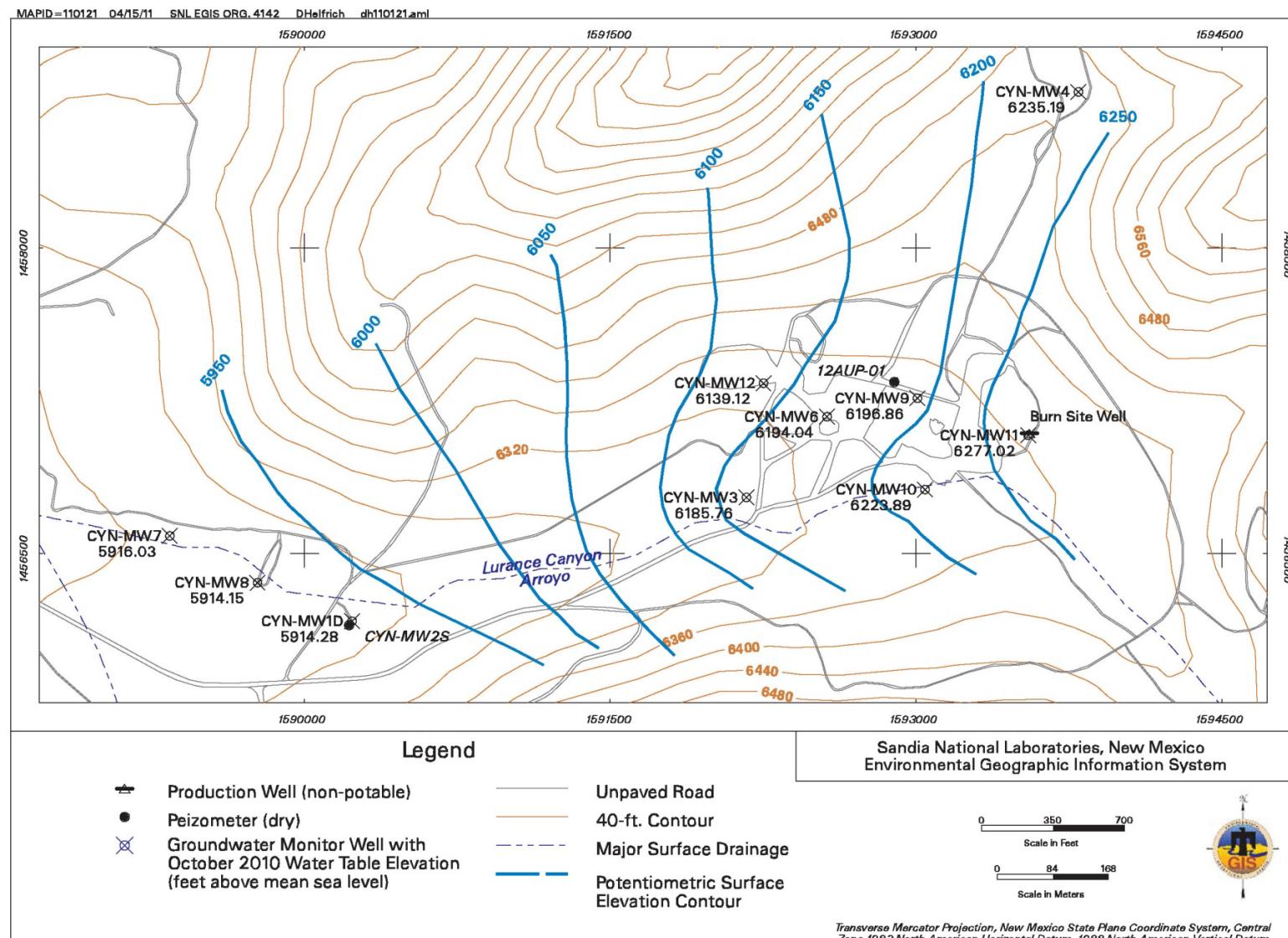
When the Burn Site Well was drilled in 1986, the depth to groundwater-bearing strata was approximately 222 feet below ground surface (bgs). Following completion of the well in fractured bedrock, the water level rose approximately 150 feet due to positive head. The fractured rocks of the Manzanita Mountains are recharged by infiltration of precipitation, largely occurring during summer thundershowers and, to a lesser degree, winter snowfall on the higher elevations. Groundwater recharge is restricted by high evapotranspiration rates (losses to the atmosphere by evaporation and plant transpiration) and low permeability of the fractured bedrock.

Regionally, groundwater in the western Manzanita Mountains flows generally towards the west from a groundwater flow divide located east of the Study Area (SNL/NM November 2001). Westward groundwater flow across Lurance Canyon discharges primarily as direct underflow to the unconsolidated basin-fill deposits of the Albuquerque Basin. Based on field observations, some discharge also occurs at springs along the mountain front. Much of the flow that discharges from these springs undergoes evapotranspiration. Some flow from the springs infiltrates nearby alluvial deposits.

Annual precipitation in the Manzanita Mountains is in the form of rainfall and minimal snowfall. July and August are typically the wettest months; 45 to 62% of annual precipitation accumulates during summer thunderstorms from July to October (WRCC 2002). The average annual precipitation in this drainage basin is estimated to range between 12 and 16 inches (SNL/NM April 2008a). Annual potential evapotranspiration in the Albuquerque area greatly exceeds annual precipitation. Because much of the rainfall in the Lurance Canyon drainage occurs during the summer, losses to evapotranspiration are high. A small percentage may infiltrate into the exposed bedrock or into alluvial deposits along the canyon floor.

Ephemeral surface-water flows occur in response to precipitation in the drainage basin. Two piezometers (12AUP-01 and CYN-MW2D) were constructed in the Study Area to monitor moisture within the channel deposits at the contact with underlying Precambrian bedrock. No appreciable water has been detected in either piezometer.

Figure 1.3-1 provides the locations of the new groundwater monitoring wells and shows the potentiometric surface for the Study Area monitoring well network based on October 2010 water level measurements. The general direction of groundwater flow beneath the Study Area is to the west as indicated by the potentiometric surface. No water supply wells are located near the Study Area, except for the Burn Site Well that had been used only occasionally before 2003 for nonpotable applications such as fire suppression. Groundwater levels in the Paleozoic rocks near the Study Area are not influenced by regional water supply well pumping from the basin-fill alluvial deposits of the Albuquerque Basin.


The apparent horizontal groundwater gradient based on Study Area wells varies from approximately 0.004 to 0.14 feet per foot (SNL/NM April 2008a). The hydraulic gradient west of the Study Area flattens substantially. The wide-ranging hydraulic gradients in the Study Area indicate that localized groundwater systems associated with brecciated fault zones in the low-permeability fractured bedrock are poorly connected and are effectively compartmentalized.

## 1.4 Project Objectives

The objectives of this field program were to perform soil sampling at 10 borehole (BH) locations (BH001 through BH010) and to install and develop four groundwater monitoring wells (CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12). This report is organized by activity, as follows:

- Chapter 2.0 describes the drilling and sampling of the 10 deep boreholes (BH001 through BH010).
- Chapter 3.0 presents the well installation and development activities for wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12.
- Chapter 4.0 discusses the land surveying performed for wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12.
- Chapter 5.0 discusses waste management activities.
- Chapter 6.0 discusses hydrologic slug tests performed on the four new wells.
- Chapter 7.0 addresses variances from the Characterization Work Plan (SNL/NM November 2009).
- Chapter 8.0 discusses groundwater analytical results for two quarters of monitoring.
- Chapter 9.0 lists the references cited in this report.

This report meets the reporting requirements of both the NMED and New Mexico Office of the State Engineer (NMOSE) as described in the Characterization Work Plan (SNL/NM November 2009). The Order specifies the required elements for reporting installation of monitoring wells (NMED April 2004). The NMOSE requirements are provided in "Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells" (NMOSE August 2005) and in 19.27.4 New Mexico Administrative Code. Appendix A presents the well data required by the NMED for the newly installed BSG monitoring wells.

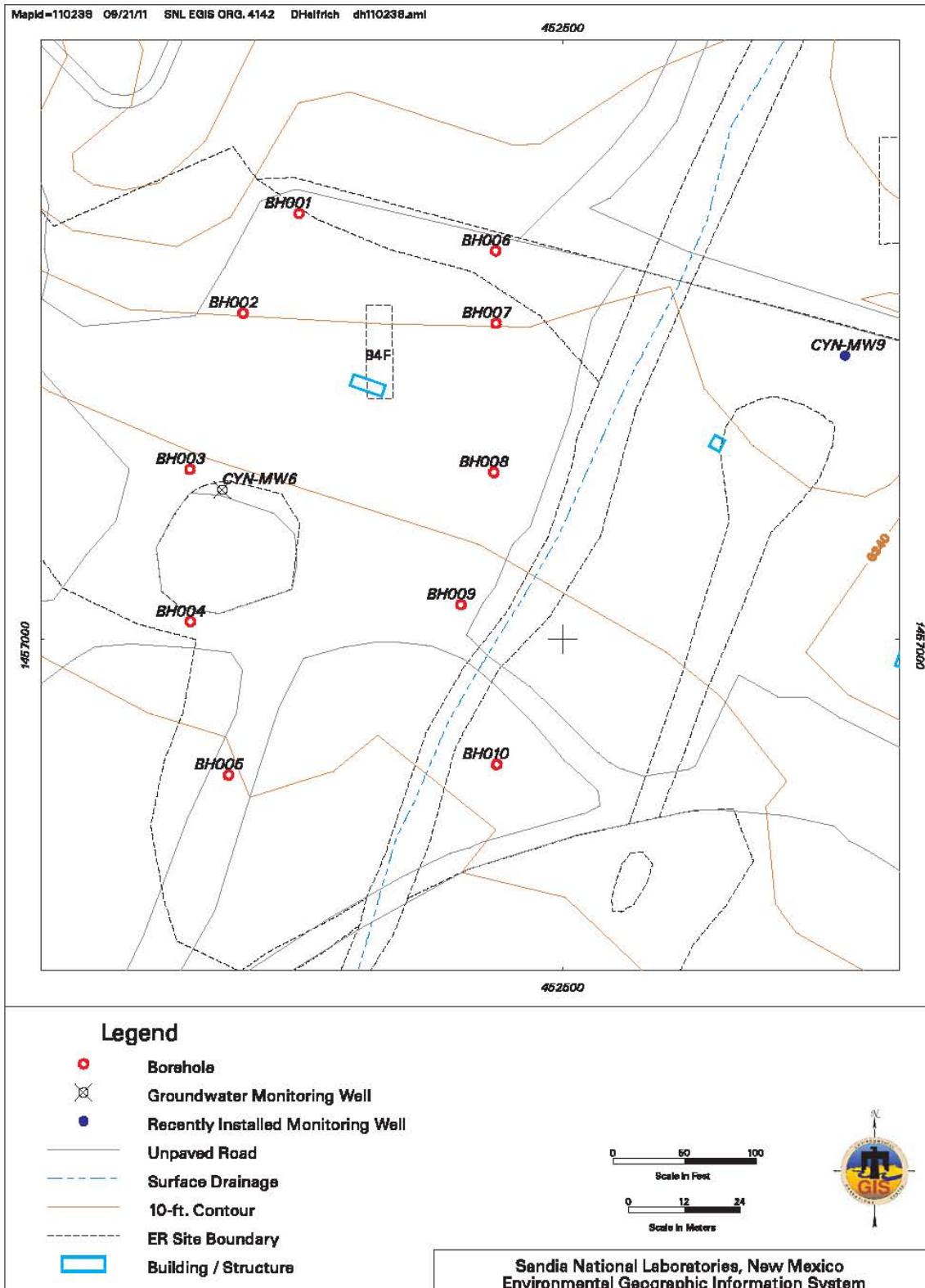


**Figure 1.3-1**  
**Burn Site Groundwater Monitoring Well Network and Potentiometric Surface Map (October 2010)**

## 2.0 DRILLING AND SAMPLING OF DEEP BOREHOLES

### 2.1 Drilling and Sampling

SNL/NM personnel conducted soil sampling in the vicinity of CYN-MW6 to determine whether a continuing source of perchlorate or other constituents of concern is present in unconsolidated deposits. All drilling and soil sampling operations were performed by WDC and supervised by ER Operations personnel. The boreholes at the soil sampling locations were drilled using a hollow-stem auger (HSA) drilling rig and associated equipment. The soil sampling field activities consisted of mobilization, sample collection, and sample shipping. The activities followed the SNL/NM administrative operating procedures (AOPs) and field operating procedures (FOPs) as described in the NMED-approved Characterization Work Plan (SNL/NM November 2009).


Deep borehole drilling and soil sampling were completed in July 2010 and consisted of sampling at 10 locations along two north-south lines that straddle monitoring well CYN-MW6 (Figure 2.1-1). The north-south-trending lines contained five locations each. The western line of sampling locations was established so that location BH003 was within 20 feet of CYN-MW6. The eastern line of sampling locations was placed 200 feet east of the western line to avoid the clean backfill associated with SWMU 94F between the two lines of borehole locations.

Samples were collected from unconsolidated deposits (alluvium and colluvium) at 2 and 5 feet bgs and at approximate 5-foot intervals downward to the top of bedrock (Table 2.1-1). These sampling intervals were target depths only; the unconsolidated deposits contained a considerable percentage of cobbles, and sufficient amounts of soil could not be collected for analysis. Competent bedrock was not sampled. The unconsolidated deposits were found to have a maximum thickness of 35 feet on the southern end of the two sampling lines. The unconsolidated deposits thin rapidly to the north into exposures of bedrock near the northernmost sampling locations.

In accordance with FOP 94-05 (SNL/NM February 1994), a geologist described the lithology of the soil types encountered during drilling. The samples were collected by personnel from the Environmental Field Office (EFO) and quickly transferred from the split spoon into the sample containers. Samples were immediately labeled and placed into a cooler, stored at 4°Celsius (°C), and delivered to the Sample Management Office for processing and shipment to the appropriate analytical laboratory. A completed Analysis Request and Chain-of-Custody form accompanied each shipment.

All soil samples were shipped to GEL Laboratories LLC (GEL) in Charleston, South Carolina, for analyses. Soil samples from all locations and depths were analyzed for nitrate plus nitrite (NPN), perchlorate, semivolatile organic compounds (SVOCs), and volatile organic compounds (VOCs) following EPA analytical methods (Table 2.1-2). GEL was responsible for implementing the requirements of the method, including analytical methodology, target analytes for quantification, and internal quality assurance/quality control procedures.

As previously discussed, the unconsolidated deposits contained a considerable percentage of cobbles. Even with multiple sampling runs at a specified depth, sufficient amounts of soil were not collected in the sample spoon to perform all analyses on all samples. As a result, some sampling depths produced no soil for analyses, and several other sampling depths produced a limited sample volume that required analyte prioritization (Table 2.1-1).



**Figure 2.1-1**  
**Burn Site Groundwater Characterization Soil Sampling Locations, July 2010**

Table 2.1-1  
Summary of Burn Site Groundwater Characterization Soil Samples, July 2010

| Sample Location | Sample Interval (ft bgs) | ER Sample ID   | Sample Date | AR/COC | Sample Number | Sample Type                               | Comments                           |
|-----------------|--------------------------|----------------|-------------|--------|---------------|-------------------------------------------|------------------------------------|
| BH001           | 0-2                      | BSG-BH001-0002 | 7-Jul-10    | 613136 | 089274        | Environmental                             |                                    |
|                 | 4.5-5.5                  | BSG-BH001-0005 | 7-Jul-10    | 613136 | 089275        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH001-0010 | 7-Jul-10    | 613136 | 089276        | Environmental                             |                                    |
|                 | 14.5-15.5                | BSG-BH001-0015 | 7-Jul-10    | 613136 | 089277        | Environmental                             |                                    |
|                 | 19.5-20.5                | BSG-BH001-0020 | 7-Jul-10    | 613136 | 089278        | Environmental                             |                                    |
| BH002           | 0-2                      | BSG-BH002-0002 | 8-Jul-10    | 613137 | 089282        | Environmental                             |                                    |
|                 | 0-2                      | BSG-BH002-0002 | 8-Jul-10    | 613137 | 089283        | Duplicate                                 |                                    |
|                 | 4.5-5.5                  | BSG-BH002-0005 | 8-Jul-10    | 613137 | 089284        | Environmental                             |                                    |
| BH003           | 0-2                      | BSG-BH003-0002 | 8-Jul-10    | 613137 | 089285        | Environmental                             |                                    |
|                 | 0-2                      | BSG-BH003-0002 | 8-Jul-10    | 613137 | 089286        | Duplicate                                 |                                    |
|                 | 4.5-5.5                  | BSG-BH003-0005 | 8-Jul-10    | 613137 | 089287        | Environmental                             |                                    |
| BH004           | 0-2                      | BSG-BH004-0002 | 8-Jul-10    | 613137 | 089288        | Environmental                             |                                    |
|                 | 4.5-5.5                  | BSG-BH004-0005 | 8-Jul-10    | 613137 | 089289        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH004-0010 | 8-Jul-10    | 613137 | 089290        | Environmental                             |                                    |
|                 | 14.5-15.5                | BSG-BH004-0015 | 8-Jul-10    | 613137 | 089291        | Environmental                             |                                    |
| BH005           | 0-2                      | BSG-BH005-0002 | 8-Jul-10    | 613137 | 089292        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH005-0010 | 8-Jul-10    | 613137 | 089293        | Environmental                             |                                    |
|                 | 14.5-15.5                | BSG-BH005-0015 | 8-Jul-10    | 613137 | 089294        | Environmental                             | Limited recovery,<br>no VOC sample |
|                 | 19.5-20.5                | BSG-BH005-0020 | 8-Jul-10    | 613137 | 089295        | Environmental                             | Limited recovery,<br>no VOC sample |
|                 | 24.5-25.5                | —              | —           | —      | —             | Very coarse gravel,<br>no sample recovery |                                    |
|                 | 29.5-30.5                | —              | —           | —      | —             | Very coarse gravel,<br>no sample recovery |                                    |
|                 | 34.5-35.5                | BSG-BH005-0035 | 8-Jul-10    | 613137 | 089296        | Environmental                             | Limited recovery,<br>no VOC sample |
| BH006           | 0-2                      | BSG-BH006-0002 | 8-Jul-10    | 613138 | 089298        | Environmental                             |                                    |
|                 | 4.5 -5.5                 | BSG-BH006-0005 | 8-Jul-10    | 613138 | 089299        | Environmental                             | Limited recovery,<br>no VOC sample |
| BH007           | 0 -2                     | BSG-BH007-0002 | 8-Jul-10    | 613138 | 089300        | Environmental                             |                                    |
|                 | 4.5-5.5                  | BSG-BH007-0005 | 8-Jul-10    | 613138 | 089301        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH007-0010 | 8-Jul-10    | 613138 | 089302        | Environmental                             | Limited recovery,<br>no VOC sample |
| BH008           | 0 -2                     | BSG-BH008-0002 | 8-Jul-10    | 613138 | 089304        | Environmental                             |                                    |
|                 | 0 -2                     | BSG-BH008-0002 | 8-Jul-10    | 613138 | 089305        | Duplicate                                 |                                    |
|                 | 4.5-5.5                  | BSG-BH008-0005 | 8-Jul-10    | 613138 | 089306        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH008-0010 | 8-Jul-10    | 613138 | 089307        | Environmental                             |                                    |
|                 | 14.5 -15.5               | BSG-BH008-0015 | 8-Jul-10    | 613138 | 089308        | Environmental                             |                                    |
|                 | 19.5-20.5                | BSG-BH008-0020 | 8-Jul-10    | 613138 | 089309        | Environmental                             |                                    |
| BH009           | 0-2                      | BSG-BH009-0002 | 8-Jul-10    | 613139 | 089311        | Environmental                             |                                    |
|                 | 4.5-5.5                  | BSG-BH009-0005 | 8-Jul-10    | 613139 | 089312        | Environmental                             |                                    |
|                 | 9.5-10.5                 | BSG-BH009-0010 | 8-Jul-10    | 613139 | 089313        | Environmental                             |                                    |
|                 | 14.5-15.5                | BSG-BH009-0015 | 8-Jul-10    | 613139 | 089314        | Environmental                             |                                    |
|                 | 19.5-20.5                | BSG-BH009-0020 | 8-Jul-10    | 613139 | 089315        | Environmental                             | Limited recovery,<br>no VOC sample |
|                 | 24.5-25.5                | BSG-BH009-0025 | 8-Jul-10    | 613139 | 089316        | Environmental                             |                                    |

Refer to footnotes at end of table.

Table 2.1-1 (Concluded)  
Summary of Burn Site Groundwater Characterization Soil Samples, July 2010

| Sample Location | Sample Interval (ft bgs) | ER Sample ID   | Sample Date | AR/COC | Sample Number | Sample Type   | Comments                                                                    |
|-----------------|--------------------------|----------------|-------------|--------|---------------|---------------|-----------------------------------------------------------------------------|
| BH010           | 0–2                      | BSG-BH010-0002 | 8-Jul-10    | 613139 | 089318        | Environmental |                                                                             |
|                 | 0–2                      | BSG-BH010-0002 | 8-Jul-10    | 613139 | 089319        | Duplicate     |                                                                             |
|                 | 4.5–5.5                  | BSG-BH010-0005 | 8-Jul-10    | 613139 | 089320        | Environmental |                                                                             |
|                 | 9.5–10.5                 | BSG-BH010-0010 | 8-Jul-10    | 613139 | 089321        | Environmental |                                                                             |
|                 | 14.5–15.5                | BSG-BH010-0015 | 8-Jul-10    | 613139 | 089322        | Environmental |                                                                             |
|                 | 19.5–20.5                | —              | —           | —      | —             | —             | Very coarse gravel, no sample recovery                                      |
|                 | 24.5–25.5                | —              | —           | —      | —             | —             | Very coarse gravel, no sample recovery                                      |
|                 | 29.5–30.5                | —              | —           | —      | —             | —             | Very coarse gravel, no sample recovery                                      |
|                 | 34.5–35.5                | —              | —           | —      | —             | —             | Very coarse gravel, no sample recovery.<br>Weathered bedrock in drive shoe. |

— = Insufficient soil volume recovered for analysis.

AR/COC = Analysis request/chain-of-custody record.

BH = Borehole.

BSG = Burn Site Groundwater (Study Area).

ER = Environmental Restoration.

ft bgs = Foot (feet) below ground surface.

ID = Identification number.

VOC = Volatile organic compound.

Table 2.1-2  
Analytical Parameters for Burn Site Groundwater Characterization Soil Samples

| Analyte                        | Analytical Method | Reference              |
|--------------------------------|-------------------|------------------------|
| Nitrate plus Nitrite           | EPA 353.2         | EPA 1983               |
| Semivolatile Organic Compounds | SW846-8270        | EPA 1986 (and updates) |
| Volatile Organic Compounds     | SW846-8260        | EPA 1986 (and updates) |
| Perchlorate                    | EPA 314.0         | EPA 1999               |

EPA = U.S. Environmental Protection Agency.

SW = Solid Waste.

Several of the borehole locations had to be modified from the locations proposed in the original Characterization Work Plan figure due to geologic or logistical reasons (Table 2.1-3). Bedrock exposed at the land surface did not permit geologic sampling of unconsolidated deposits. Logistical reasons for slight adjustments of the borehole locations include buried utilities and topography that precluded the safe operation of the drill rig. After sampling was complete, the boreholes were located by SNL/NM GIS [Geographic Information Systems] staff using a hand-held Trimble Global Positioning System unit. The New Mexico State Plane Coordinate System (NMSPC) coordinates for the boreholes are provided in Table 2.1-3.

Table 2.1-3  
Location Data for July 2010 Boreholes in the Burn Site Groundwater Study Area

| Borehole Location ID | NMSPC Coordinates <sup>a</sup> |           | Comments                                                                    |
|----------------------|--------------------------------|-----------|-----------------------------------------------------------------------------|
|                      | Northing                       | Easting   |                                                                             |
| BH001                | 1,457,361                      | 1,592,625 | Moved ~80 ft east from the proposed location due to geologic conditions     |
| BH002                | 1,457,291                      | 1,592,586 | Moved ~40 ft east from the proposed location due to underground utilities   |
| BH003                | 1,457,182                      | 1,592,549 |                                                                             |
| BH004                | 1,457,076                      | 1,592,549 |                                                                             |
| BH005                | 1,456,968                      | 1,592,576 | Moved ~25 ft east from the proposed location due to drill rig access issues |
| BH006                | 1,457,334                      | 1,592,763 | Moved ~40 ft south from the proposed location due to geologic conditions    |
| BH007                | 1,457,284                      | 1,592,763 |                                                                             |
| BH008                | 1,457,180                      | 1,592,761 |                                                                             |
| BH009                | 1,457,087                      | 1,592,738 | Moved ~25 ft west from the proposed location due to drill rig access issues |
| BH010                | 1,456,976                      | 1,592,763 |                                                                             |

<sup>a</sup>Coordinates based on the NMSPC, Central Zone, NAD of 1983 converted mathematically from NAD of 1927 using ARC/Info Workstation Automated Machine Language.

BH = Borehole.

ft = Foot (feet).

ID = Identification number.

NAD = North American Datum.

NMSPC = New Mexico State Plane Coordinate System.

## 2.2 Soil Sampling Analytical Results

The analytical results for detected analytes in the soil samples are presented in Tables 2.2-1 through 2.2-3. As required by Section VI.K.2 of the Order (NMED April 2004), the concentrations reported in site soil samples were compared with the soil screening levels (SSLs) presented in "New Mexico Environment Department Technical Background Document for Development of Soil Screening Levels, Revision 5.0" (NMED August 2009). For comparison purposes, the tables provide the following three values (if available) for each analyte: (1) the SSL for residential soil; (2) the SSL for the groundwater pathway with a dilution attenuation factor (DAF) of 20; and (3) the SSL for the groundwater pathway with a DAF of 1. This section summarizes the analytical results for each analyte or group of analytes, and Section 2.3 discusses the extent of these analytes in the Study Area soil.

**Table 2.2-1**  
**Summary of 2010 Soil Sample Nitrate plus Nitrite**  
**Analytical Results for the Burn Site Groundwater Study Area**

| Sample Attributes          |                    |                   | NPN <sup>b</sup><br>(EPA Method 353.2)<br>(mg/kg) |
|----------------------------|--------------------|-------------------|---------------------------------------------------|
| Record Number <sup>a</sup> | ER Sample ID       | Sample Depth (ft) |                                                   |
| 613136                     | BSG-BH001-0002     | 0-2               | 1.09 J                                            |
| 613136                     | BSG-BH001-0005     | 4.5-5.5           | 5.02 J                                            |
| 613136                     | BSG-BH001-0010     | 9.5-10.5          | 3.32 J                                            |
| 613136                     | BSG-BH001-0015     | 14.5-15.5         | 0.794 J                                           |
| 613136                     | BSG-BH001-0020     | 19.5-20.5         | 4.83 J                                            |
| 613137                     | BSG-BH002-0002     | 0-2               | 2.48 J                                            |
| 613137                     | BSG-BH002-0002—DUP | 0-2               | 3.39 J                                            |
| 613137                     | BSG-BH002-0005     | 4.5-5.5           | 2.73 J                                            |
| 613137                     | BSG-BH003-0002     | 0-2               | 15.7 J                                            |
| 613137                     | BSG-BH003-0002—DUP | 0-2               | 18.6 J                                            |
| 613137                     | BSG-BH003-0005     | 4.5-5.5           | 25.1 J                                            |
| 613137                     | BSG-BH004-0002     | 0-2               | 19.7 J                                            |
| 613137                     | BSG-BH004-0005     | 4.5-5.5           | 5.34 J                                            |
| 613137                     | BSG-BH004-0010     | 9.5-10.5          | 0.484 J                                           |
| 613137                     | BSG-BH004-0015     | 14.5-15.5         | 0.377 J                                           |
| 613137                     | BSG-BH005-0002     | 0-2               | 0.715 J                                           |
| 613137                     | BSG-BH005-0010     | 9.5-10.5          | 0.424 J                                           |
| 613137                     | BSG-BH005-0015     | 14.5-15.5         | 0.413 J                                           |
| 613137                     | BSG-BH005-0020     | 19.5-20.5         | 0.412 J                                           |
| 613137                     | BSG-BH005-0035     | 34.5-35.5         | 0.651 J+                                          |
| 613138                     | BSG-BH006-0002     | 0-2               | 1.59 J+                                           |
| 613138                     | BSG-BH006-0005     | 4.5-5.5           | 5.38 J+                                           |
| 613138                     | BSG-BH007-0002     | 0-2               | 2.29 J+                                           |
| 613138                     | BSG-BH007-0005     | 4.5-5.5           | 1.13 J+                                           |
| 613138                     | BSG-BH007-0010     | 9.5-10.5          | 5.17 J+                                           |
| 613138                     | BSG-BH008-0002     | 0-2               | 4.74 J+                                           |
| 613138                     | BSG-BH008-0002—DUP | 0-2               | 7.15 J+                                           |
| 613138                     | BSG-BH008-0005     | 4.5-5.5           | 9.49 J+                                           |
| 613138                     | BSG-BH008-0010     | 9.5-10.5          | 13.8 J+                                           |
| 613138                     | BSG-BH008-0015     | 14.5-15.5         | 2.94 J+                                           |
| 613138                     | BSG-BH008-0020     | 19.5-20.5         | 8.14 J+                                           |
| 613139                     | BSG-BH009-0002     | 0-2               | 2.14 J+                                           |
| 613139                     | BSG-BH009-0005     | 4.5-5.5           | 3.33 J+                                           |
| 613139                     | BSG-BH009-0010     | 9.5-10.5          | 2.41 J+                                           |
| 613139                     | BSG-BH009-0015     | 14.5-15.5         | 1.59 J+                                           |
| 613139                     | BSG-BH009-0020     | 19.5-20.5         | 4.53 J+                                           |
| 613139                     | BSG-BH009-0025     | 24.5-25.5         | 4.38 J+                                           |
| 613139                     | BSG-BH010-0002     | 0-2               | 1.60 J+                                           |
| 613139                     | BSG-BH010-0002—DUP | 0-2               | 1.28 J+                                           |

Refer to footnotes at end of table.

Table 2.2-1 (Concluded)  
 Summary of 2010 Soil Sample Nitrate plus Nitrite  
 Analytical Results for the Burn Site Groundwater Study Area

| Sample Attributes          |                |                   | NPN <sup>b</sup><br>(EPA Method 353.2)<br>(mg/kg) |
|----------------------------|----------------|-------------------|---------------------------------------------------|
| Record Number <sup>a</sup> | ER Sample ID   | Sample Depth (ft) |                                                   |
| 613139                     | BSG-BH010-0005 | 4.5–5.5           | 0.338 J+                                          |
| 613139                     | BSG-BH010-0010 | 9.5–10.5          | 0.496 J+                                          |
| 613139                     | BSG-BH010-0015 | 14.5–15.5         | 1.32 J+                                           |

<sup>a</sup>Analysis request/chain-of-custody record.

<sup>b</sup>For data comparison purposes:

NMED Soil Screening Level for Nitrate, Residential is 125,000 mg/kg.

NMED Soil Screening Level for Nitrate, Groundwater Pathway, DAF of 20 is 335 mg/kg.

NMED Soil Screening Level for Nitrate, Groundwater Pathway, DAF of 1 is 16.7 mg/kg.

Reference: NMED August 2009, "New Mexico Environment Department Technical Background Document for Development of Soil Screening Levels, Revision 5.0."

BH = Borehole.

BSG = Burn Site Groundwater (Study Area).

DAF = Dilution Attenuation Factor.

DUP = Duplicate.

EPA = U.S. Environmental Protection Agency

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification number.

J = Estimated value as determined during data validation.

J+ = Estimated value with a suspected positive bias as determined during data validation.

mg/kg = Milligram(s) per kilogram.

NMED = New Mexico Environment Department.

NPN = Nitrate plus nitrite.

**Table 2.2-2**  
**Summary of 2010 Soil Sample Semivolatile Organic Compound**  
**Analytical Results for the Burn Site Groundwater Study Area**

| Sample Attributes          |                    |                   | SVOCs <sup>b</sup><br>(EPA Method 8270)<br>( $\mu$ g/kg) |
|----------------------------|--------------------|-------------------|----------------------------------------------------------|
| Record Number <sup>a</sup> | ER Sample ID       | Sample Depth (ft) | bis(2-Ethylhexyl)phthalate                               |
| 613136                     | BSG-BH001-0002     | 0-2               | ND (<66.7)                                               |
| 613136                     | BSG-BH001-0005     | 4.5-5.5           | ND (<66.6)                                               |
| 613136                     | BSG-BH001-0010     | 9.5-10.5          | ND (<66.7)                                               |
| 613136                     | BSG-BH001-0015     | 14.5-15.5         | ND (<66.7)                                               |
| 613136                     | BSG-BH001-0020     | 19.5-20.5         | 131                                                      |
| 613137                     | BSG-BH002-0002     | 0-2               | 87.9                                                     |
| 613137                     | BSG-BH002-0002—DUP | 0-2               | 131                                                      |
| 613137                     | BSG-BH002-0005     | 4.5-5.5           | 110                                                      |
| 613137                     | BSG-BH003-0002     | 0-2               | ND (<66.6)                                               |
| 613137                     | BSG-BH003-0002—DUP | 0-2               | ND (<66.6)                                               |
| 613137                     | BSG-BH003-0005     | 4.5-5.5           | 96.2                                                     |
| 613137                     | BSG-BH004-0002     | 0-2               | ND (<66.7)                                               |
| 613137                     | BSG-BH004-0005     | 4.5-5.5           | ND (<66.5)                                               |
| 613137                     | BSG-BH004-0010     | 9.5-10.5          | ND (<66.7)                                               |
| 613137                     | BSG-BH004-0015     | 14.5-15.5         | ND (<66.5)                                               |
| 613137                     | BSG-BH005-0002     | 0-2               | ND (<66.7)                                               |
| 613137                     | BSG-BH005-0010     | 9.5-10.5          | ND (<66.6)                                               |
| 613137                     | BSG-BH005-0015     | 14.5-15.5         | ND (<66.6)                                               |
| 613137                     | BSG-BH005-0020     | 19.5-20.5         | ND (<66.5)                                               |
| 613137                     | BSG-BH005-0035     | 34.5-35.5         | ND (<66.6)                                               |
| 613138                     | BSG-BH006-0002     | 0-2               | ND (<66.7)                                               |
| 613138                     | BSG-BH006-0005     | 4.5-5.5           | ND (<66.7)                                               |
| 613138                     | BSG-BH007-0002     | 0-2               | ND (<66.6)                                               |
| 613138                     | BSG-BH007-0005     | 4.5-5.5           | ND (<66.6)                                               |
| 613138                     | BSG-BH007-0010     | 9.5-10.5          | ND (<66.6)                                               |
| 613138                     | BSG-BH008-0002     | 0-2               | ND (<66.6)                                               |
| 613138                     | BSG-BH008-0002—DUP | 0-2               | ND (<66.7)                                               |
| 613138                     | BSG-BH008-0005     | 4.5-5.5           | ND (<66.6)                                               |
| 613138                     | BSG-BH008-0010     | 9.5-10.5          | ND (<66.7)                                               |
| 613138                     | BSG-BH008-0015     | 14.5-15.5         | ND (<66.5)                                               |
| 613138                     | BSG-BH008-0020     | 19.5-20.5         | ND (<66.6)                                               |
| 613139                     | BSG-BH009-0002     | 0-2               | ND (<66.5)                                               |
| 613139                     | BSG-BH009-0005     | 4.5-5.5           | ND (<333) U                                              |
| 613139                     | BSG-BH009-0010     | 9.5-10.5          | ND (<66.6)                                               |
| 613139                     | BSG-BH009-0015     | 14.5-15.5         | ND (<66.7)                                               |
| 613139                     | BSG-BH009-0020     | 19.5-20.5         | ND (<66.5)                                               |
| 613139                     | BSG-BH009-0025     | 24.5-25.5         | ND (<66.6)                                               |
| 613139                     | BSG-BH010-0002     | 0-2               | ND (<66.6)                                               |
| 613139                     | BSG-BH010-0002—DUP | 0-2               | ND (<66.5)                                               |

Refer to footnotes at end of table.

Table 2.2-2 (Concluded)  
 Summary of 2010 Soil Sample Semivolatile Organic Compound  
 Analytical Results for the Burn Site Groundwater Study Area

| Sample Attributes          |                |                   | SVOCs <sup>b</sup><br>(EPA Method 8270)<br>( $\mu$ g/kg) |
|----------------------------|----------------|-------------------|----------------------------------------------------------|
| Record Number <sup>a</sup> | ER Sample ID   | Sample Depth (ft) | bis(2-Ethylhexyl)phthalate                               |
| 613139                     | BSG-BH010-0005 | 4.5–5.5           | ND (<66.4)                                               |
| 613139                     | BSG-BH010-0010 | 9.5–10.5          | ND (<66.3)                                               |
| 613139                     | BSG-BH010-0015 | 14.5–15.5         | ND (<66.2)                                               |

<sup>a</sup>Analysis request/chain-of-custody record.

<sup>b</sup>For data comparison purposes:

NMED Soil Screening Level for bis(2-Ethylhexyl)phthalate, Residential is 347,000  $\mu$ g/kg.

NMED Soil Screening Level for bis(2-Ethylhexyl)phthalate, Groundwater Pathway, DAF of 20 is 238,000  $\mu$ g/kg.

NMED Soil Screening Level for bis(2-Ethylhexyl)phthalate, Groundwater Pathway, DAF of 1 is 11,900  $\mu$ g/kg.

Reference: NMED August 2009, "New Mexico Environment Department Technical Background Document for Development of Soil Screening Levels, Revision 5.0."

BH = Borehole.

BSG = Burn Site Groundwater (Study Area).

DAF = Dilution Attenuation Factor.

DUP = Duplicate.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification number.

$\mu$ g/kg = Microgram(s) per kilogram.

ND = Final concentration in the sample was found to be below the effective detection limit (in parentheses).

NMED = New Mexico Environment Department.

SVOC = Semivolatile organic compound.

U = Not detected below effective practical quantitation limit as determined during data validation (in parentheses).

**Table 2.2-3**  
**Summary of 2010 Soil Sample Volatile Organic Compound**  
**Analytical Results for the Burn Site Groundwater Study Area**

| Sample Attributes          |                    |                   | VOCs <sup>b</sup><br>(EPA Method 8260)<br>(µg/kg) |             |
|----------------------------|--------------------|-------------------|---------------------------------------------------|-------------|
| Record Number <sup>a</sup> | ER Sample ID       | Sample Depth (ft) | Toluene                                           | Xylene      |
| 613136                     | BSG-BH001-0002     | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613136                     | BSG-BH001-0005     | 4.5-5.5           | 1.03                                              | ND (<0.300) |
| 613136                     | BSG-BH001-0010     | 9.5-10.5          | 0.750                                             | ND (<0.300) |
| 613136                     | BSG-BH001-0015     | 14.5-15.5         | 5.99                                              | ND (<0.300) |
| 613136                     | BSG-BH001-0020     | 19.5-20.5         | ND (<0.300)                                       | ND (<0.300) |
| 613137                     | BSG-BH002-0002     | 0-2               | ND (<0.300)                                       | 0.350       |
| 613137                     | BSG-BH002-0002—DUP | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613137                     | BSG-BH002-0005     | 4.5-5.5           | 4.10                                              | ND (<0.300) |
| 613137                     | BSG-BH003-0002     | 0-2               | ND (<0.300)                                       | 0.320       |
| 613137                     | BSG-BH003-0002—DUP | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613137                     | BSG-BH003-0005     | 4.5-5.5           | 20.4                                              | ND (<0.300) |
| 613137                     | BSG-BH004-0002     | 0-2               | ND (<0.300)                                       | 0.550       |
| 613137                     | BSG-BH004-0005     | 4.5-5.5           | 9.84                                              | ND (<0.300) |
| 613137                     | BSG-BH004-0010     | 9.5-10.5          | ND (<0.300)                                       | ND (<0.300) |
| 613137                     | BSG-BH004-0015     | 14.5-15.5         | 31.9                                              | ND (<0.300) |
| 613137                     | BSG-BH005-0002     | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613137                     | BSG-BH005-0010     | 9.5-10.5          | 3.75                                              | ND (<0.300) |
| 613138                     | BSG-BH006-0002     | 0-2               | ND (<0.300)                                       | 0.430       |
| 613138                     | BSG-BH007-0002     | 0-2               | ND (<0.300)                                       | 0.380       |
| 613138                     | BSG-BH007-0005     | 4.5-5.5           | 11.9                                              | ND (<0.300) |
| 613138                     | BSG-BH008-0002     | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613138                     | BSG-BH008-0002—DUP | 0-2               | ND (<0.300)                                       | 0.340       |
| 613138                     | BSG-BH008-0005     | 4.5-5.5           | 19.6                                              | ND (<0.300) |
| 613138                     | BSG-BH008-0010     | 9.5-10.5          | 26.4                                              | 0.640       |
| 613138                     | BSG-BH008-0015     | 14.5-15.5         | 15.4                                              | ND (<0.300) |
| 613138                     | BSG-BH008-0020     | 19.5-20.5         | 2.21                                              | ND (<0.300) |
| 613139                     | BSG-BH009-0002     | 0-2               | ND (<0.300)                                       | ND (<0.300) |
| 613139                     | BSG-BH009-0005     | 4.5-5.5           | 5.05                                              | ND (<0.300) |
| 613139                     | BSG-BH009-0010     | 9.5-10.5          | 11.4                                              | ND (<0.300) |
| 613139                     | BSG-BH009-0015     | 14.5-15.5         | 9.44                                              | ND (<0.300) |
| 613139                     | BSG-BH009-0025     | 24.5-25.5         | 2.01                                              | ND (<0.300) |
| 613139                     | BSG-BH010-0002     | 0-2               | ND (<0.300)                                       | 0.410       |
| 613139                     | BSG-BH010-0002—DUP | 0-2               | ND (<0.300)                                       | ND (<0.300) |

Refer to footnotes at end of table.

Table 2.2-3 (Concluded)  
 Summary of 2010 Soil Sample Volatile Organic Compound  
 Analytical Results at the Burn Site Groundwater Study Area

| Sample Attributes          |                |                   | VOCs <sup>b</sup><br>(EPA Method 8260)<br>(µg/kg) |             |
|----------------------------|----------------|-------------------|---------------------------------------------------|-------------|
| Record Number <sup>a</sup> | ER Sample ID   | Sample Depth (ft) | Toluene                                           | Xylene      |
| 613139                     | BSG-BH010-0005 | 4.5–5.5           | 4.44                                              | ND (<0.300) |
| 613139                     | BSG-BH010-0010 | 9.5–10.5          | 8.9                                               | ND (<0.300) |
| 613139                     | BSG-BH010-0015 | 14.5–15.5         | 10.8                                              | 0.340       |

<sup>a</sup>Analysis request/chain-of-custody record.

<sup>b</sup>For data comparison purposes:

NMED Soil Screening Levels for Toluene and Xylene, Residential are 5,570,000 and 1,090,000 µg/kg, respectively.

NMED Soil Screening Levels for Toluene and Xylene, Groundwater Pathway, DAF of 20 are 27,700 and 3,520 µg/kg, respectively.

NMED Soil Screening Levels for Toluene and Xylene, Groundwater Pathway, DAF of 1 are 1,380 and 176 µg/kg, respectively.

Reference: NMED August 2009, "New Mexico Environment Department Technical Background Document for Development of Soil Screening Levels, Revision 5.0."

BH = Borehole.

BSG = Burn Site Groundwater (Study Area).

DAF = Dilution Attenuation Factor.

DUP = Duplicate.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification number.

µg/kg = Microgram(s) per kilogram.

ND = Final concentration in the sample was found to be below the effective detection limit (in parentheses).

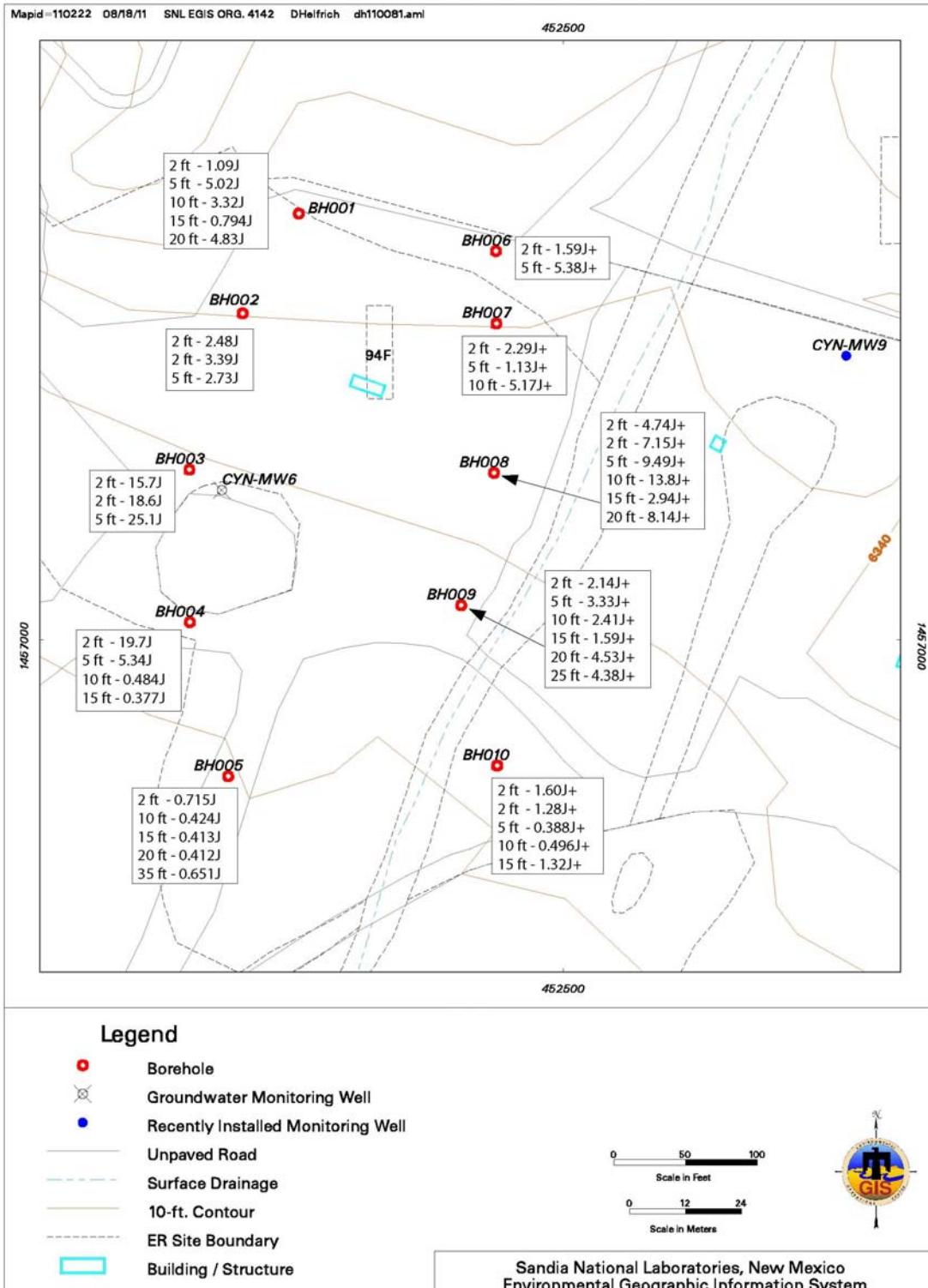
NMED = New Mexico Environment Department.

VOC = Volatile organic compound.

**Perchlorate.** Of 42 samples analyzed, all results were nondetected at a method detection limit (MDL) of 0.040 milligrams per kilogram (mg/kg).

**NPN.** Of 42 samples analyzed, all results indicated detectable concentrations, ranging from 0.338J (where “J” represents an estimated concentration) to 25.1J mg/kg (Table 2.2-1). All the concentration results were assigned “J” or “J+” estimated values based on data validation findings. The NPN concentrations are four orders of magnitude below the NMED SSL for residential soil, and less than one order of magnitude below the NMED SSL for the groundwater pathway with a DAF of 20 (335 mg/kg). Four of the results are within the range (slightly below to slightly above) of the NMED SSL for the groundwater pathway with a DAF of 1 (16.7 mg/kg).

**SVOCs.** Of 42 samples analyzed, only bis(2-ethylhexyl)phthalate was detected in 5 samples at concentrations ranging from 87.9 to 131 micrograms per kilogram ( $\mu\text{g}/\text{kg}$ ) (Table 2.2-2). All detected values are reported at concentrations above the effective MDL and below the effective practical quantitation limit (PQL). One sample result was qualified during data validation as not detected as the compound was reported at a concentration less than 10 times the method blank contamination and less than the effective PQL. The concentrations of bis(2-ethylhexyl)phthalate are extremely low, several orders of magnitude below the NMED SSLs. This SVOC is a common laboratory contaminant.


**VOCs.** Of 36 samples analyzed, only toluene and xylene (total xylenes) were detected (Table 2.2-3). Toluene was detected in 20 samples at concentrations ranging from 0.750 to 31.9  $\mu\text{g}/\text{kg}$ , and xylene (total xylenes) was detected in 9 samples at concentrations ranging from 0.320 to 0.640  $\mu\text{g}/\text{kg}$ . One toluene result and all xylene results were detected at concentrations above the MDL and below the PQL. The concentrations of toluene and xylene (total xylenes) are very low, several orders of magnitude below the NMED SSLs. These two VOCs are common laboratory contaminants.

## 2.3 Extent of Constituents of Concern in Burn Site Groundwater Study Area Soil

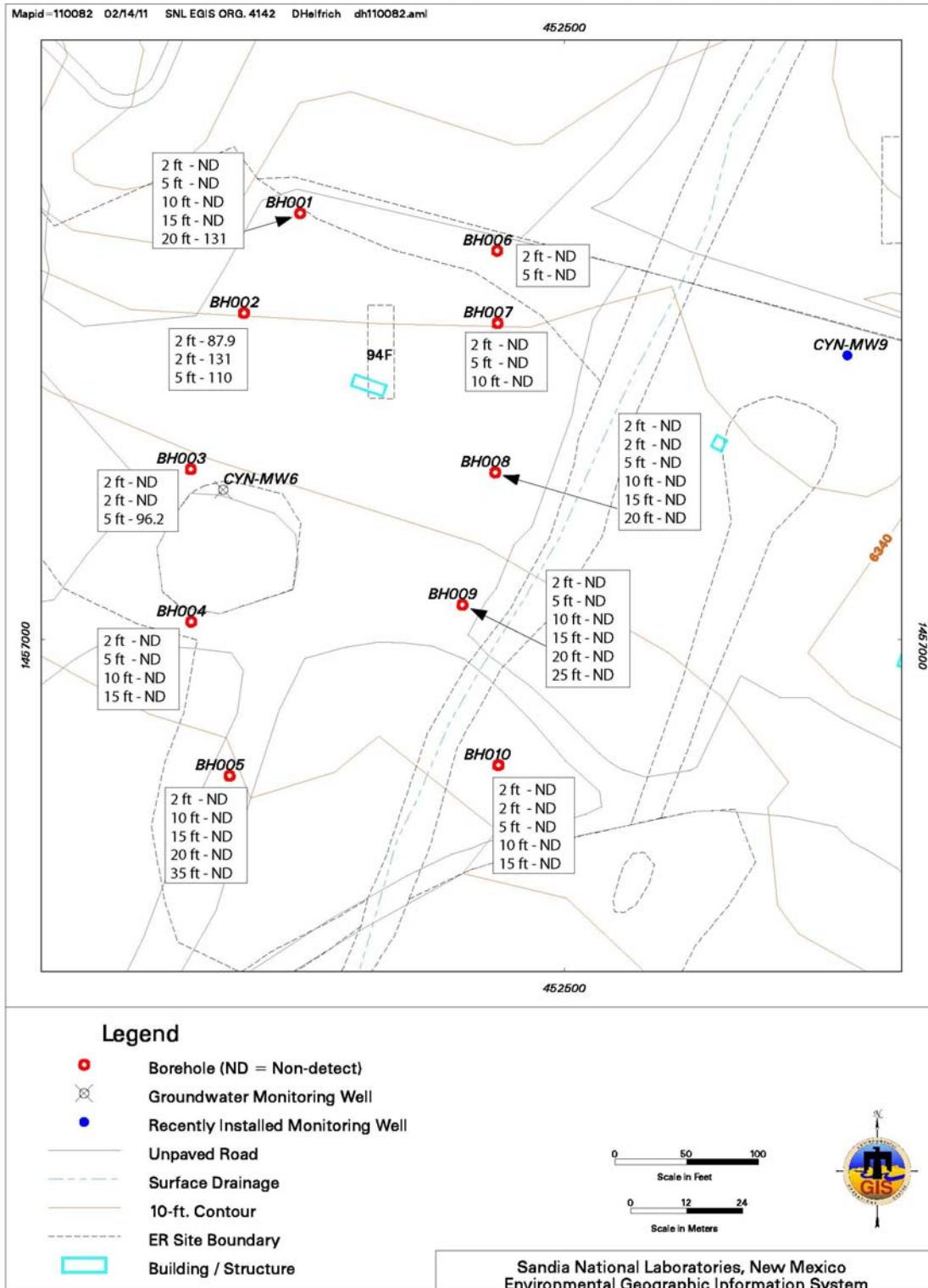
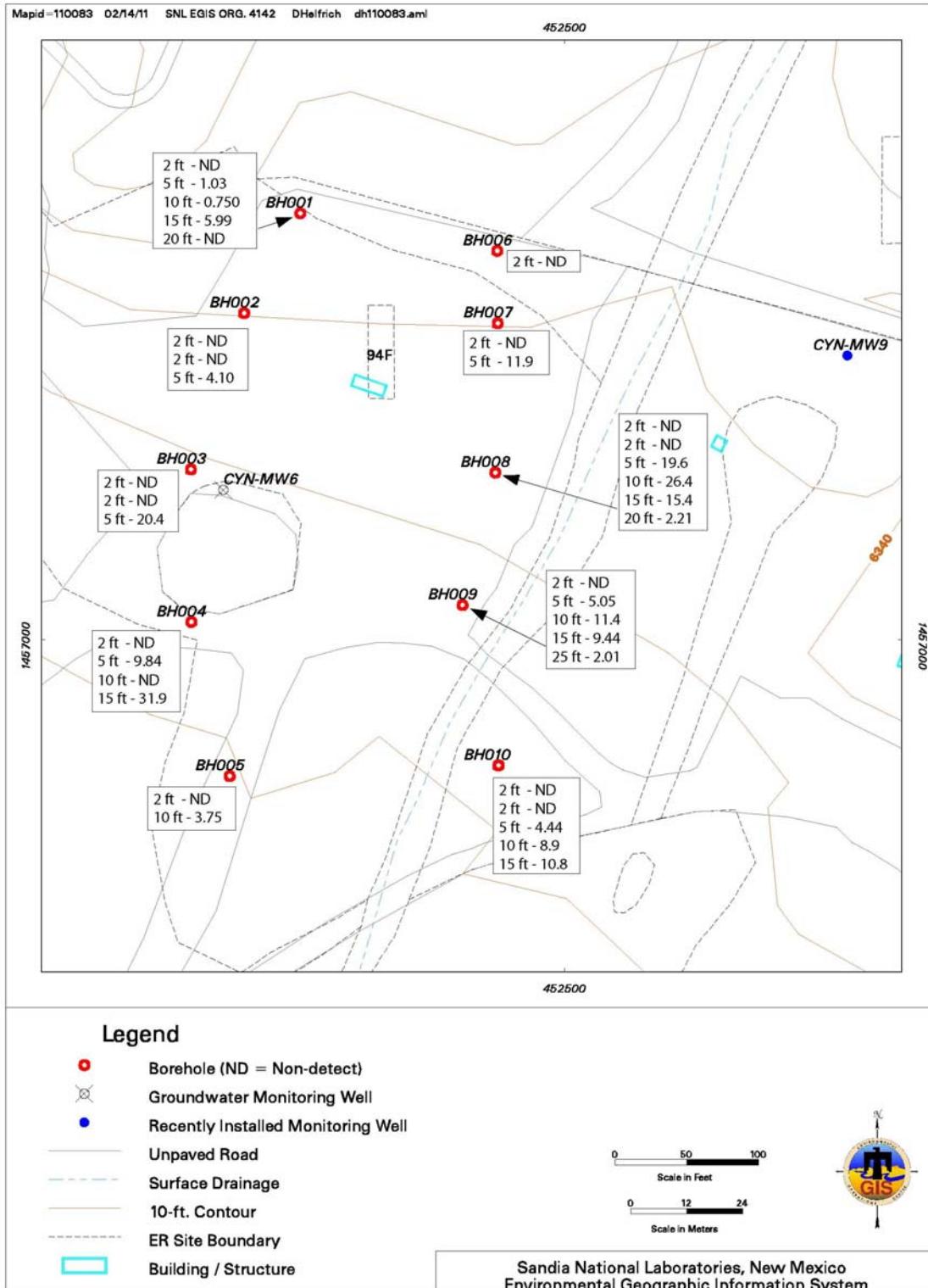
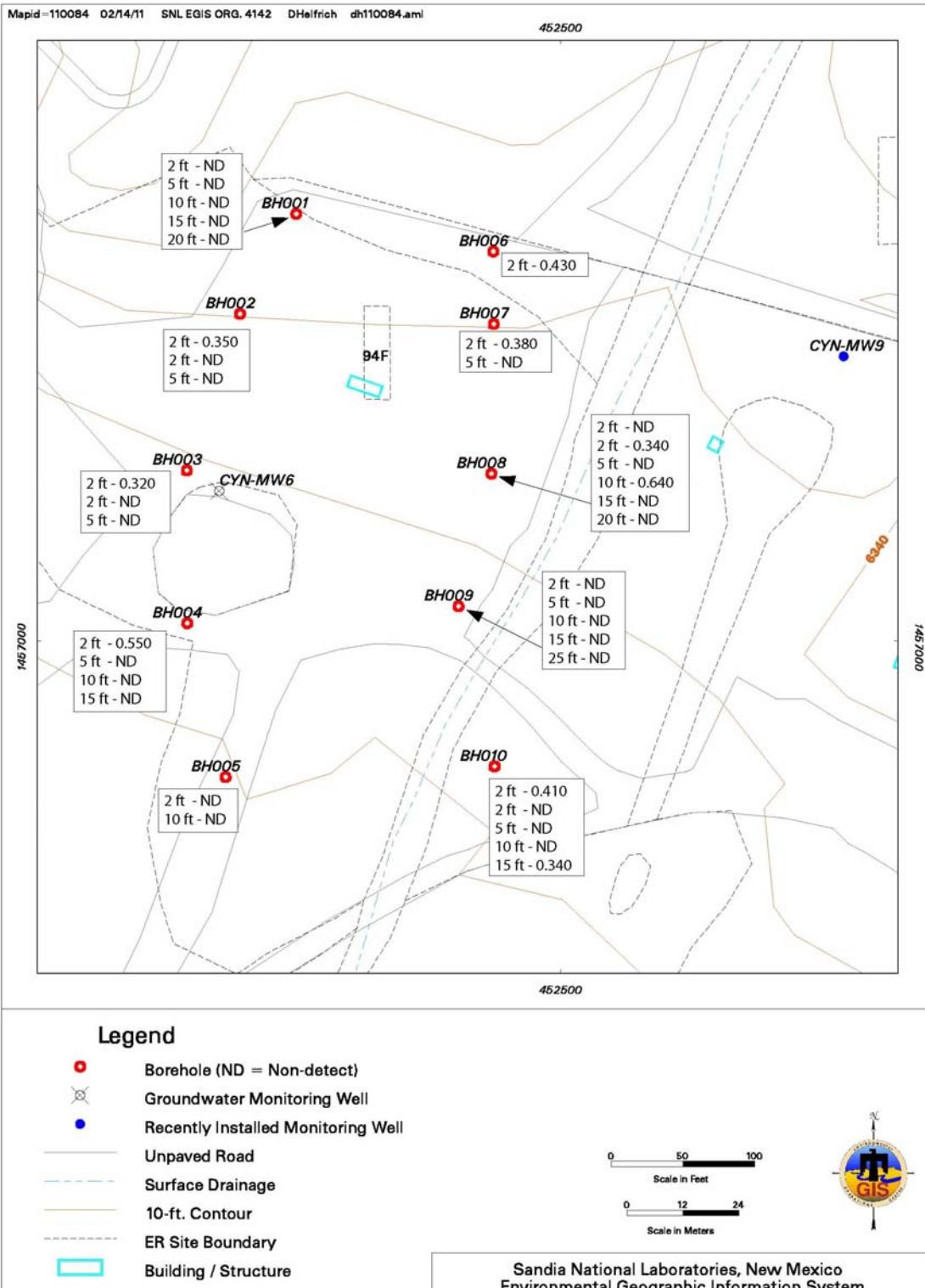

Figure 2.3-1 shows the distribution of NPN concentrations in the Study Area soil samples. NPN was detected at all depths within each of the 10 boreholes. The maximum concentration (25.1J mg/kg) was detected at the 5-foot depth in BH003 adjacent to groundwater monitoring well CYN-MW6. Other locations with the higher concentrations include the 2-foot depth in BH004 and the 10-foot depth in BH008; these locations are adjacent to BH003. No systematic vertical distribution of the NPN concentrations is apparent.

Figure 2.3-2 shows the distribution of bis(2-ethylhexyl)phthalate concentrations in the Study Area soil samples. Extremely low concentrations of bis(2-ethylhexyl)phthalate were detected in samples from BH001, BH002, and BH003, located in the northwestern corner of the Study Area with a maximum concentration of 131  $\mu\text{g}/\text{kg}$ . No systematic vertical distribution of the bis(2-ethylhexyl)phthalate concentrations is apparent.


Figure 2.3-3 shows the distribution of toluene, and Figure 2.3-4 shows the distribution of xylenes (total) concentrations in the Study Area soil samples. As seen with bis(2-ethylhexyl)phthalate, concentrations of toluene and xylenes (total) are extremely low with no apparent systematic distribution of the concentrations.




**Figure 2.3-1**  
**Nitrate plus Nitrite (NPN) Results (mg/kg) for**  
**Burn Site Groundwater Characterization Soil Samples, July 2010**



**Figure 2.3-2**  
**bis(2-Ethylhexyl)phthalate Results ( $\mu\text{g}/\text{kg}$ ) for**  
**Burn Site Groundwater Characterization Soil Samples, July 2010**





**Figure 2.3-4**  
**Xylene (Total Xylenes) Results ( $\mu\text{g}/\text{kg}$ ) for**  
**Burn Site Groundwater Characterization Soil Samples, July 2010**

In summary, perchlorate was not detected in any sample, and the VOC and SVOC concentrations reported are negligible. Although NPN was detected in every soil sample, the concentrations do not present a risk to human health or represent a significant source of nitrate that could further impact groundwater. The groundwater pathway at the Study Area is best represented by the DAF of 20 (deep groundwater, confined conditions due to filled fractures in the upper portion of the bedrock), and all NPN concentrations detected are significantly less than the NMED SSL 335 mg/kg.

Based on the best professional judgment of SNL/NM personnel, the concentrations of these detected compounds did not justify a second phase of deep soil sampling, and it was proposed to the NMED that Phase 2 sampling was not necessary. On August 4, 2010, DOE, Sandia, and NMED personnel met to discuss the Phase 1 soil sampling results. During this meeting, the DOE, Sandia, and NMED reached mutual agreement that based on the perchlorate, NPN, VOC, and SVOC results, a second phase of soil sampling was not required (Tso August 2010).

**This page intentionally left blank.**

## 3.0 MONITORING WELL DRILLING, INSTALLATION, AND DEVELOPMENT

All drilling and monitoring well installation operations were performed by WDC and supervised by SNL/NM ER Operations personnel. The boreholes for groundwater monitoring wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12 (Figure 1.3-1) were drilled using the air-rotary casing hammer (ARCH) method with a Speedstar 50K drilling rig and associated equipment.

The following sections describe the borehole drilling and well construction for each of the four new BSG groundwater monitoring wells. Lithologic logs based on the cuttings returned from the boreholes were generated by the ER Operations geologists and are provided in Appendix B. Appendix C contains the well construction diagrams. Complete field documentation, field forms, daily driller reports, lithologic and geophysical logs, and other documentation for this project are on file at the SNL/NM Customer Funded Records Center.

### 3.1 General Procedures

The drilling equipment was decontaminated with a high-pressure water sprayer (steam cleaner) at a temporary on-site decontamination pad prior to the start of drilling operations. The first 16 to 36 feet of each borehole were advanced with a tricone bit and 9-5/8-inch outside diameter (OD) drive casing to accommodate drilling through the unconsolidated deposits above competent bedrock. After a sufficient socket was drilled into competent bedrock, the drive casing was left in place and the remainder of the borehole was drilled with straight air rotary.

The lithology of the borehole (based on cuttings returned to the surface during drilling) consisted of unconsolidated to semiconsolidated deposits of silt, sand, and gravel. The bedrock at all locations consisted of Precambrian greenish-gray to reddish-pink phyllite. In addition to describing the cuttings returned to the surface, each borehole was video-logged before well materials were installed (Appendix D).

All well materials were installed through the temporary steel drive casing, and the well annulus was grouted to the surface. The well was constructed of nominal 5-inch-diameter (inside diameter of 4.767 inches and OD of 5.563 inches), Schedule 80 PVC, flush-threaded, blank casing and a 20-foot length of 0.020-inch slot, Schedule 80 PVC screen. The sump consisted of a 5-foot length of nominal 5-inch-diameter, Schedule 80 PVC, flush-threaded, blank casing with a threaded end cap placed at the bottom. A 5-inch-long PVC plug was placed in the bottom of the sump to reduce the possibility of dislodging the end cap during future well development and sampling activities. PVC centralizers were placed above and below the screen section and subsequently at every 100 feet along the blank casing.

Colorado Silica Sand (CSS) (No. 10-20) was used as the primary sand pack in the annulus around the screen and extended approximately 5 feet above the top of the screen. A secondary sand pack using No. 60 CSS was placed above the primary sand pack. A bentonite chip plug consisting of 3/8-inch Holeplug™ bentonite chips was placed above the secondary filter pack. The chips were hydrated with approximately 50 gallons of water, and the plug was allowed to set (hydrate) before the first lift of bentonite grout was pumped into the well annulus with a tremie pipe.

Bentonite grout (consisting of Quik Grout™ granulated bentonite and water) was used to fill the remainder of the well annulus to the surface. The first lift of approximately 100 feet of grout (consisting of eight 50-pound bags of Quik Grout™ plus 300 gallons of water) was pumped into the well annulus with a tremie pipe and allowed to set for 24 hours. The subsequent lifts of grout (each batch consisting of eight 50-pound bags of Quik Grout™ plus 300 gallons of water) were then pumped into the annulus with the tremie pipe in approximate 100-foot lifts until the annulus was filled to the surface.

### **3.2 Wellhead Construction**

The wellhead construction for all four groundwater monitoring wells was similar and followed procedures described in the approved Characterization Work Plan (SNL/NM November 2009). For each well, the inner well PVC casing was cut to approximately 30 inches above the ground surface, and a 10-foot length of nominal 12-inch-diameter steel casing was used as the protective casing at the surface. The steel casing, equipped with a hinged locking cap, was placed approximately 7 feet bgs and 3 feet above the ground surface. A fitted locking well cap was also placed on the PVC casing. Concrete was poured into the annulus from the final top of the grout (approximately 5 to 10 feet bgs in each borehole) to the surface. A 3- by 3-foot concrete pad was built around the casing, and a brass marker cap stamped with the well name was placed in the pad. Four steel guard posts were placed around the pad, and the posts and protective casing were painted yellow.

### **3.3 Well Development**

Well development of newly installed wells was performed in accordance with the Well Development FOP 94-41 (SNL/NM November 1994) and the approved Characterization Work Plan (SNL/NM November 2009). The wells were developed with the WDC well development rig.

The following water quality parameters were measured and recorded during well development to determine whether representative water was being produced from the wells at the conclusion of the development process:

- Temperature (°C)
- Specific Conductivity (SC) (micromhos/centimeter)
- pH
- Turbidity (measured in nephelometric turbidity units)

The well development field forms that were completed during development of each of the four wells are provided in Appendix E.

The predevelopment water level readings and the calculated saturated wellbore volumes (defined as the volume of water in the saturated portion of the well screen plus the volume of water in the pore spaces of the annular sand pack [estimated at 30% porosity] adjacent to the saturated portion of the screen) were calculated for the four wells. Because the wells had completely submerged screens, they all have the same wellbore volume of approximately 43 gallons. Therefore, the target volume of 5 saturated wellbores was approximately 215 gallons. The FOP (SNL/NM November 1994) defines the completion of well development at the point where the minimum wellbore volumes have been removed and representative water is obtained. Representative water is obtained when pH, temperature, turbidity, and SC

measurements are within 10% for three consecutive readings. The final water quality parameters measured during well development are presented in Table 3.3-1.

Table 3.3-1  
Final Water Quality Parameters Measured During Well Development

| Well     | Date        | Total Gallons Bailed and Pumped | Temperature (°C) | Specific Conductivity (µS/cm) | pH   | Turbidity (NTU) |
|----------|-------------|---------------------------------|------------------|-------------------------------|------|-----------------|
| CYN-MW9  | 27-Jul-2010 | 296                             | 21.90            | 1162                          | 6.72 | 8.33            |
| CYN-MW10 | 28-Jul-2010 | 200                             | 19.82            | 958                           | 7.06 | 2.17            |
| CYN-MW11 | 29-Jul-2010 | 406                             | 18.99            | 1002                          | 7.01 | 4.03            |
| CYN-MW12 | 29-Jul-2010 | 435                             | 22.60            | 1073                          | 6.74 | 2.47            |

°C = Degree(s) Celsius.

µS/cm = Microsiemen(s)/centimeter (equivalent to micromhos/centimeter).

CYN = Canyons (Burn Site Groundwater).

MW = Monitoring well.

NTU = Nephelometric turbidity unit.

**This page intentionally left blank.**

## 4.0 MONITORING WELL LAND SURVEYING

Land surveying for the four new wells was completed in the field on August 18, 2010. The survey determined the New Mexico State Plane northing and easting coordinates and high precision elevations (reported to 0.01 feet above mean sea level) of the ground surface, concrete well pad, top of the north side of the PVC well casing, and top of the north side of the protective steel casing. This work was completed by registered professional surveying personnel from Survey Control, Inc., and the survey results were transmitted to SNL/NM personnel on August 26, 2010.

Well coordinate and elevation data is presented in Table 4-1 and on the well construction diagrams in Appendix C of this report. Until recently, ER Operations provided survey coordinates that were based on the NMSPC, Central Zone, North American Datum (NAD) of 1927 and Northern Geographic Vertical Datum of 1929 for elevations. To be consistent with current SNL/NM Facilities and KAFB survey practices, ER Operations survey data now are based on NMSPC Central Zone, NAD of 1983 and North American Vertical Datum of 1988. Location information for older wells has been mathematically converted to the new datum using National Geodetic Survey-approved software. All previously submitted survey data for the preexisting wells are superseded by the converted data.

Table 4-1  
Survey Data for All Wells Currently in the Burn Site Groundwater Monitoring Network

| Well     | NMSPC Coordinates <sup>a</sup> |              | Elevations (ft amsl) <sup>b</sup> |                                     |
|----------|--------------------------------|--------------|-----------------------------------|-------------------------------------|
|          | Northing                       | Easting      | Ground Surface                    | Measuring Point (top of PVC Casing) |
| CYN-MW1D | 1,456,166.83                   | 1,590,234.04 | 6236.7                            | 6239.59                             |
| CYN-MW3  | 1,456,774.34                   | 1,592,168.20 | 6311.9                            | 6313.26                             |
| CYN-MW4  | 1,458,765.86                   | 1,593,795.99 | 6454.7                            | 6455.48                             |
| CYN-MW6  | 1,457,170.60                   | 1,592,563.70 | 6340.5                            | 6343.37                             |
| CYN-MW7  | 1,456,589.07                   | 1,589,340.22 | 6213.7                            | 6216.35                             |
| CYN-MW8  | 1,456,386.76                   | 1,589,756.06 | 6227.8                            | 6230.11                             |
| CYN-MW9  | 1,457,261.48                   | 1,593,006.71 | 6358.5                            | 6360.67                             |
| CYN-MW10 | 1,456,813.04                   | 1,593,043.38 | 6342.8                            | 6345.45                             |
| CYN-MW11 | 1,457,079.74                   | 1,593,549.25 | 6371.9                            | 6374.41                             |
| CYN-MW12 | 1,457,335.12                   | 1,592,251.79 | 6342.9                            | 6345.16                             |

<sup>a</sup>Coordinates based on the NMSPC, Central Zone, NAD of 1983; coordinates for wells CYN-MW1D, CYN-MW4, CYN-MW7, and CYN-MW8 converted mathematically from NAD of 1927 using ARC/Info Workstation Automated Machine Language.

<sup>b</sup>Elevations based on North American Vertical Datum of 1988; elevations for wells CYN-MW1D, CYN-MW4, CYN-MW7, and CYN-MW8 converted mathematically from Northern Geographic Vertical Datum of 1929 using Blue Marble Geographics software.

amsl = Above mean sea level.

CYN = Canyons (Burn Site Groundwater).

ft = Foot/feet.

MW = Monitoring well.

NAD = North American Datum.

NMSPC = New Mexico State Plane Coordinate System.

PVC = Polyvinyl chloride.

**This page intentionally left blank.**

## 5.0 WASTE MANAGEMENT

Six nonregulated waste streams were generated during the soil sampling and monitoring well drilling and development as follows:

1. Decontamination water—placed into 55-gallon drums
2. Development groundwater—placed into 55-gallon drums
3. Soil/rock chips—cuttings from ARCH drilling of the well boreholes
4. Soil—cuttings from HSA drilling for borehole sampling
5. Personal protective equipment (PPE)—gloves required during soil sampling to prevent cross contamination
6. Wipes—from decontamination of the borehole video camera survey

All waste was managed in accordance with applicable SNL/NM waste disposal requirements contained in the Sandia Corporate Policy System, Environmental Safety and Health Policy Area and documented within an approved waste management plan. The various types of wastes generated during this project were managed, sampled for waste characterization, and disposed of in accordance with requirements specified in the waste management plan that was prepared for this project. Management and disposition of the waste streams consisted of the following activities:

- Solid waste (PPE, plastic, paper, and wipes) generated during drilling, decontamination, and sampling activities was managed as nonregulated waste and disposed of in the regular trash after waste characterization data for associated decontamination water were received.
- Soil cuttings from the HSA were used to backfill the borehole after all borehole samples were collected. In addition to the soil cuttings, the contractor placed a 1-foot-thick layer of bentonite chips at the very bottom and a 1-foot-thick layer at 5-foot intervals thereafter. The bentonite was added and hydrated to prevent the borehole from becoming a preferential pathway from the land surface to the top of bedrock or to the aquifer.
- Soil/rock chip cuttings from ARCH drilling were spread around the land surface near the wellhead.
- Decontamination water was placed into eight 55-gallon drums, and water samples were collected to determine suitability of disposition into the sanitary sewer system. Based on analytical results, approval was granted to dispose approximately 400 gallons of wastewater to the sanitary sewer system.

- Development groundwater was placed into forty-eight 55-gallon drums, and water samples were collected to determine suitability of disposition into the sanitary sewer system. Based on analytical results, approval was granted to dispose approximately 1,400 gallons of wastewater to the sanitary sewer system.

## 6.0 HYDRAULIC CONDUCTIVITY ANALYSIS

This section describes the activities associated with conducting slug tests at the four new groundwater monitoring wells in the Study Area (CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12). The slug tests were performed to determine the hydraulic conductivity of the aquifer materials. Hydraulic conductivity is expressed as a velocity and is often presented in units of centimeters per second or feet per minute (ft/min). The hydraulic conductivity data determined in this study will be used to refine the BSG hydrogeologic conceptual model.

The slug tests were completed between December 15, 2010, and January 28, 2011. Equipment used to conduct the slug tests included support vehicles and the water-sampling truck, which was used for hauling the required equipment and also as the platform for injecting and withdrawing the slug. The slug was raised and lowered by means of a large diameter (approximately 4-foot) motorized spool with a graduated 1/4-inch cable. The slug is a solid aluminum rod with a diameter of 3.25 inches and a length of 48 inches, providing a total displacement of approximately 397 cubic inches. Another reel with the transducer cable was mounted on a support truck, and a third hand-held reel was used to lower the downhole barometer. The slug and any submerged cable were decontaminated at the EFO or at the wellhead before injecting the slug into the well.

FOP 09-05 (SNL/NM June 2009b) was followed for all investigation activities at this site. After completion of the field portion of the slug test, the data sets were prepared and analyzed. The data gathered during the slug tests were analyzed using AquiferTest™ 3.0 Software developed by Waterloo Hydrogeologic, Inc. (2001). This software employs analytical methods developed by Hvorslev (1951) and Bouwer and Rice (1976) to produce graphical solutions of hydraulic conductivity. The use of the software followed the manufacturer's operating manual. The analysis determined the hydraulic conductivity for each of the tests (Appendix F). The hydraulic conductivity values were then compiled into Table 6-1 with averages calculated for each well.

Table 6-1  
Average Hydraulic Conductivity Values for  
Burn Site Groundwater Monitoring Wells Tested  
December 2010 and January 2011

| Well ID  | Hydraulic Conductivity (K) |          |           |          |
|----------|----------------------------|----------|-----------|----------|
|          | (ft/min)                   | (ft/day) | (ft/year) | (cm/sec) |
| CYN-MW9  | 1.21E-03                   | 1.75E+00 | 638       | 6.17E-04 |
| CYN-MW10 | 7.76E-04                   | 1.12E+00 | 408       | 3.94E-04 |
| CYN-MW11 | 1.21E-03                   | 1.74E+00 | 636       | 6.15E-04 |
| CYN-MW12 | 3.85E-04                   | 5.54E-01 | 202       | 1.96E-04 |

cm/sec = Centimeters per second.  
CYN = Canyons (Burn Site Groundwater).  
ft = Foot (feet).  
ft/min = Foot (feet) per minute.  
ID = Identification number.  
K = Hydraulic conductivity.  
MW = Monitoring well.

The ranges of hydraulic conductivity for the four BSG wells tested in December 2010 and January 2011 vary over an order of magnitude (Table 6-1). It should be noted that slug test analyses were developed for use in unconsolidated deposits, and analyses of bedrock aquifer slug tests are of limited value. The hydraulic conductivity measured in bedrock aquifers is overwhelmingly dominated by fracture flow (water flowing through the matrix of crystalline bedrock is negligible); therefore, the conductivity values determined are highly dependent on the nature of the fractures intercepted in specific wells.

All the conductivity values for these four wells are within the range of conductivity ( $10^{-5}$  to  $10^{-2}$  ft/min) determined for the regional aquifer within the unconsolidated Santa Fe Group sediments west of the Study Area (SNL/NM March 1999). This suggests that qualitatively fracture flow in BSG wells is capable of moving significant amounts of groundwater.

## 7.0 VARIANCES

All SNL/NM FOPs and AOPs cited in the Characterization Work Plan (SNL/NM November 2009) were followed. Several variances that occurred during the field program are discussed as follows.

**Variance 1** occurred during the drilling of the boreholes for soil sampling. As discussed in Section 2.1, several of the borehole locations had to be modified due to geologic (surface exposure of bedrock) or logistical reasons (buried utilities). Suitable replacement locations were determined in the field and provided data that met the intent of the sampling.

**Variance 2** occurred during the collection of soil samples. As discussed in Section 2.1, the unconsolidated deposits contained a considerable percentage of cobbles. Sufficient soil volume was not collected in some sample runs to perform analyses for any or all analytes. Some sampling depths produced no soil for analyses, and several other sampling depths produced a limited sample volume that required analyte prioritization.

**Variance 3** occurred during the drilling of the boreholes for soil sampling. A HSA drill rig was used in lieu of the ARCH or Dual Tube methods discussed in the Characterization Work Plan (SNL/NM November 2009). The drilling contractor determined that the HSA was better suited to complete the deep borehole sampling.

**Variance 4** occurred during decontamination of the drill rigs. An on-site, temporary, decontamination pad was used instead of the decontamination pad located in Technical Area III.

**Variance 5** occurred when SNL/NM personnel elected to install a fourth monitoring well (CYN-MW12) west of CYN-MW6. This decision was based on the potentiometric surface map prepared with groundwater elevations obtained from CYN-MW9, CYN-MW10, CYN-MW11, and the previously existing wells. The location of CYN-MW12 was selected with the concurrence of the NMED.

**Variance 6** occurred during the installation of the well screens in all four monitoring wells. The intent was to install the 20-foot screens capturing the air-water interface (15 feet below the water table and 5 feet above water). However, due to the semiconfined conditions encountered in each borehole, all 20-foot screens are completely submerged. These completions are consistent with the groundwater monitoring wells previously installed in the Study Area.

**This page intentionally left blank.**

## 8.0 GROUNDWATER MONITORING

Multiple quarterly groundwater monitoring events have been completed in the Study Area since the installation of the four new wells. This section briefly describes the results of the first two sampling events with tables of the analytical results provided in Appendices G and H. Of note, perchlorate was not detected in samples from any of the four new wells, and nitrate was detected at or above the MCL (10 mg/L) in samples from each of the four new wells.

### 8.1 Burn Site Groundwater Monitoring, Fourth Quarter, Fiscal Year 2010

SNL/NM personnel performed groundwater sampling in the Study Area from September 14 to September 29, 2010. Groundwater samples were collected from the following monitoring wells:

- CYN-MW1D
- CYN-MW3
- CYN-MW4
- CYN-MW6
- CYN-MW7
- CYN-MW8
- CYN-MW9
- CYN-MW10
- CYN-MW11
- CYN-MW12

This represented the initial groundwater sampling event for newly installed monitoring wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12.

Samples collected from all wells were analyzed for VOCs, target analyte list (TAL) metals plus uranium, major anions, alkalinity, NPN, total petroleum hydrocarbons (TPH)-diesel range organics (DRO) and TPH-gasoline range organics (GRO), gamma spectroscopy, gross alpha/gross beta activity, isotopic uranium, and tritium. Additional samples were collected from the newly installed monitoring wells and analyzed for SVOCs, HE compounds, and major cations. Groundwater samples were collected and analyzed for perchlorate from monitoring wells CYN-MW6, CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12. Also, duplicate samples were collected from CYN-MW4 and CYN-MW9 for all analytical parameters.

Groundwater samples were submitted to GEL for chemical and radiological analyses. Samples were analyzed in accordance with applicable EPA analytical methods. Groundwater sampling results are compared with EPA MCLs for drinking water supplies. All chemical and radiological data were reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM July 2007).

The results of the chemical analyses are presented in Appendix G, Tables G-1 through G-11. The analytical results are summarized as follows.

**VOCs, SVOCs, and HE Compounds**—Carbon disulfide was the only analyte detected (1.58 µg/L) above the laboratory MDL (Table G-1). The associated MDLs for all VOCs, SVOCs, and HE compounds are presented in Tables G-2 and G-3.

**NPN**—NPN was detected above the MCL (10 mg/L) in samples from six wells (CYN-MW1D, CYN-MW3, CYN-MW6, CYN-MW9, CYN-MW10, and CYN-MW12 [Table G-4]). The NPN concentrations ranged up to 30.1 mg/L.

**TPH-GRO and TPH-DRO**—Neither of these analytes was detected above the laboratory MDLs (Table G-5).

**Major Anions, Major Cations, and Alkalinity**—Anions include bromide, chloride, fluoride, and sulfate; cations include calcium, magnesium, potassium, and sodium; and alkalinity results are reported as bicarbonate and carbonate. No parameters were detected above established MCLs (Table G-6).

**Perchlorate**—Perchlorate was detected in the sample from CYN-MW6 at a concentration of 6.14 µg/L. No perchlorate detections above the MDL of 4 µg/L were reported in samples from the newly installed monitoring wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12 (Table G-7).

**TAL Metals plus Uranium**—No metal parameters were detected above established regulatory limits in any groundwater sample (Table G-8).

**Gamma Spectroscopy, Gross Alpha/Gross Beta Activity, Isotopic Uranium, and Tritium**—Gamma spectroscopy activity levels for short-list radionuclides were less than the associated minimal detectable activity (MDA), except for potassium-40 in the sample from CYN-MW8. Corrected gross alpha activity results, gross beta results, and isotopic uranium activity results are all below the MCLs. The reported tritium activity levels are below the MDAs (Table G-9).

**Field Parameters**—Field water quality measurements collected prior to sampling are presented in Table G-10.

**Duplicate Environmental Samples**—Duplicate environmental samples were collected from CYN-MW4 and CYN-MW9. Duplicate sample analytical results were used to calculate the relative percent difference (RPD) (Table G-11); duplicate sample results show good correlation with RPD values considerably lower than 20.

## **8.2                   Burn Site Groundwater Monitoring, First Quarter, Fiscal Year 2011**

SNL/NM personnel performed groundwater sampling in the Study Area from October 27 to November 2, 2010. Groundwater samples were collected from monitoring wells CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12. This represented the second groundwater sampling event for these four newly installed monitoring wells.

Samples collected from all wells were analyzed for VOCs, NPN, TPH-DRO, TPH-GRO, SVOCs, HE compounds, and perchlorate. Also, a duplicate sample was collected from CYN-MW10 for all analytical parameters.

Groundwater samples were submitted to GEL for chemical analyses. Samples were analyzed in accordance with applicable EPA analytical methods. Groundwater sampling results are compared with EPA MCLs for drinking water supplies. All chemical data were reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM July 2007).

The results of the chemical analyses are presented in Appendix H, Tables H-1 through H-7. The analytical results are summarized as follows.

**VOCs, SVOCs, and HE Compounds**—No analytes were detected above the laboratory MDLs. The associated MDLs for all VOCs, SVOCs, and HE compounds are presented in Tables H-1 and H-2.

**NPN**—NPN was detected above the MCL (10 mg/L) in samples from all four wells with concentrations ranging up to 36.6 mg/L (Table H-3).

**TPH-GRO and TPH-DRO**—Neither of these analytes was detected above the laboratory MDLs (Table H-4).

**Perchlorate**—No perchlorate detections above the MDL of 4 µg/L were reported in samples from the four newly installed monitoring wells (Table H-5).

**Field Parameters**—Field water quality measurements collected prior to sampling are presented in Table H-6.

**Duplicate Environmental Samples**—Duplicate environmental samples were collected from CYN-MW10. Duplicate sample analytical results were used to calculate the RPD (Table H-7); duplicate sample results show good correlation with RPD values considerably lower than 20.

### **8.3 Burn Site Groundwater Monitoring Summary**

Based on two rounds of groundwater sampling in the Study Area the following points can be made:

- Perchlorate was not detected in any sample from the newly installed monitoring wells. Concentrations in the samples from CYN-MW6 are comparable to historical values.
- NPN was detected in samples from each of the new wells at or above the MCL, confirming earlier conceptual models of nonpoint source low to moderate NPN contamination in the Study Area.
- Groundwater sample analytical results for VOCs, TAL metals, uranium, major anions, alkalinity, TPH-DRO, TPH-GRO, gamma spectroscopy, gross alpha/gross beta activity, isotopic uranium, tritium, SVOCs, HE compounds, and major cations were nondetect to below MCLs and comparable to historical results in the Study Area.
- A full eight quarters of data will be collected before the Study Area Current Conceptual Model is updated.

**This page intentionally left blank.**

## 9.0 REFERENCES

Bouwer, H., and R.C. Rice, 1976. "A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells," *Water Resources Research*, Vol. 12, No. 3, pp. 423–428.

Brown, C.L., K.E. Karlstrom, M. Heizler, and D. Unruh, 1999. "Paleoproterozoic deformation, metamorphism, and 40Ar/39Ar thermal history of the 1.65-Ga Manzanita Pluton, Manzanita Mountains, New Mexico," in *New Mexico Geological Society 50th Annual Fall Field Conference, Albuquerque Geology*, pp. 255–268.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Hvorslev, M.J., 1951. *"Time Lag and Soil Permeability in Ground-Water Observations,"* Bulletin No. 26, Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Mississippi.

New Mexico Environment Department (NMED), 1993. Module IV: Hazardous and Solid Waste Amendment (HSWA) Portion for Solid Waste Management Units (Module IV to the RCRA Part B Permit, NM5890110518), New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act, § 74-4-10," New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), February 2005. "Current Conceptual Model for the Sandia National Laboratories Canyons Area (Burn Site), June 2004: Requirement to Conduct Additional Site Characterization and Interim Measures, Sandia National Laboratories NM5890110518, HWB-SNL-04-039," New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), April 2009. "Perchlorate Contamination in Groundwater, Sandia National Laboratories, EPA ID# NM5890110518," New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), August 2009. "New Mexico Environment Department Technical Background Document for Development of Soil Screening Levels, Revision 5.0," New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), February 2010. "Notice of Conditional Approval, Burn Site Groundwater Characterization Work Plan," New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Office of the State Engineer (NMOSE), August 2005. "Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells," New Mexico Office of the State Engineer, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NMOSE, see New Mexico Office of the State Engineer.

Sandia National Laboratories/New Mexico (SNL/NM), February 1994. "Field Operating Procedure (FOP) 94-05, Borehole Lithologic Logging," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 1994. "Field Operating Procedure (FOP) 94-41, Well Development, Revision 0," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1999. "SNL/NM Summary Report of Groundwater Investigations at Technical Area V, Operable Units 1306 and 1307," Environmental Restoration Project, U.S. Department of Energy, Albuquerque Operations Office, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Groundwater Investigation, Canyons Test Area, Operable Unit 1333 Burn Site, Lurance Canyon," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2004a. "Current Conceptual Model of Groundwater Flow and Contaminant Transport at Sandia National Laboratories/New Mexico Burn Site," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2004b. "Corrective Measures Evaluation Work Plan for Sandia National Laboratories/New Mexico Burn Site," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), May 2005. "Interim Measures Work Plan, Burn Site Groundwater, SAND Report SAND2005-2952," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), July 2007. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Revision 2, Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2008a. "Current Conceptual Model of Groundwater Flow and Contaminant Transport at Sandia National Laboratories/ New Mexico Burn Site," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2008b. "Corrective Measures Evaluation Work Plan, Burn Site Groundwater," Environmental Management Department, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2009a. "Notes of Meeting—June 15, 2009 Meeting Between NMED, DOE, and SNL/NM to Discuss the April 2009 NMED Letter entitled: Perchlorate Contamination in Groundwater, Sandia National Laboratories," Internal Memorandum from M. Skelly (Dept. 6765) to J. Cochran (Dept. 6765), Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2009b. "Field Operating Procedure (FOP) 09-05, Long Term Environmental Stewardship (LTES), Conducting Slug Tests Using Pressure Transducer & Data Logger," Environmental Programs and Assurance Department, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 2009. "Notes of Meeting—July 14, 2009 Meeting Between NMED, DOE, and SNL/NM to Discuss the April 2009 NMED Letter entitled: Perchlorate Contamination in Groundwater, Sandia National Laboratories," Internal Memorandum from M. Skelly (Dept. 6765) to J. Cochran (Dept. 6765), Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2009. "Burn Site Groundwater Characterization Work Plan, Installation of Groundwater Monitoring Wells CYN-MW9, CYN-MW10, and CYN-MW11; Collection of Subsurface Soil Samples," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories/New Mexico.

Tso, D. (New Mexico Environment Department), August 2010. Personal communication with M. Skelly, J. Cochran (Sandia National Laboratories/New Mexico), and J. Gould (U.S. Department of Energy), Hazardous Waste Bureau, Region 1 Office, New Mexico Environment Department, Albuquerque, New Mexico.

U.S. Department of Energy (DOE), July 2009. "Request for an extension to address NMED's April 2009 letter entitled: Perchlorate Contamination in Groundwater, Sandia National Laboratories," U.S. Department of Energy, Sandia Site Office, Albuquerque, New Mexico.

U.S. Environmental Protection Agency (EPA), 1983. "The Determination of Inorganic Anions in Water by Ion Chromatography-Method 300.0," EPA-600/4-84-017. U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1986. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd ed. U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1994. "RCRA Corrective Action Plan," U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1999. "Perchlorate in Drinking Water Using Ion Chromatography, EPA 815/R-00-014," U.S. Environmental Protection Agency, Washington, D.C.

Waterloo Hydrogeologic, Inc., 2001. "AquiferTest™ User's Manual: Graphical Analysis and Reporting of Pumping Test & Slug Test Data," Waterloo, Ontario, Canada.

Western Regional Climate Center (WRCC), 2002. *New Mexico Climate Summaries*, Desert Research Institute, Western Regional Climate Center, Reno, Nevada, accessed January 14, 2002. <http://www.wrcc.dri.edu/summary/climsmnm.html>.

WRCC, see Western Regional Climate Center.

**APPENDIX A**  
**Well Data for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**



Well Data for CYN-MW9  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D                       | Comments                                                                                                                                                                        |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Well name/number                                                           | CYN-MW9                                                                                                                                                                         |
| 2. Date of well construction                                                  | July 27, 2010 (construction and development done)                                                                                                                               |
| 3. Drilling method                                                            | Air-rotary casing hammer, air-rotary                                                                                                                                            |
| 4. Drilling contractor and name of driller                                    | WDC Exploration and Wells Inc., Del Leavitt                                                                                                                                     |
| 5. Borehole diameter and well casing diameter                                 | Borehole: 9-5/8 inches<br>Well casing: 5.563 inches OD, 4.767 inches ID                                                                                                         |
| 6. Well depth                                                                 | 200.8 ft bgs                                                                                                                                                                    |
| 7. Casing length                                                              | Approximately 203 ft (2.2 ft above ground surface)                                                                                                                              |
| 8. Casing materials                                                           | Schedule 80 PVC                                                                                                                                                                 |
| 9. Casing and screen joint type                                               | Flush thread                                                                                                                                                                    |
| 10. Screened interval(s)                                                      | 175.8 to 195.8 ft bgs                                                                                                                                                           |
| 11. Screen materials                                                          | Schedule 80 PVC                                                                                                                                                                 |
| 12. Screen slot size and design                                               | 0.020-inch slotted screen                                                                                                                                                       |
| 13. Filter pack material and gradation                                        | Primary: #10-20 CSS<br>Secondary: #60 CSS                                                                                                                                       |
| 14. Filter pack volume (calculated and actual) <sup>b</sup>                   | Calculated: 17.5 ft <sup>3</sup><br>Actual: 19.0 ft <sup>3</sup>                                                                                                                |
| 15. Filter pack placement method                                              | Gravity feed through drive casing                                                                                                                                               |
| 16. Filter pack interval(s)                                                   | Primary: 171 to 200.8 ft bgs<br>Secondary: 166 to 171 ft bgs                                                                                                                    |
| 17. Annular sealant composition                                               | Volclay (bentonite) chip plug, bentonite grout                                                                                                                                  |
| 18. Annular sealant placement method                                          | Chips: gravity feed through drive casing, bentonite grout installed with tremie pipe                                                                                            |
| 19. Annular sealant volume (calculated and actual)                            | Calculated:<br>Plug 14.1 ft <sup>3</sup><br>Grout: 50.7 ft <sup>3</sup> (379 gallons)<br><br>Actual:<br>Plug: 12.6 ft <sup>3</sup><br>Grout: 80.2 ft <sup>3</sup> (600 gallons) |
| 20. Annular sealant interval(s)                                               | Grout: 10 to 132 ft bgs<br>Plug: 132 to 166 ft bgs                                                                                                                              |
| 21. Surface sealant composition                                               | Concrete                                                                                                                                                                        |
| 22. Surface seal placement method                                             | Gravity fed into annulus                                                                                                                                                        |
| 23. Surface sealant volume (calculated and actual)                            | Calculated: 4.2 ft <sup>3</sup><br>Actual: not recorded, placed concrete 0 to 10 ft bgs                                                                                         |
| 24. Surface sealant interval                                                  | 0 to 10 ft bgs                                                                                                                                                                  |
| 25. Surface seal and well apron design and construction                       | 3- by 3-ft by ~4-inch-deep concrete pad                                                                                                                                         |
| 26. Well development procedure and turbidity measurements                     | Bail, surge, submersible pump (see Appendix E for turbidity measurements)                                                                                                       |
| 27. Well development purge volume(s) and stabilization parameter measurements | Total of 296 gallons (see Appendix E for field parameter measurements)                                                                                                          |

Refer to footnotes at end of table.

Well Data for CYN-MW9  
 Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D   | Comments                                                                                               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 28. Type and design and construction of protective casing | 10-ft length of 12-inch-diameter steel casing with hinged cap (7 ft bgs and 3 ft above ground surface) |
| 29. Well cap and lock                                     | Hinged cap on protective casing with padlock and locking well cap with padlock on well casing          |
| 30. Ground surface elevation                              | 6358.5 ft amsl                                                                                         |
| 31. Survey reference point elevation on well casing       | 6360.67 ft amsl                                                                                        |
| 32. Top of monitoring well casing elevation               | 6360.67 ft amsl                                                                                        |
| 33. Top of protective steel casing elevation              | 6361.18 ft amsl (locking cover removed)                                                                |
| 34. Name of geologist                                     | Michael Skelly and Clinton Lum                                                                         |
| 35. Initial water level                                   | 161.55 ft bgs; 6196.93 ft amsl (pre-development water level, July 23, 2010)                            |
| 36. Final water level                                     | 161.44 ft bgs; 6197.04 ft amsl (post-development water level, August 30, 2010)                         |
| 37. Date of well development                              | July 27, 2010                                                                                          |

<sup>a</sup>New Mexico Environment Department, April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act," § 74-4-10, New Mexico Environment Department, Santa Fe, New Mexico.

<sup>b</sup>Filter pack volume defined as the total volume of filter pack sand placed in well, both adjacent to the well casing, screen, and sump and below the sump (if applicable).

amsl = Above mean sea level.

bgs = Below ground surface.

CSS = Colorado Silica Sand.

CYN = Canyons (Burn Site Groundwater).

ft = Foot (feet).

ft<sup>3</sup> = Cubic foot (feet).

ID = Inside diameter.

MW = Monitoring well.

OD = Outside diameter.

PVC = Polyvinyl chloride.

Well Data for CYN-MW10  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D                       | Comments                                                                                                                                                                        |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Well name/number                                                           | CWL-MW10                                                                                                                                                                        |
| 2. Date of well construction                                                  | July 28, 2010 (construction and development done)                                                                                                                               |
| 3. Drilling method                                                            | Air-rotary casing hammer, air-rotary                                                                                                                                            |
| 4. Drilling contractor and name of driller                                    | WDC Exploration and Wells Inc., Del Leavitt                                                                                                                                     |
| 5. Borehole diameter and well casing diameter                                 | Borehole: 9-5/8 inches<br>Well casing: 5.563 inches OD, 4.767 inches ID                                                                                                         |
| 6. Well depth                                                                 | 175.4 ft bgs                                                                                                                                                                    |
| 7. Casing length                                                              | Approximately 178.1 ft total (2.7 ft above ground surface)                                                                                                                      |
| 8. Casing materials                                                           | Schedule 80 PVC                                                                                                                                                                 |
| 9. Casing and screen joint type                                               | Flush thread                                                                                                                                                                    |
| 10. Screened interval(s)                                                      | 150.4 to 170.4 ft bgs                                                                                                                                                           |
| 11. Screen materials                                                          | Schedule 80 PVC                                                                                                                                                                 |
| 12. Screen slot size and design                                               | 0.020-inch slotted screen                                                                                                                                                       |
| 13. Filter pack material and gradation                                        | Primary: #10-20 CSS<br>Secondary: #60 CSS                                                                                                                                       |
| 14. Filter pack volume (calculated and actual) <sup>b</sup>                   | Calculated: 17.5 ft <sup>3</sup><br>Actual: 17.0 ft <sup>3</sup>                                                                                                                |
| 15. Filter pack placement method                                              | Gravity feed through drive casing                                                                                                                                               |
| 16. Filter pack interval(s)                                                   | Primary: 145 to 175.4 ft bgs<br>Secondary: 140.1 to 145 ft bgs                                                                                                                  |
| 17. Annular sealant composition                                               | Volclay (bentonite) chip plug, bentonite grout                                                                                                                                  |
| 18. Annular sealant placement method                                          | Chips: gravity feed through drive casing, bentonite grout installed with tremie pipe                                                                                            |
| 19. Annular sealant volume (calculated and actual)                            | Calculated:<br>Plug 14.2 ft <sup>3</sup><br>Grout: 41.5 ft <sup>3</sup> (310 gallons)<br><br>Actual:<br>Plug: 12.6 ft <sup>3</sup><br>Grout: 80.2 ft <sup>3</sup> (600 gallons) |
| 20. Annular sealant interval(s)                                               | Grout: 6 to 106 ft bgs<br>Plug: 106 to 140.1 ft bgs                                                                                                                             |
| 21. Surface sealant composition                                               | Concrete                                                                                                                                                                        |
| 22. Surface seal placement method                                             | Gravity fed into annulus                                                                                                                                                        |
| 23. Surface sealant volume (calculated and actual)                            | Calculated: 2.5 ft <sup>3</sup><br>Actual: not recorded, placed concrete 0 to 6 ft bgs                                                                                          |
| 24. Surface sealant interval                                                  | 0 to 6 ft bgs                                                                                                                                                                   |
| 25. Surface seal and well apron design and construction                       | 3- by 3-ft by ~4-inch-deep concrete pad                                                                                                                                         |
| 26. Well development procedure and turbidity measurements                     | Bail, surge, submersible pump (see Appendix E for turbidity measurements)                                                                                                       |
| 27. Well development purge volume(s) and stabilization parameter measurements | Total of 200 gallons (see Appendix E for field parameter measurements)                                                                                                          |

Refer to footnotes at end of table.

Well Data for CYN-MW10  
 Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D   | Comments                                                                                               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 28. Type and design and construction of protective casing | 10-ft length of 12-inch-diameter steel casing with hinged cap (7 ft bgs and 3 ft above ground surface) |
| 29. Well cap and lock                                     | Hinged cap on protective casing with padlock and locking well cap with padlock on well casing          |
| 30. Ground surface elevation                              | 6342.8 ft amsl                                                                                         |
| 31. Survey reference point elevation on well casing       | 6345.45 ft amsl                                                                                        |
| 32. Top of monitoring well casing elevation               | 6345.45 ft amsl                                                                                        |
| 33. Top of protective steel casing elevation              | 6346.00 ft amsl (locking cover removed)                                                                |
| 34. Name of geologist                                     | Michael Skelly and Clinton Lum                                                                         |
| 35. Initial water level                                   | 117.84 ft bgs; 6224.96 ft amsl (predevelopment water level, July 23, 2010)                             |
| 36. Final water level                                     | 118.43 ft bgs; 6224.37 ft amsl (post-development water level, August 30, 2010)                         |
| 37. Date of well development                              | July 27 to July 28, 2010                                                                               |

<sup>a</sup>New Mexico Environment Department, April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act," § 74-4-10, New Mexico Environment Department, Santa Fe, New Mexico.

<sup>b</sup>Filter pack volume defined as the total volume of filter pack sand placed in well, both adjacent to the well casing, screen, and sump and below the sump (if applicable).

amsl = Above mean sea level.

bgs = Below ground surface.

CSS = Colorado Silica Sand.

CYN = Canyons (Burn Site Groundwater).

ft = Foot (feet).

ft<sup>3</sup> = Cubic foot (feet).

ID = Inside diameter.

MW = Monitoring well.

OD = Outside diameter.

PVC = Polyvinyl chloride.

Well Data for CYN-MW11  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D     | Comments                                                                                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Well name/number                                         | CYN-MW11                                                                                                                                                                        |
| 2. Date of well construction                                | July 29, 2010 (construction and development done)                                                                                                                               |
| 3. Drilling method                                          | Air-rotary casing hammer, air rotary                                                                                                                                            |
| 4. Drilling contractor and name of driller                  | WDC Exploration and Wells Inc., Del Leavitt                                                                                                                                     |
| 5. Borehole diameter and well casing diameter               | Borehole: 9-5/8 inches<br>Well casing: 5.563 inches OD, 4.767 inches ID                                                                                                         |
| 6. Well depth                                               | 254.8 ft bgs                                                                                                                                                                    |
| 7. Casing length                                            | Approximately 257.3 ft total (2.5 ft above ground surface)                                                                                                                      |
| 8. Casing materials                                         | Schedule 80 PVC                                                                                                                                                                 |
| 9. Casing and screen joint type                             | Flush thread                                                                                                                                                                    |
| 10. Screened interval(s)                                    | 229.8 to 249.8 ft bgs                                                                                                                                                           |
| 11. Screen materials                                        | Schedule 80 PVC                                                                                                                                                                 |
| 12. Screen slot size and design                             | 0.020-inch slotted screen                                                                                                                                                       |
| 13. Filter pack material and gradation                      | Primary: #10-20 CSS<br>Secondary: #60 CSS                                                                                                                                       |
| 14. Filter pack volume (calculated and actual) <sup>b</sup> | Calculated: 17.5 ft <sup>3</sup><br>Actual: 18 ft <sup>3</sup>                                                                                                                  |
| 15. Filter pack placement method                            | Chips: gravity feed through drive casing, Bentonite grout installed with tremie pipe                                                                                            |
| 16. Filter pack interval(s)                                 | Primary: 225 to 254.8 ft bgs<br>Secondary: 220 to 225 ft bgs                                                                                                                    |
| 17. Annular sealant composition                             | Volclay (bentonite) chip plug, bentonite grout                                                                                                                                  |
| 18. Annular sealant placement method                        | Chips: gravity feed through drive casing, Bentonite grout installed with tremie pipe                                                                                            |
| 19. Annular sealant volume (calculated and actual)          | Calculated:<br>Plug: 14.1 ft <sup>3</sup><br>Grout: 73.1 ft <sup>3</sup> (547 gallons)<br><br>Actual:<br>Plug: 12.6 ft <sup>3</sup><br>Grout: 120 ft <sup>3</sup> (900 gallons) |
| 20. Annular sealant interval(s)                             | Grout: 5 to 186 ft bgs<br>Plug: 186 to 220 ft bgs                                                                                                                               |
| 21. Surface sealant composition                             | Concrete                                                                                                                                                                        |
| 22. Surface seal placement method                           | Gravity fed into annulus                                                                                                                                                        |
| 23. Surface sealant volume (calculated and actual)          | Calculated: 4.2 ft <sup>3</sup><br>Actual: not recorded, placed concrete 0 to 5 ft bgs                                                                                          |
| 24. Surface sealant interval                                | 0 to 5 ft bgs                                                                                                                                                                   |
| 25. Surface seal and well apron design and construction     | 3- by 3-ft by ~4-inch-deep concrete pad                                                                                                                                         |
| 26. Well development procedure and turbidity measurements   | Bail, surge, submersible pump (see Appendix E for turbidity measurements)                                                                                                       |

Refer to footnotes at end of table.

Well Data for CYN-MW11  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D                       | Comments                                                                                               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 27. Well development purge volume(s) and stabilization parameter measurements | Total of 406 gallons (see Appendix E for field parameter measurements)                                 |
| 28. Type and design and construction of protective casing                     | 10-ft length of 12-inch-diameter steel casing with hinged cap (7 ft bgs and 3 ft above ground surface) |
| 29. Well cap and lock                                                         | Hinged cap on protective casing with padlock and locking well cap with padlock on well casing          |
| 30. Ground surface elevation                                                  | 6371.9 ft amsl                                                                                         |
| 31. Survey reference point elevation on well casing                           | 6374.41 ft amsl                                                                                        |
| 32. Top of monitoring well casing elevation                                   | 6374.41 ft amsl                                                                                        |
| 33. Top of protective steel casing elevation                                  | 6374.87 ft amsl (locking cover removed)                                                                |
| 34. Name of geologist                                                         | Franz Lauffer and Clinton Lum                                                                          |
| 35. Initial water level                                                       | 93.67 ft bgs; 6278.27 (predevelopment water level, July 23, 2010)                                      |
| 36. Final water level                                                         | 94.19 ft bgs (post-development water level, August 30, 2010)                                           |
| 37. Date of well development                                                  | July 28 to July 29, 2010                                                                               |

<sup>a</sup>New Mexico Environment Department, April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act," § 74-4-10, New Mexico Environment Department, Santa Fe, New Mexico.

<sup>b</sup>Filter pack volume defined as the total volume of filter pack sand placed in well, both adjacent to the well casing, screen, and sump and below the sump (if applicable).

amsl = Above mean sea level.

bgs = Below ground surface.

CSS = Colorado Silica Sand.

CYN = Canyons (Burn Site Groundwater).

ft = Foot (feet).

ft<sup>3</sup> = Cubic foot (feet).

ID = Inside diameter.

MW = Monitoring well.

OD = Outside diameter.

PVC = Polyvinyl chloride.

Well Data for CYN-MW12  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D                       | Comments                                                                                                                                                                       |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Well name/number                                                           | CYN-MW12                                                                                                                                                                       |
| 2. Date of well construction                                                  | July 29, 2010 (construction and development done)                                                                                                                              |
| 3. Drilling method                                                            | Air-rotary casing hammer, air-rotary                                                                                                                                           |
| 4. Drilling contractor and name of driller                                    | WDC Exploration and Wells Inc., Del Leavitt                                                                                                                                    |
| 5. Borehole diameter and well casing diameter                                 | Borehole: 9-5/8 inches<br>Well casing: 5.563 inches OD, 4.767 inches ID                                                                                                        |
| 6. Well depth                                                                 | 277.5 ft bgs                                                                                                                                                                   |
| 7. Casing length                                                              | Approximately 279.7 ft (2.2 ft above ground surface)                                                                                                                           |
| 8. Casing materials                                                           | Schedule 80 PVC                                                                                                                                                                |
| 9. Casing and screen joint type                                               | Flush thread                                                                                                                                                                   |
| 10. Screened interval(s)                                                      | 252.5 to 272.5 ft bgs                                                                                                                                                          |
| 11. Screen materials                                                          | Schedule 80 PVC                                                                                                                                                                |
| 12. Screen slot size and design                                               | 0.020-inch slotted screen                                                                                                                                                      |
| 13. Filter pack material and gradation                                        | Primary: #10-20 CSS<br>Secondary: #60 CSS                                                                                                                                      |
| 14. Filter pack volume (calculated and actual) <sup>b</sup>                   | Calculated: 18.0 ft <sup>3</sup><br>Actual: 21.0 ft <sup>3</sup>                                                                                                               |
| 15. Filter pack placement method                                              | Gravity feed through drive casing                                                                                                                                              |
| 16. Filter pack interval(s)                                                   | Primary: 247.5 to 277.5 ft bgs<br>Secondary: 242.8 to 247.5 ft bgs                                                                                                             |
| 17. Annular sealant composition                                               | Volclay (bentonite) chip plug, bentonite grout                                                                                                                                 |
| 18. Annular sealant placement method                                          | Chips: gravity feed through drive casing, bentonite grout installed with tremie pipe                                                                                           |
| 19. Annular sealant volume (calculated and actual)                            | Calculated:<br>Plug 13.6 ft <sup>3</sup><br>Grout: 84.3 ft <sup>3</sup> (630 gallons)<br><br>Actual:<br>Plug: 12.6 ft <sup>3</sup><br>Grout: 120 ft <sup>3</sup> (900 gallons) |
| 20. Annular sealant interval(s)                                               | Grout: 5 to 210 ft bgs<br>Plug: 210 to 242.8 ft bgs                                                                                                                            |
| 21. Surface sealant composition                                               | Concrete                                                                                                                                                                       |
| 22. Surface seal placement method                                             | Gravity fed into annulus                                                                                                                                                       |
| 23. Surface sealant volume (calculated and actual)                            | Calculated: 2.9 ft <sup>3</sup><br>Actual: not recorded, placed concrete 0 to 7 ft bgs                                                                                         |
| 24. Surface sealant interval                                                  | 0 to 7 ft bgs                                                                                                                                                                  |
| 25. Surface seal and well apron design and construction                       | 3- by 3-ft by ~4-inch-deep concrete pad                                                                                                                                        |
| 26. Well development procedure and turbidity measurements                     | Bail, surge, submersible pump (see Appendix E for turbidity measurements)                                                                                                      |
| 27. Well development purge volume(s) and stabilization parameter measurements | Total of 435 gallons (see Appendix E for field parameter measurements)                                                                                                         |

Refer to footnotes at end of table.

Well Data for CYN-MW12  
Burn Site Groundwater Study Area, Sandia National Laboratories/New Mexico

| Items Required by the Order <sup>a</sup> Section VIII.D   | Comments                                                                                               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 28. Type and design and construction of protective casing | 10-ft length of 12-inch-diameter steel casing with hinged cap (7 ft bgs and 3 ft above ground surface) |
| 29. Well cap and lock                                     | Hinged cap on protective casing with padlock and locking well cap with padlock on well casing          |
| 30. Ground surface elevation                              | 6342.9 ft amsl                                                                                         |
| 31. Survey reference point elevation on well casing       | 6345.16 ft amsl                                                                                        |
| 32. Top of monitoring well casing elevation               | 6345.16 ft amsl                                                                                        |
| 33. Top of protective steel casing elevation              | 6345.67 ft amsl (locking cover removed)                                                                |
| 34. Name of geologist                                     | Michael Skelly, Clinton Lum, and Franz Lauffer                                                         |
| 35. Initial water level                                   | 203.59 ft bgs; 6136.33 ft amsl (pre-development water level, July 23, 2010)                            |
| 36. Final water level                                     | 203.54 ft bgs; 6139.38 ft amsl (post-development water level, August 30, 2010)                         |
| 37. Date of well development                              | July 29, 2010                                                                                          |

<sup>a</sup>New Mexico Environment Department, April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act," § 74-4-10, New Mexico Environment Department, Santa Fe, New Mexico.

<sup>b</sup>Filter pack volume defined as the total volume of filter pack sand placed in well, both adjacent to the well casing, screen, and sump and below the sump (if applicable).

amsl = Above mean sea level.

bgs = Below ground surface.

CSS = Colorado Silica Sand.

CYN = Canyons (Burn Site Groundwater).

ft = Foot (feet).

ft<sup>3</sup> = Cubic foot (feet).

ID = Inside diameter.

MW = Monitoring well.

OD = Outside diameter.

PVC = Polyvinyl chloride.

**APPENDIX B**  
**Lithologic Logs for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**



## VISUAL CLASSIFICATION OF SOILS

|                      |              |                  |
|----------------------|--------------|------------------|
| TA/OU:               | SITE NUMBER: |                  |
| BORING NUMBER: BH001 | COORDINATES: | DATE: 07 JULY 10 |
| ELEVATION:           | GWL: Depth   | Date/Time        |
| ENGINEER/GEOLOGIST:  | Depth        | Date/Time        |
| DRILLING METHODS:    | PAGE: 1 OF 1 |                  |

| DEPTH (ft) | SAMPLE TYPE & NO. | BLOWS ON SAMPLER ( ) | RECOVERY (%) | DESCRIPTION                                                                                                                                   | USCS SYMBOL | LITHOLOGY | REMARKS                                                                                  |
|------------|-------------------|----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------------------------------------------------------------------------------------|
| 0-2'       | 6nd               |                      |              | 0-2' Sand + gravel (artificial fill?) Pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4); slightly damp; gravels up to 2" | GW          |           |                                                                                          |
| 5          | ss                |                      |              | 5' sand + gravel, as above                                                                                                                    |             |           |                                                                                          |
| 10         | ss                |                      |              | 10' sand + gravel; fine grained gravel, moderate yellowish brown; damp; some silt, gravels to 2", most pea gravel                             |             |           |                                                                                          |
| 15         | ss                |                      |              | 15' sand, with some gravel (to 1") mostly med sand light brown (5YR 6/4); damp shoe had weathered bedrock (green + purple)                    |             |           | Driller notes<br>Change in<br>resistance @<br>14-16-17 ft<br>color change<br>in cuttings |
| 20         | ss                |                      |              | 20' sand, as above @ 15', damp                                                                                                                |             |           |                                                                                          |
| 25         | ss                |                      |              | 25' weathered bedrock pale red (5R 6/2) to Moderate Red (5R 5/4) phyllite/schist                                                              |             |           |                                                                                          |
| 30         |                   |                      |              |                                                                                                                                               |             |           |                                                                                          |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                      |                      |                    |
|----------------------|----------------------|--------------------|
| TA/OU:               | SITE NUMBER:         |                    |
| BORING NUMBER: BH002 | COORDINATES:         | DATE: 02 JULY 2010 |
| ELEVATION:           | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:  | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS:    | PAGE: 1 OF 1         |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                      | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|--------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0            | grd                  |                        |                 | 0-2' Sand & gravel (artificial fill?) large limestone 1-2' rock                                  | GW          |           |         |
| 5            | ss                   |                        |                 | Dark yellowish brown (10 YR 4/2) to Mod. yellowish brown (10 YR 5/4) slightly damp, gravels 2-3" |             |           |         |
| 10           |                      |                        |                 | ~3' basal gravels?                                                                               |             |           |         |
| 15           |                      |                        |                 | 4' weathered bedrock                                                                             |             |           |         |
| 20           |                      |                        |                 | 5' light brown (5YR 6/4 - 5YR 5/6)                                                               |             |           |         |
|              |                      |                        |                 | bedrock phyllite schist.                                                                         |             |           |         |

NOTES:

## **VISUAL CLASSIFICATION OF SOILS**

|                       |              |           |                    |
|-----------------------|--------------|-----------|--------------------|
| TA/OU:                | SITE NUMBER: |           |                    |
| BORING NUMBER: BH 003 | COORDINATES: |           | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth   | Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:   | Depth        | Date/Time | DATE COMPLETED:    |
| DRILLING METHODS:     |              |           | PAGE: 1 OF 1       |

| DEPTH<br>(<br>) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER(<br>) | RECOVERY<br>(<br>) | DESCRIPTION                                                                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|-----------------|----------------------|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0               | grb                  |                           |                    | 0-2' sand + gravel (artificial fill?)<br>slightly damp, gravels 1/2-1"<br>moderate brown (StL 4/4) to<br>pale brown (SpR 5/2). |             |           |         |
| 5               | ss                   |                           |                    | 4' weathered bedrock, slightly damp<br>pale red (Sr 6/2) Moderate red (Sr 5/4)                                                 |             |           |         |
| 10              |                      |                           |                    | 5' consolidated weathered bedrock<br>hard penetration. Pale red (Sr 6/2)<br>to moderate red (Sr 5/4).                          |             |           |         |
| 15              |                      |                           |                    |                                                                                                                                |             |           |         |

**NOTES:**

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                     |
|-----------------------|----------------------|---------------------|
| TA/OU:                | SITE NUMBER:         |                     |
| BORING NUMBER: BH 004 | COORDINATES:         | DATE: 08 JULY 2010. |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:       |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:     |
| DRILLING METHODS:     | PAGE: 1 OF 1         |                     |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER/ ( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                           | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|--------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0-2'         | grab                 |                          |                 | 0-2' sand and gravel (artificial fill)<br>slightly damp, gravels 1/2-2"<br>pale brown (SYR 5/2) light brown<br>(SYR 6/4)                                              |             |           |         |
| 5'           | ss                   |                          |                 | 5' same as above.                                                                                                                                                     |             |           |         |
| 10'          | ss                   |                          |                 | 10' sand and gravel, slightly<br>moister, pale brown (SYR 5/2) to<br>moderate brown (SYR 4/4)                                                                         |             |           |         |
| 15'          | ss                   |                          |                 | 13' weathered bedrock pale red (SR 6/2)<br>moderate red (SR 5/4). <i>(Observation)</i><br>15' phyllite schist bedrock. pale red<br>(SR 6/2) to moderate red (SR 5/4). |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                    |
|-----------------------|----------------------|--------------------|
| T/A/OU:               | SITE NUMBER:         |                    |
| BORING NUMBER: BH 005 | COORDINATES:         | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS:     | PAGE: 1 OF 2         |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                        | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0            | grab.                |                        |                 | 0-2' sand and gravel. artificial fill? GW<br>pale brown (5YR 5/2) light brown<br>(5YR 6/4) very slightly damp.                                     |             |           |         |
| 5            | Ø                    |                        |                 | 5' coarse gravel < limestone><br>no sample available<br>↓<br>9' sand and gravel                                                                    | GP          |           |         |
| 10           | SS                   |                        |                 | 10' coarse gravel w/ sand<br>limestone gravel very slightly damp.<br>grayish orange pink (3YR 7/2) -<br>pale brown (5YR 5/2).                      |             |           |         |
| 15           | SS                   |                        |                 | 15' coarse limestone gravel. w/ some<br>sand. ss only are filled sample.                                                                           |             |           |         |
| 20           | SS                   |                        |                 | 20' coarse gravel slightly more fines.<br>5-10'. increase to ~ 20'. very slightly<br>damp. grayish orange pink (5YR 7/2)<br>light brown (5YR 6/4). |             |           |         |
| 25           | SS.                  |                        |                 | 23' changed to predominant sand<br>grayish orange (10YR 7/4).                                                                                      |             |           |         |
|              |                      |                        |                 | 25' coarse gravel limestone and<br>some coarse sandstone. no sample                                                                                |             |           |         |

NOTES:

## **VISUAL CLASSIFICATION OF SOILS**

|                       |              |           |                    |
|-----------------------|--------------|-----------|--------------------|
| TA/OU:                | SITE NUMBER: |           |                    |
| BORING NUMBER: BH 005 | COORDINATES: |           | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth   | Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:   | Depth        | Date/Time | DATE COMPLETED:    |
| DRILLING METHODS:     |              |           | PAGE: 2 OF 2       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                                                                                      | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
|              | 30                   |                        |                 | 30' sand and gravel. very slightly damp. grayish orange (10YR 7/4).<br>31'-34' primarily gravel from coarse 1-2" to smaller 1/2-1"<br>35' sand and gravel grayish orange (10YR 7/4) - pale yellowish brown (10YR 6/2) very slightly damp. only one sample taken. |             |           |         |
| 35           |                      |                        |                 |                                                                                                                                                                                                                                                                  |             |           |         |
| 40'          |                      |                        |                 | 37' weathered bedrock. grab sample very pale orange (10YR 8/2) to grayish orange (10YR 7/4).                                                                                                                                                                     |             |           |         |
|              |                      |                        |                 | 37-38' phyllite schist bedrock. layered grayish blue green (5BG 5/2) to dusky blue green (5BG 3/2) w/ whitish stringers.                                                                                                                                         |             |           |         |

**NOTES:**

## **VISUAL CLASSIFICATION OF SOILS**

|                       |              |           |                     |
|-----------------------|--------------|-----------|---------------------|
| TA/OU:                | SITE NUMBER: |           |                     |
| BORING NUMBER: BH 006 | COORDINATES: |           | DATE: 08 JULY 2010. |
| ELEVATION:            | GWL: Depth   | Date/Time | DATE STARTED:       |
| ENGINEER/GEOLOGIST:   | Depth        | Date/Time | DATE COMPLETED:     |
| DRILLING METHODS:     |              |           | PAGE: OF            |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                   | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|---------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
|              | grab                 |                        |                 | 0-2' sand and gravel. gravel fill?<br>light brown (SYR 6/4) dark brown<br>(SYR 5/2) slightly damp             |             |           |         |
| 5            | ss                   |                        |                 | 3' weathered phyllite. moderate orange<br>pink (10R 7/4) - pale red (10R 6/2)<br>5' phyllitic schist bedrock. |             |           |         |
| 10           |                      |                        |                 |                                                                                                               |             |           |         |
| 15           |                      |                        |                 |                                                                                                               |             |           |         |

#### NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                    |
|-----------------------|----------------------|--------------------|
| T/A/OU:               | SITE NUMBER:         |                    |
| BORING NUMBER: BH 007 | COORDINATES:         | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS:     | PAGE: OF             |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER/ ( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                                                        | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|--------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0            | gravel               |                          |                 | 0-2' sand & gravel (artificial fill?) slightly damp. moderate brown (5YR 4/4 - 5YR 3/4) gravel 1-2"                                                                                                                                | GW          |           |         |
| 5            | ss                   |                          |                 | 5' same as above<br>1-8' gravel (lime-stone) layer<br>1-2" in size.                                                                                                                                                                |             |           |         |
| 10           |                      |                          |                 | 9-10' weathered bedrock light brown<br>(5YR 6/4) grayish orange pink (5YR 7/2)<br>one split open sample tested VOC<br>Note: second 5' sample taken for<br>SVOC/nitrate/Perchlorate. approx 3-2'<br>north of first sample location. | GP          |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                    |
|-----------------------|----------------------|--------------------|
| TA/OU:                | SITE NUMBER:         |                    |
| BORING NUMBER: BH 008 | COORDINATES:         | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS:     |                      | PAGE: OF           |

| DEPTH<br>(<br>')<br>— | SAMPLE<br>TYPE & NO.<br>— | BLOWS ON<br>SAMPLER/<br>— | RECOVERY<br>(<br>')<br>— | DESCRIPTION                                                                                                                                                                                                                                                                          | USCS SYMBOL | LITHOLOGY | REMARKS |
|-----------------------|---------------------------|---------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0                     | grd                       |                           |                          | 0-2' sand and gravel. Artificial fill<br>gravel 1-2" Part yellowish orange (10YR 6/6)<br>moderate yellowish brown (10YR 5/4)<br>2-3.1/2' soils? slightly damp.<br>3 1/2 - 5 back into sand and gravel.                                                                               | GW          |           |         |
| 5                     | ss                        |                           |                          | 5' same as above.                                                                                                                                                                                                                                                                    |             |           |         |
| 10                    | ss                        |                           |                          | 9' gravel layer (limestone) 1-2"<br>10' sand and gravel, dark yellowish<br>orange (10YR 6/6), moderate yellowish<br>brown (10YR 5/4), slightly damp<br>gravels 1-2"                                                                                                                  | GW          |           |         |
| 15                    | ss                        |                           |                          | 15' clayey sand and gravel<br>same as above moisture content<br>increase slightly and fines have more<br>clay.                                                                                                                                                                       | GW          |           |         |
| 20                    | ss                        |                           |                          | n 18-19' basal gravel.<br>do' weathered phyllite schist.<br>grayish orange pink (5YR 7/2) - light<br>brown (5YR 6/4)<br>bottom of split shoe red weathered<br>phyllite schist. layered grayish blue green<br>(5BG 5/2) - dusky blue green (5BG 3/2)<br>w/ whitish stringers<br>white | GP          |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                     |
|-----------------------|----------------------|---------------------|
| TA/OU:                | SITE NUMBER:         |                     |
| BORING NUMBER: BH 009 | COORDINATES:         | DATE: 08 JULY 2010. |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:       |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:     |
| DRILLING METHODS:     | PAGE: 1 OF 2         |                     |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0            | grab                 |                        |                 | 0-2' sand and gravel (artificial fill)<br>dark yellowish orange (10YR 6/6)-<br>moderate yellowish brown (10YR 5/4)<br>very slightly damp gravels 1-2"                                      | GW          |           |         |
| 5            | ss                   |                        |                 | 5' same as above.<br>Note: layered heterogeneous distribution of<br>horizontal gravel layers. 0-10' typical                                                                                | GW          |           |         |
| 10           | ss                   |                        |                 | 10' same as above, but fines are<br>coarser and more heterogeneous.                                                                                                                        | GW          |           |         |
| 15           | ss                   |                        |                 | 15' same as 10' slightly damp.<br>moderate yellowish brown (10YR 5/4)                                                                                                                      | GW          |           |         |
| 20'          | ss                   |                        |                 | 20' sand and gravel (artificial fill)<br>dark yellowish orange (10YR 6/6)<br>moderate yellowish brown (10YR 5/4).<br>very slightly damp, coarse fines.<br>gravels 1-2" only one ss sample. | GW          |           |         |
| 25'          |                      |                        |                 | 25' same as above.                                                                                                                                                                         |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |              |                    |
|-----------------------|--------------|--------------------|
| TA/OU:                | SITE NUMBER: |                    |
| BORING NUMBER: BH 009 | COORDINATES: | DATE: 08 JULY 2010 |
| ELEVATION:            | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST:   | Depth        | Date/Time          |
| DRILLING METHODS:     | PAGE: 2 OF 2 |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                 | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|---------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 20           | SS.                  |                        |                 | same as above. No sample<br>large gravel                                                    |             |           |         |
| 35'          |                      |                        |                 | 35' transition above ~34' to<br>weathered bedrock phyllitic schist<br>light brown (SYR 6/4) |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                       |                      |                     |
|-----------------------|----------------------|---------------------|
| TA/OU:                | SITE NUMBER:         |                     |
| BORING NUMBER: BH 010 | COORDINATES:         | DATE: 08 JULY 2010. |
| ELEVATION:            | GWL: Depth Date/Time | DATE STARTED:       |
| ENGINEER/GEOLOGIST:   | Depth Date/Time      | DATE COMPLETED:     |
| DRILLING METHODS:     | PAGE: OF             |                     |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                            | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0'           | gravel               |                        |                 | 0-2' silty sand w/ some gravel.<br>gravel 1/2-1" slightly damp.<br>moderate yellowish brown (10YR 5/4) |             |           |         |
| 5'           | ss                   |                        |                 | ~3' gravel layer<br>5' same as above.<br>lower proportion gravels ~ 5-10%.                             |             |           |         |
| 10'          | ss                   |                        |                 | ~8' gravel layer.<br>10' same as above.<br>~11-12' gravel layer (limestone)                            |             |           |         |
| 15'          | ss                   |                        |                 | ↓<br>15' same as above, except increase<br>in gravel content (limestone) to 50-70%<br>gravel 1/2-1"    |             |           |         |
| 20'          | ∅ no sample          |                        |                 | 20' same as above. No sample<br>recovered.<br>~20+' gravel layer: gravel content<br>as high as 70-80%. |             |           |         |
| 25'          | ∅ no sample          |                        |                 | 25' same as above. No sample.<br>26' back thin soil/sand layer.                                        |             |           |         |
| 30'          |                      |                        |                 | 30' bedrock found in h.s. auger after<br>ss was recovered.                                             |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                            |                        |  |                    |
|----------------------------|------------------------|--|--------------------|
| TA/OU:                     | SITE NUMBER: Burn site |  |                    |
| BORING NUMBER: CYN - MW9   | COORDINATES:           |  | DATE: 12 JULY 2010 |
| ELEVATION:                 | GWL: Depth Date/Time   |  | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C Lum  | Depth Date/Time        |  | DATE COMPLETED:    |
| DRILLING METHODS: Tri cone |                        |  | PAGE: 1 OF 6       |

| DEPTH (') | SAMPLE TYPE & NO. | BLOWS ON SAMPLER( ) | RECOVERY (') | DESCRIPTION                                                                                                                                                         | USCS SYMBOL | LITHOLOGY | REMARKS |
|-----------|-------------------|---------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0         | grab              |                     |              | 0-10' clay with some sand, moderate brown (5YR 4/4 - 5YR 3/4) slightly damp.                                                                                        | CL          |           |         |
| 5         |                   |                     |              |                                                                                                                                                                     |             |           |         |
| 10        | grab              |                     |              | 10-15' sandy clay w/ limestone gravels. GW matrix x grayish orange pink (5YR 7/2) - light brown (5YR 6/4), might be weathered phyllite and artificial fill gravels. | GW          |           |         |
| 15        | grab              |                     |              |                                                                                                                                                                     |             |           |         |
| 20        | grab              |                     |              | 15-18' back into clay matrix moderate brown (5YR 4/4 - 5YR 3/4) w/ limestone gravels<br>- 20' 18' well graded sand. light brown (5YR 6/4) aeolian sand              | GP          |           |         |
| 25        | grab              |                     |              | 25' fine grained aeolian sand w/ limestone gravel. Color ranges from grayish orange (10YR 7/4) to grayish orange pink (5YR 7/2)                                     | GW          |           |         |
| 30        |                   |                     |              |                                                                                                                                                                     |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                                                  |  |              |                    |
|--------------------------------------------------|--|--------------|--------------------|
| TA/OU:                                           |  | SITE NUMBER: |                    |
| BORING NUMBER: CYN - MW9                         |  | COORDINATES: | DATE: 12 JULY 2010 |
| ELEVATION:                                       |  | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST: C Lum                        |  | Depth        | Date/Time          |
| DRILLING METHODS: Tr core change to hammer c 38' |  | PAGE: 2 OF 6 |                    |

| DEPTH (')           | SAMPLE TYPE & NO. | BLOWS ON SAMPLER( ) | RECOVERY (') | DESCRIPTION                                                                                                                                                                                                                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|---------------------|-------------------|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
|                     |                   |                     |              | Note: no weathered phyllite schist obs.                                                                                                                                                                                                                                        |             |           |         |
| 35                  | grab              |                     |              | 35' phyllite schist bedrock<br>unweathered dusty green (SG 3/2)<br>still mixed w/ sand and limestone<br>gravel. @ depth transitioned to<br>mostly medium dark gray (N4)<br>to grayish blue (SPB 5/2).                                                                          |             |           |         |
| 40                  |                   |                     |              | Approx ~ 38' changed from tricore<br>to hammer bit. cutting character<br>changed. same formation phyllite<br>schist.                                                                                                                                                           |             |           |         |
| 45<br><del>50</del> |                   |                     |              |                                                                                                                                                                                                                                                                                |             |           |         |
| 50                  | grab              |                     |              | 50' phyllite schist bedrock.<br>unweathered dusty green w/ layering<br>(SG 3/2), primarily $\frac{1}{2}$ - $\frac{1}{4}$ grains<br>and dust cuttings. no hint of massive<br>powdered matrix cutting ranges from<br>light gray (N7) to med light gray<br>(N6) with a blue tint. |             |           |         |
| 55                  |                   |                     |              |                                                                                                                                                                                                                                                                                |             |           |         |
| 60                  | grab              |                     |              | 60' same as 50' - lithology.                                                                                                                                                                                                                                                   |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                               |                      |  |                    |
|-------------------------------|----------------------|--|--------------------|
| TA/OU:                        | SITE NUMBER:         |  |                    |
| BORING NUMBER: CYN - 449      | COORDINATES:         |  | DATE: 12 JULY 2010 |
| ELEVATION:                    | GWL: Depth Date/Time |  | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C. Lum    | Depth Date/Time      |  | DATE COMPLETED:    |
| DRILLING METHODS: Hammer bit. |                      |  | PAGE: 3 OF 6       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                 | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|-----------------------------|-------------|-----------|---------|
| 65           |                      |                       |                 |                             |             |           |         |
| 70           | grab                 |                       |                 | 70' same as 50' - lithology |             |           |         |
| 75           |                      |                       |                 |                             |             |           |         |
| 80           | grab                 |                       |                 | 80' same as 50' - lithology |             |           |         |
| 85           |                      |                       |                 |                             |             |           |         |
| 90           | grab                 |                       |                 | 90' same as 50' - lithology |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |              |                           |
|------------------------------|--------------|---------------------------|
| TA/OU:                       | SITE NUMBER: |                           |
| BORING NUMBER: CYN - MW9     | COORDINATES: | DATE: <u>12</u> JULY 2010 |
| ELEVATION:                   | GWL: Depth   | Date/Time                 |
| ENGINEER/GEOLOGIST: C. Lum   | Depth        | Date/Time                 |
| DRILLING METHODS: hammer bit | PAGE: 4 OF 6 |                           |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                  | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|------------------------------|-------------|-----------|---------|
| 95           |                      |                        |                 |                              |             |           |         |
| 100          | grub                 |                        |                 | 100' same as 50' - lithology |             |           |         |
| 105          |                      |                        |                 |                              |             |           |         |
| 110          | grub                 |                        |                 | 110' same as 50' lithology   |             |           |         |
| 115          |                      |                        |                 |                              |             |           |         |
| 120          | grub                 |                        |                 | 120' same as 50' - lithology |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                              |                      |                    |
|------------------------------|----------------------|--------------------|
| TAVOU:                       | SITE NUMBER:         |                    |
| BORING NUMBER: GYN - NW9     | COORDINATES:         | DATE: 13 JULY 2010 |
| ELEVATION:                   | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C. Lum   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS: Hammer bit |                      | PAGE: 5 OF 6       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                   | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|-------------------------------|-------------|-----------|---------|
| 125          |                      |                       |                 |                               |             |           |         |
| 130          |                      |                       |                 |                               |             |           |         |
| 140          | grab                 |                       |                 | 140' same as 80' - lithology  |             |           |         |
| 145          |                      |                       |                 |                               |             |           |         |
| 150          |                      |                       |                 |                               |             |           |         |
| 160          | grab                 |                       |                 | 160' same as 80' - lithology. |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                               |              |                    |
|-------------------------------|--------------|--------------------|
| TA/OU:                        | SITE NUMBER: |                    |
| BORING NUMBER: CYN - 4W9      | COORDINATES: | DATE: 13 JULY 2010 |
| ELEVATION:                    | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST: C. Lum    | Depth        | Date/Time          |
| DRILLING METHODS: Hammer bit. | PAGE: 6 OF 6 |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                                                                                             | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 165          |                      |                        |                 | Note video recording of borehole shows phyllite schist w/ seal fractures. borehole is true with no significant deviations or blow outs in sidewall - some slight color variations in grey-green color obs. Could not make any obs below water. Water level obs 160-161' |             |           |         |
| 170          |                      |                        |                 | 170' - bit casing added                                                                                                                                                                                                                                                 |             |           |         |
| 175          |                      |                        |                 | 175' approx moisture obs in hole<br>176' driller states moisture in hole.                                                                                                                                                                                               |             |           |         |
| 180          |                      |                        |                 | 180' water in hole samples wet phyllite schist. TO.                                                                                                                                                                                                                     |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                            |                        |                    |                 |
|----------------------------|------------------------|--------------------|-----------------|
| TA/OU:                     | SITE NUMBER: Burn site |                    |                 |
| BORING NUMBER: CYN - MW10  | COORDINATES:           | DATE: 14 JULY 2010 |                 |
| ELEVATION:                 | GWL: Depth             | Date/Time          | DATE STARTED:   |
| ENGINEER/GEOLOGIST: C. Lum | Depth                  | Date/Time          | DATE COMPLETED: |
| DRILLING METHODS: Tri core | PAGE: 1 OF 6           |                    |                 |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                           | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0            |                      |                       |                 | 0-10' fine grained uniform sand<br>pale yellowish brown (10YR 6/2)<br>interbedded w/ gravels limestone<br>sample dry. | GW          |           |         |
| 5            |                      |                       |                 |                                                                                                                       |             |           |         |
| 10           | grab                 |                       |                 |                                                                                                                       |             |           |         |
| 15           |                      |                       |                 |                                                                                                                       |             |           |         |
| 20           | grab                 |                       |                 | 20' same as above, sand is now<br>very pale orange (10YR 8/2) to<br>grayish orange (10YR 7/4.)                        | GW          |           |         |
| 25           |                      |                       |                 | Note: past 20' -> gravel content<br>of siltuum is increasing.                                                         |             |           |         |
| 30           | grab                 |                       |                 | 30' same as before w/ an<br>increase in limestone gravel content.                                                     |             |           |         |

NOTES: ~~exp 14000 ftake Skelly~~

## VISUAL CLASSIFICATION OF SOILS

|                              |              |           |                    |
|------------------------------|--------------|-----------|--------------------|
| TA/OU:                       | SITE NUMBER: |           |                    |
| BORING NUMBER: CNY - MW 10   | COORDINATES: |           | DATE: 14 JULY 2010 |
| ELEVATION:                   | GWL: Depth   | Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C Lum    | Depth        | Date/Time | DATE COMPLETED:    |
| DRILLING METHODS: Hammer but | PAGE: 2 OF 6 |           |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                   | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|-----------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 35           | 35<br>grab           |                       |                 | 13 JULY 2010<br>bottom drive casting 34' from top of<br>ground                                |             |           |         |
| 35           |                      |                       |                 | 35' Phyllite schist bedrock<br>layered pale purple (SP 6 1/2) to<br>grayish purple (SP 4 1/2) |             |           |         |
| 40           |                      |                       |                 |                                                                                               |             |           |         |
| 45           |                      |                       |                 |                                                                                               |             |           |         |
| 50           | 50<br>grab           |                       |                 | 50' same as above - lithology                                                                 |             |           |         |
| 55           |                      |                       |                 |                                                                                               |             |           |         |
| 60           |                      |                       |                 |                                                                                               |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                              |              |           |
|------------------------------|--------------|-----------|
| TA/OU:                       | SITE NUMBER: |           |
| BORING NUMBER: 35            | COORDINATES: |           |
| ELEVATION:                   | GWL: Depth   | Date/Time |
| ENGINEER/GEOLOGIST: C Lum    | Depth        | Date/Time |
| DRILLING METHODS: Hammer bit | PAGE: 3 OF 6 |           |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                 | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|-----------------------------|-------------|-----------|---------|
| 65           |                      |                       |                 | ~65' sand 35'               |             |           |         |
| 70           | gravel               |                       |                 | 70' same as 35' - lithology |             |           |         |
| 75           |                      |                       |                 |                             |             |           |         |
| 80           |                      |                       |                 |                             |             |           |         |
| 85           |                      |                       |                 |                             |             |           |         |
| 90           |                      |                       |                 | 90' same as 35' - lithology |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                               |              |           |                    |
|-------------------------------|--------------|-----------|--------------------|
| T/AOU:                        | SITE NUMBER: |           |                    |
| BORING NUMBER: 35-1000        | COORDINATES: |           | DATE: 10 JULY 1986 |
| ELEVATION:                    | GWL: Depth   | Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: L. Wm     | Depth        | Date/Time | DATE COMPLETED:    |
| DRILLING METHODS: Hammer but. |              |           | PAGE: 4 OF 6       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|--------------------------------------------------------------------------------|-------------|-----------|---------|
| 95           |                      |                       |                 |                                                                                |             |           |         |
| 100          |                      |                       |                 |                                                                                |             |           |         |
| 105          |                      |                       |                 |                                                                                |             |           |         |
| 110          | gravel               |                       |                 | 110'<br>Same as 35' - lithology.                                               |             |           |         |
| 115          |                      |                       |                 | Bottom water level reading<br>103.83 - 6' storage = 107.83'<br>109.93 - 117.83 |             |           |         |
| 120          |                      |                       |                 | (118) 15' below storage top of water                                           |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                               |              |           |                    |
|-------------------------------|--------------|-----------|--------------------|
| TA/OU:                        | SITE NUMBER: |           |                    |
| BORING NUMBER: 149            | COORDINATES: |           | DATE: 14 JULY 2023 |
| ELEVATION:                    | GWL: Depth   | Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C Lum     | Depth        | Date/Time | DATE COMPLETED:    |
| DRILLING METHODS: hammer but. |              |           | PAGE: 5 OF 6       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                          | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|--------------------------------------|-------------|-----------|---------|
| 125          |                      |                       |                 |                                      |             |           |         |
| 130          |                      |                       |                 |                                      |             |           |         |
| 135          |                      |                       |                 |                                      |             |           |         |
| 140          |                      |                       |                 |                                      |             |           |         |
| 145          |                      |                       |                 |                                      |             |           |         |
| 150          |                      |                       |                 |                                      |             |           |         |
|              |                      |                       |                 | 149 samples are damp moisture soils. |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |                      |                    |
|------------------------------|----------------------|--------------------|
| TA/OU:                       | SITE NUMBER:         |                    |
| BORING NUMBER: 0101 - 10010  | COORDINATES:         | DATE: 16 JULY 2010 |
| ELEVATION:                   | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C Wm     | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS: Hammer bit |                      | PAGE: 6 OF 6       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWNS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                               | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-------------------------|-----------------|-----------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 155          |                      |                         |                 | 151-171' screen planned set                                                                               |             |           |         |
| 160          |                      |                         |                 |                                                                                                           |             |           |         |
| 165          |                      |                         |                 |                                                                                                           |             |           |         |
| 170          |                      |                         |                 |                                                                                                           |             |           |         |
| 175          |                      |                         |                 | 18 JULY 2010: General diameter: Tapped<br>to 0.193'                                                       |             |           |         |
| 180          |                      |                         |                 | 18 JULY 2010 to 180' diameter:<br>soft, cohesive bottom, cut into very hard<br>soil, no due to water flow |             |           |         |
| 181          |                      |                         |                 | 181 TD 8 18 JULY 2010                                                                                     |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                             |                        |                    |
|-----------------------------|------------------------|--------------------|
| T/AOU:                      | SITE NUMBER: Burn Site |                    |
| BORING NUMBER: CYN- NW 11   | COORDINATES:           | DATE: 15 JULY 2010 |
| ELEVATION:                  | GWL: Depth Date/Time   | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C. Lum  | Depth Date/Time        | DATE COMPLETED:    |
| DRILLING METHODS: Tri Cone. | PAGE: 1 OF 7           |                    |

| DEPTH ( ) | SAMPLE TYPE & NO. | BLOWSON SAMPLER ( ) | RECOVERY ( ) | DESCRIPTION                                                                                                                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|-----------|-------------------|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 0-10'     |                   |                     |              | 0-10' silty sand w/ gravel layers<br>color ranges from grayish orange<br>(10YR 7/4) to pale yellowish brown<br>(10YR 6/2) limestone gravels 1/2-1/4"<br>matrix slightly moist. | GW          |           |         |
| 10        | grab              |                     |              |                                                                                                                                                                                |             |           |         |
| 20        | grab              |                     |              | 20' same as above.<br>gravels now 1"-1/4", moisture<br>content increased slightly.<br>Color darker mod. yellowish brown<br>10YR 5/4 due to moisture.                           | GW          |           |         |
| 30        | grab              |                     |              | APPROX 29' lag gravel<br>APPROX 30' red/pink dust no phyllite cuttings or<br>hand samples. Change to hammer bid ~32' GW                                                        | GW          |           |         |

NOTES: a: NW-11 Depth to bedrock. 29'  
depth to water

Top of bedrock ~29.  
gravels → red dust no phyllite samples  
possibly ground by tricore. or weathered rock

## VISUAL CLASSIFICATION OF SOILS

|                              |              |                    |
|------------------------------|--------------|--------------------|
| TA/OU:                       | SITE NUMBER: |                    |
| BORING NUMBER: CYN - MW 11   | COORDINATES: | DATE: 15 JULY 2020 |
| ELEVATION:                   | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST: C Lum    | Depth        | Date/Time          |
| DRILLING METHODS: Hammer bit | PAGE: 2 OF 7 |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWNS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 30           | 30' grab             |                         |                 | 30' sample. light brownish gray<br>(SYR 6/1) - pale red (COR 4/2) - (OR 6/2)<br>Phyllite schist bedrock<br>dry |             |           |         |
| 35           |                      |                         |                 |                                                                                                                |             |           |         |
| 40           |                      |                         |                 |                                                                                                                |             |           |         |
| 45           |                      |                         |                 |                                                                                                                |             |           |         |
| 50           | grab                 |                         |                 | 50' phyllites schist bedrock<br>pale red (OR 6/2)<br>dry                                                       |             |           |         |
| 55           |                      |                         |                 |                                                                                                                |             |           |         |
| 60           |                      |                         |                 |                                                                                                                |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |              |                    |                 |
|------------------------------|--------------|--------------------|-----------------|
| TA/OU:                       | SITE NUMBER: |                    |                 |
| BORING NUMBER: CYN - MWII    | COORDINATES: | DATE: 15 JULY 2010 |                 |
| ELEVATION:                   | GWL: Depth   | Date/Time          | DATE STARTED:   |
| ENGINEER/GEOLOGIST: E Lum    | Depth        | Date/Time          | DATE COMPLETED: |
| DRILLING METHODS: Hammer bit |              |                    | PAGE: 3 OF 7    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                                             | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 65           |                      |                        |                 |                                                                                                                                                                                                                         |             |           |         |
| 70           | grab                 |                        |                 | 70' same as 50' - lithology                                                                                                                                                                                             |             |           |         |
| 75           |                      |                        |                 |                                                                                                                                                                                                                         |             |           |         |
| 80           |                      |                        |                 |                                                                                                                                                                                                                         |             |           |         |
| 85           |                      |                        |                 |                                                                                                                                                                                                                         |             |           |         |
| 90           | grab                 |                        |                 | Video log obs fractures ~ 85-90'<br>moisture?<br>lithology<br>90' same as 50' slight moisture<br>90' 16 JULY 2010 small amount<br>of water produced samples wet<br>then moist quickly, gone when<br>well/ing circulated |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |                      |                    |
|------------------------------|----------------------|--------------------|
| TA/OU:                       | SITE NUMBER:         |                    |
| BORING NUMBER: CYN - MW11    | COORDINATES:         | DATE: 16 JULY 2010 |
| ELEVATION:                   | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C. Lum   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS: Hammer bit | PAGE: 4 OF 7         |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                        | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|------------------------------------------------------------------------------------|-------------|-----------|---------|
| 95           |                      |                        |                 | <del>soil: sand clay</del>                                                         |             |           |         |
| 95           |                      |                        |                 | Video log water level 95'                                                          |             |           |         |
| 95           |                      |                        |                 | 16 JULY 2010 ~ 1:00PM.                                                             |             |           |         |
| 95           |                      |                        |                 | Driller comment water level may                                                    |             |           |         |
| 95           |                      |                        |                 | rise over 3 days (weekend) closer                                                  |             |           |         |
| 95           |                      |                        |                 | to 90'. 90' was where moisture was                                                 |             |           |         |
| 95           |                      |                        |                 | first encountered                                                                  |             |           |         |
| 105          |                      |                        |                 |                                                                                    |             |           |         |
| 110          | gm2b                 |                        |                 | 10' since 95' - lithology<br>crushed gravel lag containing limestone<br>1/2 - 3/4" |             |           |         |
| 115          |                      |                        |                 |                                                                                    |             |           |         |
| 120          |                      |                        |                 |                                                                                    |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |              |                    |
|------------------------------|--------------|--------------------|
| TA/OU:                       | SITE NUMBER: |                    |
| BORING NUMBER: CYN - MW 11   | COORDINATES: | DATE: 16 JULY 2010 |
| ELEVATION:                   | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST: C Lum    | Depth        | Date/Time          |
| DRILLING METHODS: Hammer bit |              | PAGE: 5 OF 7       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWSON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                    | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|-----------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 80'          | grab                 |                       |                 | <u>Note: scale change index 5' -&gt; 10'</u><br><br>130' same as 80' or 110' - lithology<br>phyllitic schist bedrock w/<br>gravel lag cavings                  |             |           |         |
| 110'         | grab                 |                       |                 | 150' sample same as 110' - lithology<br>color charged to slightly gray color<br>heterogeneous sample<br>light brownish gray (5YR 6/1) to<br>pale red (10R 6/2) |             |           |         |
| 170'         | grab                 |                       |                 | 170' same as 110' <sup>lithology</sup> sample heterogeneous<br>w/ increase gray content ~ 60%<br>to pale red 10R 6/2. (rough approx).                          |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                              |                      |                    |
|------------------------------|----------------------|--------------------|
| T/A/OU:                      | SITE NUMBER:         |                    |
| BORING NUMBER: CYN - UW 11   | COORDINATES:         | DATE: 16 JULY 2010 |
| ELEVATION:                   | GWL: Depth Date/Time | DATE STARTED:      |
| ENGINEER/GEOLOGIST: C. Lum   | Depth Date/Time      | DATE COMPLETED:    |
| DRILLING METHODS: Hammer bit |                      | PAGE: 6 OF 7       |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                  | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|------------------------------------------------------------------------------|-------------|-----------|---------|
| 190          | grab                 |                        |                 | 190' phyllite schist bedrock.<br>light gray (N7) to med. light gray<br>(N6). |             |           |         |
| 200          |                      |                        |                 | 194-206' chiller reports lot of<br>fractures. difficult drilling.            |             |           |         |
| 210          |                      |                        |                 | 210' phyllite schist bedrock<br>light bluish gray (SS 7)                     |             |           |         |
| 220          |                      |                        |                 |                                                                              |             |           |         |
| 230          |                      |                        |                 | 226' moist samples - same as 210'<br>~230' confirmed water. lithology        |             |           |         |
| 240          | 231                  |                        |                 | 231'-251' planned to set screens                                             |             |           |         |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                               |              |                    |
|-------------------------------|--------------|--------------------|
| TAOU:                         | SITE NUMBER: |                    |
| BORING NUMBER: CYN - MU11     | COORDINATES: | DATE: 16 JULY 2010 |
| ELEVATION:                    | GWL: Depth   | Date/Time          |
| ENGINEER/GEOLOGIST: C. Lum    | Depth        | Date/Time          |
| DRILLING METHODS: hammer bit. | PAGE: 7 OF 7 |                    |

| DEPTH<br>( ) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                         | USCS SYMBOL | LITHOLOGY | REMARKS |
|--------------|----------------------|------------------------|-----------------|-------------------------------------------------------------------------------------|-------------|-----------|---------|
| 250<br>- 251 | ///                  |                        |                 | 231-251' planned to set screen<br>Note: while drilling high production<br>of water. |             |           |         |
| 260          |                      |                        |                 | To see same as 210'- lithology.                                                     |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                                      |                                                    |           |                                  |
|--------------------------------------|----------------------------------------------------|-----------|----------------------------------|
| TAOU: <i>Burn Site Groundwater</i>   | SITE NUMBER:                                       |           |                                  |
| BORING NUMBER: <i>CVN- MW12</i>      | COORDINATES:                                       |           | DATE: <i>20 JUL 10</i>           |
| ELEVATION: <i>TBD</i>                | GWL: Depth <i>203.5</i> Date/Time <i>23 JUL 10</i> |           | DATE STARTED: <i>20 JUL 10</i>   |
| ENGINEER/GEOLOGIST: <i>M. Stelly</i> | Depth                                              | Date/Time | DATE COMPLETED: <i>21 JUL 10</i> |
| DRILLING METHODS: <i>ARCh</i>        |                                                    |           | PAGE: <i>1 OF 4</i>              |

| DEPTH<br>(ft) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                                                                             | USCS SYMBOL | LITHOLOGY | REMARKS                                                |
|---------------|----------------------|------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------------------------------------------------|
|               |                      |                        |                 | <i>0-5'</i>                                                                                                                                                                                                                             |             |           |                                                        |
|               | GRAB<br>↓            |                        |                 | Sand and gravel, Moderate yellowish brown (10YR 5/4) to Dark yellowish brown (10YR 4/2), dry to slightly damp, sand mostly medium to coarse, some fine. Gravel is sub-angular to subrounded mostly limestone and phyllite.              | GW          |           | ? possible artificial fill<br>in native soils<br>by 5' |
| 5             |                      |                        |                 | <i>5-10'</i> Sand and gravel, as above (0-5') except pale yellowish brown (10YR 6/2) to Moderate yellowish brown (10YR 5/4), sand mostly medium sand, dry.                                                                              | GLY<br>SP   |           |                                                        |
| 10            |                      |                        |                 | <i>10-15'</i> Sand and gravel, grayish brown (10YR 7/4), mostly fine sand, well sorted, well rounded. gravel mostly pea sized, some coarser. Gravel lithologies = limestone, phyllite, and olive brown sandstone. dry to slightly damp. | SP          |           | possibly eolian<br>deposit                             |
| 15            |                      |                        |                 | <i>16 ft</i> - weathered bedrock<br>reddish - purple phyllite                                                                                                                                                                           |             |           |                                                        |
| 20            |                      |                        |                 | <i>16-20 ft</i> Phyllite, mottled red, purple, gray, green and brown, some quartz stringers (white to red to brown) overall finely ground up cutting produce pale red purple (5RP 6/2) to grayish purple (5RP 4/2).                     |             |           |                                                        |
| 25            |                      |                        |                 | <i>20-30 ft</i> : phyllite, as above.                                                                                                                                                                                                   |             |           |                                                        |
| 30            |                      |                        |                 |                                                                                                                                                                                                                                         |             |           |                                                        |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                               |                                    |           |                         |
|-------------------------------|------------------------------------|-----------|-------------------------|
| TAOU: Burn Site Groundwater   | SITE NUMBER:                       |           |                         |
| BORING NUMBER: CYU- MN12      | COORDINATES:                       |           | DATE: 20JUL10           |
| ELEVATION: TBD                | GWL: Depth 203.5 Date/Time 23JUL10 |           | DATE STARTED: 20JUL10   |
| ENGINEER/GEOLOGIST: M. Stelly | Depth                              | Date/Time | DATE COMPLETED: 21JUL10 |
| DRILLING METHODS: ARCH        | PAGE: 2 OF 4                       |           |                         |

| DEPTH<br>(ft) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER/ | RECOVERY<br>(%) | DESCRIPTION                                                                                                                  | USCS SYMBOL | LITHOLOGY | REMARKS |
|---------------|----------------------|----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------|
| 30            | GRAB<br>↓            |                      |                 | 30-50': Phyllite, as above, dry.                                                                                             |             |           |         |
| 50            |                      |                      |                 | 50-70': Phyllite, as above, dry.                                                                                             |             |           |         |
| 70            |                      |                      |                 | 70-90': Phyllite, as above, dry.                                                                                             |             |           |         |
| 90            |                      |                      |                 | 90-110': Phyllite, as above, dry.                                                                                            |             |           |         |
| 110           |                      |                      |                 | 110-130': Phyllite, as above, more red than purple (Pale Red, 10YR 6 1/2) to faded red purple (5RP 6 1/2), dry.              |             |           |         |
| 130           |                      |                      |                 |                                                                                                                              |             |           |         |
| 150           |                      |                      |                 | 142': Major color change to light bluish gray (5B7/1) and grayish blue green (5B6 5/2), still Phyllite (more chlorite), dry. |             |           |         |

NOTES:

# VISUAL CLASSIFICATION OF SOILS

|                               |                                      |                           |
|-------------------------------|--------------------------------------|---------------------------|
| TAOU: Burn Site groundwater   | SITE NUMBER:                         |                           |
| BORING NUMBER: CYU- MW12      | COORDINATES:                         | DATE: 20 + 21 JUL 10      |
| ELEVATION: T.B.D              | GWL: Depth 203.5 Date/Time 23 JUL 10 | DATE STARTED: 20 JUL 10   |
| ENGINEER/GEOLOGIST: M. Skelly | Depth                                | DATE COMPLETED: 21 JUL 10 |
| DRILLING METHODS: ARCH        |                                      | PAGE: 3 OF 4              |

| DEPTH<br>(ft) | SAMPLE<br>TYPE & NO. | BLOWS ON<br>SAMPLER( ) | RECOVERY<br>( ) | DESCRIPTION                                                                                                                                                                     | USCS SYMBOL | LITHOLOGY | REMARKS                   |
|---------------|----------------------|------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------------------|
| 150           | GRAB<br>↓            |                        |                 | 150-170: grey green phyllite, as above, more abundant, qtz veins (red + white), dry.                                                                                            |             |           |                           |
| 170           |                      |                        |                 | 170-190; grey green phyllite, as above, dry.                                                                                                                                    |             |           |                           |
| 190           |                      |                        |                 | 190-210; grey green phyllite, as above, more abundant qtz veins (red, pink, white) and quartzite, dry.                                                                          |             |           |                           |
| 210           |                      |                        |                 | 210-230: grey green phyllite, as above, dry                                                                                                                                     |             |           |                           |
| 230           |                      |                        |                 | 230-250: grey green phyllite, dry                                                                                                                                               |             |           | Rough drilling conditions |
| 250           |                      |                        |                 | 250-270: grey green phyllite, as above, damp cuttings starting at ~253', free water being made at ~261', brick red fine-grained material coming up with the grey green phyllite |             |           | Possibly fault gouge.     |
| 270           |                      |                        |                 |                                                                                                                                                                                 |             |           |                           |

NOTES:

## VISUAL CLASSIFICATION OF SOILS

|                              |                                      |                           |
|------------------------------|--------------------------------------|---------------------------|
| TAOU: Burn Site Groundwater  | SITE NUMBER:                         |                           |
| BORING NUMBER: CYU-MW12      | COORDINATES:                         | DATE: 21 JUL 10           |
| ELEVATION: TBD               | GWL: Depth 203.5 Date/Time 23 JUL 10 | DATE STARTED: 20 JUL 10   |
| ENGINEER/GEOLOGIST: M. Spell | Depth Date/Time                      | DATE COMPLETED: 21 JUL 10 |
| DRILLING METHODS: ARCH       |                                      | PAGE: 4 OF 4              |

| DEPTH (ft) | SAMPLE TYPE & NO | BLOWS ON SAMPLER( ) | RECOVERY (%) | DESCRIPTION                                        | USCS SYMBOL | LITHOLOGY | REMARKS |
|------------|------------------|---------------------|--------------|----------------------------------------------------|-------------|-----------|---------|
| 270        | GRAB             |                     |              | 270-290: grey green phyllite, as above, saturated. |             |           |         |
| 290        |                  |                     |              | TD = 290 ft                                        |             |           |         |

NOTES:



**APPENDIX C**

**Well Construction Diagrams for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**



**Well Name:** CYN-MW9  
**Project Name:** ER PROJECT  
**NMOSE Well File Code:** RG-90065, POINT OF DIVERSION: 109  
**Owner Name:** SNL/NM  
**Date Drilling Started:** 07/12/2010  
**Date Well Dev. Completed:** 07/27/2010

**Drilling Contractor:** WDC EXPLORATION & WELLS  
**Drilling Method:** AIR ROTARY CASING HAMMER  
**Borehole Depth (FBGS):** 207  
**Casing Depth (FBGS):** 200.8  
**Geo Location:** SNL/NM BURN SITE  
**Completion Zone:** BEDROCK  
**Completion Formation:** PRECAMBRIAN PHYLLITE

#### Survey Data

**Survey Date:** 08/18/2010  
**Surveyed By:** STEPHEN TOLER

**State Plane Coordinates:** NAD 83

**(X) Easting:** 1593006.71  
**(Y) Northing:** 1457261.48

#### Surveyed Evaluations (FAMSL) NAVD 88

**Protective Casing:** 6361.18  
**Top of Inner Well Casing:** 6360.67  
**Concrete Pad:** 6358.77  
**Ground Surface:** 6358.5

#### Calculated Depths and Elevations

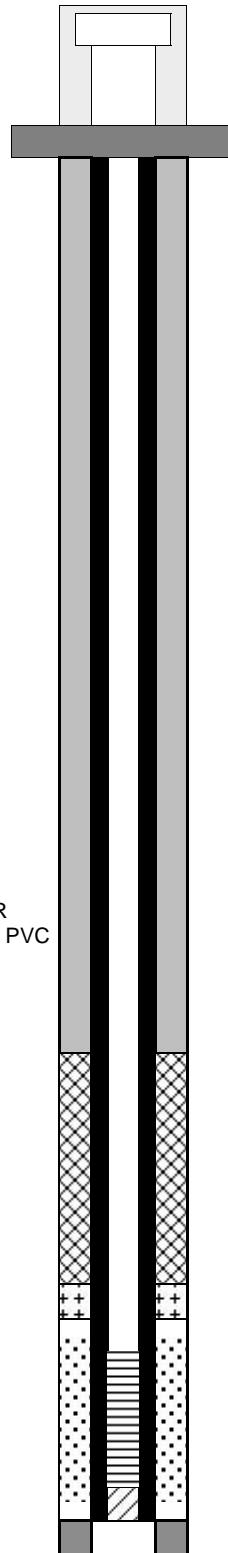
**Initial Water Elevation (FAMSL):** 6197.04

**Initial Depth to Water (FBGS):** 163.63

**Last Measured Water Elevation (FAMSL):** 6194.39

**Date Last Measured:** 7/6/2011

#### Miscellaneous Information


**Date of Last Maintenance:**

**Date Updated:** 22-SEP-2010

**Date Printed from EDMS:** 8/22/2011 4:12:18 PM

#### Comments:

AQUIFER IS SEMI-CONFINED, FIRST FREE WATER SEEN DURING DRILLING WAS AT 180 FBGS. 5 IN. PVC BUNG INSTALLED IN BOTTOM OF SUMP.



#### Completion Data Measured Depths (FBGS)

**Casing Stickup:** 2.2

| Interval | Material | Start | Stop | Length | ID / OD (in.) |
|----------|----------|-------|------|--------|---------------|
|----------|----------|-------|------|--------|---------------|

|                                                    |                     |       |       |       |             |
|----------------------------------------------------|---------------------|-------|-------|-------|-------------|
| <input type="checkbox"/> BOREHOLE                  |                     | 0     | 207   | 207   | / 9.625     |
| <input checked="" type="checkbox"/> CASING         | PVC                 | 0     | 200.8 | 200.8 | 4.77 / 5.56 |
| <input type="checkbox"/> GROUT/BACKFILL            | BENT. GROUT/CONC    | 0     | 132   | 132   |             |
| <input checked="" type="checkbox"/> SEAL           | 3/8 IN. BENT. CHIPS | 132   | 166   | 34    |             |
| <input checked="" type="checkbox"/> SECONDARY PACK | 60 SILICA SAND      | 166   | 171   | 5     |             |
| <input checked="" type="checkbox"/> PRIMARY PACK   | 10-20 SILICA SAND   | 171   | 200.8 | 29.8  |             |
| <input type="checkbox"/> SCREEN                    | PVC                 | 175.8 | 195.8 | 20    |             |
| <input checked="" type="checkbox"/> SUMP           |                     | 195.8 | 200.8 | 5     |             |
| <input type="checkbox"/> PLUG BACK                 | 10-20 SILICA SAND   | 200.8 | 207   | 6.2   |             |

**Well Name:** CYN-MW10  
**Project Name:** ER PROJECT  
**NMOSE Well File Code:** RG-90065, POINT OF DIVERSION: 110  
**Owner Name:** SNL/NM  
**Date Drilling Started:** 07/14/2010  
**Date Well Dev. Completed:** 07/28/2010

**Drilling Contractor:** WDC EXPLORATION & WELLS  
**Drilling Method:** AIR ROTARY CASING HAMMER  
**Borehole Depth (FBGS):** 181  
**Casing Depth (FBGS):** 175.4  
**Geo Location:** SNL/NM BURN SITE  
**Completion Zone:** BEDROCK  
**Completion Formation:** PRECAMBRIAN PHYLLITE

#### Survey Data

**Survey Date:** 08/18/2010  
**Surveyed By:** STEPHEN TOLER

**State Plane Coordinates:** NAD 83

**(X) Easting:** 1593043.38  
**(Y) Northing:** 1456813.04

#### Surveyed Evaluations (FAMSL) NAVD 88

**Protective Casing:** 6346  
**Top of Inner Well Casing:** 6345.45  
**Concrete Pad:** 6343.32  
**Ground Surface:** 6342.8

#### Calculated Depths and Elevations

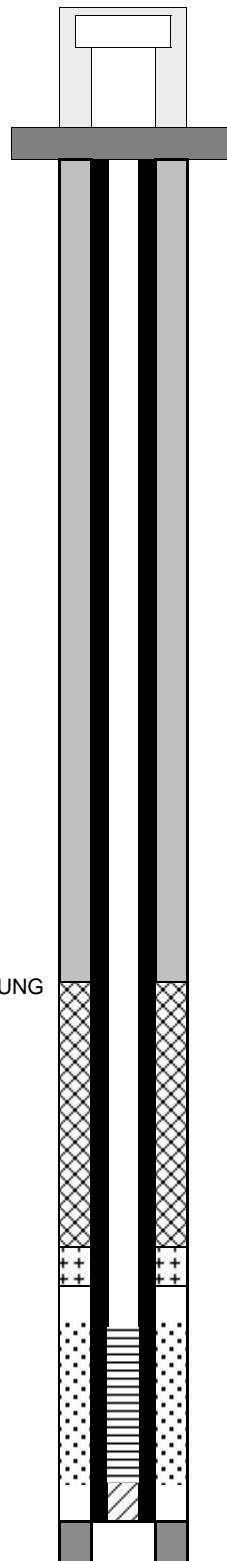
**Initial Water Elevation (FAMSL):** 6224.37

**Initial Depth to Water (FBGS):** 121.08

**Last Measured Water Elevation (FAMSL):** 6221.12

**Date Last Measured:** 7/6/2011

#### Miscellaneous Information


**Date of Last Maintenance:**

**Date Updated:** 22-SEP-2010

**Date Printed from EDMS:** 8/22/2011 4:13:38 PM

#### Comments:

AQUIFER IS SEMI-CONFINED, FIRST VERY DAMP CUTTINGS SEEN DURING DRILLING WAS AT ~160 FBGS. BOREHOLE CUTTINGS AND SAND WERE USED IN THE PLUG BACK INTERVAL. 5 IN. PVC BUNG INSTALLED IN BOTTOM OF SUMP.



#### Completion Data Measured Depths (FBGS)

**Casing Stickup:** 2.7

| Interval | Material | Start | Stop | Length | ID / OD (in.) |
|----------|----------|-------|------|--------|---------------|
|----------|----------|-------|------|--------|---------------|

|                |                     |       |       |       |             |
|----------------|---------------------|-------|-------|-------|-------------|
| BOREHOLE       |                     | 0     | 181   | 181   | / 9.625     |
| CASING         | PVC                 | 0     | 175.4 | 175.4 | 4.77 / 5.56 |
| GROUT/BACKFILL | BENT. GROUT/CEME    | 0     | 106   | 106   |             |
| SEAL           | 3/8 IN. BENT. CHIPS | 106   | 140.1 | 34.1  |             |
| SECONDARY PACK | 60 SILICA SAND      | 140.1 | 145   | 4.9   |             |
| PRIMARY PACK   | 10-20 SILICA SAND   | 145   | 175.4 | 30.4  |             |
| SCREEN         | PVC                 | 150.4 | 170.4 | 20    |             |
| SUMP           |                     | 170.4 | 175.4 | 5     |             |
| PLUG BACK      | 10-20 SILICA SAND   | 175.4 | 181   | 5.6   |             |

**Well Name:** CYN-MW11  
**Project Name:** ER PROJECT  
**NMOSE Well File Code:** RG-90065, POINT IF DIVERSION: 111  
**Owner Name:** SNL/NM  
**Date Drilling Started:** 07/15/2010  
**Date Well Dev. Completed:** 07/29/2010

**Drilling Contractor:** WDC EXPLORATION & WELLS  
**Drilling Method:** AIR ROTARY CASING HAMMER  
**Borehole Depth (FBGS):** 258  
**Casing Depth (FBGS):** 254.8  
**Geo Location:** SNL/NM BURN SITE  
**Completion Zone:** BEDROCK  
**Completion Formation:** PRECAMBRIAN PHYLLITE

#### Survey Data

**Survey Date:** 08/18/2010  
**Surveyed By:** STEPHEN TOLER

**State Plane Coordinates:** NAD 83

**(X) Easting:** 1593549.25  
**(Y) Northing:** 1457079.74

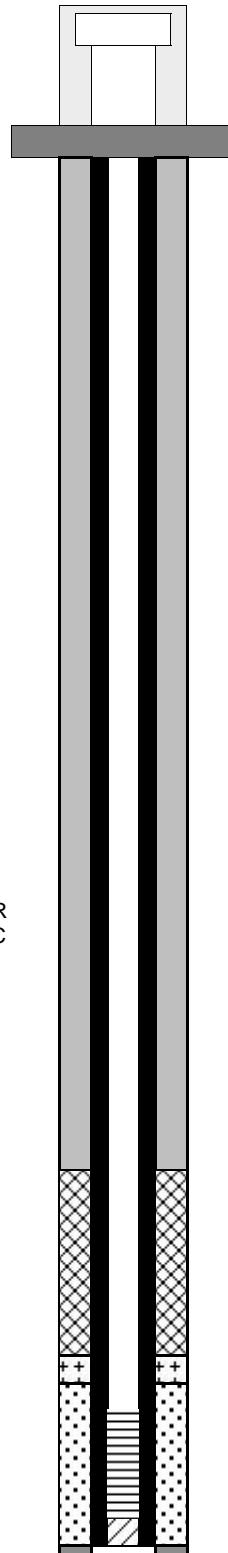
#### Surveyed Evaluations (FAMSL) NAVD 88

**Protective Casing:** 6374.87  
**Top of Inner Well Casing:** 6374.41  
**Concrete Pad:** 6372.27  
**Ground Surface:** 6371.9

#### Calculated Depths and Elevations

**Initial Water Elevation (FAMSL):** 6277.75  
**Initial Depth to Water (FBGS):** 96.66  
**Last Measured Water Elevation (FAMSL):** 6274.28  
**Date Last Measured:** 7/6/2011

#### Miscellaneous Information


**Date of Last Maintenance:**

**Date Updated:** 22-SEP-2010

**Date Printed from EDMS:** 8/22/2011 4:14:48 PM

#### Comments:

AQUIFER IS SEMI-CONFINED, FIRST FREE WATER SEEN DURING DRILLING AT ~230 FBGS. 5 IN. PVC BUNG INSTALLED IN BOTTOM OF SUMP.



#### Completion Data Measured Depths (FBGS)

**Casing Stickup:** 2.5

| Interval | Material | Start | Stop | Length | ID / OD (in.) |
|----------|----------|-------|------|--------|---------------|
|----------|----------|-------|------|--------|---------------|

|                                                    |                     |       |       |       |             |
|----------------------------------------------------|---------------------|-------|-------|-------|-------------|
| <input type="checkbox"/> BOREHOLE                  |                     | 0     | 258   | 258   | / 9.625     |
| <input checked="" type="checkbox"/> CASING         | PVC                 | 0     | 254.8 | 254.8 | 4.77 / 5.56 |
| <input type="checkbox"/> GROUT/BACKFILL            | BENT. GROUT/CEME    | 0     | 186   | 186   |             |
| <input checked="" type="checkbox"/> SEAL           | 3/8 IN. BENT. CHIPS | 186   | 220   | 34    |             |
| <input checked="" type="checkbox"/> SECONDARY PACK | 60 SILICA SAND      | 220   | 225   | 5     |             |
| <input checked="" type="checkbox"/> PRIMARY PACK   | 10-20 SILICA SAND   | 225   | 254.8 | 29.8  |             |
| <input type="checkbox"/> SCREEN                    | PVC                 | 229.8 | 249.8 | 20    |             |
| <input checked="" type="checkbox"/> SUMP           |                     | 249.8 | 254.8 | 5     |             |
| <input type="checkbox"/> PLUG BACK                 | 10-20 SILICA SAND   | 254.8 | 258   | 3.2   |             |

**Well Name:** CYN-MW12  
**Project Name:** ER PROJECT  
**NMOSE Well File Code:** RG-90065, POINT OF DIVERSION: 112  
**Owner Name:** SNL/NM  
**Date Drilling Started:** 07/20/2010  
**Date Well Dev. Completed:** 07/29/2010

**Drilling Contractor:** WDC EXPLORATION & WELLS  
**Drilling Method:** AIR ROTARY CASING HAMMER  
**Borehole Depth (FBGS):** 290  
**Casing Depth (FBGS):** 277.5  
**Geo Location:** SNL/NM BURN SITE  
**Completion Zone:** BEDROCK  
**Completion Formation:** PRECAMBRIAN PHYLLITE

#### Survey Data

**Survey Date:** 08/18/2010  
**Surveyed By:** STEPHEN TOLER

**State Plane Coordinates:** NAD 83

**(X) Easting:** 1592251.79  
**(Y) Northing:** 1457335.12

#### Surveyed Evaluations (FAMSL) NAVD 88

**Protective Casing:** 6345.67  
**Top of Inner Well Casing:** 6345.16  
**Concrete Pad:** 6343.15  
**Ground Surface:** 6342.9

#### Calculated Depths and Elevations

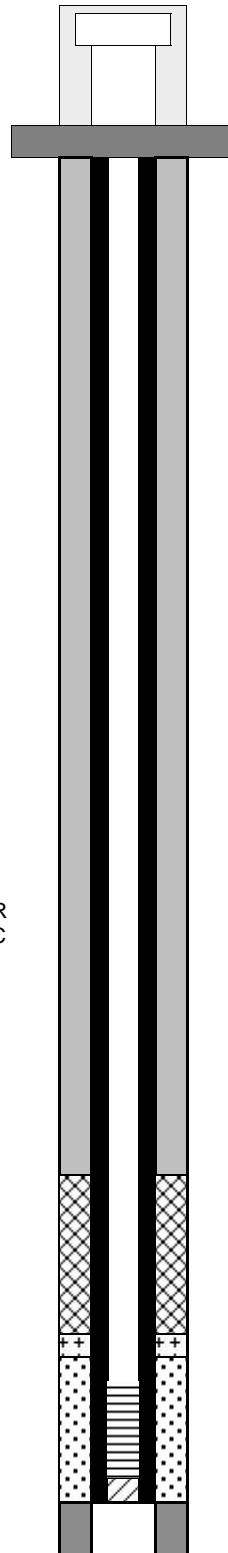
**Initial Water Elevation (FAMSL):** 6139.38

**Initial Depth to Water (FBGS):** 205.78

**Last Measured Water Elevation (FAMSL):** 6136.91

**Date Last Measured:** 7/6/2011

#### Miscellaneous Information


**Date of Last Maintenance:**

**Date Updated:** 22-SEP-2010

**Date Printed from EDMS:** 8/22/2011 4:15:50 PM

#### Comments:

AQUIFER IS SEMI-CONFINED, FIRST FREE WATER SEEN DURING DRILLING AT ~261 FBGS. 5 IN. PVC BUNG INSTALLED IN BOTTOM OF SUMP.



#### Completion Data Measured Depths (FBGS)

**Casing Stickup:** 2.2

| Interval | Material | Start | Stop | Length | ID / OD (in.) |
|----------|----------|-------|------|--------|---------------|
|----------|----------|-------|------|--------|---------------|

|                |                     |       |       |       |             |
|----------------|---------------------|-------|-------|-------|-------------|
| BOREHOLE       |                     | 0     | 290   | 290   | / 9.625     |
| CASING         | PVC                 | 0     | 277.5 | 277.5 | 4.77 / 5.56 |
| GROUT/BACKFILL | BENT. GROUT/CEME    | 0     | 210   | 210   |             |
| SEAL           | 3/8 IN. BENT. CHIPS | 210   | 242.8 | 32.8  |             |
| SECONDARY PACK | 60 SILICA SAND      | 242.8 | 247.5 | 4.7   |             |
| PRIMARY PACK   | 10-20 SILICA SAND   | 247.5 | 277.5 | 30    |             |
| SCREEN         | PVC                 | 252.5 | 272.5 | 20    |             |
| SUMP           |                     | 272.5 | 277.5 | 5     |             |
| PLUG BACK      | 10-20 SILICA SAND   | 277.5 | 290   | 12.5  |             |

**APPENDIX D**  
**Video Borehole Logs for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**



**Borehole Video Results for CYN-MW9**  
**Conducted by Bruce Reavis and Gary Hall (notes by**  
**Mike Skelly), 13 July 2010**

| Depth (ft bgs) <sup>a</sup> | Feature      | Comments                                                                                                                                                                                                                                        |
|-----------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 to 36                     | Drive Casing | Casing joints at 5 ft, 10 ft, 15 ft, and 35 ft. Drive shoe from 35 to 36 ft. Some fine-grained drill cuttings raining down past the camera.                                                                                                     |
| 36 to 41                    | Phyllite     | Entered bedrock, fairly consistent-sized borehole with hackly fracture; dusty; with occasional horizontal and vertical drill bit scars. Phyllite with near vertical fabric (schistosity), unable to determine color variations.                 |
| 41 to 43                    | Fracture     | Nearly vertical, less than 1 inch, filled with white mineral.                                                                                                                                                                                   |
| 43 to 46                    | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 46                          | Fracture     | High angle, filled with white mineral.                                                                                                                                                                                                          |
| 46 to 60                    | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 60                          | Fracture Set | Sub horizontal, borehole enlarged and more irregular.                                                                                                                                                                                           |
| 60 to 82                    | Phyllite     | As above, starting at ~69 ft the borehole wall has several prominent vertical drill bit scars that last for tens of feet to the bottom of the borehole.                                                                                         |
| 82                          | Fracture     | Medium angle, filled with white mineral.                                                                                                                                                                                                        |
| 82 to 95                    | Phyllite     | As above, starting at 90 ft slight change to smoother borehole.                                                                                                                                                                                 |
| 95 to 97                    | Fracture Set | Multiple sets of medium angle fractures filled with white mineral.                                                                                                                                                                              |
| 97 to 102                   | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 102                         | Fracture     | High angle, filled with white mineral.                                                                                                                                                                                                          |
| 102 to 104                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 104                         | Fracture     | Medium angle, filled with white mineral.                                                                                                                                                                                                        |
| 104 to 107                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 107                         | Fracture     | Medium angle, filled with white mineral.                                                                                                                                                                                                        |
| 107 to 110                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 110                         | Fracture     | Low angle, filled with white mineral.                                                                                                                                                                                                           |
| 110 to 116                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 116                         | Fracture     | Medium angle, no mineralization.                                                                                                                                                                                                                |
| 116 to 120                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 120                         | Fracture     | Medium angle, no mineralization.                                                                                                                                                                                                                |
| 120 to 134                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 134                         | Fracture Set | Medium angle, no mineralization, borehole around fracture set is rougher and enlarged.                                                                                                                                                          |
| 134 to 139                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 139                         | Fracture     | Medium angle, filled with white mineral.                                                                                                                                                                                                        |
| 139 to 142                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 142                         | Fracture     | Medium angle, no mineralization.                                                                                                                                                                                                                |
| 142 to 143                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 143 to 145                  | Fracture Set | Low angle, filled with white mineral.                                                                                                                                                                                                           |
| 145 to 151                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 151                         | Fracture     | Low angle, filled with white mineral.                                                                                                                                                                                                           |
| 151 to 153                  | Phyllite     | As above.                                                                                                                                                                                                                                       |
| 153 to 158                  | Fracture Set | Complex, medium to low angle, some filled with white mineral, some with no mineralization.                                                                                                                                                      |
| 158 to 161                  | Phyllite     | As above; borehole wall darker, possibly due to dampness. No free water seen in fractures, no groundwater dripping into pool at 161 ft.                                                                                                         |
| 161                         | Groundwater  | Very cloudy/opaque. Pool of water is very still, no drips or seeps disturbing surface. Entered groundwater with camera to depth of 171 ft, but due to poor visibility unable to see any geologic features. Tagged bottom of borehole at 207 ft. |
| 171                         |              | <b>END VIDEO</b>                                                                                                                                                                                                                                |

Notes:

<sup>a</sup> = Feet below ground surface (ft bgs); Footage based on camera cable reading, may differ slightly from lithologic log.

**Borehole Video Results for CYN-MW10**  
**Conducted by Bruce Reavis and Gary Hall (notes by**  
**Mike Skelly), 15 July 2010**

| Depth (ft bgs) <sup>a</sup> | Feature      | Comments                                                                                                                                                                                                                                                                                                       |
|-----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 to 34                     | Drive Casing | Casing joints at 4 ft, 9 ft, and 14 ft. No drive shoe (damaged while drilling on MW9). Some fine-grained drill cuttings raining down past the camera.                                                                                                                                                          |
| 34 to 38                    | Phyllite     | Entered bedrock, fairly consistent-sized borehole with hackly fracture; dusty; with occasional horizontal and vertical drill bit scars. Phyllite with near vertical fabric (schistosity), unable to determine color variations.                                                                                |
| 38 to 40                    | Fracture Set | High angle, less than 1 inch, filled with white mineral.                                                                                                                                                                                                                                                       |
| 40 to 49                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 49 to 52                    | Fracture Set | High angle, filled with white mineral.                                                                                                                                                                                                                                                                         |
| 52 to 66                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 66 to 68                    | Fracture     | High angle to vertical, no mineralization, borehole enlarged and more irregular.                                                                                                                                                                                                                               |
| 68 to 75                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 75 to 77                    | Fracture     | High angle, no mineralization, borehole enlarged and more irregular.                                                                                                                                                                                                                                           |
| 77 to 78                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 78                          | Fracture     | High angle, no mineralization.                                                                                                                                                                                                                                                                                 |
| 78 to 82                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 82                          | Fracture     | Medium angle, no mineralization.                                                                                                                                                                                                                                                                               |
| 82 to 90                    | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 90 to 92                    | Fracture     | Vertical, less than 1/2 inch, filled with white mineral.                                                                                                                                                                                                                                                       |
| 92 to 108                   | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 108 to 114                  | Fracture Set | All angles, some filled with white mineral, some with no mineralization, borehole enlarged and more irregular.                                                                                                                                                                                                 |
| 114 to 116                  | Phyllite     | As above.                                                                                                                                                                                                                                                                                                      |
| 116                         | Groundwater  | Very cloudy/opaque. Pool of water is very still, no drips or seeps disturbing surface. Entered groundwater with camera to depth of 173 ft, some sediment turbidity currents. Bumped into pile of sediment at the bottom of the borehole at 173 ft. Due to poor visibility unable to see any geologic features. |
| 173                         |              | <b>END VIDEO</b>                                                                                                                                                                                                                                                                                               |

Notes:

<sup>a</sup> = Feet below ground surface (ft bgs); Footage based on camera cable reading, may differ slightly from lithologic log.

**Borehole Video Results for CYN-MW11**  
**Conducted by Bruce Reavis and Gary Hall (notes by**  
**Mike Skelly), 16 July 2010**

| Depth (ft bgs) <sup>a</sup> | Feature            | Comments                                                                                                                                                                                                                                            |
|-----------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 to 26                     | Drive Casing       | Casing joint at 7 ft. Some fine-grained drill cuttings raining down past the camera.                                                                                                                                                                |
| 26 to 29                    | Colluvium/Alluvium | Sand to cobble sized particles, clasts are angular, borehole enlarged and irregular.                                                                                                                                                                |
| 29 to 35                    | Phyllite           | Entered bedrock, highly weathered to 30 ft, fairly consistent-sized borehole with hackly fracture; with occasional horizontal and vertical drill bit scars. Phyllite with near vertical fabric (schistosity), unable to determine color variations. |
| 35 to 36                    | Fracture           | High angle, less than 1 inch, no mineralization, borehole damp from drilling.                                                                                                                                                                       |
| 36 to 44                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 44                          | Fracture Set       | High angle, filled with white mineral.                                                                                                                                                                                                              |
| 44 to 53                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 53                          | Fracture Set       | High angle, no mineralization.                                                                                                                                                                                                                      |
| 53 to 62                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 62                          | Fracture           | High angle, no mineralization.                                                                                                                                                                                                                      |
| 62 to 68                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 68 to 71                    | Fracture Set       | Low to medium angle, some mineralization.                                                                                                                                                                                                           |
| 71 to 77                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 77 to 78                    | Fracture/Fault     | Medium angle, no mineralization, borehole enlarged and irregular.                                                                                                                                                                                   |
| 78 to 82                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 82                          | Fracture           | High angle.                                                                                                                                                                                                                                         |
| 82 to 87                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 87 to 89                    | Fracture Set       | Medium angle, some filled with white mineral, some with no mineralization.                                                                                                                                                                          |
| 89 to 90                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 90                          | Fracture/Fault     | Large feature, borehole enlarged and irregular.                                                                                                                                                                                                     |
| 90 to 95                    | Phyllite           | As above.                                                                                                                                                                                                                                           |
| 95                          | Groundwater        | Very cloudy/opaque. Pool of water is very still, no drips or seeps disturbing surface. Entered groundwater with camera to depth of 193 ft. Due to poor visibility unable to see any geologic features. Tagged bottom of borehole at 258 ft.         |
| 193                         |                    | <b>END VIDEO</b>                                                                                                                                                                                                                                    |

Notes:

<sup>a</sup> = Feet below ground surface (ft bgs); Footage based on camera cable reading, may differ slightly from lithologic log.

**Borehole Video Results for CYN-MW12**  
**Conducted by Bruce Reavis and Gary Hall (notes by**  
**Mike Skelly), 21 July 2010**

| Depth (ft bgs) <sup>a</sup> | Feature        | Comments                                                                                                                                                                                                                                                                               |
|-----------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 to 16                     | Drive Casing   | Technical problems with the camera unable to clearly see geologic features until 199 ft.                                                                                                                                                                                               |
| 16 to 199                   | Unknown        | Technical problems with the camera unable to clearly see geologic features until 199 ft.                                                                                                                                                                                               |
| 199 to 204                  | Phyllite       | Bedrock, consistent-sized borehole with hackly fracture; with occasional horizontal and vertical drill bit scars. Phyllite with near vertical fabric (schistosity), unable to determine color variations.                                                                              |
| 204                         | Fracture/Fault | High angle.                                                                                                                                                                                                                                                                            |
| 204 to 209                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 209                         | Fracture Set   | Large low angle, no mineralization, borehole enlarged and irregular; very wet possible groundwater seeping into borehole.                                                                                                                                                              |
| 209 to 216                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 216                         | Fracture/Fault | High angle, no mineralization.                                                                                                                                                                                                                                                         |
| 216 to 217                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 217                         | Fracture       | Horizontal, no mineralization; groundwater spraying into borehole from left of view (~9 o'clock), much less than 1 gallon per minute. Attempt to side scan the fracture but camera snags on rough borehole. Borehole very wet to total depth, groundwater drops falling around camera. |
| 217 to 222                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 222                         | Fracture Set   | Low to high angle, some filled with white mineral.                                                                                                                                                                                                                                     |
| 222 to 226                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 226                         | Fracture       | Low to high angle, some filled with white mineral; groundwater slowly seeping into borehole from lower-most fracture and flowing down borehole wall.                                                                                                                                   |
| 226 to 232                  | Phyllite       | As above.                                                                                                                                                                                                                                                                              |
| 232                         | Groundwater    | Very cloudy/opaque. Pool of water shows signs of flow with dripping/seeping water disturbing surface. Entered groundwater with camera to depth of 233 ft. Due to poor visibility unable to see any geologic features. Tagged bottom of borehole at 290 ft.                             |
| 233                         |                | <b>END VIDEO</b>                                                                                                                                                                                                                                                                       |

Notes:

<sup>a</sup> = Feet below ground surface (ft bgs); Footage based on camera cable reading, may differ slightly from lithologic log.

**APPENDIX E**  
**Well Development Forms for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**



**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION**

|               |                                                   |                                         |                          |
|---------------|---------------------------------------------------|-----------------------------------------|--------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                          |
| Well ID.:     | CHU-MW9                                           | Date:                                   | 27 JULY 2010             |
| Weather       | Monsoon Season                                    |                                         |                          |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: ~ 190 ft bgs |

**PURGE MEASUREMENTS**

| Depth to Water (FT)   | Time 24 hr | Vol <sup>L</sup> <sub>gals</sub> | Temp °C | Ec <sup>µmho</sup> | ORP MV | pH   | Flow L g/s | Turb NTU | DO % | DO <sup>mg/L</sup> | Color and appearance |
|-----------------------|------------|----------------------------------|---------|--------------------|--------|------|------------|----------|------|--------------------|----------------------|
|                       |            |                                  |         |                    |        |      |            |          |      |                    |                      |
| 161.5 bgs             | 1003       | 50                               | —       | Bailed             | —      | —    | —          | —        | —    | —                  | —                    |
|                       | 1006       | 62                               | 18.45   | 1154               | 107.9  | 6.91 | ~1gpm      | 766      | 53.2 | 4.97               |                      |
|                       | 1010       | 66                               | 18.56   | 1108               | 117.5  | 6.89 | "          | 640      | 56.1 | 5.25               |                      |
|                       | 1014       | 70                               | 18.69   | 1140               | 118.3  | 6.94 | "          | 572      | 55.4 | 5.15               |                      |
|                       | 1018       | 74                               | 19.35   | 1139               | 121.1  | 6.95 | "          | 337      | 56.3 | 5.16               |                      |
|                       | 1022       | 78                               | 20.00   | 1136               | 123.8  | 6.92 | "          | 161      | 54.3 | 5.07               |                      |
|                       | 1025       | 82                               | 20.36   | 1135               | 127.1  | 6.88 | "          | 114      | 50.4 | 4.53               |                      |
|                       | 1029       | 86                               | 20.53   | 1130               | 130.0  | 6.85 | "          | 79.4     | 50.4 | 4.52               |                      |
|                       | 1033       | 90                               | 20.80   | 1137               | 132.9  | 6.83 | "          | 47.0     | 51.1 | 4.60               |                      |
|                       | 1040       | 98                               | 20.88   | 1138               | 132.9  | 6.82 | "          | 41.6     | 48.6 | 4.33               |                      |
|                       | 1048       | 106                              | 21.32   | 1138               | 139.0  | 6.79 | "          | 21.5     | 48.2 | 4.26               |                      |
|                       | 1053       | 114                              | 21.41   | 1142               | 143.7  | 6.78 | "          | 22.4     | 53.9 | 4.75               |                      |
|                       | 1100       | 122                              | 21.41   | 1142               | 149.2  | 6.74 | "          | 17.0     | 48.2 | 4.25               |                      |
|                       | 1106       | 130                              | 21.66   | 1145               | 152.0  | 6.75 | "          | 25.5     | 48.1 | 4.22               |                      |
| COC number(s): N/A    |            |                                  |         |                    |        |      |            |          |      |                    |                      |
| Sample number(s): N/A |            |                                  |         |                    |        |      |            |          |      |                    |                      |

**Purge Volume Calculations**

Well Diameter

2" well: 0.16 gal/ft X (height of water column) = gallons

4" well: 0.65 gal/ft X (height of water column) = gallons

6" well: 1.47 gal/ft X (height of water column) = gallons

Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = milliliters

**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION**

|               |                                                   |                                         |              |             |                          |
|---------------|---------------------------------------------------|-----------------------------------------|--------------|-------------|--------------------------|
| Project Name: | Burn Site Groundwater                             |                                         | Project No.: |             |                          |
| Well I.D.:    | C4N-MW9                                           |                                         | Date:        | 27 JUL 2010 |                          |
| Weather       | Monsoon Season                                    |                                         |              |             |                          |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth:  |             | $\sim 190\text{ ft/bgs}$ |

**PURGE MEASUREMENTS**

DO<sup>mg/L</sup>

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec $\mu\text{mho}$ | ORP MV | pH                  | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|--------------------|--------|---------------------|------------|----------|------|----------------------|
| 11.15               | 138        | 21.54      | 1146    | 156.6              | 6.73   | $\sim 1\text{ gpm}$ | 18.8       | 49.5     | 4.35 |                      |
| 11.21               | 146        | 21.79      | 1147    | 156.9              | 6.75   | $\sim 1\text{ gpm}$ | 15.2       | 48.5     | 4.25 |                      |
| 11.30               | 154        | 21.88      | 1149    | 160.4              | 6.76   | $\sim 1\text{ gpm}$ | 15.3       | 48.8     | 4.25 |                      |
| 11.38               | 162        | 21.70      | 1150    | 162.2              | 6.77   | 1 gpm               | 16.0       | 51.9     | 4.52 |                      |
| 11.46               | 170        | 22.10      | 1148    | 161.5              | 6.75   | 1 gpm               | 21.6       | 48.8     | 4.24 |                      |
| 11.52               | 178        | 21.80      | 1154    | 164.4              | 6.72   | $\sim 1\text{ gpm}$ | 11.7       | 48.7     | 4.25 |                      |
| 11.59               | 184        | 22.15      | 1152    | 165.1              | 6.71   | $\sim 1\text{ gpm}$ | 13.7       | 49.6     | 4.31 |                      |
| 12.07               | 192        | 22.07      | 1149    | 166.2              | 6.71   | "                   | 13.2       | 48.6     | 4.22 |                      |
| 12.15               | 200        | 22.16      | 1151    | 165.1              | 6.71   | "                   | 12.5       | 48.6     | 4.22 |                      |
| 12.23               | 208        | 22.20      | 1156    | 156                | 6.72   | "                   | 11.4       | 48.7     | 4.22 |                      |
| 12.30               | 216        | 22.21      | 1155    | 156                | 6.72   | "                   | 11.1       | 49.9     | 4.34 |                      |
| 12.37               | 224        | 22.22      | 1156    | 169.4              | 6.71   | "                   | 10.1       | 49.0     | 4.24 |                      |
| 12.44               | 232        | 22.19      | 1157    | 170.5              | 6.70   | "                   | 9.55       | 48.2     | 4.18 |                      |
| 12.53               | 240        | 22.29      | 1158    | 170.0              | 6.71   | "                   | 9.44       | 49.1     | 4.25 |                      |

COC number(s):

N/A

Sample number(s):

N/A

**Purge Volume Calculations**

Well Diameter

2" well: 0.16 gal/ft X (height of water column) = \_\_\_\_\_ gallons

4" well: 0.65 gal/ft X (height of water column) = \_\_\_\_\_ gallons

6" well: 1.47 gal/ft X (height of water column) = \_\_\_\_\_ gallons

Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

**ATTACHMENT A**

# FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

|               |                                                   |                                         |                                |
|---------------|---------------------------------------------------|-----------------------------------------|--------------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                                |
| Well I.D.:    | CYN-MW09                                          | Date:                                   | 27 JULY 2010                   |
| Weather       | Monsoon Season                                    |                                         |                                |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: <i>~190 ft bgs</i> |

## PURGE MEASUREMENTS

Do 18/L

### Purge Volume Calculations

### Well Diameter

2" well: 0.16 gal/ft X (height of water column) = \_\_\_\_\_ gallons

$$4" \text{ well: } 0.65 \text{ gal/ft} \times \text{(height of water column)} = \text{gallons}$$

6" well: 1.47 gal/ft X (height of water column) = \_\_\_\_\_ gallons

### Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

1/2" ODI: 2 1.5 ml/ft X (length of tubing) = milliliters



**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION**

|               |                                                   |                |                          |
|---------------|---------------------------------------------------|----------------|--------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:   |                          |
| Well I.D.:    | CYN-MW10                                          | Date:          | 27 JUL 10 + 28 JULY 10   |
| Weather       | Monsoon Season                                    |                |                          |
| Method:       | <input checked="" type="checkbox"/> Portable pump | Dedicated pump | Pump depth: ~ 165 ft bgs |

**PURGE MEASUREMENTS**

DO mg/L

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec µmho | ORP MV | pH   | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|---------|--------|------|------------|----------|------|----------------------|
| 118.0 bgs           |            | 100        | —       | —       | —      | —    | —          | —        | —    | —                    |
| 28 JULY 10          | 7:35       | 104        | 15.99   | 964     | 105.2  | 7.46 | ~ 1 gpm    | 32.5     | 21.3 | 2.10                 |
|                     | 7:38       | 108        | 15.55   | 960     | 103.7  | 7.38 | ~ 1 gpm    | ~ 13.3   | 1.32 |                      |
|                     | 7:42       | 112        | 16.44   | 970     | 110.7  | 7.26 | ~ 1 "      | 79.5     | 44.1 | 4.30                 |
|                     | 7:46       | 116        | 17.66   | 973     | 115.1  | 7.23 | ~ 1 "      | 31.9     | 40.2 | 4.55                 |
|                     | 7:49       | 120        | 17.77   | 972     | 118.5  | 7.19 | ~ 1 "      | 23.8     | 46.8 | 4.44                 |
|                     | 7:51       | 124        | 18.11   | 971     | 122.5  | 7.16 | ~ 1 "      | 21.8     | 46.5 | 4.38                 |
|                     | 7:54       | 128        | 18.47   | 969     | 124.9  | 7.14 | ~ 1 "      | 25.6     | 47.7 | 4.46                 |
|                     | 7:58       | 132        | 18.70   | 967     | 127.3  | 7.11 | ~ 1 "      | 57.6     | 48.8 | 4.54                 |
|                     | 8:01       | 136        | 18.98   | 966     | 127.3  | 7.12 | ~ 1 "      | 79.2     | 51.6 | 4.81                 |
|                     | 8:03       | 140        | 19.02   | 965     | 128.3  | 7.10 | ~ 1 "      | 59.6     | 50.8 | 4.70                 |
|                     | 8:05       | 144        | 19.12   | 963     | 129.0  | 7.09 | ~ 1 "      | 52.6     | 52.0 | 4.79                 |
|                     | 8:08       | 148        | 19.20   | 959     | 129.5  | 7.09 | ~ 1 "      | 35.7     | 52.7 | 4.86                 |
|                     | 8:12       | 152        | 19.27   | 961     | 129.9  | 7.10 | ~ 1 "      | 35.7     | 54.5 | 5.01                 |
| COC number(s):      | N/A        |            |         |         |        |      |            |          |      |                      |
| Sample number(s):   | N/A        |            |         |         |        |      |            |          |      |                      |

**Purge Volume Calculations**

Well Diameter

2" well: 0.16 gal/ft X (height of water column) = \_\_\_\_\_ gallons

4" well: 0.65 gal/ft X (height of water column) = \_\_\_\_\_ gallons

6" well: 1.47 gal/ft X (height of water column) = \_\_\_\_\_ gallons

Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION**

|               |                                                   |                                         |                       |
|---------------|---------------------------------------------------|-----------------------------------------|-----------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                       |
| Well I.D.:    | CYN-MW10                                          | Date:                                   | 28 JULY 2010          |
| Weather       | Monsoon Season                                    |                                         |                       |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: ~165 feet |

## PURGE MEASUREMENTS

## Purge Volume Calculations

### Well Diameter

2" well: 0.16 gal/ft X (height of water column) = \_\_\_\_\_ gallons

4" well: 0.65 gal/ft X (height of water column) = \_\_\_\_\_ gallons

6" well: 1.47 gal/ft X (height of water column) = \_\_\_\_\_ gallons

### Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 mL/ft X (length of tubing) = milliliters

1/2" ODI: 2 1.5 ml/ft X (length of tubing) = milliliters

**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION**

|               |                                                   |                                         |                         |
|---------------|---------------------------------------------------|-----------------------------------------|-------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                         |
| Well I.D.:    | CWN- HW11                                         | Date:                                   | 28 JULY 2010.           |
| Weather       | Monsoon Season                                    |                                         |                         |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: ~245 ft bgs |

**PURGE MEASUREMENTS**

DO mg/L

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec µmho | ORP MV | pH   | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|---------|--------|------|------------|----------|------|----------------------|
| 93.9 bgs            | 12:09      | 54         | 18.31   | 1014    | 59.9   | 7.56 | 1.9pm      | E3       | 12.1 | 1.12                 |
|                     | 12:12      | 58         | 18.53   | 1008    | 71.1   | 7.14 | "          | E3       | 7.9  | 0.73                 |
|                     | 12:15      | 62         | 18.79   | 1012    | 74.5   | 7.00 | "          | E3       | 6.8  | 0.63                 |
|                     | 12:19      | 66         | 19.08   | 1009    | 72.0   | 6.99 | "          | E3       | 6.4  | 0.59                 |
|                     | 12:22      | 70         | 18.65   | 1000    | 68.8   | 7.03 | "          | E3       | 5.5  | 6.51                 |
|                     | 12:26      | 74         | 18.47   | 0.983   | 65.2   | 7.07 | "          | E3       | 4.7  | 0.43                 |
|                     | 12:30      | 78         | 18.49   | 0.974   | 59.3   | 7.09 | "          | "1000"   | 4.3  | 0.40                 |
|                     | 12:33      | 82         | 18.52   | 969     | 55.8   | 7.11 | "          | "1000"   | 4.0  | 0.37                 |
|                     | 12:37      | 86         | 18.87   | 970     | 50.9   | 7.11 | "          | "1000"   | 5.0  | 0.46                 |
|                     | 12:41      | 90         | 19.36   | 0975    | 51.1   | 7.10 | "          | E3       | 5.7  | 0.52                 |
|                     | 12:45      | 94         | 19.45   | 975     | 50.0   | 7.11 | "          | E3       | 7.0  | 0.62                 |
|                     | 12:49      | 98         | 19.63   | 975     | 50.0   | 7.09 | "          | E3       | 6.3  | 0.58                 |
|                     | 12:54      | 102        | 19.37   | 977     | 47.3   | 7.10 | "          | E3       | 6.0  | 0.55                 |
|                     | 12:57      | 106        | 19.17   | 979     | 47.0   | 7.10 | "          | E3       | 6.0  | 0.55                 |

COC number(s):

N/A

Sample number(s):

N/A

**Purge Volume Calculations**

Well Diameter

2" well: 0.16 gal/ft X (height of water column) = gallons

4" well: 0.65 gal/ft X (height of water column) = gallons

6" well: 1.47 gal/ft X (height of water column) = gallons

Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = milliliters

## ATTACHMENT A

## FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

|               |                                                   |                                         |                            |
|---------------|---------------------------------------------------|-----------------------------------------|----------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                            |
| Well I.D.:    | CYN - MW 11                                       | Date:                                   | 28 JULY 2010               |
| Weather       | Monsoon Season                                    |                                         |                            |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth:<br>~245 ft bgs |

## PURGE MEASUREMENTS

DO mg/L

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec µmho | ORP MV | pH   | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|---------|--------|------|------------|----------|------|----------------------|
| 48 gal.             | 13:06      | 114        | 19.20   | 981     | 48.4   | 7.10 | ~1 gpm     | 'E3"     | 6.4  | 0.60                 |
|                     | 13:13      | 122        | 19.47   | 982     | 57.0   | 7.14 | ~1"        | 'E3"     | 8.3  | 0.76                 |
|                     | 13:17      | 130        | 19.46   | 982     | 56.2   | 7.10 | "          | E3       | 8.3  | 0.76                 |
|                     | 13:21      | 138        | 20.07   | 982     | 59.3   | 7.09 | "          | E3       | 9.4  | 0.85                 |
|                     | 13:25      | 146        | 19.81   | 989     | 62.2   | 7.13 | "          | "1000"   | 9.3  | 0.84                 |
|                     | 13:30      | 154        | 19.71   | 982     | 65.7   | 7.11 | "          | "1000"   | 11.4 | 1.04                 |
| 16 gal.             | 13:36      | 170        | 19.66   | 985     | 69.3   | 7.10 | ~2 gpm     | "1000"   | 17.5 | 1.61                 |
|                     | 13:42      | 186        | 19.58   | 986     | 74.1   | 7.10 | "          | 687      | 15.3 | 1.40                 |
|                     | 13:49      | 202        | 19.47   | 988     | 77.3   | 7.07 | "          | 523      | 14.1 | 1.29                 |
|                     | 13:54      | 218        | 19.53   | 987     | 80.7   | 7.09 | "          | 456      | 16.0 | 1.46                 |
|                     | 14:00      | 236        | 19.32   | 991     | 84.1   | 7.08 | "          | 384      | 16.1 | 1.50                 |
|                     | 14:06      | 252        | 19.22   | 991     | 86.8   | 7.07 | "          | 391      | 16.7 | 1.54                 |
|                     | 14:12      | 278        | 19.15   | 995     | 90.5   | 7.06 | "          | 326      | 17.6 | 1.62                 |
|                     | 14:17      | 294        | 19.11   | 995     | 92.7   | 7.07 | "          | 357      | 18.5 | 1.70                 |

COC number(s): N/A

Sample number(s): N/A

## Purge Volume Calculations

## Well Diameter

2" well: 0.16 gal/ft X (height of water column) = gallons

4" well: 0.65 gal/ft X (height of water column) = gallons

6" well: 1.47 gal/ft X (height of water column) = gallons

## Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = milliliters

## ATTACHMENT A

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION

|               |                                                   |                                         |                         |
|---------------|---------------------------------------------------|-----------------------------------------|-------------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                         |
| Well ID.:     | CYN - MW11                                        | Date:                                   | 28 JULY 2010            |
| Weather       | Monsoon Season                                    |                                         |                         |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: ~245 ft bgs |

## PURGE MEASUREMENTS

DO mg/L

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec µmho | ORP MV | pH   | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|---------|--------|------|------------|----------|------|----------------------|
| 16 gal.             | 14:23      | 310        | 19.07   | 1000    | 96.2   | 7.06 | ~2 gpm     | 322      | 18.2 | 1.67                 |
| 7/29/10             |            | 336        |         |         |        |      |            |          |      |                      |
| 8                   | 7:45       | 318        | 16.63   | 1011    | -2.8   | 7.29 | 1 gpm      | 29.2     | 5.6  | 0.54                 |
|                     | 7:48       | 326        | 17.13   | 1013    | 8.8    | 7.21 | 1 gpm      | 410      | 12.0 | 1.15                 |
|                     | 7:54       | 334        | 17.75   | 1013    | 39.7   | 7.15 | 1 gpm      | 37.4     | 10.3 | 0.96                 |
|                     | 8:00       | 342        | 17.98   | 1007    | 46.5   | 7.13 | 1 gpm      | 20.7     | 8.2  | 0.77                 |
|                     | 8:08       | 350        | 18.24   | 1001    | 58.4   | 7.09 | 1 gpm      | 15.8     | 8.8  | 0.92                 |
|                     | 8:13       | 358        | 18.38   | 997     | 63.5   | 7.07 | 1 gpm      | 12.2     | 9.4  | 0.88                 |
|                     | 8:19       | 366        | 18.52   | 1000    | 68.9   | 7.04 | 1 gpm      | 9.86     | 10.8 | 1.01                 |
|                     | 8:24       | 374        | 18.55   | 999     | 74.2   | 7.03 | 1 gpm      | 8.15     | 12.2 | 1.13                 |
|                     | 8:27       | 382        | 18.7    | 1001    | 79.6   | 7.04 | 1 gpm      | 7.00     | 12.2 | 1.13                 |
|                     | 8:34       | 390        | 18.82   | 1004    | 85.7   | 7.00 | 1 gpm      | 4.31     | 12.7 | 1.18                 |
|                     | 8:38       | 398        | 18.88   | 1002    | 87.7   | 7.02 | 1 gpm      | 4.53     | 14.4 | 1.33                 |
|                     | 8:44       | 406        | 18.99   | 1002    | 92.6   | 7.01 | 1 gpm      | 4.03     | 14.7 | 1.36                 |
| COC number(s):      | N/A        |            |         |         |        |      |            |          |      |                      |
| Sample number(s):   | N/A        |            |         |         |        |      |            |          |      |                      |

## Purge Volume Calculations

## Well Diameter

2" well: 0.16 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

4" well: 0.65 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

6" well: 1.47 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

## Tubing Diameter

1/4" OD: 2.4 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters

1/2" OD: 21.5 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters



## ATTACHMENT A

## FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

|                                                                                                   |                       |
|---------------------------------------------------------------------------------------------------|-----------------------|
| Project Name: Burn Site Groundwater                                                               | Project No.:          |
| Well I.D.: CYN- MW 12                                                                             | Date: 7/29/10         |
| Weather: Monsoon Season                                                                           |                       |
| Method: <input checked="" type="checkbox"/> Portable pump <input type="checkbox"/> Dedicated pump | Pump depth: ~268' bgs |

## PURGE MEASUREMENTS

DO mg/L

| Depth to Water (ET) | Time 24 hr | Vol. L gls              | Temp °C | Ec µmho | ORP MV | pH    | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|-------------------------|---------|---------|--------|-------|------------|----------|------|----------------------|
| 203.5 bgs           |            |                         |         |         |        |       |            |          |      |                      |
| 10:40               | 0          | 176 gal + 55 gal BAILED |         |         |        |       |            |          |      |                      |
| 11:42               | 108        | 21.19                   | 1055    | -6.3    | 1.07   | 7 ppm | 169        | 58.3     | 4.42 |                      |
| 12:46               | 191        | 20.88                   | 1046    | 16.8    | 6.72   | 7 ppm | 103        | 50.9     | 4.52 |                      |
| 12:50               | 199        | 22.22                   | 1048    | -71.9   | 6.64   | 7 ppm | 61.2       | 50.5     | 4.47 |                      |
| 12:55               | 207        | 21.32                   | 1048    | -37.2   | 6.65   | 7 ppm | 45.4       | 49.3     | 4.35 |                      |
| 13:00               | 215        | 21.68                   | 1009    | -33.4   | 6.63   | 7 ppm | 250        | 44.6     | 3.90 |                      |
| 13:07               | 223        | 22.02                   | 1048    | -46.9   | 6.71   | 7 ppm | 101        | 39.0     | 3.38 |                      |
| 13:14               | 231        | 22.55                   | 1052    | -50.4   | 6.73   | 7 ppm | 262        | 35.4     | 3.05 |                      |
| 13:20               | 239        | 22.92                   | 1056    | -48.3   | 6.71   | 7 ppm | 169        | 31.8     | 2.75 |                      |
| 13:26               | 247        | 22.3                    | 1054    | -48.8   | 6.72   | 7 ppm | 184        | 27.4     | 2.73 |                      |
| 13:34               | 255        | 22.16                   | 1054    | -49.3   | 6.71   | 7 ppm | 69.3       | 24.1     | 2.09 |                      |
| 13:43               | 263        | 21.87                   | 1054    | -49.6   | 6.74   | 7 ppm | 26.7       | 21.6     | 1.89 |                      |
| COC number(s):      | N/A        |                         |         |         |        |       |            |          |      |                      |
| Sample number(s):   | N/A        |                         |         |         |        |       |            |          |      |                      |

## Purge Volume Calculations

## Well Diameter

2" well: 0.16 gal/ft X (height of water column) = gallons

4" well: 0.65 gal/ft X (height of water column) = gallons

6" well: 1.47 gal/ft X (height of water column) = gallons

## Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

1/2" OD: 21.6 ml/ft X (length of tubing) = milliliters

**ATTACHMENT A**

**FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE  
COLLECTION**

|               |                                                   |                                         |                       |
|---------------|---------------------------------------------------|-----------------------------------------|-----------------------|
| Project Name: | Burn Site Groundwater                             | Project No.:                            |                       |
| Well I.D.:    | CYN-MW12                                          | Date:                                   | 7/29/10               |
| Weather       | Monsoon Season                                    |                                         |                       |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: ~268' bgs |

**PURGE MEASUREMENTS**

| Depth to Water (FT) | Time 24 hr | Vol. L gls | Temp °C | Ec µmho        | ORP MV | pH   | Flow L gls | Turb NTU | DO % | Color and appearance |
|---------------------|------------|------------|---------|----------------|--------|------|------------|----------|------|----------------------|
| 13.49               | 271        | 21.76      | 1057    | -42.6          | 6.73   | 1gpm | 17.8       | 20.7     | 1.87 |                      |
| 13.56               | 279        | 21.71      | 1054    | -36.3          | 6.74   | 1gpm | 13.0       | 20.7     | 1.81 |                      |
| 14.03               | 287        | 21.85      | 1055    | -21.2          | 6.74   | 1gpm | 11.9       | 17.7     | 1.71 |                      |
| 14:00               | 295        | 21.8       | 1058    | -16.3          | 6.78   | 1gpm | 6.04       | 17.5     | 1.53 |                      |
| 14:17               | 303        | 21.86      | 1063    | -8.9           | 6.73   | 1gpm | 7.79       | 17.0     | 1.48 |                      |
| 14:24               | 311        | 21.76      | 1059    | -10.1          | 6.76   | 1gpm | 6.61       | 23.      | 2.03 |                      |
| 14:32               | 319        | 22.16      | 1061    | -11.9          | 6.73   | 1gpm | 16.00      | 18.2     | 1.56 |                      |
| 14:50               | 327        | 21.72      | 1068    | -5.6           | 6.8    | 1gpm | 12.5       | 15.1     | 1.32 |                      |
| 14:55               | 335        | 21.81      | 1064    | -11.2          | 6.78   | 1gpm | 9.92       | 14.7     | 1.24 |                      |
| 15:02               | 403        | 21.87      | 1066    | -8.4           | 6.78   | 1gpm | 12.61      | 15.5     | 1.35 |                      |
| 15:08               | 411        | 22.21      | 1067    | 3.2            | 6.77   | 1gpm | 11.00      | 16.0     | 1.38 |                      |
| 15:15               | 419        | 22.36      | 1041    | 8.1            | 6.75   | 1gpm | 2.79       | 15.8     | 1.36 |                      |
| 15:23               | 427        | 22.6       | 1072    | <del>8.4</del> | 6.74   | 1gpm | 3.05       | 15.4     | 1.33 |                      |
| COC number(s):      | N/A        |            |         |                |        | -0.6 |            |          |      |                      |
| Sample number(s):   | N/A        |            |         |                |        |      |            |          |      |                      |

**Purge Volume Calculations**

Well Diameter

2" well: 0.16 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

4" well: 0.65 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

6" well: 1.47 gal/ft X \_\_\_\_\_ (height of water column) = \_\_\_\_\_ gallons

Tubing Diameter

1/4" OD: 2.4 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters

3/8" OD: 9.7 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters

1/2" OD: 21.6 ml/ft X \_\_\_\_\_ (length of tubing) = \_\_\_\_\_ milliliters

ATTACHMENT

# FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

|               |                                                   |                                         |                             |
|---------------|---------------------------------------------------|-----------------------------------------|-----------------------------|
| Project Name: | Burn Site groundwater                             | Project No.:                            |                             |
| Well I.D.:    | CYN - NW 12                                       | Date:                                   | 7/29/10                     |
| Weather       | Monsoon Season                                    |                                         |                             |
| Method:       | <input checked="" type="checkbox"/> Portable pump | <input type="checkbox"/> Dedicated pump | Pump depth: <u>268' bgs</u> |

## PURGE MEASUREMENTS

Do's/L

### Purge Volume Calculations

### Well Diameter

2" well: 0.16 gal/ft X (height of water column) = gallons

$$4'' \text{ well: } 0.65 \text{ gal/ft} \times \text{ (height of water column)} = \text{ gallons}$$

6" well: 1.47 gal/ft X (height of water column) = gallons

### Tubing Diameter

1/4" OD: 2.4 ml/ft X (length of tubing) = milliliters

3/8" OD: 9.7 ml/ft X (length of tubing) = milliliters

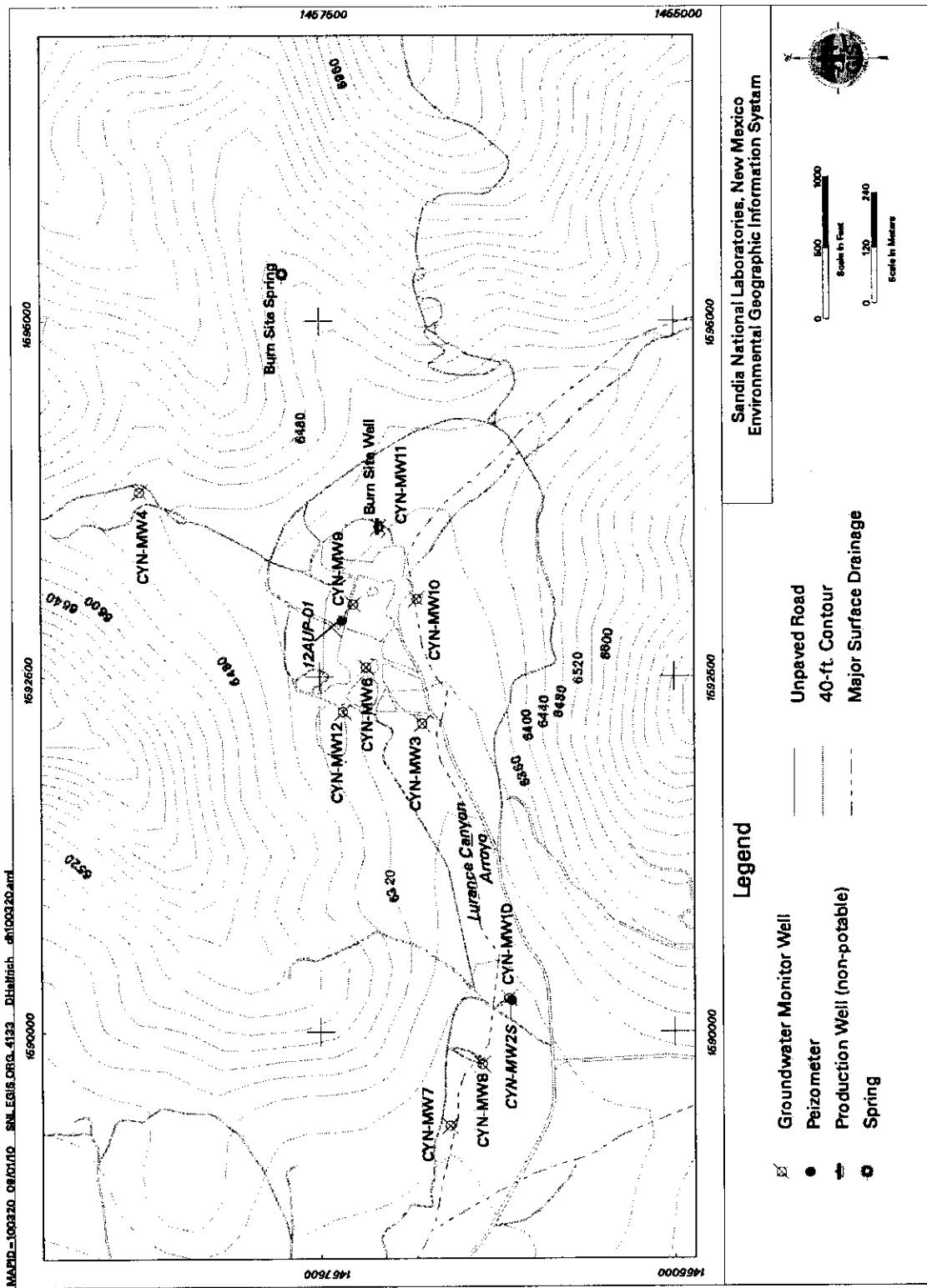
1/2" OD!; 2 1.6 mV/f<sup>2</sup> X (length of tubing)) = milliliters



**APPENDIX F**

**Slug Test Field Report for CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12**




**Technical Memorandum—Field Report**  
**Slug Tests at Burn Site Groundwater Monitoring Wells**  
**SNL/NM Environmental Restoration Project**

**Introduction/Background**

This Field Report describes the activities associated with conducting slug tests at groundwater monitoring wells at the Burn Site Groundwater (BSG) study area. The slug tests were performed to determine the hydraulic conductivity of the aquifer materials in the study area. Hydraulic conductivity is expressed as a velocity, and is often presented in units of centimeters per second (cm/sec) or feet per minute (ft/min). The equivalent hydraulic conductivities presented in the tables of this report are also presented as ft/day and ft/year, units that may be more intuitive for some readers.

The hydraulic conductivity data presented in this report will be used to refine the BSG hydrogeologic conceptual model. The objective of this field investigation was to determine the hydraulic properties of the regional aquifer. In general, the hydraulic properties of an aquifer can be determined either by conducting pumping tests or slug tests. Pumping tests were not considered for the BSG study area because of logistical considerations, such as the need to contain and dispose of high volumes of groundwater. Slug tests induce stress on an aquifer by instantaneously injecting or removing a discrete volume of material into the well and measuring changes in the water level over time as the aquifer returns to equilibrium. Originally, slug tests were designed to insert or withdraw a specific volume of water. However, slug tests using an "artificial slug" (solid cylinder of known volume) are more commonly performed.

The four groundwater monitoring wells tested in this report were installed at the BSG study area in December 2010 and January 2011 and include CYN-MW9, CYN-MW10, CYN-MW11, and CYN-MW12 (Figure 1; Table 1).



**Table 1**  
**Monitoring Wells Selected for Slug Testing in the BSG Study Area.**

| Well ID  | Year Installed | Depth to Water <sup>a</sup><br>(ft btoc) | Date(s) Tested   |
|----------|----------------|------------------------------------------|------------------|
| BSG-MW9  | 2010           | 164.28                                   | 15 December 2010 |
| BSG-MW10 | 2010           | 122.28                                   | 16 December 2010 |
| BSG-MW11 | 2010           | 98.60                                    | 28 January 2011  |
| BSG-MW12 | 2010           | 206.86                                   | 28 January 2011  |

<sup>a</sup> = Groundwater depths measured on the test date prior to initiating the slug test.

BSG = Burn Site Groundwater.

btoc = below top of casing.

ft = feet.

ID = identification.

MW = monitoring well.

### Field Methods

The slug tests were completed between 15 December, 2010 and 28 January, 2011, and the field team consisted of:

Robert Lynch      Field Technician/Site Safety Officer Designee

Alfred Santillanes      Field Technician

William Gibson      Field Technician

Equipment used to conduct the slug tests included support vehicles and the water-sampling truck for hauling the required equipment, and also used as the platform for injecting and withdrawing the slug. The slug was raised and lowered by means of a large diameter (~4 ft) motorized spool with a graduated ¼ inch cable. The slug is a solid aluminum rod with a diameter of 3.25 inches and a length of 48 inches, providing a total displacement of approximately 397 in<sup>3</sup>. Another reel with the transducer cable was mounted on a support truck, and a third handheld reel was used to lower the down-hole barometer. The slug and any submerged cable were decontaminated at the Environmental Restoration Field Office or at the well head before injecting the slug into the well.

The Field Operating Procedure (FOP) 09-05 (SNL/NM June 2009) was used for all investigation activities at this site. In brief, the following steps were used at each well:

- The static water level was measured and recorded.
- The transducer was lowered into the well to a depth of approximately 10 ft below the static water level and allowed to stabilize. The transducer was a Solinst™ electronic pressure transducer (Levelogger® Model RL 3001) and Leveloader™ Gold data logger software.
- The slug was lowered into the well to approximately 5 ft above the static water level.
- The barometer was programmed to take periodic atmospheric pressure readings and lowered into the well to a depth of approximately 10 ft above the static water level. The barometer transducer was a Solinst™ Barologger™ (Model 3001).
- The measurement interval was set up at a variable rate, with frequent measurements at the start of the test and less frequent measurements later in the test. The variable measurement interval was used for slug tests because the water level changes rapidly in the first few seconds of the test and then slower as the test continues.
- The data logger was started and recorded several static pressure readings.
- The slug was lowered into the water-column in the well as quickly and smoothly as possible to raise the water level (to simulate “injection”) and the water level was allowed to stabilize. Water-level changes induced in the wells were measured to  $\pm$  0.0001 ft by the transducer.
- The water level and time measurements were continuously recorded until the water level was within 0.1 foot of the static water level, or until recovery was 95%. The data logger was stopped and the water level allowed to re-stabilize, if it was not already.
- The barometer was removed and barometric data from the test interval downloaded on the laptop computer. The computer software compensates the water level data for barometric changes and the corrected data curves were viewed on the laptop to ensure usability.
- The barometer was re-inserted and the slug was removed to lower the water level (to simulate “withdrawal”) and the water level was allowed to stabilize. Again, the transducer measured water-level changes induced in the wells.
- The slug was lowered and raised at a consistent rate of 0.72 seconds per foot, which equates to completely submerging or exposing the entire slug in 2.9 seconds.
- In order to document the reproducibility of the test, the process was repeated such that slug was injected twice and withdrawn twice for a total of four data sets for wells CYN-

MW9 and CYN-MW10. Due to time constraints, there were only two injection and one withdrawal for a total of three data sets for wells CYN-MW11 and CYN-MW12.

For all slug test activities Level D personal protective equipment was required. Daily tailgate safety meetings were held by the site health and safety officer (or designee) and documented on the Tailgate Safety Meeting Form. All equipment and personnel followed appropriate decontamination procedures per FOP 05-03 (SNL/NM August 2007). Less than 1 gallon of decontamination water per day was generated by slug test activities and discharged to the land surface.

### **Data Analysis**

After completion of the field portion of the slug test, the following steps were used to prepare each data set for analysis:

- Electronic information in the transducer was directly transferred to a laptop computer.
- Data logger recordings were imported from a text file into a spreadsheet.
- In the spreadsheet, the time-of-day readings were converted to elapsed time, and changes in water level relative to the transducer were converted to depth to water measurements.
- Time-versus-water level curves were generated and inspected.
- Data was culled for extraneous data points (such as too many data points after water levels have stabilized).
- Selected data was imported into the AquiferTest™ Software (Waterloo Hydrogeologic 2001) and analytical solutions were generated using the Hvorslev and Bouwer-Rice methods (described below).
- The analytical solutions were compiled and are provided on Table 2.
- Records generated from this procedure were submitted to the SNL/NM Customer Funded Record Center.

The data gathered during the slug tests was analyzed using AquiferTest™ 3.0 Software developed by Waterloo Hydrogeologic, Inc (Waterloo Hydrogeologic 2001). This software employs analytical methods developed by M.J. Hvorslev (1951) and Bouwer-Rice (1976) to produce graphical solutions of hydraulic conductivity. The use of the software followed the manufacturer's operating manual. The result of the analysis was the determination of the hydraulic conductivity for each of the tests. The hydraulic conductivity values were then compiled into Table 2 with averages calculated for each well.

**Table 2**  
**Summary of Hydraulic Conductivity Values**  
**for BSG Monitoring Wells Tested December 2010 and January 2011**

| Well ID        | Test ID      | Analysis Method | Hydraulic Conductivity (K) |                 |                 |                 |
|----------------|--------------|-----------------|----------------------------|-----------------|-----------------|-----------------|
|                |              |                 | (ft/min)                   | (ft/day)        | (ft/year)       | (cm/sec)        |
| CYN-MW9        | Injection 1  | Hvorslev        | 3.13E-04                   | 4.51E-01        | 165             | 1.59E-04        |
|                |              | Bouwer-Rice     | 2.66E-04                   | 3.83E-01        | 140             | 1.35E-04        |
|                | Withdrawal 1 | Hvorslev        | 1.44E-03                   | 2.08E+00        | 759             | 7.34E-04        |
|                |              | Bouwer-Rice     | 1.23E-03                   | 1.77E+00        | 646             | 6.24E-04        |
|                | Injection 2  | Hvorslev        | 2.03E-03                   | 2.93E+00        | 1069            | 1.03E-03        |
|                |              | Bouwer-Rice     | 1.73E-03                   | 2.49E+00        | 909             | 8.78E-04        |
|                | Withdrawal 2 | Hvorslev        | 1.46E-03                   | 2.10E+00        | 767             | 7.41E-04        |
|                |              | Bouwer-Rice     | 1.24E-03                   | 1.79E+00        | 653             | 6.31E-04        |
| <b>Average</b> |              |                 | <b>1.21E-03</b>            | <b>1.75E+00</b> | <b>638</b>      | <b>6.17E-04</b> |
| CYN-MW10       | Injection 1  | Hvorslev        | 9.38E-04                   | 1.35E+00        | 493             | 4.76E-04        |
|                |              | Bouwer-Rice     | 8.54E-04                   | 1.23E+00        | 449             | 4.34E-04        |
|                | Withdrawal 1 | Hvorslev        | 7.57E-04                   | 1.09E+00        | 398             | 3.85E-04        |
|                |              | Bouwer-Rice     | 6.94E-04                   | 9.99E-01        | 365             | 3.52E-04        |
|                | Injection 2  | Hvorslev        | 7.29E-04                   | 1.05E+00        | 383             | 3.70E-04        |
|                |              | Bouwer-Rice     | 6.65E-04                   | 9.57E-01        | 349             | 3.38E-04        |
|                | Withdrawal 2 | Hvorslev        | 8.19E-04                   | 1.18E+00        | 431             | 4.16E-04        |
|                |              | Bouwer-Rice     | 7.50E-04                   | 1.08E+00        | 394             | 3.81E-04        |
| <b>Average</b> |              |                 | <b>7.76E-04</b>            | <b>1.12E+00</b> | <b>408</b>      | <b>3.94E-04</b> |
| CYN-MW11       | Injection 1  | Hvorslev        | 1.35E-03                   | 1.94E+00        | 708             | 6.84E-04        |
|                |              | Bouwer-Rice     | 1.45E-03                   | 2.09E+00        | 763             | 7.37E-04        |
|                | Withdrawal 1 | Hvorslev        | 9.38E-04                   | 1.35E+00        | 493             | 4.76E-04        |
|                |              | Bouwer-Rice     | 1.01E-03                   | 1.46E+00        | 533             | 5.15E-04        |
|                | Injection 2  | Hvorslev        | 1.21E-03                   | 1.74E+00        | 635             | 6.14E-04        |
|                |              | Bouwer-Rice     | 1.31E-03                   | 1.88E+00        | 686             | 6.63E-04        |
|                |              | <b>Average</b>  |                            | <b>1.21E-03</b> | <b>1.74E+00</b> | <b>636</b>      |

**Table 2 (concluded)**  
**Summary of Hydraulic Conductivity Values**  
**for BSG Monitoring Wells Tested December 2010 and January 2011**

| Well ID                                               | Test ID      | Analysis Method | Hydraulic Conductivity (K) |                 |            |                 |  |
|-------------------------------------------------------|--------------|-----------------|----------------------------|-----------------|------------|-----------------|--|
|                                                       |              |                 | (ft/min)                   | (ft/day)        | (ft/year)  | (cm/sec)        |  |
| CYN-MW12                                              | Injection 1  | Hvorslev        | 3.01E-04                   | 4.33E-01        | 158        | 1.53E-04        |  |
|                                                       |              | Bouwer-Rice     | 2.88E-04                   | 4.15E-01        | 151        | 1.46E-04        |  |
|                                                       | Withdrawal 1 | Hvorslev        | 2.56E-04                   | 3.69E-01        | 135        | 1.30E-04        |  |
|                                                       |              | Bouwer-Rice     | 2.46E-04                   | 3.54E-01        | 129        | 1.25E-04        |  |
|                                                       | Injection 2  | Hvorslev        | 6.23E-04                   | 8.97E-01        | 327        | 3.16E-04        |  |
|                                                       |              | Bouwer-Rice     | 5.96E-04                   | 8.58E-01        | 313        | 3.03E-04        |  |
| Average                                               |              |                 | <b>3.85E-04</b>            | <b>5.54E-01</b> | <b>202</b> | <b>1.47E-04</b> |  |
| Range of Conductivities                               |              | Low             | 2.46E-04                   | 3.54E-01        | 129        | 1.25E-04        |  |
|                                                       |              | High            | 2.03E-03                   | 2.93E+00        | 1069       | 1.03E-03        |  |
| <b>Average (all wells/tests/analytical solutions)</b> |              |                 | <b>8.97E-04</b>            | <b>1.29E+00</b> | <b>471</b> | <b>4.43E-04</b> |  |

Notes:

Cm/sec = Centimeters per second.  
 CYN = Canyons (Burn Site Groundwater).  
 ft = Foot (feet)  
 ft/min = Foot (feet) per minute.  
 K = Hydraulic conductivity.  
 MW = Monitoring well.

**Results:**

The ranges of hydraulic conductivities for the four BSG wells tested in December 2010 and January 2011 vary over an order of magnitude from 2.46E-04 to 2.03E-03 ft/min (Table 2). It should be noted that slug test analyses were developed for use in unconsolidated deposits and analyses of bedrock aquifer slug tests are of limited value. The hydraulic conductivity measured in bedrock aquifers is overwhelmingly dominated by fracture flow (water flowing through the matrix of crystalline bedrock is negligible), therefore the conductivities determined are very dependent on the nature of the fractures intercepted in specific wells.

All the conductivity values for these four wells are within the range of conductivities ( $10^{-5}$  to  $10^{-2}$  ft/min) determined for the regional aquifer within the unconsolidated Santa Fe Group sediments west of the BSG study area (SNL/NM March 1999). This suggests that qualitatively fracture flow in BSG wells is capable of moving significant amounts of groundwater.

**References:**

Bouwer, H. and R.C. Rice, 1976. "A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells." *Water Resources Research*, vol. 12, No. 3 pp. 423-428.

Hvorslev, M.J. 1951. "Time Lag and Soil Permeability in Ground-Water Observations." *Bulletin No. 26*, Waterways Experiment Station, U.S. Army Corps of Engineers. Vicksburg, Mississippi.

Sandia National Laboratories/New Mexico (SNL/NM), March 1999. "SNL/NM Summary Report of Groundwater Investigations at Technical Area V, Operable Units 1306 and 1307", Environmental Restoration Project, U.S. Department of Energy, Albuquerque Operations Office, Sandia National Laboratories/New Mexico, March 1999.

Sandia National Laboratories/New Mexico (SNL/NM), August 2007. "Field Operating Procedure (FOP) 05-03, General Equipment Decontamination", FOP 05-03, Prepared by Sandia National Laboratories Environmental Programs and Assurance Department, Albuquerque, New Mexico. August 16, 2007.

Sandia National Laboratories/New Mexico (SNL/NM), June 2009. "Field Operating Procedure (FOP) 09-05, Long Term Environmental Stewardship (LTES) Conducting Slug Tests Using Pressure Transducer & Data Logger". Prepared by Sandia National Laboratories Environmental Programs and Assurance Department, Albuquerque, New Mexico, June 19, 2009.

Waterloo Hydrogeologic, Inc, 2001. "AquiferTest<sup>TM</sup> User's Manual: Graphical Analysis and Reporting of Pumping Test & Slug Test Data". Waterloo, Ontario, Canada.

**List of Attachments:**

Attachment A -- Transducer Field Data Tables

Attachment B -- AquiferTest™ Water Level versus Time Plots and Analytical Solutions



**Technical Memorandum—Field Report  
Slug Tests at Burn Site Groundwater Study Area  
Groundwater Monitoring Wells**

**Attachment A  
Transducer Field Data Tables  
for  
CYN-MW9  
CYN-MW10  
CYN-MW11  
CYN-MW12**



**Technical Memorandum—Field Report**  
**Slug Tests at Burn Site Groundwater Study Area**  
**Groundwater Monitoring Wells**

**Table A-1**  
**Transducer Field Data for CYN-MW9**



**Serial Number**1040608**Project ID**BSG Slug tests**Location**CYN-MW9**Level**Unitft**Offset**0.00 ft**Altitude**6358 ft**Temperature**UnitDeg C

|    | Date       | Time    | 100 ms | Level   | Temperature |
|----|------------|---------|--------|---------|-------------|
| 1  | 12/15/2010 | 8:50:00 | 0      | 14.8168 | 16.725      |
| 2  | 12/15/2010 | 8:50:01 | 0      | 14.818  | 16.734      |
| 3  | 12/15/2010 | 8:50:02 | 0      | 14.8101 | 16.739      |
| 4  | 12/15/2010 | 8:50:03 | 0      | 14.8172 | 16.743      |
| 5  | 12/15/2010 | 8:50:04 | 0      | 14.8242 | 16.745      |
| 6  | 12/15/2010 | 8:50:05 | 0      | 14.8222 | 16.748      |
| 7  | 12/15/2010 | 8:50:06 | 0      | 15.3275 | 16.75       |
| 8  | 12/15/2010 | 8:50:07 | 0      | 16.046  | 16.752      |
| 9  | 12/15/2010 | 8:50:08 | 0      | 16.4761 | 16.753      |
| 10 | 12/15/2010 | 8:50:09 | 0      | 16.85   | 16.756      |
| 11 | 12/15/2010 | 8:50:10 | 0      | 16.8597 | 16.757      |
| 12 | 12/15/2010 | 8:50:11 | 0      | 16.7901 | 16.758      |
| 13 | 12/15/2010 | 8:50:12 | 0      | 16.7169 | 16.759      |
| 14 | 12/15/2010 | 8:50:13 | 0      | 16.6491 | 16.76       |
| 15 | 12/15/2010 | 8:50:14 | 0      | 16.6148 | 16.761      |
| 16 | 12/15/2010 | 8:50:15 | 0      | 16.6018 | 16.763      |
| 17 | 12/15/2010 | 8:50:16 | 0      | 16.5531 | 16.763      |
| 18 | 12/15/2010 | 8:50:17 | 0      | 16.4959 | 16.764      |
| 19 | 12/15/2010 | 8:50:18 | 0      | 16.5011 | 16.765      |
| 20 | 12/15/2010 | 8:50:19 | 0      | 16.5739 | 16.767      |
| 21 | 12/15/2010 | 8:50:20 | 0      | 16.3276 | 16.767      |
| 22 | 12/15/2010 | 8:50:21 | 0      | 16.3338 | 16.768      |
| 23 | 12/15/2010 | 8:50:22 | 0      | 16.2984 | 16.768      |
| 24 | 12/15/2010 | 8:50:23 | 0      | 16.2593 | 16.769      |
| 25 | 12/15/2010 | 8:50:24 | 0      | 16.2555 | 16.77       |
| 26 | 12/15/2010 | 8:50:25 | 0      | 16.1942 | 16.771      |
| 27 | 12/15/2010 | 8:50:26 | 0      | 16.1681 | 16.771      |
| 28 | 12/15/2010 | 8:50:27 | 0      | 16.1369 | 16.772      |
| 29 | 12/15/2010 | 8:50:26 | 0      | 16.1084 | 16.773      |
| 30 | 12/15/2010 | 8:50:29 | 0      | 16.0748 | 16.774      |
| 31 | 12/15/2010 | 8:50:30 | 0      | 16.0422 | 16.774      |
| 32 | 12/15/2010 | 8:50:31 | 0      | 16.017  | 16.775      |
| 33 | 12/15/2010 | 8:50:32 | 0      | 15.9865 | 16.776      |
| 34 | 12/15/2010 | 8:50:33 | 0      | 15.9574 | 16.776      |
| 35 | 12/15/2010 | 8:50:34 | 0      | 15.9288 | 16.777      |
| 36 | 12/15/2010 | 8:50:35 | 0      | 15.9091 | 16.778      |
| 37 | 12/15/2010 | 8:50:36 | 0      | 15.8758 | 16.778      |
| 38 | 12/15/2010 | 8:50:37 | 0      | 15.8275 | 16.778      |
| 39 | 12/15/2010 | 8:50:38 | 0      | 15.8037 | 16.779      |
| 40 | 12/15/2010 | 8:50:39 | 0      | 15.803  | 16.78       |
| 41 | 12/15/2010 | 8:50:40 | 0      | 15.7655 | 16.78       |
| 42 | 12/15/2010 | 8:50:41 | 0      | 15.7576 | 16.781      |
| 43 | 12/15/2010 | 8:50:42 | 0      | 15.7475 | 16.781      |
| 44 | 12/15/2010 | 8:50:43 | 0      | 15.7135 | 16.781      |
| 45 | 12/15/2010 | 8:50:44 | 0      | 15.6981 | 16.782      |
| 46 | 12/15/2010 | 8:50:45 | 0      | 15.6686 | 16.782      |
| 47 | 12/15/2010 | 8:50:46 | 0      | 15.6531 | 16.784      |
| 48 | 12/15/2010 | 8:50:47 | 0      | 15.6351 | 16.783      |
| 49 | 12/15/2010 | 8:50:48 | 0      | 15.6147 | 16.765      |
| 50 | 12/15/2010 | 8:50:49 | 0      | 15.594  | 16.784      |
| 51 | 12/15/2010 | 8:50:50 | 0      | 15.577  | 16.786      |
| 52 | 12/15/2010 | 8:50:51 | 0      | 15.5585 | 16.785      |
| 53 | 12/15/2010 | 8:50:52 | 0      | 15.5429 | 16.785      |
| 54 | 12/15/2010 | 8:50:53 | 0      | 15.5221 | 16.786      |
| 55 | 12/15/2010 | 8:50:54 | 0      | 15.527  | 16.786      |
| 56 | 12/15/2010 | 8:50:55 | 0      | 15.4935 | 16.786      |
| 57 | 12/15/2010 | 8:50:56 | 0      | 15.4627 | 16.787      |
| 58 | 12/15/2010 | 8:50:57 | 0      | 15.426  | 16.787      |
| 59 | 12/15/2010 | 8:50:58 | 0      | 15.4436 | 16.788      |
| 60 | 12/15/2010 | 8:50:59 | 0      | 15.4401 | 16.788      |
| 61 | 12/15/2010 | 8:51:00 | 0      | 15.4173 | 16.789      |
| 62 | 12/15/2010 | 8:51:01 | 0      | 15.4068 | 16.789      |
| 63 | 12/15/2010 | 8:51:02 | 0      | 15.3872 | 16.789      |
| 64 | 12/15/2010 | 8:51:03 | 0      | 15.3788 | 16.789      |
| 65 | 12/15/2010 | 8:51:04 | 0      | 15.3624 | 16.791      |
| 66 | 12/15/2010 | 8:51:05 | 0      | 15.3498 | 16.79       |
| 67 | 12/15/2010 | 8:51:06 | 0      | 15.343  | 16.791      |
| 68 | 12/15/2010 | 8:51:07 | 0      | 15.3265 | 16.791      |
| 69 | 12/15/2010 | 8:51:08 | 0      | 15.3171 | 16.791      |
| 70 | 12/15/2010 | 8:51:09 | 0      | 15.3085 | 16.79       |
| 71 | 12/15/2010 | 8:51:10 | 0      | 15.2923 | 16.792      |
| 72 | 12/15/2010 | 8:51:11 | 0      | 15.285  | 16.792      |
| 73 | 12/15/2010 | 8:51:12 | 0      | 15.2767 | 16.792      |
| 74 | 12/15/2010 | 8:51:13 | 0      | 15.2628 | 16.792      |
| 75 | 12/15/2010 | 8:51:14 | 0      | 15.253  | 16.792      |
| 76 | 12/15/2010 | 8:51:15 | 0      | 15.244  | 16.793      |
| 77 | 12/15/2010 | 8:51:16 | 0      | 15.2359 | 16.793      |
| 78 | 12/15/2010 | 8:51:17 | 0      | 15.2261 | 16.793      |
| 79 | 12/15/2010 | 8:51:18 | 0      | 15.2141 | 16.793      |
| 80 | 12/15/2010 | 8:51:19 | 0      | 15.2103 | 16.793      |
| 81 | 12/15/2010 | 8:51:20 | 0      | 15.2008 | 16.794      |
| 82 | 12/15/2010 | 8:51:21 | 0      | 15.1884 | 16.794      |
| 83 | 12/15/2010 | 8:51:22 | 0      | 15.1823 | 16.794      |
| 84 | 12/15/2010 | 8:51:23 | 0      | 15.174  | 16.795      |
| 85 | 12/15/2010 | 8:51:24 | 0      | 15.1676 | 16.794      |
| 86 | 12/15/2010 | 8:51:25 | 0      | 15.1655 | 16.795      |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 87  | 12/15/2010 | 8:51:26 | 0 | 15.1558 | 16.794 |
| 88  | 12/15/2010 | 8:51:27 | 0 | 15.1452 | 16.795 |
| 89  | 12/15/2010 | 8:51:28 | 0 | 15.1428 | 16.796 |
| 90  | 12/15/2010 | 8:51:29 | 0 | 15.1335 | 16.795 |
| 91  | 12/15/2010 | 8:51:30 | 0 | 15.1295 | 16.796 |
| 92  | 12/15/2010 | 8:51:31 | 0 | 15.1173 | 16.796 |
| 93  | 12/15/2010 | 8:51:32 | 0 | 15.1106 | 16.796 |
| 94  | 12/15/2010 | 8:51:33 | 0 | 15.108  | 16.796 |
| 95  | 12/15/2010 | 8:51:34 | 0 | 15.0984 | 16.796 |
| 96  | 12/15/2010 | 8:51:35 | 0 | 15.0963 | 16.796 |
| 97  | 12/15/2010 | 8:51:36 | 0 | 15.0908 | 16.797 |
| 98  | 12/15/2010 | 8:51:37 | 0 | 15.0845 | 16.797 |
| 99  | 12/15/2010 | 8:51:38 | 0 | 15.0763 | 16.797 |
| 100 | 12/15/2010 | 8:51:39 | 0 | 15.0786 | 16.796 |
| 101 | 12/15/2010 | 8:51:40 | 0 | 15.0689 | 16.797 |
| 102 | 12/15/2010 | 8:51:41 | 0 | 15.0634 | 16.797 |
| 103 | 12/15/2010 | 8:51:42 | 0 | 15.0579 | 16.798 |
| 104 | 12/15/2010 | 8:51:43 | 0 | 15.0572 | 16.798 |
| 105 | 12/15/2010 | 8:51:44 | 0 | 15.0302 | 16.797 |
| 106 | 12/15/2010 | 8:51:45 | 0 | 15.0471 | 16.798 |
| 107 | 12/15/2010 | 8:51:46 | 0 | 15.0418 | 16.798 |
| 108 | 12/15/2010 | 8:51:47 | 0 | 15.0366 | 16.799 |
| 109 | 12/15/2010 | 8:51:48 | 0 | 15.0346 | 16.798 |
| 110 | 12/15/2010 | 8:51:49 | 0 | 15.0315 | 16.798 |
| 111 | 12/15/2010 | 8:51:50 | 0 | 15.0203 | 16.798 |
| 112 | 12/15/2010 | 8:51:51 | 0 | 15.0224 | 16.798 |
| 113 | 12/15/2010 | 8:51:52 | 0 | 15.0225 | 16.799 |
| 114 | 12/15/2010 | 8:51:53 | 0 | 15.0116 | 16.799 |
| 115 | 12/15/2010 | 8:51:54 | 0 | 15.0146 | 16.799 |
| 116 | 12/15/2010 | 8:51:55 | 0 | 15.0104 | 16.799 |
| 117 | 12/15/2010 | 8:51:56 | 0 | 15.0012 | 16.8   |
| 118 | 12/15/2010 | 8:51:57 | 0 | 15.0026 | 16.799 |
| 119 | 12/15/2010 | 8:51:58 | 0 | 14.9964 | 16.8   |
| 120 | 12/15/2010 | 8:51:59 | 0 | 14.9964 | 16.8   |
| 121 | 12/15/2010 | 8:52:00 | 0 | 14.9968 | 16.799 |
| 122 | 12/15/2010 | 8:52:01 | 0 | 14.988  | 16.8   |
| 123 | 12/15/2010 | 8:52:02 | 0 | 14.9845 | 16.8   |
| 124 | 12/15/2010 | 8:52:03 | 0 | 14.9806 | 16.799 |
| 125 | 12/15/2010 | 8:52:04 | 0 | 14.978  | 16.9   |
| 126 | 12/15/2010 | 8:52:05 | 0 | 14.9787 | 16.8   |
| 127 | 12/15/2010 | 8:52:06 | 0 | 14.979  | 16.8   |
| 128 | 12/15/2010 | 8:52:07 | 0 | 14.9723 | 16.9   |
| 129 | 12/15/2010 | 8:52:08 | 0 | 14.9715 | 16.9   |
| 130 | 12/15/2010 | 8:52:09 | 0 | 14.9711 | 16.8   |
| 131 | 12/15/2010 | 8:52:10 | 0 | 14.9631 | 16.9   |
| 132 | 12/15/2010 | 8:52:11 | 0 | 14.9653 | 16.801 |
| 133 | 12/15/2010 | 8:52:12 | 0 | 14.9617 | 16.799 |
| 134 | 12/15/2010 | 8:52:13 | 0 | 14.9587 | 16.8   |
| 135 | 12/15/2010 | 8:52:14 | 0 | 14.957  | 16.8   |
| 136 | 12/15/2010 | 8:52:15 | 0 | 14.9572 | 16.8   |
| 137 | 12/15/2010 | 8:52:16 | 0 | 14.9587 | 16.8   |
| 138 | 12/15/2010 | 8:52:17 | 0 | 14.9499 | 16.802 |
| 139 | 12/15/2010 | 8:52:18 | 0 | 14.9505 | 16.8   |
| 140 | 12/15/2010 | 8:52:19 | 0 | 14.952  | 16.801 |
| 141 | 12/15/2010 | 8:52:20 | 0 | 14.9442 | 16.801 |
| 142 | 12/15/2010 | 8:52:21 | 0 | 14.9491 | 16.801 |
| 143 | 12/15/2010 | 8:52:22 | 0 | 14.9378 | 16.8   |
| 144 | 12/15/2010 | 8:52:23 | 0 | 14.9401 | 16.801 |
| 145 | 12/15/2010 | 8:52:24 | 0 | 14.939  | 16.802 |
| 146 | 12/15/2010 | 8:52:25 | 0 | 14.9316 | 16.801 |
| 147 | 12/15/2010 | 8:52:26 | 0 | 14.9351 | 16.801 |
| 148 | 12/15/2010 | 8:52:27 | 0 | 14.9429 | 16.801 |
| 149 | 12/15/2010 | 8:52:28 | 0 | 14.9324 | 16.801 |
| 150 | 12/15/2010 | 8:52:29 | 0 | 14.9306 | 16.802 |
| 151 | 12/15/2010 | 8:52:30 | 0 | 14.9318 | 16.801 |
| 152 | 12/15/2010 | 8:52:31 | 0 | 14.9269 | 16.802 |
| 153 | 12/15/2010 | 8:52:32 | 0 | 14.9291 | 16.802 |
| 154 | 12/15/2010 | 8:52:33 | 0 | 14.9284 | 16.802 |
| 155 | 12/15/2010 | 8:52:34 | 0 | 14.9249 | 16.801 |
| 156 | 12/15/2010 | 8:52:35 | 0 | 14.9214 | 16.801 |
| 157 | 12/15/2010 | 8:52:36 | 0 | 14.9236 | 16.803 |
| 158 | 12/15/2010 | 8:52:37 | 0 | 14.9244 | 16.802 |
| 159 | 12/15/2010 | 8:52:38 | 0 | 14.9164 | 16.801 |
| 160 | 12/15/2010 | 8:52:39 | 0 | 14.9195 | 16.902 |
| 161 | 12/15/2010 | 8:52:40 | 0 | 14.9214 | 16.802 |
| 162 | 12/15/2010 | 8:52:41 | 0 | 14.9115 | 16.802 |
| 163 | 12/15/2010 | 8:52:42 | 0 | 14.9192 | 16.802 |
| 164 | 12/15/2010 | 8:52:43 | 0 | 14.9165 | 16.802 |
| 165 | 12/15/2010 | 8:52:44 | 0 | 14.9106 | 16.802 |
| 166 | 12/15/2010 | 8:52:45 | 0 | 14.9116 | 16.802 |
| 167 | 12/15/2010 | 8:52:46 | 0 | 14.9164 | 16.802 |
| 168 | 12/15/2010 | 8:52:47 | 0 | 14.9091 | 16.802 |
| 169 | 12/15/2010 | 8:52:48 | 0 | 14.9106 | 16.802 |
| 170 | 12/15/2010 | 8:52:49 | 0 | 14.9066 | 16.801 |
| 171 | 12/15/2010 | 8:52:50 | 0 | 14.9109 | 16.803 |
| 172 | 12/15/2010 | 8:52:51 | 0 | 14.9049 | 16.802 |
| 173 | 12/15/2010 | 8:52:52 | 0 | 14.9033 | 16.802 |
| 174 | 12/15/2010 | 8:52:53 | 0 | 14.9067 | 16.802 |
| 175 | 12/15/2010 | 8:52:54 | 0 | 14.9029 | 16.802 |
| 176 | 12/15/2010 | 8:52:55 | 0 | 14.9052 | 16.802 |
| 177 | 12/15/2010 | 8:52:56 | 0 | 14.9033 | 16.802 |
| 178 | 12/15/2010 | 8:52:57 | 0 | 14.9035 | 16.802 |
| 179 | 12/15/2010 | 8:52:58 | 0 | 14.9063 | 16.802 |
| 180 | 12/15/2010 | 8:52:59 | 0 | 14.8991 | 16.802 |
| 181 | 12/15/2010 | 8:53:00 | 0 | 14.8979 | 16.802 |
| 182 | 12/15/2010 | 8:53:01 | 0 | 14.9011 | 16.803 |
| 183 | 12/15/2010 | 8:53:02 | 0 | 14.9045 | 16.802 |
| 184 | 12/15/2010 | 8:53:03 | 0 | 14.8975 | 16.802 |
| 185 | 12/15/2010 | 8:53:04 | 0 | 14.9003 | 16.803 |
| 186 | 12/15/2010 | 8:53:05 | 0 | 14.9053 | 16.802 |
| 187 | 12/15/2010 | 8:53:06 | 0 | 14.8961 | 16.802 |
| 188 | 12/15/2010 | 8:53:07 | 0 | 14.8916 | 16.802 |
| 189 | 12/15/2010 | 8:53:08 | 0 | 14.8982 | 16.802 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 190 | 12/15/2010 | 8:53:09 | 0 | 14.8949 | 16.803 |
| 191 | 12/15/2010 | 8:53:10 | 0 | 14.8961 | 16.803 |
| 192 | 12/15/2010 | 8:53:11 | 0 | 14.8999 | 16.802 |
| 193 | 12/15/2010 | 8:53:12 | 0 | 14.8909 | 16.802 |
| 194 | 12/15/2010 | 8:53:13 | 0 | 14.8925 | 16.803 |
| 195 | 12/15/2010 | 8:53:14 | 0 | 14.893  | 16.803 |
| 196 | 12/15/2010 | 8:53:15 | 0 | 14.8886 | 16.802 |
| 197 | 12/15/2010 | 8:53:16 | 0 | 14.8922 | 16.802 |
| 198 | 12/15/2010 | 8:53:17 | 0 | 14.8896 | 16.802 |
| 199 | 12/15/2010 | 8:53:18 | 0 | 14.8892 | 16.803 |
| 200 | 12/15/2010 | 8:53:19 | 0 | 14.8919 | 16.802 |
| 201 | 12/15/2010 | 8:53:20 | 0 | 14.8846 | 16.802 |
| 202 | 12/15/2010 | 8:53:21 | 0 | 14.8906 | 16.802 |
| 203 | 12/15/2010 | 8:53:22 | 0 | 14.8922 | 16.802 |
| 204 | 12/15/2010 | 8:53:23 | 0 | 14.8825 | 16.802 |
| 205 | 12/15/2010 | 8:53:24 | 0 | 14.8889 | 16.802 |
| 206 | 12/15/2010 | 8:53:25 | 0 | 14.8906 | 16.802 |
| 207 | 12/15/2010 | 8:53:26 | 0 | 14.8845 | 16.802 |
| 208 | 12/15/2010 | 8:53:27 | 0 | 14.9259 | 16.802 |
| 209 | 12/15/2010 | 8:53:28 | 0 | 14.8844 | 16.803 |
| 210 | 12/15/2010 | 8:53:29 | 0 | 14.8854 | 16.802 |
| 211 | 12/15/2010 | 8:53:30 | 0 | 14.8896 | 16.802 |
| 212 | 12/15/2010 | 8:53:31 | 0 | 14.8827 | 16.803 |
| 213 | 12/15/2010 | 8:53:32 | 0 | 14.8832 | 16.802 |
| 214 | 12/15/2010 | 8:53:33 | 0 | 14.8814 | 16.802 |
| 215 | 12/15/2010 | 8:53:34 | 0 | 14.8846 | 16.802 |
| 216 | 12/15/2010 | 8:53:35 | 0 | 14.8824 | 16.802 |
| 217 | 12/15/2010 | 8:53:36 | 0 | 14.8847 | 16.802 |
| 218 | 12/15/2010 | 8:53:37 | 0 | 14.8777 | 16.802 |
| 219 | 12/15/2010 | 8:53:38 | 0 | 14.882  | 16.802 |
| 220 | 12/15/2010 | 8:53:39 | 0 | 14.8854 | 16.802 |
| 221 | 12/15/2010 | 8:53:40 | 0 | 14.8803 | 16.802 |
| 222 | 12/15/2010 | 8:53:41 | 0 | 14.8819 | 16.802 |
| 223 | 12/15/2010 | 8:53:42 | 0 | 14.8829 | 16.802 |
| 224 | 12/15/2010 | 8:53:43 | 0 | 14.8834 | 16.802 |
| 225 | 12/15/2010 | 8:53:44 | 0 | 14.8818 | 16.802 |
| 226 | 12/15/2010 | 8:53:45 | 0 | 14.8803 | 16.803 |
| 227 | 12/15/2010 | 8:53:46 | 0 | 14.8784 | 16.803 |
| 228 | 12/15/2010 | 8:53:47 | 0 | 14.8822 | 16.802 |
| 229 | 12/15/2010 | 8:53:48 | 0 | 14.8806 | 16.802 |
| 230 | 12/15/2010 | 8:53:49 | 0 | 14.8804 | 16.802 |
| 231 | 12/15/2010 | 8:53:50 | 0 | 14.8763 | 16.802 |
| 232 | 12/15/2010 | 8:53:51 | 0 | 14.8782 | 16.803 |
| 233 | 12/15/2010 | 8:53:52 | 0 | 14.8813 | 16.803 |
| 234 | 12/15/2010 | 8:53:53 | 0 | 14.8802 | 16.802 |
| 235 | 12/15/2010 | 8:53:54 | 0 | 14.8777 | 16.802 |
| 236 | 12/15/2010 | 8:53:55 | 0 | 14.8772 | 16.803 |
| 237 | 12/15/2010 | 8:53:56 | 0 | 14.8784 | 16.802 |
| 238 | 12/15/2010 | 8:53:57 | 0 | 14.8765 | 16.803 |
| 239 | 12/15/2010 | 8:53:58 | 0 | 14.8787 | 16.802 |
| 240 | 12/15/2010 | 8:53:59 | 0 | 14.8753 | 16.803 |
| 241 | 12/15/2010 | 8:54:00 | 0 | 14.875  | 16.802 |
| 242 | 12/15/2010 | 8:54:01 | 0 | 14.8775 | 16.803 |
| 243 | 12/15/2010 | 8:54:02 | 0 | 14.8758 | 16.802 |
| 244 | 12/15/2010 | 8:54:03 | 0 | 14.8773 | 16.802 |
| 245 | 12/15/2010 | 8:54:04 | 0 | 14.8754 | 16.803 |
| 246 | 12/15/2010 | 8:54:05 | 0 | 14.8772 | 16.802 |
| 247 | 12/15/2010 | 8:54:06 | 0 | 14.8763 | 16.802 |
| 248 | 12/15/2010 | 8:54:07 | 0 | 14.8739 | 16.803 |
| 249 | 12/15/2010 | 8:54:08 | 0 | 14.8774 | 16.802 |
| 250 | 12/15/2010 | 8:54:09 | 0 | 14.87   | 16.802 |
| 251 | 12/15/2010 | 8:54:10 | 0 | 14.873  | 16.802 |
| 252 | 12/15/2010 | 8:54:11 | 0 | 14.8762 | 16.802 |
| 253 | 12/15/2010 | 8:54:12 | 0 | 14.8707 | 16.802 |
| 254 | 12/15/2010 | 8:54:13 | 0 | 14.875  | 16.802 |
| 255 | 12/15/2010 | 8:54:14 | 0 | 14.8696 | 16.802 |
| 256 | 12/15/2010 | 8:54:15 | 0 | 14.8724 | 16.802 |
| 257 | 12/15/2010 | 8:54:16 | 0 | 14.8653 | 16.802 |
| 258 | 12/15/2010 | 8:54:17 | 0 | 14.871  | 16.802 |
| 259 | 12/15/2010 | 8:54:18 | 0 | 14.8708 | 16.802 |
| 260 | 12/15/2010 | 8:54:19 | 0 | 14.8692 | 16.803 |
| 261 | 12/15/2010 | 8:54:20 | 0 | 14.8651 | 16.803 |
| 262 | 12/15/2010 | 8:54:21 | 0 | 14.9122 | 16.803 |
| 263 | 12/15/2010 | 8:54:22 | 0 | 14.877  | 16.802 |
| 264 | 12/15/2010 | 8:54:23 | 0 | 14.8697 | 16.802 |
| 265 | 12/15/2010 | 8:54:24 | 0 | 14.8682 | 16.802 |
| 266 | 12/15/2010 | 8:54:25 | 0 | 14.8631 | 16.803 |
| 267 | 12/15/2010 | 8:54:26 | 0 | 14.8734 | 16.802 |
| 268 | 12/15/2010 | 8:54:27 | 0 | 14.872  | 16.803 |
| 269 | 12/15/2010 | 8:54:28 | 0 | 14.8611 | 16.802 |
| 270 | 12/15/2010 | 8:54:29 | 0 | 14.8664 | 16.803 |
| 271 | 12/15/2010 | 8:54:30 | 0 | 14.8693 | 16.802 |
| 272 | 12/15/2010 | 8:54:31 | 0 | 14.8705 | 16.802 |
| 273 | 12/15/2010 | 8:54:32 | 0 | 14.8613 | 16.802 |
| 274 | 12/15/2010 | 8:54:33 | 0 | 14.872  | 16.802 |
| 275 | 12/15/2010 | 8:54:34 | 0 | 14.8621 | 16.802 |
| 276 | 12/15/2010 | 8:54:35 | 0 | 14.8636 | 16.802 |
| 277 | 12/15/2010 | 8:54:36 | 0 | 14.8759 | 16.802 |
| 278 | 12/15/2010 | 8:54:37 | 0 | 14.8661 | 16.802 |
| 279 | 12/15/2010 | 8:54:38 | 0 | 14.8673 | 16.803 |
| 280 | 12/15/2010 | 8:54:39 | 0 | 14.8716 | 16.802 |
| 281 | 12/15/2010 | 8:54:40 | 0 | 14.8646 | 16.802 |
| 282 | 12/15/2010 | 8:54:41 | 0 | 14.8619 | 16.802 |
| 283 | 12/15/2010 | 8:54:42 | 0 | 14.8708 | 16.802 |
| 284 | 12/15/2010 | 8:54:43 | 0 | 14.871  | 16.802 |
| 285 | 12/15/2010 | 8:54:44 | 0 | 14.8671 | 16.802 |
| 286 | 12/15/2010 | 8:54:45 | 0 | 14.8669 | 16.802 |
| 287 | 12/15/2010 | 8:54:46 | 0 | 14.8666 | 16.802 |
| 288 | 12/15/2010 | 8:54:47 | 0 | 14.8646 | 16.802 |
| 289 | 12/15/2010 | 8:54:48 | 0 | 14.8733 | 16.802 |
| 290 | 12/15/2010 | 8:54:49 | 0 | 14.8633 | 16.802 |
| 291 | 12/15/2010 | 8:54:50 | 0 | 14.8625 | 16.802 |
| 292 | 12/15/2010 | 8:54:51 | 0 | 14.8662 | 16.802 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 293 | 12/15/2010 | 8:54:52 | 0 | 14.871  | 16.802 |
| 294 | 12/15/2010 | 8:54:53 | 0 | 14.8606 | 16.803 |
| 295 | 12/15/2010 | 8:54:54 | 0 | 14.8697 | 16.803 |
| 296 | 12/15/2010 | 8:54:55 | 0 | 14.8613 | 16.802 |
| 297 | 12/15/2010 | 8:54:56 | 0 | 14.8656 | 16.802 |
| 298 | 12/15/2010 | 8:54:57 | 0 | 14.869  | 16.802 |
| 299 | 12/15/2010 | 8:54:58 | 0 | 14.8667 | 16.802 |
| 300 | 12/15/2010 | 8:54:59 | 0 | 14.8638 | 16.802 |
| 301 | 12/15/2010 | 8:55:00 | 0 | 14.8674 | 16.802 |
| 302 | 12/15/2010 | 8:55:01 | 0 | 14.865  | 16.802 |
| 303 | 12/15/2010 | 8:55:02 | 0 | 14.8656 | 16.802 |
| 304 | 12/15/2010 | 8:55:03 | 0 | 14.8675 | 16.802 |
| 305 | 12/15/2010 | 8:55:04 | 0 | 14.8627 | 16.802 |
| 306 | 12/15/2010 | 8:55:05 | 0 | 14.8697 | 16.802 |
| 307 | 12/15/2010 | 8:55:06 | 0 | 14.8631 | 16.802 |
| 308 | 12/15/2010 | 8:55:07 | 0 | 14.8674 | 16.802 |
| 309 | 12/15/2010 | 8:55:08 | 0 | 14.8653 | 16.802 |
| 310 | 12/15/2010 | 8:55:09 | 0 | 14.8591 | 16.802 |
| 311 | 12/15/2010 | 8:55:10 | 0 | 14.865  | 16.802 |
| 312 | 12/15/2010 | 8:55:11 | 0 | 14.8638 | 16.802 |
| 313 | 12/15/2010 | 8:55:12 | 0 | 14.8669 | 16.802 |
| 314 | 12/15/2010 | 8:55:13 | 0 | 14.8661 | 16.803 |
| 315 | 12/15/2010 | 8:55:14 | 0 | 14.8646 | 16.802 |
| 316 | 12/15/2010 | 8:55:15 | 0 | 14.8633 | 16.802 |
| 317 | 12/15/2010 | 8:55:16 | 0 | 14.865  | 16.802 |
| 318 | 12/15/2010 | 8:55:17 | 0 | 14.8655 | 16.803 |
| 319 | 12/15/2010 | 8:55:18 | 0 | 14.8677 | 16.802 |
| 320 | 12/15/2010 | 8:55:19 | 0 | 14.8643 | 16.802 |
| 321 | 12/15/2010 | 8:55:20 | 0 | 14.8651 | 16.802 |
| 322 | 12/15/2010 | 8:55:21 | 0 | 14.8661 | 16.802 |
| 323 | 12/15/2010 | 8:55:22 | 0 | 14.863  | 16.802 |
| 324 | 12/15/2010 | 8:55:23 | 0 | 14.865  | 16.802 |
| 325 | 12/15/2010 | 8:55:24 | 0 | 14.8588 | 16.802 |
| 326 | 12/15/2010 | 8:55:25 | 0 | 14.871  | 16.802 |
| 327 | 12/15/2010 | 8:55:26 | 0 | 14.8666 | 16.802 |
| 328 | 12/15/2010 | 8:55:27 | 0 | 14.862  | 16.802 |
| 329 | 12/15/2010 | 8:55:28 | 0 | 14.8681 | 16.802 |
| 330 | 12/15/2010 | 8:55:29 | 0 | 14.8615 | 16.802 |
| 331 | 12/15/2010 | 8:55:30 | 0 | 14.8603 | 16.802 |
| 332 | 12/15/2010 | 8:55:31 | 0 | 14.864  | 16.802 |
| 333 | 12/15/2010 | 8:55:32 | 0 | 14.8641 | 16.802 |
| 334 | 12/15/2010 | 8:55:33 | 0 | 14.8598 | 16.802 |
| 335 | 12/15/2010 | 8:55:34 | 0 | 14.8619 | 16.803 |
| 336 | 12/15/2010 | 8:55:35 | 0 | 14.8578 | 16.802 |
| 337 | 12/15/2010 | 8:55:36 | 0 | 14.8561 | 16.802 |
| 338 | 12/15/2010 | 8:55:37 | 0 | 14.8666 | 16.802 |
| 339 | 12/15/2010 | 8:55:38 | 0 | 14.8591 | 16.802 |
| 340 | 12/15/2010 | 8:55:39 | 0 | 14.8631 | 16.802 |
| 341 | 12/15/2010 | 8:55:40 | 0 | 14.8638 | 16.802 |
| 342 | 12/15/2010 | 8:55:41 | 0 | 14.8605 | 16.802 |
| 343 | 12/15/2010 | 8:55:42 | 0 | 14.864  | 16.802 |
| 344 | 12/15/2010 | 8:55:43 | 0 | 14.8623 | 16.802 |
| 345 | 12/15/2010 | 8:55:44 | 0 | 14.8605 | 16.802 |
| 346 | 12/15/2010 | 8:55:45 | 0 | 14.8643 | 16.802 |
| 347 | 12/15/2010 | 8:55:46 | 0 | 14.8631 | 16.801 |
| 348 | 12/15/2010 | 8:55:47 | 0 | 14.8625 | 16.802 |
| 349 | 12/15/2010 | 8:55:48 | 0 | 14.8664 | 16.802 |
| 350 | 12/15/2010 | 8:55:49 | 0 | 14.8606 | 16.802 |
| 351 | 12/15/2010 | 8:55:50 | 0 | 14.8606 | 16.802 |
| 352 | 12/15/2010 | 8:55:51 | 0 | 14.8659 | 16.802 |
| 353 | 12/15/2010 | 8:55:52 | 0 | 14.8596 | 16.802 |
| 354 | 12/15/2010 | 8:55:53 | 0 | 14.8589 | 16.802 |
| 355 | 12/15/2010 | 8:55:54 | 0 | 14.8624 | 16.801 |
| 356 | 12/15/2010 | 8:55:55 | 0 | 14.8623 | 16.802 |
| 357 | 12/15/2010 | 8:55:56 | 0 | 14.8618 | 16.802 |
| 358 | 12/15/2010 | 8:55:57 | 0 | 14.8664 | 16.801 |
| 359 | 12/15/2010 | 8:55:58 | 0 | 14.8533 | 16.801 |
| 360 | 12/15/2010 | 8:55:59 | 0 | 14.863  | 16.802 |
| 361 | 12/15/2010 | 8:56:00 | 0 | 14.8604 | 16.802 |
| 362 | 12/15/2010 | 8:56:01 | 0 | 14.8584 | 16.802 |
| 363 | 12/15/2010 | 8:56:02 | 0 | 14.8603 | 16.801 |
| 364 | 12/15/2010 | 8:56:03 | 0 | 14.8661 | 16.801 |
| 365 | 12/15/2010 | 8:56:04 | 0 | 14.8625 | 16.802 |
| 366 | 12/15/2010 | 8:56:05 | 0 | 14.8614 | 16.801 |
| 367 | 12/15/2010 | 8:56:06 | 0 | 14.8627 | 16.801 |
| 368 | 12/15/2010 | 8:56:07 | 0 | 14.86   | 16.801 |
| 369 | 12/15/2010 | 8:56:08 | 0 | 14.8631 | 16.801 |
| 370 | 12/15/2010 | 8:56:09 | 0 | 14.8636 | 16.801 |
| 371 | 12/15/2010 | 8:56:10 | 0 | 14.8579 | 16.801 |
| 372 | 12/15/2010 | 8:56:11 | 0 | 14.8607 | 16.802 |
| 373 | 12/15/2010 | 8:56:12 | 0 | 14.8606 | 16.801 |
| 374 | 12/15/2010 | 8:56:13 | 0 | 14.8608 | 16.801 |
| 375 | 12/15/2010 | 8:56:14 | 0 | 14.8616 | 16.801 |
| 376 | 12/15/2010 | 8:56:15 | 0 | 14.8636 | 16.802 |
| 377 | 12/15/2010 | 8:56:16 | 0 | 14.8606 | 16.802 |
| 378 | 12/15/2010 | 8:56:17 | 0 | 14.8633 | 16.802 |
| 379 | 12/15/2010 | 8:56:18 | 0 | 14.8599 | 16.801 |
| 380 | 12/15/2010 | 8:56:19 | 0 | 14.8604 | 16.802 |
| 381 | 12/15/2010 | 8:56:20 | 0 | 14.8602 | 16.801 |
| 382 | 12/15/2010 | 8:56:21 | 0 | 14.8606 | 16.801 |
| 383 | 12/15/2010 | 8:56:22 | 0 | 14.8598 | 16.801 |
| 384 | 12/15/2010 | 8:56:23 | 0 | 14.8591 | 16.801 |
| 385 | 12/15/2010 | 8:56:24 | 0 | 14.863  | 16.801 |
| 386 | 12/15/2010 | 8:56:25 | 0 | 14.8591 | 16.801 |
| 387 | 12/15/2010 | 8:56:26 | 0 | 14.8611 | 16.801 |
| 388 | 12/15/2010 | 8:56:27 | 0 | 14.8618 | 16.801 |
| 389 | 12/15/2010 | 8:56:28 | 0 | 14.8802 | 16.801 |
| 390 | 12/15/2010 | 8:56:29 | 0 | 14.8615 | 16.801 |
| 391 | 12/15/2010 | 8:56:30 | 0 | 14.8599 | 16.801 |
| 392 | 12/15/2010 | 8:56:31 | 0 | 14.8614 | 16.8   |
| 393 | 12/15/2010 | 8:56:32 | 0 | 14.8629 | 16.801 |
| 394 | 12/15/2010 | 8:56:33 | 0 | 14.8601 | 16.802 |
| 395 | 12/15/2010 | 8:56:34 | 0 | 14.8601 | 16.8   |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 396 | 12/15/2010 | 8:56:35 | 0 | 14.8573 | 16.801 |
| 397 | 12/15/2010 | 8:56:36 | 0 | 14.8588 | 16.801 |
| 398 | 12/15/2010 | 8:56:37 | 0 | 14.8612 | 16.801 |
| 399 | 12/15/2010 | 8:56:38 | 0 | 14.8602 | 16.8   |
| 400 | 12/15/2010 | 8:56:39 | 0 | 14.8563 | 16.801 |
| 401 | 12/15/2010 | 8:56:40 | 0 | 14.8593 | 16.801 |
| 402 | 12/15/2010 | 8:56:41 | 0 | 14.8588 | 16.801 |
| 403 | 12/15/2010 | 8:56:42 | 0 | 14.8598 | 16.801 |
| 404 | 12/15/2010 | 8:58:43 | 0 | 14.8579 | 16.801 |
| 405 | 12/15/2010 | 8:56:44 | 0 | 14.8591 | 16.801 |
| 406 | 12/15/2010 | 8:56:45 | 0 | 14.8588 | 16.801 |
| 407 | 12/15/2010 | 8:56:46 | 0 | 14.8564 | 16.8   |
| 408 | 12/15/2010 | 8:56:47 | 0 | 14.8812 | 18.801 |
| 409 | 12/15/2010 | 8:56:48 | 0 | 14.8579 | 16.8   |
| 410 | 12/15/2010 | 8:56:49 | 0 | 14.8568 | 16.8   |
| 411 | 12/15/2010 | 8:56:50 | 0 | 14.8595 | 16.8   |
| 412 | 12/15/2010 | 8:56:51 | 0 | 14.8563 | 16.801 |
| 413 | 12/15/2010 | 8:56:52 | 0 | 14.8574 | 16.8   |
| 414 | 12/15/2010 | 8:56:53 | 0 | 14.8589 | 16.8   |
| 415 | 12/15/2010 | 8:56:54 | 0 | 14.8572 | 16.8   |
| 416 | 12/15/2010 | 8:56:55 | 0 | 14.8595 | 16.8   |
| 417 | 12/15/2010 | 8:56:56 | 0 | 14.8589 | 16.8   |
| 418 | 12/15/2010 | 8:56:57 | 0 | 14.8604 | 16.801 |
| 419 | 12/15/2010 | 8:56:58 | 0 | 14.8564 | 16.8   |
| 420 | 12/15/2010 | 8:56:59 | 0 | 14.8602 | 16.801 |
| 421 | 12/15/2010 | 8:57:00 | 0 | 14.8563 | 16.801 |
| 422 | 12/15/2010 | 8:57:01 | 0 | 14.8605 | 16.801 |
| 423 | 12/15/2010 | 8:57:02 | 0 | 14.8576 | 16.801 |
| 424 | 12/15/2010 | 8:57:03 | 0 | 14.8576 | 16.801 |
| 425 | 12/15/2010 | 8:57:04 | 0 | 14.8548 | 16.801 |
| 426 | 12/15/2010 | 8:57:05 | 0 | 14.8558 | 16.801 |
| 427 | 12/15/2010 | 8:57:06 | 0 | 14.8568 | 16.8   |
| 428 | 12/15/2010 | 8:57:07 | 0 | 14.8517 | 16.8   |
| 429 | 12/15/2010 | 8:57:08 | 0 | 14.8599 | 16.8   |
| 430 | 12/15/2010 | 8:57:09 | 0 | 14.8554 | 16.801 |
| 431 | 12/15/2010 | 8:57:10 | 0 | 14.8533 | 16.801 |
| 432 | 12/15/2010 | 8:57:11 | 0 | 14.8598 | 16.801 |
| 433 | 12/15/2010 | 8:57:12 | 0 | 14.8581 | 16.8   |
| 434 | 12/15/2010 | 8:57:13 | 0 | 14.8586 | 16.801 |
| 435 | 12/15/2010 | 8:57:14 | 0 | 14.8546 | 16.801 |
| 436 | 12/15/2010 | 8:57:15 | 0 | 14.856  | 16.801 |
| 437 | 12/15/2010 | 8:57:16 | 0 | 14.8571 | 18.801 |
| 438 | 12/15/2010 | 8:57:17 | 0 | 14.8553 | 16.8   |
| 439 | 12/15/2010 | 8:57:18 | 0 | 14.8567 | 16.801 |
| 440 | 12/15/2010 | 8:57:19 | 0 | 14.8572 | 16.801 |
| 441 | 12/15/2010 | 8:57:20 | 0 | 14.8564 | 16.801 |
| 442 | 12/15/2010 | 8:57:21 | 0 | 14.8561 | 16.8   |
| 443 | 12/15/2010 | 8:57:22 | 0 | 14.8547 | 16.801 |
| 444 | 12/15/2010 | 8:57:23 | 0 | 14.8569 | 16.801 |
| 445 | 12/15/2010 | 8:57:24 | 0 | 14.8529 | 16.801 |
| 446 | 12/15/2010 | 8:57:25 | 0 | 14.8567 | 16.801 |
| 447 | 12/15/2010 | 8:57:26 | 0 | 14.8558 | 16.801 |
| 448 | 12/15/2010 | 8:57:27 | 0 | 14.8549 | 16.801 |
| 449 | 12/15/2010 | 8:57:28 | 0 | 14.8567 | 16.801 |
| 450 | 12/15/2010 | 8:57:29 | 0 | 14.8583 | 16.801 |
| 451 | 12/15/2010 | 8:57:30 | 0 | 14.841  | 16.802 |
| 452 | 12/15/2010 | 8:57:31 | 0 | 14.8564 | 16.802 |
| 453 | 12/15/2010 | 8:57:32 | 0 | 14.8569 | 16.801 |
| 454 | 12/15/2010 | 8:57:33 | 0 | 14.8526 | 16.802 |
| 455 | 12/15/2010 | 8:57:34 | 0 | 14.8531 | 16.802 |
| 456 | 12/15/2010 | 8:57:35 | 0 | 14.8556 | 16.802 |
| 457 | 12/15/2010 | 8:57:36 | 0 | 14.855  | 16.802 |
| 458 | 12/15/2010 | 8:57:37 | 0 | 14.8544 | 16.801 |
| 459 | 12/15/2010 | 8:57:38 | 0 | 14.8566 | 16.802 |
| 460 | 12/15/2010 | 8:57:39 | 0 | 14.8532 | 16.802 |
| 461 | 12/15/2010 | 8:57:40 | 0 | 14.8522 | 16.802 |
| 462 | 12/15/2010 | 8:57:41 | 0 | 14.8551 | 16.802 |
| 463 | 12/15/2010 | 8:57:42 | 0 | 14.8555 | 16.801 |
| 464 | 12/15/2010 | 8:57:43 | 0 | 14.8531 | 16.802 |
| 465 | 12/15/2010 | 8:57:44 | 0 | 14.8574 | 16.802 |
| 466 | 12/15/2010 | 8:57:45 | 0 | 14.8573 | 16.802 |
| 467 | 12/15/2010 | 8:57:46 | 0 | 14.8543 | 16.802 |
| 468 | 12/15/2010 | 8:57:47 | 0 | 14.8572 | 18.802 |
| 469 | 12/15/2010 | 8:57:48 | 0 | 14.8532 | 16.802 |
| 470 | 12/15/2010 | 8:57:49 | 0 | 14.8524 | 16.802 |
| 471 | 12/15/2010 | 8:57:50 | 0 | 14.8584 | 16.802 |
| 472 | 12/15/2010 | 8:57:51 | 0 | 14.8579 | 16.802 |
| 473 | 12/15/2010 | 8:57:52 | 0 | 14.8574 | 16.802 |
| 474 | 12/15/2010 | 8:57:53 | 0 | 14.8559 | 16.802 |
| 475 | 12/15/2010 | 8:57:54 | 0 | 14.8547 | 16.801 |
| 476 | 12/15/2010 | 8:57:55 | 0 | 14.8578 | 16.802 |
| 477 | 12/15/2010 | 8:57:56 | 0 | 14.8549 | 16.802 |
| 478 | 12/15/2010 | 8:57:57 | 0 | 14.8541 | 16.802 |
| 479 | 12/15/2010 | 8:57:58 | 0 | 14.8562 | 16.802 |
| 480 | 12/15/2010 | 8:57:59 | 0 | 14.8576 | 16.802 |
| 481 | 12/15/2010 | 8:58:00 | 0 | 14.8576 | 16.802 |
| 482 | 12/15/2010 | 8:58:01 | 0 | 14.856  | 16.801 |
| 483 | 12/15/2010 | 8:58:02 | 0 | 14.8527 | 16.802 |
| 484 | 12/15/2010 | 8:58:03 | 0 | 14.8596 | 16.801 |
| 485 | 12/15/2010 | 8:58:04 | 0 | 14.8516 | 16.802 |
| 486 | 12/15/2010 | 8:58:05 | 0 | 14.8537 | 16.802 |
| 487 | 12/15/2010 | 8:58:06 | 0 | 14.8516 | 16.802 |
| 488 | 12/15/2010 | 8:58:07 | 0 | 14.8664 | 16.802 |
| 489 | 12/15/2010 | 8:58:08 | 0 | 14.8534 | 18.802 |
| 490 | 12/15/2010 | 8:58:09 | 0 | 14.8554 | 16.802 |
| 491 | 12/15/2010 | 8:58:10 | 0 | 14.8578 | 16.802 |
| 492 | 12/15/2010 | 8:58:11 | 0 | 14.8531 | 16.802 |
| 493 | 12/15/2010 | 8:58:12 | 0 | 14.8538 | 16.802 |
| 494 | 12/15/2010 | 8:58:13 | 0 | 14.8543 | 16.802 |
| 495 | 12/15/2010 | 8:58:14 | 0 | 14.8558 | 16.802 |
| 496 | 12/15/2010 | 8:58:15 | 0 | 14.8598 | 16.802 |
| 497 | 12/15/2010 | 8:58:16 | 0 | 14.8548 | 16.802 |
| 498 | 12/15/2010 | 8:58:17 | 0 | 14.8565 | 16.802 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 499 | 12/15/2010 | 8:58:18 | 0 | 14.8547 | 16.802 |
| 500 | 12/15/2010 | 8:58:19 | 0 | 14.8576 | 16.802 |
| 501 | 12/15/2010 | 8:58:20 | 0 | 14.8549 | 16.802 |
| 502 | 12/15/2010 | 8:58:21 | 0 | 14.8549 | 16.802 |
| 503 | 12/15/2010 | 8:58:22 | 0 | 14.8558 | 16.802 |
| 504 | 12/15/2010 | 8:58:23 | 0 | 14.8512 | 16.802 |
| 505 | 12/15/2010 | 8:58:24 | 0 | 14.8558 | 16.802 |
| 506 | 12/15/2010 | 8:58:25 | 0 | 14.8573 | 16.802 |
| 507 | 12/15/2010 | 8:58:26 | 0 | 14.8511 | 16.803 |
| 508 | 12/15/2010 | 8:58:27 | 0 | 14.856  | 16.802 |
| 509 | 12/15/2010 | 8:58:28 | 0 | 14.8602 | 16.802 |
| 510 | 12/15/2010 | 8:58:29 | 0 | 14.8526 | 16.802 |
| 511 | 12/15/2010 | 8:58:30 | 0 | 14.8526 | 16.802 |
| 512 | 12/15/2010 | 8:58:31 | 0 | 14.8596 | 16.802 |
| 513 | 12/15/2010 | 8:58:32 | 0 | 14.8557 | 16.802 |
| 514 | 12/15/2010 | 8:58:33 | 0 | 14.8522 | 16.802 |
| 515 | 12/15/2010 | 8:58:34 | 0 | 14.855  | 16.802 |
| 516 | 12/15/2010 | 8:58:35 | 0 | 14.8564 | 16.802 |
| 517 | 12/15/2010 | 8:58:36 | 0 | 14.8516 | 16.802 |
| 518 | 12/15/2010 | 8:58:37 | 0 | 14.8554 | 16.802 |
| 519 | 12/15/2010 | 8:58:38 | 0 | 14.8546 | 16.802 |
| 520 | 12/15/2010 | 8:58:39 | 0 | 14.8524 | 16.802 |
| 521 | 12/15/2010 | 8:58:40 | 0 | 14.8536 | 16.802 |
| 522 | 12/15/2010 | 8:58:41 | 0 | 14.8558 | 16.802 |
| 523 | 12/15/2010 | 8:58:42 | 0 | 14.8517 | 16.802 |
| 524 | 12/15/2010 | 8:58:43 | 0 | 14.8583 | 16.802 |
| 525 | 12/15/2010 | 8:58:44 | 0 | 14.8553 | 16.801 |
| 526 | 12/15/2010 | 8:58:45 | 0 | 14.8521 | 16.802 |
| 527 | 12/15/2010 | 8:58:46 | 0 | 14.8562 | 16.802 |
| 528 | 12/15/2010 | 8:58:47 | 0 | 14.8516 | 16.802 |
| 529 | 12/15/2010 | 8:58:48 | 0 | 14.8541 | 16.802 |
| 530 | 12/15/2010 | 8:58:49 | 0 | 14.8539 | 16.802 |
| 531 | 12/15/2010 | 8:58:50 | 0 | 14.8516 | 16.802 |
| 532 | 12/15/2010 | 8:58:51 | 0 | 14.8574 | 16.802 |
| 533 | 12/15/2010 | 8:58:52 | 0 | 14.8504 | 16.802 |
| 534 | 12/15/2010 | 8:58:53 | 0 | 14.8522 | 16.802 |
| 535 | 12/15/2010 | 8:58:54 | 0 | 14.8594 | 16.802 |
| 536 | 12/15/2010 | 8:58:55 | 0 | 14.8512 | 16.802 |
| 537 | 12/15/2010 | 8:58:56 | 0 | 14.8514 | 16.802 |
| 538 | 12/15/2010 | 8:58:57 | 0 | 14.8568 | 16.802 |
| 539 | 12/15/2010 | 8:58:58 | 0 | 14.8507 | 16.802 |
| 540 | 12/15/2010 | 8:58:59 | 0 | 14.845  | 16.802 |
| 541 | 12/15/2010 | 8:59:00 | 0 | 14.8514 | 16.802 |
| 542 | 12/15/2010 | 8:59:01 | 0 | 14.85   | 16.802 |
| 543 | 12/15/2010 | 8:59:02 | 0 | 14.8563 | 16.802 |
| 544 | 12/15/2010 | 8:59:03 | 0 | 14.8574 | 16.802 |
| 545 | 12/15/2010 | 8:59:04 | 0 | 14.8512 | 16.802 |
| 546 | 12/15/2010 | 8:59:05 | 0 | 14.8589 | 16.802 |
| 547 | 12/15/2010 | 8:59:06 | 0 | 14.8492 | 16.802 |
| 548 | 12/15/2010 | 8:59:07 | 0 | 14.8546 | 15.803 |
| 549 | 12/15/2010 | 8:59:08 | 0 | 14.8567 | 16.802 |
| 550 | 12/15/2010 | 8:59:09 | 0 | 14.8514 | 16.802 |
| 551 | 12/15/2010 | 8:59:10 | 0 | 14.8527 | 16.802 |
| 552 | 12/15/2010 | 8:59:11 | 0 | 14.8538 | 15.802 |
| 553 | 12/15/2010 | 8:59:12 | 0 | 14.8546 | 16.802 |
| 554 | 12/15/2010 | 8:59:13 | 0 | 14.8534 | 15.802 |
| 555 | 12/15/2010 | 8:59:14 | 0 | 14.8519 | 16.802 |
| 556 | 12/15/2010 | 8:59:15 | 0 | 14.8492 | 16.802 |
| 557 | 12/15/2010 | 8:59:16 | 0 | 14.8512 | 16.802 |
| 558 | 12/15/2010 | 8:59:17 | 0 | 14.8519 | 16.802 |
| 559 | 12/15/2010 | 8:59:18 | 0 | 14.8522 | 16.802 |
| 560 | 12/15/2010 | 8:59:19 | 0 | 14.8522 | 16.802 |
| 561 | 12/15/2010 | 8:59:20 | 0 | 14.8552 | 16.803 |
| 562 | 12/15/2010 | 8:59:21 | 0 | 14.8524 | 15.802 |
| 563 | 12/15/2010 | 8:59:22 | 0 | 14.8492 | 16.802 |
| 564 | 12/15/2010 | 8:59:23 | 0 | 14.851  | 16.802 |
| 565 | 12/15/2010 | 8:59:24 | 0 | 14.8624 | 16.802 |
| 566 | 12/15/2010 | 8:59:25 | 0 | 14.8496 | 16.802 |
| 567 | 12/15/2010 | 8:59:26 | 0 | 14.8526 | 16.802 |
| 568 | 12/15/2010 | 8:59:27 | 0 | 14.8512 | 16.802 |
| 569 | 12/15/2010 | 8:59:28 | 0 | 14.8526 | 16.802 |
| 570 | 12/15/2010 | 8:59:29 | 0 | 14.8494 | 16.802 |
| 571 | 12/15/2010 | 8:59:30 | 0 | 14.8511 | 16.802 |
| 572 | 12/15/2010 | 8:59:31 | 0 | 14.8517 | 16.802 |
| 573 | 12/15/2010 | 8:59:32 | 0 | 14.8522 | 16.802 |
| 574 | 12/15/2010 | 8:59:33 | 0 | 14.8522 | 15.802 |
| 575 | 12/15/2010 | 8:59:34 | 0 | 14.8517 | 16.802 |
| 576 | 12/15/2010 | 8:59:35 | 0 | 14.8524 | 16.802 |
| 577 | 12/15/2010 | 8:59:36 | 0 | 14.8531 | 16.802 |
| 578 | 12/15/2010 | 8:59:37 | 0 | 14.8534 | 16.802 |
| 579 | 12/15/2010 | 8:59:38 | 0 | 14.8498 | 16.802 |
| 580 | 12/15/2010 | 8:59:39 | 0 | 14.8499 | 16.802 |
| 581 | 12/15/2010 | 8:59:40 | 0 | 14.8527 | 16.802 |
| 582 | 12/15/2010 | 8:59:41 | 0 | 14.8479 | 16.802 |
| 583 | 12/15/2010 | 8:59:42 | 0 | 14.8526 | 16.802 |
| 584 | 12/15/2010 | 8:59:43 | 0 | 14.8519 | 16.801 |
| 585 | 12/15/2010 | 8:59:44 | 0 | 14.83   | 16.802 |
| 586 | 12/15/2010 | 8:59:45 | 0 | 14.8504 | 16.802 |
| 587 | 12/15/2010 | 8:59:46 | 0 | 14.8663 | 16.802 |
| 588 | 12/15/2010 | 8:59:47 | 0 | 14.8531 | 16.802 |
| 589 | 12/15/2010 | 8:59:48 | 0 | 14.8539 | 16.802 |
| 590 | 12/15/2010 | 8:59:49 | 0 | 14.8561 | 16.802 |
| 591 | 12/15/2010 | 8:59:50 | 0 | 14.8522 | 16.802 |
| 592 | 12/15/2010 | 8:59:51 | 0 | 14.8545 | 15.802 |
| 593 | 12/15/2010 | 8:59:52 | 0 | 14.8524 | 15.802 |
| 594 | 12/15/2010 | 8:59:53 | 0 | 14.8517 | 16.803 |
| 595 | 12/15/2010 | 8:59:54 | 0 | 14.8524 | 16.802 |
| 596 | 12/15/2010 | 8:59:55 | 0 | 14.8516 | 16.802 |
| 597 | 12/15/2010 | 8:59:56 | 0 | 14.8495 | 16.802 |
| 598 | 12/15/2010 | 8:59:57 | 0 | 14.8522 | 16.802 |
| 599 | 12/15/2010 | 8:59:58 | 0 | 14.8361 | 16.802 |
| 600 | 12/15/2010 | 8:59:59 | 0 | 14.8569 | 16.802 |
| 601 | 12/15/2010 | 9:00:00 | 0 | 14.8464 | 16.802 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 602 | 12/15/2010 | 9:00:03 | 0 | 14.8517 | 16.788 |
| 603 | 12/15/2010 | 9:00:06 | 0 | 14.8414 | 16.782 |
| 604 | 12/15/2010 | 9:00:09 | 0 | 14.8447 | 16.778 |
| 605 | 12/15/2010 | 9:00:12 | 0 | 14.8419 | 16.776 |
| 606 | 12/15/2010 | 9:00:15 | 0 | 14.853  | 16.774 |
| 607 | 12/15/2010 | 9:00:18 | 0 | 14.8458 | 16.772 |
| 608 | 12/15/2010 | 9:00:21 | 0 | 14.8447 | 16.77  |
| 609 | 12/15/2010 | 9:00:24 | 0 | 14.8579 | 16.77  |
| 610 | 12/15/2010 | 9:00:27 | 0 | 14.8562 | 16.768 |
| 611 | 12/15/2010 | 9:00:30 | 0 | 14.8533 | 16.766 |
| 612 | 12/15/2010 | 9:00:33 | 0 | 14.8469 | 16.765 |
| 613 | 12/15/2010 | 9:00:36 | 0 | 14.8479 | 16.764 |
| 614 | 12/15/2010 | 9:00:39 | 0 | 14.8499 | 16.762 |
| 615 | 12/15/2010 | 9:00:42 | 0 | 14.8466 | 16.762 |
| 616 | 12/15/2010 | 9:00:45 | 0 | 14.8501 | 16.76  |
| 617 | 12/15/2010 | 9:00:48 | 0 | 14.848  | 16.76  |
| 618 | 12/15/2010 | 9:00:51 | 0 | 14.8451 | 16.759 |
| 619 | 12/15/2010 | 9:00:54 | 0 | 14.8511 | 16.759 |
| 620 | 12/15/2010 | 9:00:57 | 0 | 14.8493 | 16.758 |
| 621 | 12/15/2010 | 9:01:00 | 0 | 14.8491 | 16.757 |
| 622 | 12/15/2010 | 9:01:03 | 0 | 14.8495 | 16.756 |
| 623 | 12/15/2010 | 9:01:06 | 0 | 14.8461 | 16.756 |
| 624 | 12/15/2010 | 9:01:09 | 0 | 14.8463 | 16.755 |
| 625 | 12/15/2010 | 9:01:12 | 0 | 14.8487 | 16.754 |
| 626 | 12/15/2010 | 9:01:15 | 0 | 14.8466 | 16.753 |
| 627 | 12/15/2010 | 9:01:18 | 0 | 14.8441 | 16.753 |
| 628 | 12/15/2010 | 9:01:21 | 0 | 14.855  | 16.753 |
| 629 | 12/15/2010 | 9:01:24 | 0 | 14.8488 | 16.753 |
| 630 | 12/15/2010 | 9:01:27 | 0 | 14.8535 | 16.753 |
| 631 | 12/15/2010 | 9:01:30 | 0 | 14.8473 | 16.752 |
| 632 | 12/15/2010 | 9:01:33 | 0 | 14.8463 | 16.751 |
| 633 | 12/15/2010 | 9:01:36 | 0 | 14.8438 | 16.751 |
| 634 | 12/15/2010 | 9:01:39 | 0 | 14.8418 | 16.75  |
| 635 | 12/15/2010 | 9:01:42 | 0 | 14.8438 | 16.75  |
| 636 | 12/15/2010 | 9:01:45 | 0 | 14.8392 | 16.75  |
| 637 | 12/15/2010 | 9:01:48 | 0 | 14.8451 | 16.75  |
| 638 | 12/15/2010 | 9:01:51 | 0 | 14.8474 | 16.749 |
| 639 | 12/15/2010 | 9:01:54 | 0 | 14.8468 | 16.749 |
| 640 | 12/15/2010 | 9:01:57 | 0 | 14.8451 | 16.748 |
| 641 | 12/15/2010 | 9:02:00 | 0 | 14.8419 | 16.748 |
| 642 | 12/15/2010 | 9:02:03 | 0 | 14.9385 | 16.748 |
| 643 | 12/15/2010 | 9:02:06 | 0 | 14.8439 | 16.747 |
| 644 | 12/15/2010 | 9:02:09 | 0 | 14.8394 | 16.747 |
| 645 | 12/15/2010 | 9:02:12 | 0 | 14.8451 | 16.747 |
| 646 | 12/15/2010 | 9:02:15 | 0 | 14.8448 | 16.747 |
| 647 | 12/15/2010 | 9:02:18 | 0 | 14.8453 | 16.746 |
| 648 | 12/15/2010 | 9:02:21 | 0 | 14.8453 | 16.747 |
| 649 | 12/15/2010 | 9:02:24 | 0 | 14.8471 | 16.746 |
| 650 | 12/15/2010 | 9:02:27 | 0 | 14.8719 | 16.747 |
| 651 | 12/15/2010 | 9:02:30 | 0 | 14.8506 | 16.746 |
| 652 | 12/15/2010 | 9:02:33 | 0 | 14.8505 | 16.745 |
| 653 | 12/15/2010 | 9:02:36 | 0 | 14.8465 | 16.745 |
| 654 | 12/15/2010 | 9:02:39 | 0 | 14.8488 | 16.745 |
| 655 | 12/15/2010 | 9:02:42 | 0 | 14.8481 | 16.745 |
| 656 | 12/15/2010 | 9:02:45 | 0 | 14.8481 | 16.745 |
| 657 | 12/15/2010 | 9:02:48 | 0 | 14.8501 | 16.745 |
| 658 | 12/15/2010 | 9:02:51 | 0 | 14.847  | 16.745 |
| 659 | 12/15/2010 | 9:02:54 | 0 | 14.8476 | 16.744 |
| 660 | 12/15/2010 | 9:02:57 | 0 | 14.8463 | 16.744 |
| 661 | 12/15/2010 | 9:03:00 | 0 | 14.8547 | 16.744 |
| 662 | 12/15/2010 | 9:03:03 | 0 | 14.8454 | 16.744 |
| 663 | 12/15/2010 | 9:03:06 | 0 | 14.8434 | 16.744 |
| 664 | 12/15/2010 | 9:03:09 | 0 | 14.8475 | 16.744 |
| 665 | 12/15/2010 | 9:03:12 | 0 | 14.8453 | 16.743 |
| 666 | 12/15/2010 | 9:03:15 | 0 | 14.7408 | 16.744 |
| 667 | 12/15/2010 | 9:03:18 | 0 | 14.847  | 16.743 |
| 668 | 12/15/2010 | 9:03:21 | 0 | 14.8464 | 16.743 |
| 669 | 12/15/2010 | 9:03:24 | 0 | 14.8456 | 16.743 |
| 670 | 12/15/2010 | 9:03:27 | 0 | 14.8464 | 16.743 |
| 671 | 12/15/2010 | 9:03:30 | 0 | 14.8454 | 16.742 |
| 672 | 12/15/2010 | 9:03:33 | 0 | 14.8436 | 16.742 |
| 673 | 12/15/2010 | 9:03:36 | 0 | 14.851  | 16.742 |
| 674 | 12/15/2010 | 9:03:39 | 0 | 14.84   | 16.741 |
| 675 | 12/15/2010 | 9:03:42 | 0 | 14.842  | 16.742 |
| 676 | 12/15/2010 | 9:03:45 | 0 | 14.8479 | 16.741 |
| 677 | 12/15/2010 | 9:03:48 | 0 | 14.8463 | 16.741 |
| 678 | 12/15/2010 | 9:03:51 | 0 | 14.8456 | 16.741 |
| 679 | 12/15/2010 | 9:03:54 | 0 | 14.8411 | 16.741 |
| 680 | 12/15/2010 | 9:03:57 | 0 | 14.8435 | 16.741 |
| 681 | 12/15/2010 | 9:04:00 | 0 | 14.8412 | 16.74  |
| 682 | 12/15/2010 | 9:04:03 | 0 | 14.8438 | 16.741 |
| 683 | 12/15/2010 | 9:04:06 | 0 | 14.8458 | 16.74  |
| 684 | 12/15/2010 | 9:04:09 | 0 | 14.8804 | 16.74  |
| 685 | 12/15/2010 | 9:04:12 | 0 | 14.844  | 16.74  |
| 686 | 12/15/2010 | 9:04:15 | 0 | 14.8449 | 16.74  |
| 687 | 12/15/2010 | 9:04:18 | 0 | 14.8443 | 16.74  |
| 688 | 12/15/2010 | 9:04:21 | 0 | 14.8436 | 16.74  |
| 689 | 12/15/2010 | 9:04:24 | 0 | 14.8448 | 16.74  |
| 690 | 12/15/2010 | 9:04:27 | 0 | 14.8448 | 16.739 |
| 691 | 12/15/2010 | 9:04:30 | 0 | 14.843  | 16.74  |
| 692 | 12/15/2010 | 9:04:33 | 0 | 14.8438 | 16.74  |
| 693 | 12/15/2010 | 9:04:36 | 0 | 14.8488 | 16.738 |
| 694 | 12/15/2010 | 9:04:39 | 0 | 14.8441 | 16.738 |
| 695 | 12/15/2010 | 9:04:42 | 0 | 14.8444 | 16.739 |
| 696 | 12/15/2010 | 9:04:45 | 0 | 14.8478 | 16.738 |
| 697 | 12/15/2010 | 9:04:48 | 0 | 14.8446 | 16.738 |
| 698 | 12/15/2010 | 9:04:51 | 0 | 14.8426 | 16.738 |
| 699 | 12/15/2010 | 9:04:54 | 0 | 14.8426 | 16.738 |
| 700 | 12/15/2010 | 9:04:57 | 0 | 14.8435 | 16.738 |
| 701 | 12/15/2010 | 9:05:00 | 0 | 14.8436 | 16.737 |
| 702 | 12/15/2010 | 9:05:03 | 0 | 14.8416 | 16.737 |
| 703 | 12/15/2010 | 9:05:06 | 0 | 14.8883 | 16.736 |
| 704 | 12/15/2010 | 9:05:09 | 0 | 14.7803 | 16.737 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 705 | 12/15/2010 | 9:05:12 | 0 | 13.862  | 16.737 |
| 706 | 12/15/2010 | 9:05:15 | 0 | 12.8435 | 16.737 |
| 707 | 12/15/2010 | 9:05:18 | 0 | 12.9879 | 16.737 |
| 708 | 12/15/2010 | 9:05:21 | 0 | 13.1216 | 16.736 |
| 709 | 12/15/2010 | 9:05:24 | 0 | 13.2422 | 16.737 |
| 710 | 12/15/2010 | 9:05:27 | 0 | 13.362  | 16.737 |
| 711 | 12/15/2010 | 9:05:30 | 0 | 13.4697 | 16.736 |
| 712 | 12/15/2010 | 9:05:33 | 0 | 13.5682 | 16.736 |
| 713 | 12/15/2010 | 9:05:36 | 0 | 13.6614 | 16.736 |
| 714 | 12/15/2010 | 9:05:39 | 0 | 13.7443 | 16.736 |
| 715 | 12/15/2010 | 9:05:42 | 0 | 13.8217 | 16.735 |
| 716 | 12/15/2010 | 9:05:45 | 0 | 13.8958 | 16.735 |
| 717 | 12/15/2010 | 9:05:48 | 0 | 13.9636 | 16.735 |
| 718 | 12/15/2010 | 9:05:51 | 0 | 14.0205 | 16.735 |
| 719 | 12/15/2010 | 9:05:54 | 0 | 14.0763 | 16.735 |
| 720 | 12/15/2010 | 9:05:57 | 0 | 14.1351 | 16.734 |
| 721 | 12/15/2010 | 9:06:00 | 0 | 14.1903 | 16.735 |
| 722 | 12/15/2010 | 9:06:03 | 0 | 14.2311 | 16.733 |
| 723 | 12/15/2010 | 9:06:06 | 0 | 14.2721 | 16.734 |
| 724 | 12/15/2010 | 9:06:09 | 0 | 14.3105 | 16.734 |
| 725 | 12/15/2010 | 9:06:12 | 0 | 14.3548 | 16.733 |
| 726 | 12/15/2010 | 9:06:15 | 0 | 14.379  | 16.734 |
| 727 | 12/15/2010 | 9:06:18 | 0 | 14.4168 | 16.733 |
| 728 | 12/15/2010 | 9:06:21 | 0 | 14.444  | 16.734 |
| 729 | 12/15/2010 | 9:06:24 | 0 | 14.4895 | 16.733 |
| 730 | 12/15/2010 | 9:06:27 | 0 | 14.4948 | 16.733 |
| 731 | 12/15/2010 | 9:06:30 | 0 | 14.5171 | 16.733 |
| 732 | 12/15/2010 | 9:06:33 | 0 | 14.537  | 16.733 |
| 733 | 12/15/2010 | 9:06:36 | 0 | 14.5603 | 16.733 |
| 734 | 12/15/2010 | 9:06:39 | 0 | 14.5762 | 16.733 |
| 735 | 12/15/2010 | 9:06:42 | 0 | 14.5963 | 16.733 |
| 736 | 12/15/2010 | 9:06:45 | 0 | 14.6126 | 16.733 |
| 737 | 12/15/2010 | 9:06:48 | 0 | 14.6251 | 16.733 |
| 738 | 12/15/2010 | 9:06:51 | 0 | 14.6364 | 16.733 |
| 739 | 12/15/2010 | 9:06:54 | 0 | 14.6524 | 16.733 |
| 740 | 12/15/2010 | 9:06:57 | 0 | 14.6554 | 16.733 |
| 741 | 12/15/2010 | 9:07:00 | 0 | 14.6695 | 16.732 |
| 742 | 12/15/2010 | 9:07:03 | 0 | 14.6754 | 16.733 |
| 743 | 12/15/2010 | 9:07:06 | 0 | 14.6866 | 16.732 |
| 744 | 12/15/2010 | 9:07:09 | 0 | 14.6932 | 16.732 |
| 745 | 12/15/2010 | 9:07:12 | 0 | 14.7021 | 16.732 |
| 746 | 12/15/2010 | 9:07:15 | 0 | 14.707  | 16.733 |
| 747 | 12/15/2010 | 9:07:18 | 0 | 14.7124 | 16.732 |
| 748 | 12/15/2010 | 9:07:21 | 0 | 14.7211 | 16.732 |
| 749 | 12/15/2010 | 9:07:24 | 0 | 14.7253 | 16.732 |
| 750 | 12/15/2010 | 9:07:27 | 0 | 14.7306 | 16.732 |
| 751 | 12/15/2010 | 9:07:30 | 0 | 14.7343 | 16.732 |
| 752 | 12/15/2010 | 9:07:33 | 0 | 14.7371 | 16.731 |
| 753 | 12/15/2010 | 9:07:36 | 0 | 14.7409 | 16.732 |
| 754 | 12/15/2010 | 9:07:39 | 0 | 14.7469 | 16.731 |
| 755 | 12/15/2010 | 9:07:42 | 0 | 14.7464 | 16.732 |
| 756 | 12/15/2010 | 9:07:45 | 0 | 14.7505 | 16.731 |
| 757 | 12/15/2010 | 9:07:48 | 0 | 14.7562 | 16.732 |
| 758 | 12/15/2010 | 9:07:51 | 0 | 14.7589 | 16.731 |
| 759 | 12/15/2010 | 9:07:54 | 0 | 14.7655 | 16.731 |
| 760 | 12/15/2010 | 9:07:57 | 0 | 14.7645 | 16.731 |
| 761 | 12/15/2010 | 9:08:00 | 0 | 14.7693 | 16.731 |
| 762 | 12/15/2010 | 9:08:03 | 0 | 14.766  | 16.731 |
| 763 | 12/15/2010 | 9:08:06 | 0 | 14.7742 | 16.731 |
| 764 | 12/15/2010 | 9:08:09 | 0 | 14.7693 | 16.731 |
| 765 | 12/15/2010 | 9:08:12 | 0 | 14.7736 | 16.73  |
| 766 | 12/15/2010 | 9:08:15 | 0 | 14.7748 | 16.731 |
| 767 | 12/15/2010 | 9:08:18 | 0 | 14.7761 | 16.731 |
| 768 | 12/15/2010 | 9:08:21 | 0 | 14.7832 | 16.731 |
| 769 | 12/15/2010 | 9:08:24 | 0 | 14.7804 | 16.731 |
| 770 | 12/15/2010 | 9:08:27 | 0 | 14.7832 | 16.731 |
| 771 | 12/15/2010 | 9:08:30 | 0 | 14.7805 | 16.731 |
| 772 | 12/15/2010 | 9:08:33 | 0 | 14.7808 | 16.731 |
| 773 | 12/15/2010 | 9:08:36 | 0 | 14.7808 | 16.73  |
| 774 | 12/15/2010 | 9:08:39 | 0 | 14.7847 | 16.73  |
| 775 | 12/15/2010 | 9:08:42 | 0 | 14.787  | 16.73  |
| 776 | 12/15/2010 | 9:08:45 | 0 | 14.788  | 16.731 |
| 777 | 12/15/2010 | 9:08:48 | 0 | 14.7865 | 16.73  |
| 778 | 12/15/2010 | 9:08:51 | 0 | 14.7865 | 16.73  |
| 779 | 12/15/2010 | 9:08:54 | 0 | 14.785  | 16.73  |
| 780 | 12/15/2010 | 9:08:57 | 0 | 14.7898 | 16.73  |
| 781 | 12/15/2010 | 9:09:00 | 0 | 14.7937 | 16.73  |
| 782 | 12/15/2010 | 9:09:03 | 0 | 14.7931 | 16.729 |
| 783 | 12/15/2010 | 9:09:06 | 0 | 14.7941 | 16.73  |
| 784 | 12/15/2010 | 9:09:09 | 0 | 14.7963 | 16.73  |
| 785 | 12/15/2010 | 9:09:12 | 0 | 14.7939 | 16.73  |
| 786 | 12/15/2010 | 9:09:15 | 0 | 14.7934 | 16.73  |
| 787 | 12/15/2010 | 9:09:18 | 0 | 14.7962 | 16.73  |
| 788 | 12/15/2010 | 9:09:21 | 0 | 14.7954 | 16.73  |
| 789 | 12/15/2010 | 9:09:24 | 0 | 14.7986 | 16.73  |
| 790 | 12/15/2010 | 9:09:27 | 0 | 14.7965 | 16.729 |
| 791 | 12/15/2010 | 9:09:30 | 0 | 14.7952 | 16.728 |
| 792 | 12/15/2010 | 9:09:33 | 0 | 14.7969 | 16.729 |
| 793 | 12/15/2010 | 9:09:36 | 0 | 14.8011 | 16.729 |
| 794 | 12/15/2010 | 9:09:39 | 0 | 14.7993 | 16.729 |
| 795 | 12/15/2010 | 9:09:42 | 0 | 14.7967 | 16.729 |
| 796 | 12/15/2010 | 9:09:45 | 0 | 14.7981 | 16.729 |
| 797 | 12/15/2010 | 9:09:48 | 0 | 14.7999 | 16.729 |
| 798 | 12/15/2010 | 9:09:51 | 0 | 14.8018 | 16.728 |
| 799 | 12/15/2010 | 9:09:54 | 0 | 14.8001 | 16.729 |
| 800 | 12/15/2010 | 9:09:57 | 0 | 14.802  | 16.728 |
| 801 | 12/15/2010 | 9:10:00 | 0 | 14.8046 | 16.728 |
| 802 | 12/15/2010 | 9:10:05 | 0 | 14.8026 | 16.725 |
| 803 | 12/15/2010 | 9:10:10 | 0 | 14.8011 | 16.724 |
| 804 | 12/15/2010 | 9:10:15 | 0 | 14.8019 | 16.723 |
| 805 | 12/15/2010 | 9:10:20 | 0 | 14.9036 | 16.722 |
| 806 | 12/15/2010 | 9:10:25 | 0 | 14.8056 | 16.722 |
| 807 | 12/15/2010 | 9:10:30 | 0 | 14.8038 | 16.721 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 808 | 12/15/2010 | 9:10:35 | 0 | 14.8    | 16.72  |
| 809 | 12/15/2010 | 9:10:40 | 0 | 14.8065 | 16.72  |
| 810 | 12/15/2010 | 9:10:45 | 0 | 14.8084 | 16.72  |
| 811 | 12/15/2010 | 9:10:50 | 0 | 14.8035 | 16.719 |
| 812 | 12/15/2010 | 9:10:55 | 0 | 14.8067 | 16.72  |
| 813 | 12/15/2010 | 9:11:00 | 0 | 14.8031 | 16.719 |
| 814 | 12/15/2010 | 9:11:05 | 0 | 14.804  | 16.719 |
| 815 | 12/15/2010 | 9:11:10 | 0 | 14.8082 | 16.718 |
| 816 | 12/15/2010 | 9:11:15 | 0 | 14.8085 | 16.719 |
| 817 | 12/15/2010 | 9:11:20 | 0 | 14.8055 | 16.718 |
| 818 | 12/15/2010 | 9:11:25 | 0 | 14.8082 | 16.718 |
| 819 | 12/15/2010 | 9:11:30 | 0 | 14.8077 | 16.717 |
| 820 | 12/15/2010 | 9:11:35 | 0 | 14.8089 | 16.717 |
| 821 | 12/15/2010 | 9:11:40 | 0 | 14.81   | 16.718 |
| 822 | 12/15/2010 | 9:11:45 | 0 | 14.8103 | 16.718 |
| 623 | 12/15/2010 | 9:11:50 | 0 | 14.8098 | 16.717 |
| 824 | 12/15/2010 | 9:11:55 | 0 | 14.8077 | 16.717 |
| 825 | 12/15/2010 | 9:12:00 | 0 | 14.8093 | 16.717 |
| 826 | 12/15/2010 | 9:12:05 | 0 | 14.8075 | 16.717 |
| 627 | 12/15/2010 | 9:12:10 | 0 | 14.8098 | 16.717 |
| 628 | 12/15/2010 | 9:12:15 | 0 | 14.8093 | 16.717 |
| 829 | 12/15/2010 | 9:12:20 | 0 | 14.8065 | 16.717 |
| 830 | 12/15/2010 | 9:12:25 | 0 | 14.811  | 16.717 |
| 831 | 12/15/2010 | 9:12:30 | 0 | 14.8107 | 16.716 |
| 832 | 12/15/2010 | 9:12:35 | 0 | 14.8075 | 16.716 |
| 833 | 12/15/2010 | 9:12:40 | 0 | 14.8095 | 16.716 |
| 834 | 12/15/2010 | 9:12:45 | 0 | 14.809  | 16.716 |
| 835 | 12/15/2010 | 9:12:50 | 0 | 14.8028 | 16.716 |
| 836 | 12/15/2010 | 9:12:55 | 0 | 14.8075 | 16.715 |
| 837 | 12/15/2010 | 9:13:00 | 0 | 14.8115 | 16.715 |
| 838 | 12/15/2010 | 9:13:05 | 0 | 14.8117 | 16.715 |
| 839 | 12/15/2010 | 9:13:10 | 0 | 14.8122 | 16.715 |
| 840 | 12/15/2010 | 9:13:15 | 0 | 14.8103 | 16.715 |
| 841 | 12/15/2010 | 9:13:20 | 0 | 14.8155 | 16.715 |
| 842 | 12/15/2010 | 9:13:25 | 0 | 14.8102 | 16.715 |
| 843 | 12/15/2010 | 9:13:30 | 0 | 14.815  | 16.715 |
| 844 | 12/15/2010 | 9:13:35 | 0 | 14.8118 | 16.714 |
| 845 | 12/15/2010 | 9:13:40 | 0 | 14.8103 | 16.714 |
| 846 | 12/15/2010 | 9:13:45 | 0 | 14.811  | 16.714 |
| 847 | 12/15/2010 | 9:13:50 | 0 | 14.8135 | 16.714 |
| 848 | 12/15/2010 | 9:13:55 | 0 | 14.8127 | 16.714 |
| 849 | 12/15/2010 | 9:14:00 | 0 | 14.8126 | 16.714 |
| 850 | 12/15/2010 | 9:14:05 | 0 | 14.811  | 16.714 |
| 851 | 12/15/2010 | 9:14:10 | 0 | 14.8088 | 16.714 |
| 852 | 12/15/2010 | 9:14:15 | 0 | 14.8132 | 16.714 |
| 853 | 12/15/2010 | 9:14:20 | 0 | 14.8127 | 16.715 |
| 854 | 12/15/2010 | 9:14:25 | 0 | 14.814  | 16.714 |
| 855 | 12/15/2010 | 9:14:30 | 0 | 14.8137 | 16.714 |
| 856 | 12/15/2010 | 9:14:35 | 0 | 14.8137 | 16.715 |
| 857 | 12/15/2010 | 9:14:40 | 0 | 14.8127 | 16.715 |
| 858 | 12/15/2010 | 9:14:45 | 0 | 14.8125 | 16.715 |
| 859 | 12/15/2010 | 9:14:50 | 0 | 14.8123 | 16.715 |
| 860 | 12/15/2010 | 9:14:55 | 0 | 14.819  | 16.716 |
| 861 | 12/15/2010 | 9:15:00 | 0 | 14.8124 | 16.716 |
| 862 | 12/15/2010 | 9:15:05 | 0 | 14.8139 | 16.716 |
| 863 | 12/15/2010 | 9:15:10 | 0 | 14.8103 | 16.717 |
| 864 | 12/15/2010 | 9:15:15 | 0 | 14.8107 | 16.717 |
| 865 | 12/15/2010 | 9:15:20 | 0 | 14.8149 | 16.717 |
| 866 | 12/15/2010 | 9:15:25 | 0 | 14.8133 | 16.717 |
| 867 | 12/15/2010 | 9:15:30 | 0 | 14.8082 | 16.718 |
| 868 | 12/15/2010 | 9:15:35 | 0 | 14.8142 | 16.718 |
| 869 | 12/15/2010 | 9:15:40 | 0 | 14.8198 | 16.719 |
| 870 | 12/15/2010 | 9:15:45 | 0 | 14.8216 | 16.719 |
| 871 | 12/15/2010 | 9:15:50 | 0 | 14.8142 | 16.719 |
| 872 | 12/15/2010 | 9:15:55 | 0 | 14.8117 | 16.72  |
| 873 | 12/15/2010 | 9:16:00 | 0 | 14.8234 | 16.72  |
| 874 | 12/15/2010 | 9:16:05 | 0 | 14.8175 | 16.721 |
| 875 | 12/15/2010 | 9:16:10 | 0 | 14.813  | 16.721 |
| 876 | 12/15/2010 | 9:16:15 | 0 | 14.8182 | 16.721 |
| 877 | 12/15/2010 | 9:16:20 | 0 | 14.813  | 16.722 |
| 878 | 12/15/2010 | 9:16:25 | 0 | 14.8148 | 16.722 |
| 679 | 12/15/2010 | 9:16:30 | 0 | 14.8122 | 16.722 |
| 880 | 12/15/2010 | 9:16:35 | 0 | 14.8056 | 16.722 |
| 681 | 12/15/2010 | 9:16:40 | 0 | 14.8139 | 16.724 |
| 662 | 12/15/2010 | 9:16:45 | 0 | 14.8163 | 16.723 |
| 883 | 12/15/2010 | 9:16:50 | 0 | 14.8189 | 16.724 |
| 884 | 12/15/2010 | 9:16:55 | 0 | 14.8146 | 16.724 |
| 885 | 12/15/2010 | 9:17:00 | 0 | 14.8195 | 16.724 |
| 886 | 12/15/2010 | 9:17:05 | 0 | 14.8184 | 16.725 |
| 887 | 12/15/2010 | 9:17:10 | 0 | 14.8191 | 16.725 |
| 888 | 12/15/2010 | 9:17:15 | 0 | 14.8177 | 16.724 |
| 869 | 12/15/2010 | 9:17:20 | 0 | 14.8165 | 16.725 |
| 890 | 12/15/2010 | 9:17:25 | 0 | 14.8172 | 16.726 |
| 891 | 12/15/2010 | 9:17:30 | 0 | 14.8147 | 16.726 |
| 892 | 12/15/2010 | 9:17:35 | 0 | 14.8161 | 16.726 |
| 893 | 12/15/2010 | 9:17:40 | 0 | 14.812  | 16.725 |
| 894 | 12/15/2010 | 9:17:45 | 0 | 14.8158 | 16.726 |
| 895 | 12/15/2010 | 9:17:50 | 0 | 14.8178 | 16.726 |
| 896 | 12/15/2010 | 9:17:55 | 0 | 14.8188 | 16.726 |
| 897 | 12/15/2010 | 9:18:00 | 0 | 14.8164 | 16.726 |
| 898 | 12/15/2010 | 9:18:05 | 0 | 14.817  | 16.726 |
| 899 | 12/15/2010 | 9:18:10 | 0 | 14.8139 | 16.726 |
| 900 | 12/15/2010 | 9:18:15 | 0 | 14.8125 | 16.726 |
| 901 | 12/15/2010 | 9:18:20 | 0 | 14.8205 | 16.727 |
| 902 | 12/15/2010 | 9:18:25 | 0 | 14.8084 | 16.726 |
| 903 | 12/15/2010 | 9:18:30 | 0 | 14.8159 | 16.727 |
| 904 | 12/15/2010 | 9:18:35 | 0 | 14.8222 | 16.726 |
| 905 | 12/15/2010 | 9:18:40 | 0 | 14.8165 | 16.726 |
| 906 | 12/15/2010 | 9:18:45 | 0 | 14.8083 | 16.726 |
| 907 | 12/15/2010 | 9:18:50 | 0 | 14.8132 | 16.727 |
| 908 | 12/15/2010 | 9:18:55 | 0 | 14.8081 | 16.726 |
| 909 | 12/15/2010 | 9:19:00 | 0 | 14.8196 | 16.727 |
| 910 | 12/15/2010 | 9:19:05 | 0 | 14.8105 | 16.726 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 911  | 12/15/2010 | 9:19:10 | 0 | 14.8141 | 16.726 |
| 912  | 12/15/2010 | 9:19:15 | 0 | 14.8202 | 16.726 |
| 913  | 12/15/2010 | 9:19:20 | 0 | 14.8153 | 16.726 |
| 914  | 12/15/2010 | 9:19:25 | 0 | 14.8192 | 16.726 |
| 915  | 12/15/2010 | 9:19:30 | 0 | 14.8164 | 16.726 |
| 916  | 12/15/2010 | 9:19:35 | 0 | 14.8136 | 16.726 |
| 917  | 12/15/2010 | 9:19:40 | 0 | 14.8178 | 16.726 |
| 918  | 12/15/2010 | 9:19:45 | 0 | 14.8133 | 16.726 |
| 919  | 12/15/2010 | 9:19:50 | 0 | 14.8098 | 16.726 |
| 920  | 12/15/2010 | 9:19:55 | 0 | 14.8117 | 16.727 |
| 921  | 12/15/2010 | 9:20:00 | 0 | 14.815  | 16.726 |
| 922  | 12/15/2010 | 9:20:01 | 0 | 14.8145 | 16.734 |
| 923  | 12/15/2010 | 9:20:02 | 0 | 14.818  | 16.739 |
| 924  | 12/15/2010 | 9:20:03 | 0 | 14.8147 | 16.742 |
| 925  | 12/15/2010 | 9:20:04 | 0 | 14.8205 | 16.745 |
| 926  | 12/15/2010 | 9:20:05 | 0 | 14.8222 | 16.748 |
| 927  | 12/15/2010 | 9:20:06 | 0 | 15.2909 | 16.75  |
| 928  | 12/15/2010 | 9:20:07 | 0 | 16.0815 | 16.751 |
| 929  | 12/15/2010 | 9:20:08 | 0 | 16.7059 | 16.752 |
| 930  | 12/15/2010 | 9:20:09 | 0 | 16.9287 | 16.753 |
| 931  | 12/15/2010 | 9:20:10 | 0 | 16.7893 | 16.754 |
| 932  | 12/15/2010 | 9:20:11 | 0 | 16.7668 | 16.756 |
| 933  | 12/15/2010 | 9:20:12 | 0 | 16.7181 | 16.756 |
| 934  | 12/15/2010 | 9:20:13 | 0 | 16.6989 | 16.758 |
| 935  | 12/15/2010 | 9:20:14 | 0 | 16.6803 | 16.758 |
| 936  | 12/15/2010 | 9:20:15 | 0 | 16.6031 | 16.759 |
| 937  | 12/15/2010 | 9:20:16 | 0 | 16.5383 | 16.76  |
| 938  | 12/15/2010 | 9:20:17 | 0 | 16.5156 | 16.76  |
| 939  | 12/15/2010 | 9:20:18 | 0 | 16.4614 | 16.761 |
| 940  | 12/15/2010 | 9:20:19 | 0 | 16.5708 | 16.762 |
| 941  | 12/15/2010 | 9:20:20 | 0 | 16.3698 | 16.762 |
| 942  | 12/15/2010 | 9:20:21 | 0 | 16.3042 | 16.763 |
| 943  | 12/15/2010 | 9:20:22 | 0 | 16.2834 | 16.764 |
| 944  | 12/15/2010 | 9:20:23 | 0 | 16.2668 | 16.765 |
| 945  | 12/15/2010 | 9:20:24 | 0 | 16.2456 | 16.765 |
| 946  | 12/15/2010 | 9:20:25 | 0 | 16.1922 | 16.765 |
| 947  | 12/15/2010 | 9:20:26 | 0 | 16.162  | 16.767 |
| 948  | 12/15/2010 | 9:20:27 | 0 | 16.1323 | 16.767 |
| 949  | 12/15/2010 | 9:20:28 | 0 | 16.097  | 16.767 |
| 950  | 12/15/2010 | 9:20:29 | 0 | 16.0738 | 16.768 |
| 951  | 12/15/2010 | 9:20:30 | 0 | 16.035  | 16.768 |
| 952  | 12/15/2010 | 9:20:31 | 0 | 16.0048 | 16.769 |
| 953  | 12/15/2010 | 9:20:32 | 0 | 15.9807 | 16.769 |
| 954  | 12/15/2010 | 9:20:33 | 0 | 15.9516 | 16.769 |
| 955  | 12/15/2010 | 9:20:34 | 0 | 15.9218 | 16.771 |
| 956  | 12/15/2010 | 9:20:35 | 0 | 15.8974 | 16.77  |
| 957  | 12/15/2010 | 9:20:36 | 0 | 15.8683 | 16.771 |
| 958  | 12/15/2010 | 9:20:37 | 0 | 15.8538 | 16.771 |
| 959  | 12/15/2010 | 9:20:38 | 0 | 15.8178 | 16.771 |
| 960  | 12/15/2010 | 9:20:39 | 0 | 15.7946 | 16.772 |
| 961  | 12/15/2010 | 9:20:40 | 0 | 15.7758 | 16.773 |
| 962  | 12/15/2010 | 9:20:41 | 0 | 15.7511 | 16.773 |
| 963  | 12/15/2010 | 9:20:42 | 0 | 15.7318 | 16.773 |
| 964  | 12/15/2010 | 9:20:43 | 0 | 15.7084 | 16.773 |
| 965  | 12/15/2010 | 9:20:44 | 0 | 15.6857 | 16.774 |
| 966  | 12/15/2010 | 9:20:45 | 0 | 15.6676 | 16.775 |
| 967  | 12/15/2010 | 9:20:46 | 0 | 15.6472 | 16.775 |
| 968  | 12/15/2010 | 9:20:47 | 0 | 15.6273 | 16.775 |
| 969  | 12/15/2010 | 9:20:48 | 0 | 15.6064 | 16.775 |
| 970  | 12/15/2010 | 9:20:49 | 0 | 15.5846 | 16.776 |
| 971  | 12/15/2010 | 9:20:50 | 0 | 15.5673 | 16.775 |
| 972  | 12/15/2010 | 9:20:51 | 0 | 15.5497 | 16.776 |
| 973  | 12/15/2010 | 9:20:52 | 0 | 15.532  | 16.776 |
| 974  | 12/15/2010 | 9:20:53 | 0 | 15.5179 | 16.776 |
| 975  | 12/15/2010 | 9:20:54 | 0 | 15.4982 | 16.777 |
| 976  | 12/15/2010 | 9:20:55 | 0 | 15.4825 | 16.777 |
| 977  | 12/15/2010 | 9:20:56 | 0 | 15.4732 | 16.777 |
| 978  | 12/15/2010 | 9:20:57 | 0 | 15.455  | 16.778 |
| 979  | 12/15/2010 | 9:20:58 | 0 | 15.4406 | 16.777 |
| 980  | 12/15/2010 | 9:20:59 | 0 | 15.4207 | 16.778 |
| 981  | 12/15/2010 | 9:21:00 | 0 | 15.41   | 16.779 |
| 982  | 12/15/2010 | 9:21:01 | 0 | 15.3977 | 16.778 |
| 983  | 12/15/2010 | 9:21:02 | 0 | 15.3835 | 16.778 |
| 984  | 12/15/2010 | 9:21:03 | 0 | 15.3706 | 16.779 |
| 985  | 12/15/2010 | 9:21:04 | 0 | 15.3554 | 16.779 |
| 986  | 12/15/2010 | 9:21:05 | 0 | 15.3458 | 16.779 |
| 987  | 12/15/2010 | 9:21:06 | 0 | 15.3343 | 16.779 |
| 988  | 12/15/2010 | 9:21:07 | 0 | 15.3138 | 16.78  |
| 989  | 12/15/2010 | 9:21:08 | 0 | 15.311  | 16.78  |
| 990  | 12/15/2010 | 9:21:09 | 0 | 15.2973 | 16.78  |
| 991  | 12/15/2010 | 9:21:10 | 0 | 15.2884 | 16.78  |
| 992  | 12/15/2010 | 9:21:11 | 0 | 15.2752 | 16.78  |
| 993  | 12/15/2010 | 9:21:12 | 0 | 15.2697 | 16.78  |
| 994  | 12/15/2010 | 9:21:13 | 0 | 15.2559 | 16.781 |
| 995  | 12/15/2010 | 9:21:14 | 0 | 15.2435 | 16.78  |
| 996  | 12/15/2010 | 9:21:15 | 0 | 15.2405 | 16.78  |
| 997  | 12/15/2010 | 9:21:16 | 0 | 15.2265 | 16.781 |
| 998  | 12/15/2010 | 9:21:17 | 0 | 15.2149 | 16.781 |
| 999  | 12/15/2010 | 9:21:18 | 0 | 15.2067 | 16.781 |
| 1000 | 12/15/2010 | 9:21:19 | 0 | 15.2018 | 16.782 |
| 1001 | 12/15/2010 | 9:21:20 | 0 | 15.194  | 16.782 |
| 1002 | 12/15/2010 | 9:21:21 | 0 | 15.1905 | 16.781 |
| 1003 | 12/15/2010 | 9:21:22 | 0 | 15.1764 | 16.781 |
| 1004 | 12/15/2010 | 9:21:23 | 0 | 15.1738 | 16.781 |
| 1005 | 12/15/2010 | 9:21:24 | 0 | 15.163  | 16.782 |
| 1006 | 12/15/2010 | 9:21:25 | 0 | 15.1562 | 16.782 |
| 1007 | 12/15/2010 | 9:21:26 | 0 | 15.1458 | 16.782 |
| 1008 | 12/15/2010 | 9:21:27 | 0 | 15.1389 | 16.782 |
| 1009 | 12/15/2010 | 9:21:28 | 0 | 15.1342 | 16.782 |
| 1010 | 12/15/2010 | 9:21:29 | 0 | 15.1249 | 16.782 |
| 1011 | 12/15/2010 | 9:21:30 | 0 | 15.1201 | 16.782 |
| 1012 | 12/15/2010 | 9:21:31 | 0 | 15.1139 | 16.782 |
| 1013 | 12/15/2010 | 9:21:32 | 0 | 15.106  | 16.782 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1014 | 12/15/2010 | 9:21:33 | 0 | 15.0998 | 16.782 |
| 1015 | 12/15/2010 | 9:21:34 | 0 | 15.0949 | 16.783 |
| 1016 | 12/15/2010 | 9:21:35 | 0 | 15.0874 | 16.783 |
| 1017 | 12/15/2010 | 9:21:36 | 0 | 15.084  | 16.783 |
| 1018 | 12/15/2010 | 9:21:37 | 0 | 15.0789 | 16.783 |
| 1019 | 12/15/2010 | 9:21:38 | 0 | 15.0732 | 16.783 |
| 1020 | 12/15/2010 | 9:21:39 | 0 | 15.0692 | 16.782 |
| 1021 | 12/15/2010 | 9:21:40 | 0 | 15.0652 | 16.783 |
| 1022 | 12/15/2010 | 9:21:41 | 0 | 15.0575 | 16.783 |
| 1023 | 12/15/2010 | 9:21:42 | 0 | 15.0485 | 16.783 |
| 1024 | 12/15/2010 | 9:21:43 | 0 | 15.0446 | 16.783 |
| 1025 | 12/15/2010 | 9:21:44 | 0 | 15.0416 | 16.784 |
| 1026 | 12/15/2010 | 9:21:45 | 0 | 15.0404 | 16.783 |
| 1027 | 12/15/2010 | 9:21:46 | 0 | 15.0255 | 16.783 |
| 1028 | 12/15/2010 | 9:21:47 | 0 | 15.0269 | 16.783 |
| 1029 | 12/15/2010 | 9:21:48 | 0 | 15.027  | 16.784 |
| 1030 | 12/15/2010 | 9:21:49 | 0 | 15.0197 | 16.784 |
| 1031 | 12/15/2010 | 9:21:50 | 0 | 15.0141 | 16.783 |
| 1032 | 12/15/2010 | 9:21:51 | 0 | 15.0146 | 16.784 |
| 1033 | 12/15/2010 | 9:21:52 | 0 | 15.0103 | 16.783 |
| 1034 | 12/15/2010 | 9:21:53 | 0 | 15.0074 | 16.784 |
| 1035 | 12/15/2010 | 9:21:54 | 0 | 15.0049 | 16.784 |
| 1036 | 12/15/2010 | 9:21:55 | 0 | 15.0024 | 16.784 |
| 1037 | 12/15/2010 | 9:21:56 | 0 | 14.9992 | 16.784 |
| 1038 | 12/15/2010 | 9:21:57 | 0 | 14.9872 | 16.785 |
| 1039 | 12/15/2010 | 9:21:58 | 0 | 14.9919 | 16.784 |
| 1040 | 12/15/2010 | 9:21:59 | 0 | 14.9906 | 16.784 |
| 1041 | 12/15/2010 | 9:22:00 | 0 | 14.9815 | 16.784 |
| 1042 | 12/15/2010 | 9:22:01 | 0 | 14.9844 | 16.784 |
| 1043 | 12/15/2010 | 9:22:02 | 0 | 14.9803 | 16.784 |
| 1044 | 12/15/2010 | 9:22:03 | 0 | 14.9773 | 16.785 |
| 1045 | 12/15/2010 | 9:22:04 | 0 | 14.9747 | 16.784 |
| 1046 | 12/15/2010 | 9:22:05 | 0 | 14.9706 | 16.784 |
| 1047 | 12/15/2010 | 9:22:06 | 0 | 14.9678 | 16.784 |
| 1048 | 12/15/2010 | 9:22:07 | 0 | 14.9649 | 16.784 |
| 1049 | 12/15/2010 | 9:22:08 | 0 | 14.9621 | 16.784 |
| 1050 | 12/15/2010 | 9:22:09 | 0 | 14.9644 | 16.784 |
| 1051 | 12/15/2010 | 9:22:10 | 0 | 14.9601 | 16.785 |
| 1052 | 12/15/2010 | 9:22:11 | 0 | 14.9562 | 16.785 |
| 1053 | 12/15/2010 | 9:22:12 | 0 | 14.9532 | 16.784 |
| 1054 | 12/15/2010 | 9:22:13 | 0 | 14.9526 | 16.785 |
| 1055 | 12/15/2010 | 9:22:14 | 0 | 14.9487 | 16.784 |
| 1056 | 12/15/2010 | 9:22:15 | 0 | 14.9439 | 16.785 |
| 1057 | 12/15/2010 | 9:22:16 | 0 | 14.9432 | 16.784 |
| 1058 | 12/15/2010 | 9:22:17 | 0 | 14.9432 | 16.784 |
| 1059 | 12/15/2010 | 9:22:18 | 0 | 14.9422 | 16.785 |
| 1060 | 12/15/2010 | 9:22:19 | 0 | 14.942  | 16.785 |
| 1061 | 12/15/2010 | 9:22:20 | 0 | 14.9415 | 16.785 |
| 1062 | 12/15/2010 | 9:22:21 | 0 | 14.936  | 16.785 |
| 1063 | 12/15/2010 | 9:22:22 | 0 | 14.9254 | 16.785 |
| 1064 | 12/15/2010 | 9:22:23 | 0 | 14.932  | 16.785 |
| 1065 | 12/15/2010 | 9:22:24 | 0 | 14.9508 | 16.785 |
| 1066 | 12/15/2010 | 9:22:25 | 0 | 14.9299 | 16.786 |
| 1067 | 12/15/2010 | 9:22:26 | 0 | 14.9286 | 16.786 |
| 1068 | 12/15/2010 | 9:22:27 | 0 | 14.9294 | 16.786 |
| 1069 | 12/15/2010 | 9:22:28 | 0 | 14.9256 | 16.785 |
| 1070 | 12/15/2010 | 9:22:29 | 0 | 14.9244 | 16.785 |
| 1071 | 12/15/2010 | 9:22:30 | 0 | 14.9237 | 16.785 |
| 1072 | 12/15/2010 | 9:22:31 | 0 | 14.9172 | 16.785 |
| 1073 | 12/15/2010 | 9:22:32 | 0 | 14.9167 | 16.786 |
| 1074 | 12/15/2010 | 9:22:33 | 0 | 14.9167 | 16.785 |
| 1075 | 12/15/2010 | 9:22:34 | 0 | 14.917  | 16.786 |
| 1076 | 12/15/2010 | 9:22:35 | 0 | 14.9214 | 16.785 |
| 1077 | 12/15/2010 | 9:22:36 | 0 | 14.9091 | 16.785 |
| 1078 | 12/15/2010 | 9:22:37 | 0 | 14.9155 | 16.785 |
| 1079 | 12/15/2010 | 9:22:38 | 0 | 14.912  | 16.786 |
| 1080 | 12/15/2010 | 9:22:39 | 0 | 14.9053 | 16.786 |
| 1081 | 12/15/2010 | 9:22:40 | 0 | 14.9117 | 16.785 |
| 1082 | 12/15/2010 | 9:22:41 | 0 | 14.9136 | 16.786 |
| 1083 | 12/15/2010 | 9:22:42 | 0 | 14.9    | 16.785 |
| 1084 | 12/15/2010 | 9:22:43 | 0 | 14.912  | 16.786 |
| 1085 | 12/15/2010 | 9:22:44 | 0 | 14.9036 | 16.786 |
| 1086 | 12/15/2010 | 9:22:45 | 0 | 14.8956 | 16.786 |
| 1087 | 12/15/2010 | 9:22:46 | 0 | 14.9136 | 16.786 |
| 1088 | 12/15/2010 | 9:22:47 | 0 | 14.901  | 16.786 |
| 1089 | 12/15/2010 | 9:22:48 | 0 | 14.8944 | 16.786 |
| 1090 | 12/15/2010 | 9:22:49 | 0 | 14.9095 | 16.786 |
| 1091 | 12/15/2010 | 9:22:50 | 0 | 14.9005 | 16.785 |
| 1092 | 12/15/2010 | 9:22:51 | 0 | 14.901  | 16.785 |
| 1093 | 12/15/2010 | 9:22:52 | 0 | 14.9025 | 16.786 |
| 1094 | 12/15/2010 | 9:22:53 | 0 | 14.9011 | 16.785 |
| 1095 | 12/15/2010 | 9:22:54 | 0 | 14.8975 | 16.785 |
| 1096 | 12/15/2010 | 9:22:55 | 0 | 14.9008 | 16.786 |
| 1097 | 12/15/2010 | 9:22:56 | 0 | 14.8973 | 16.787 |
| 1098 | 12/15/2010 | 9:22:57 | 0 | 14.8965 | 16.785 |
| 1099 | 12/15/2010 | 9:22:58 | 0 | 14.8914 | 16.786 |
| 1100 | 12/15/2010 | 9:22:59 | 0 | 14.8936 | 16.786 |
| 1101 | 12/15/2010 | 9:23:00 | 0 | 14.8959 | 16.786 |
| 1102 | 12/15/2010 | 9:23:01 | 0 | 14.8931 | 16.786 |
| 1103 | 12/15/2010 | 9:23:02 | 0 | 14.8969 | 16.786 |
| 1104 | 12/15/2010 | 9:23:03 | 0 | 14.8898 | 16.786 |
| 1105 | 12/15/2010 | 9:23:04 | 0 | 14.8926 | 16.786 |
| 1106 | 12/15/2010 | 9:23:05 | 0 | 14.8876 | 16.785 |
| 1107 | 12/15/2010 | 9:23:06 | 0 | 14.8907 | 16.785 |
| 1108 | 12/15/2010 | 9:23:07 | 0 | 14.8882 | 16.786 |
| 1109 | 12/15/2010 | 9:23:08 | 0 | 14.8876 | 16.786 |
| 1110 | 12/15/2010 | 9:23:09 | 0 | 14.8877 | 16.785 |
| 1111 | 12/15/2010 | 9:23:10 | 0 | 14.8822 | 16.786 |
| 1112 | 12/15/2010 | 9:23:11 | 0 | 14.8855 | 16.786 |
| 1113 | 12/15/2010 | 9:23:12 | 0 | 14.8914 | 16.786 |
| 1114 | 12/15/2010 | 9:23:13 | 0 | 14.8835 | 16.786 |
| 1115 | 12/15/2010 | 9:23:14 | 0 | 14.8804 | 16.786 |
| 1116 | 12/15/2010 | 9:23:15 | 0 | 14.8882 | 16.786 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1117 | 12/15/2010 | 9:23:16 | 0 | 14.8797 | 16.786 |
| 1118 | 12/15/2010 | 9:23:17 | 0 | 14.8834 | 16.786 |
| 1119 | 12/15/2010 | 9:23:18 | 0 | 14.8826 | 16.786 |
| 1120 | 12/15/2010 | 9:23:19 | 0 | 14.8845 | 16.786 |
| 1121 | 12/15/2010 | 9:23:20 | 0 | 14.8814 | 16.786 |
| 1122 | 12/15/2010 | 9:23:21 | 0 | 14.8821 | 16.785 |
| 1123 | 12/15/2010 | 9:23:22 | 0 | 14.8729 | 16.786 |
| 1124 | 12/15/2010 | 9:23:23 | 0 | 14.8793 | 16.786 |
| 1125 | 12/15/2010 | 9:23:24 | 0 | 14.8832 | 16.786 |
| 1126 | 12/15/2010 | 9:23:25 | 0 | 14.8861 | 16.786 |
| 1127 | 12/15/2010 | 9:23:26 | 0 | 14.8702 | 16.786 |
| 1128 | 12/15/2010 | 9:23:27 | 0 | 14.8793 | 16.786 |
| 1129 | 12/15/2010 | 9:23:28 | 0 | 14.8876 | 16.786 |
| 1130 | 12/15/2010 | 9:23:29 | 0 | 14.8759 | 16.785 |
| 1131 | 12/15/2010 | 9:23:30 | 0 | 14.8791 | 16.786 |
| 1132 | 12/15/2010 | 9:23:31 | 0 | 14.8794 | 16.787 |
| 1133 | 12/15/2010 | 9:23:32 | 0 | 14.8832 | 16.786 |
| 1134 | 12/15/2010 | 9:23:33 | 0 | 14.8764 | 16.786 |
| 1135 | 12/15/2010 | 9:23:34 | 0 | 14.8794 | 16.786 |
| 1136 | 12/15/2010 | 9:23:35 | 0 | 14.8789 | 16.785 |
| 1137 | 12/15/2010 | 9:23:36 | 0 | 14.8726 | 16.785 |
| 1138 | 12/15/2010 | 9:23:37 | 0 | 14.8807 | 16.785 |
| 1139 | 12/15/2010 | 9:23:38 | 0 | 14.8727 | 16.786 |
| 1140 | 12/15/2010 | 9:23:39 | 0 | 14.8742 | 16.785 |
| 1141 | 12/15/2010 | 9:23:40 | 0 | 14.8759 | 16.785 |
| 1142 | 12/15/2010 | 9:23:41 | 0 | 14.869  | 16.785 |
| 1143 | 12/15/2010 | 9:23:42 | 0 | 14.8676 | 16.785 |
| 1144 | 12/15/2010 | 9:23:43 | 0 | 14.8775 | 16.785 |
| 1145 | 12/15/2010 | 9:23:44 | 0 | 14.8721 | 16.785 |
| 1146 | 12/15/2010 | 9:23:45 | 0 | 14.8719 | 16.785 |
| 1147 | 12/15/2010 | 9:23:46 | 0 | 14.8709 | 16.785 |
| 1148 | 12/15/2010 | 9:23:47 | 0 | 14.8711 | 16.785 |
| 1149 | 12/15/2010 | 9:23:48 | 0 | 14.8737 | 16.786 |
| 1150 | 12/15/2010 | 9:23:49 | 0 | 14.8739 | 16.786 |
| 1151 | 12/15/2010 | 9:23:50 | 0 | 14.8727 | 16.786 |
| 1152 | 12/15/2010 | 9:23:51 | 0 | 14.8704 | 16.785 |
| 1153 | 12/15/2010 | 9:23:52 | 0 | 14.8721 | 16.786 |
| 1154 | 12/15/2010 | 9:23:53 | 0 | 14.8725 | 16.786 |
| 1155 | 12/15/2010 | 9:23:54 | 0 | 14.8722 | 16.785 |
| 1156 | 12/15/2010 | 9:23:55 | 0 | 14.8688 | 16.786 |
| 1157 | 12/15/2010 | 9:23:56 | 0 | 14.8708 | 16.786 |
| 1158 | 12/15/2010 | 9:23:57 | 0 | 14.8692 | 16.786 |
| 1159 | 12/15/2010 | 9:23:58 | 0 | 14.8563 | 16.785 |
| 1160 | 12/15/2010 | 9:23:59 | 0 | 14.8637 | 16.795 |
| 1161 | 12/15/2010 | 9:24:00 | 0 | 14.8651 | 16.786 |
| 1162 | 12/15/2010 | 9:24:01 | 0 | 14.8678 | 16.785 |
| 1163 | 12/15/2010 | 9:24:02 | 0 | 14.8727 | 16.785 |
| 1164 | 12/15/2010 | 9:24:03 | 0 | 14.8664 | 16.786 |
| 1165 | 12/15/2010 | 9:24:04 | 0 | 14.8704 | 16.785 |
| 1166 | 12/15/2010 | 9:24:05 | 0 | 14.8636 | 16.786 |
| 1167 | 12/15/2010 | 9:24:06 | 0 | 14.8606 | 16.786 |
| 1168 | 12/15/2010 | 9:24:07 | 0 | 14.8678 | 16.785 |
| 1169 | 12/15/2010 | 9:24:08 | 0 | 14.8673 | 16.786 |
| 1170 | 12/15/2010 | 9:24:09 | 0 | 14.8625 | 16.785 |
| 1171 | 12/15/2010 | 9:24:10 | 0 | 14.8745 | 16.786 |
| 1172 | 12/15/2010 | 9:24:11 | 0 | 14.8616 | 16.786 |
| 1173 | 12/15/2010 | 9:24:12 | 0 | 14.8642 | 16.786 |
| 1174 | 12/15/2010 | 9:24:13 | 0 | 14.8715 | 16.786 |
| 1175 | 12/15/2010 | 9:24:14 | 0 | 14.8655 | 16.786 |
| 1176 | 12/15/2010 | 9:24:15 | 0 | 14.961  | 16.785 |
| 1177 | 12/15/2010 | 9:24:16 | 0 | 14.8716 | 16.786 |
| 1178 | 12/15/2010 | 9:24:17 | 0 | 14.8654 | 16.786 |
| 1179 | 12/15/2010 | 9:24:18 | 0 | 14.8647 | 16.786 |
| 1180 | 12/15/2010 | 9:24:19 | 0 | 14.864  | 16.787 |
| 1181 | 12/15/2010 | 9:24:20 | 0 | 14.8675 | 16.785 |
| 1182 | 12/15/2010 | 9:24:21 | 0 | 14.8652 | 16.785 |
| 1183 | 12/15/2010 | 9:24:22 | 0 | 14.8702 | 16.786 |
| 1184 | 12/15/2010 | 9:24:23 | 0 | 14.8641 | 16.785 |
| 1185 | 12/15/2010 | 9:24:24 | 0 | 14.8699 | 16.786 |
| 1186 | 12/15/2010 | 9:24:25 | 0 | 14.8667 | 16.786 |
| 1187 | 12/15/2010 | 9:24:26 | 0 | 14.8638 | 16.786 |
| 1188 | 12/15/2010 | 9:24:27 | 0 | 14.8643 | 16.786 |
| 1189 | 12/15/2010 | 9:24:28 | 0 | 14.8682 | 16.786 |
| 1190 | 12/15/2010 | 9:24:29 | 0 | 14.8659 | 16.786 |
| 1191 | 12/15/2010 | 9:24:30 | 0 | 14.8646 | 16.786 |
| 1192 | 12/15/2010 | 9:24:31 | 0 | 14.8615 | 16.786 |
| 1193 | 12/15/2010 | 9:24:32 | 0 | 14.857  | 16.785 |
| 1194 | 12/15/2010 | 9:24:33 | 0 | 14.8628 | 16.786 |
| 1195 | 12/15/2010 | 9:24:34 | 0 | 14.8628 | 16.786 |
| 1196 | 12/15/2010 | 9:24:35 | 0 | 14.8625 | 16.786 |
| 1197 | 12/15/2010 | 9:24:36 | 0 | 14.8611 | 16.785 |
| 1198 | 12/15/2010 | 9:24:37 | 0 | 14.8636 | 16.785 |
| 1199 | 12/15/2010 | 9:24:38 | 0 | 14.8646 | 16.786 |
| 1200 | 12/15/2010 | 9:24:39 | 0 | 14.8579 | 16.785 |
| 1201 | 12/15/2010 | 9:24:40 | 0 | 14.8649 | 16.786 |
| 1202 | 12/15/2010 | 9:24:41 | 0 | 14.8586 | 16.785 |
| 1203 | 12/15/2010 | 9:24:42 | 0 | 14.8589 | 16.786 |
| 1204 | 12/15/2010 | 9:24:43 | 0 | 14.8637 | 16.786 |
| 1205 | 12/15/2010 | 9:24:44 | 0 | 14.8594 | 16.786 |
| 1206 | 12/15/2010 | 9:24:45 | 0 | 14.861  | 16.785 |
| 1207 | 12/15/2010 | 9:24:46 | 0 | 14.8645 | 16.785 |
| 1208 | 12/15/2010 | 9:24:47 | 0 | 14.8561 | 16.785 |
| 1209 | 12/15/2010 | 9:24:48 | 0 | 14.8616 | 16.786 |
| 1210 | 12/15/2010 | 9:24:49 | 0 | 14.8602 | 16.786 |
| 1211 | 12/15/2010 | 9:24:50 | 0 | 14.8601 | 16.786 |
| 1212 | 12/15/2010 | 9:24:51 | 0 | 14.8653 | 16.786 |
| 1213 | 12/15/2010 | 9:24:52 | 0 | 14.8596 | 16.786 |
| 1214 | 12/15/2010 | 9:24:53 | 0 | 14.8559 | 16.786 |
| 1215 | 12/15/2010 | 9:24:54 | 0 | 14.863  | 16.786 |
| 1216 | 12/15/2010 | 9:24:55 | 0 | 14.8576 | 16.786 |
| 1217 | 12/15/2010 | 9:24:56 | 0 | 14.86   | 16.786 |
| 1218 | 12/15/2010 | 9:24:57 | 0 | 14.8599 | 16.786 |
| 1219 | 12/15/2010 | 9:24:58 | 0 | 14.8563 | 16.786 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1220 | 12/15/2010 | 9:24:59 | 0 | 14.861  | 16.786 |
| 1221 | 12/15/2010 | 9:25:00 | 0 | 14.8592 | 16.786 |
| 1222 | 12/15/2010 | 9:25:01 | 0 | 14.8613 | 16.786 |
| 1223 | 12/15/2010 | 9:25:02 | 0 | 14.858  | 16.786 |
| 1224 | 12/15/2010 | 9:25:03 | 0 | 14.8643 | 16.785 |
| 1225 | 12/15/2010 | 9:25:04 | 0 | 14.8599 | 16.786 |
| 1226 | 12/15/2010 | 9:25:05 | 0 | 14.8616 | 16.786 |
| 1227 | 12/15/2010 | 9:25:06 | 0 | 14.8558 | 16.786 |
| 1228 | 12/15/2010 | 9:25:07 | 0 | 14.8584 | 16.785 |
| 1229 | 12/15/2010 | 9:25:08 | 0 | 14.858  | 16.786 |
| 1230 | 12/15/2010 | 9:25:09 | 0 | 14.8581 | 16.785 |
| 1231 | 12/15/2010 | 9:25:10 | 0 | 14.8594 | 16.785 |
| 1232 | 12/15/2010 | 9:25:11 | 0 | 14.8581 | 16.786 |
| 1233 | 12/15/2010 | 9:25:12 | 0 | 14.8591 | 16.786 |
| 1234 | 12/15/2010 | 9:25:13 | 0 | 14.8566 | 16.785 |
| 1235 | 12/15/2010 | 9:25:14 | 0 | 14.8563 | 16.786 |
| 1236 | 12/15/2010 | 9:25:15 | 0 | 14.8604 | 16.786 |
| 1237 | 12/15/2010 | 9:25:16 | 0 | 14.8553 | 16.785 |
| 1238 | 12/15/2010 | 9:25:17 | 0 | 14.8566 | 16.785 |
| 1239 | 12/15/2010 | 9:25:18 | 0 | 14.86   | 16.786 |
| 1240 | 12/15/2010 | 9:25:19 | 0 | 14.8623 | 16.786 |
| 1241 | 12/15/2010 | 9:25:20 | 0 | 14.859  | 16.785 |
| 1242 | 12/15/2010 | 9:25:21 | 0 | 14.8556 | 16.785 |
| 1243 | 12/15/2010 | 9:25:22 | 0 | 14.8583 | 16.786 |
| 1244 | 12/15/2010 | 9:25:23 | 0 | 14.8573 | 16.785 |
| 1245 | 12/15/2010 | 9:25:24 | 0 | 14.8571 | 16.785 |
| 1246 | 12/15/2010 | 9:25:25 | 0 | 14.8576 | 16.785 |
| 1247 | 12/15/2010 | 9:25:26 | 0 | 14.8631 | 16.786 |
| 1248 | 12/15/2010 | 9:25:27 | 0 | 14.8583 | 16.786 |
| 1249 | 12/15/2010 | 9:25:28 | 0 | 14.8573 | 16.785 |
| 1250 | 12/15/2010 | 9:25:29 | 0 | 14.8584 | 16.786 |
| 1251 | 12/15/2010 | 9:25:30 | 0 | 14.8538 | 16.765 |
| 1252 | 12/15/2010 | 9:25:31 | 0 | 14.8584 | 16.785 |
| 1253 | 12/15/2010 | 9:25:32 | 0 | 14.8578 | 16.786 |
| 1254 | 12/15/2010 | 9:25:33 | 0 | 14.8568 | 16.785 |
| 1255 | 12/15/2010 | 9:25:34 | 0 | 14.857  | 16.786 |
| 1256 | 12/15/2010 | 9:25:35 | 0 | 14.8579 | 16.785 |
| 1257 | 12/15/2010 | 9:25:36 | 0 | 14.8585 | 16.786 |
| 1258 | 12/15/2010 | 9:25:37 | 0 | 14.8558 | 16.785 |
| 1259 | 12/15/2010 | 9:25:38 | 0 | 14.8554 | 16.786 |
| 1260 | 12/15/2010 | 9:25:39 | 0 | 14.8601 | 16.785 |
| 1261 | 12/15/2010 | 9:25:40 | 0 | 14.8494 | 16.785 |
| 1262 | 12/15/2010 | 9:25:41 | 0 | 14.8547 | 16.786 |
| 1263 | 12/15/2010 | 9:25:42 | 0 | 14.8574 | 16.786 |
| 1264 | 12/15/2010 | 9:25:43 | 0 | 14.853  | 16.785 |
| 1265 | 12/15/2010 | 9:25:44 | 0 | 14.8523 | 16.786 |
| 1266 | 12/15/2010 | 9:25:45 | 0 | 14.8566 | 16.786 |
| 1267 | 12/15/2010 | 9:25:46 | 0 | 14.8524 | 16.785 |
| 1268 | 12/15/2010 | 9:25:47 | 0 | 14.854  | 16.785 |
| 1269 | 12/15/2010 | 9:25:48 | 0 | 14.8575 | 16.786 |
| 1270 | 12/15/2010 | 9:25:49 | 0 | 14.8551 | 16.786 |
| 1271 | 12/15/2010 | 9:25:50 | 0 | 14.8466 | 16.785 |
| 1272 | 12/15/2010 | 9:25:51 | 0 | 14.8581 | 16.786 |
| 1273 | 12/15/2010 | 9:25:52 | 0 | 14.8549 | 16.785 |
| 1274 | 12/15/2010 | 9:25:53 | 0 | 14.8554 | 16.787 |
| 1275 | 12/15/2010 | 9:25:54 | 0 | 14.8549 | 16.785 |
| 1276 | 12/15/2010 | 9:25:55 | 0 | 14.8558 | 16.785 |
| 1277 | 12/15/2010 | 9:25:56 | 0 | 14.8529 | 16.786 |
| 1278 | 12/15/2010 | 9:25:57 | 0 | 14.8561 | 16.786 |
| 1279 | 12/15/2010 | 9:25:58 | 0 | 14.8602 | 16.786 |
| 1280 | 12/15/2010 | 9:25:59 | 0 | 14.8549 | 16.786 |
| 1281 | 12/15/2010 | 9:26:00 | 0 | 14.852  | 16.785 |
| 1282 | 12/15/2010 | 9:26:01 | 0 | 14.8513 | 16.786 |
| 1283 | 12/15/2010 | 9:26:02 | 0 | 14.8566 | 16.785 |
| 1284 | 12/15/2010 | 9:26:03 | 0 | 14.8558 | 16.785 |
| 1285 | 12/15/2010 | 9:26:04 | 0 | 14.8486 | 16.785 |
| 1286 | 12/15/2010 | 9:26:05 | 0 | 14.8563 | 16.785 |
| 1287 | 12/15/2010 | 9:26:06 | 0 | 14.8554 | 16.785 |
| 1288 | 12/15/2010 | 9:26:07 | 0 | 14.8487 | 16.785 |
| 1289 | 12/15/2010 | 9:26:08 | 0 | 14.8516 | 16.785 |
| 1290 | 12/15/2010 | 9:26:09 | 0 | 14.8549 | 16.785 |
| 1291 | 12/15/2010 | 9:26:10 | 0 | 14.8516 | 16.785 |
| 1292 | 12/15/2010 | 9:26:11 | 0 | 14.8556 | 16.785 |
| 1293 | 12/15/2010 | 9:26:12 | 0 | 14.6512 | 16.786 |
| 1294 | 12/15/2010 | 9:26:13 | 0 | 14.8551 | 16.785 |
| 1295 | 12/15/2010 | 9:26:14 | 0 | 14.8571 | 16.785 |
| 1296 | 12/15/2010 | 9:26:15 | 0 | 14.8514 | 16.786 |
| 1297 | 12/15/2010 | 9:26:16 | 0 | 14.8542 | 16.785 |
| 1298 | 12/15/2010 | 9:26:17 | 0 | 14.8548 | 16.785 |
| 1299 | 12/15/2010 | 9:26:18 | 0 | 14.8517 | 16.784 |
| 1300 | 12/15/2010 | 9:26:19 | 0 | 14.8504 | 16.785 |
| 1301 | 12/15/2010 | 9:26:20 | 0 | 14.8556 | 16.785 |
| 1302 | 12/15/2010 | 9:26:21 | 0 | 14.8551 | 16.785 |
| 1303 | 12/15/2010 | 9:26:22 | 0 | 14.8499 | 16.785 |
| 1304 | 12/15/2010 | 9:26:23 | 0 | 14.8521 | 16.785 |
| 1305 | 12/15/2010 | 9:26:24 | 0 | 14.8559 | 16.784 |
| 1306 | 12/15/2010 | 9:26:25 | 0 | 14.8473 | 16.785 |
| 1307 | 12/15/2010 | 9:26:26 | 0 | 14.8556 | 16.785 |
| 1308 | 12/15/2010 | 9:26:27 | 0 | 14.8489 | 16.784 |
| 1309 | 12/15/2010 | 9:26:28 | 0 | 14.8504 | 16.785 |
| 1310 | 12/15/2010 | 9:26:29 | 0 | 14.8506 | 16.784 |
| 1311 | 12/15/2010 | 9:26:30 | 0 | 14.8792 | 16.785 |
| 1312 | 12/15/2010 | 9:26:31 | 0 | 14.8566 | 16.785 |
| 1313 | 12/15/2010 | 9:26:32 | 0 | 14.8519 | 16.784 |
| 1314 | 12/15/2010 | 9:26:33 | 0 | 14.8568 | 16.784 |
| 1315 | 12/15/2010 | 9:26:34 | 0 | 14.8579 | 16.784 |
| 1316 | 12/15/2010 | 9:26:35 | 0 | 14.8533 | 16.784 |
| 1317 | 12/15/2010 | 9:26:36 | 0 | 14.8774 | 16.784 |
| 1318 | 12/15/2010 | 9:26:37 | 0 | 14.8752 | 16.784 |
| 1319 | 12/15/2010 | 9:26:38 | 0 | 14.8556 | 16.784 |
| 1320 | 12/15/2010 | 9:26:39 | 0 | 14.8576 | 16.784 |
| 1321 | 12/15/2010 | 9:26:40 | 0 | 14.8538 | 16.784 |
| 1322 | 12/15/2010 | 9:26:41 | 0 | 14.8544 | 16.783 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1323 | 12/15/2010 | 9:26:42 | 0 | 14.8222 | 16.783 |
| 1324 | 12/15/2010 | 9:26:43 | 0 | 14.8525 | 16.784 |
| 1325 | 12/15/2010 | 9:26:44 | 0 | 14.8525 | 16.783 |
| 1326 | 12/15/2010 | 9:26:45 | 0 | 14.8486 | 16.784 |
| 1327 | 12/15/2010 | 9:26:46 | 0 | 14.8542 | 16.784 |
| 1328 | 12/15/2010 | 9:26:47 | 0 | 14.8549 | 16.783 |
| 1329 | 12/15/2010 | 9:26:48 | 0 | 14.8539 | 16.783 |
| 1330 | 12/15/2010 | 9:26:49 | 0 | 14.8497 | 16.784 |
| 1331 | 12/15/2010 | 9:26:50 | 0 | 14.8563 | 16.783 |
| 1332 | 12/15/2010 | 9:26:51 | 0 | 14.8539 | 16.783 |
| 1333 | 12/15/2010 | 9:26:52 | 0 | 14.8529 | 16.783 |
| 1334 | 12/15/2010 | 9:26:53 | 0 | 14.8512 | 16.783 |
| 1335 | 12/15/2010 | 9:26:54 | 0 | 14.8702 | 16.784 |
| 1336 | 12/15/2010 | 9:26:55 | 0 | 14.8591 | 16.784 |
| 1337 | 12/15/2010 | 9:26:56 | 0 | 14.8513 | 16.783 |
| 1338 | 12/15/2010 | 9:26:57 | 0 | 14.8692 | 16.783 |
| 1339 | 12/15/2010 | 9:26:58 | 0 | 14.8559 | 16.783 |
| 1340 | 12/15/2010 | 9:26:59 | 0 | 14.848  | 16.783 |
| 1341 | 12/15/2010 | 9:27:00 | 0 | 14.8514 | 16.783 |
| 1342 | 12/15/2010 | 9:27:01 | 0 | 14.8519 | 16.783 |
| 1343 | 12/15/2010 | 9:27:02 | 0 | 14.8474 | 16.782 |
| 1344 | 12/15/2010 | 9:27:03 | 0 | 14.8542 | 16.783 |
| 1345 | 12/15/2010 | 9:27:04 | 0 | 14.8536 | 16.784 |
| 1346 | 12/15/2010 | 9:27:05 | 0 | 14.8522 | 16.783 |
| 1347 | 12/15/2010 | 9:27:06 | 0 | 14.8534 | 16.783 |
| 1348 | 12/15/2010 | 9:27:07 | 0 | 14.8529 | 16.783 |
| 1349 | 12/15/2010 | 9:27:08 | 0 | 14.8509 | 16.783 |
| 1350 | 12/15/2010 | 9:27:09 | 0 | 14.852  | 16.782 |
| 1351 | 12/15/2010 | 9:27:10 | 0 | 14.8493 | 16.783 |
| 1352 | 12/15/2010 | 9:27:11 | 0 | 14.8523 | 16.784 |
| 1353 | 12/15/2010 | 9:27:12 | 0 | 14.8544 | 16.783 |
| 1354 | 12/15/2010 | 9:27:13 | 0 | 14.8482 | 16.783 |
| 1355 | 12/15/2010 | 9:27:14 | 0 | 14.8478 | 16.783 |
| 1356 | 12/15/2010 | 9:27:15 | 0 | 14.8518 | 16.783 |
| 1357 | 12/15/2010 | 9:27:16 | 0 | 14.8534 | 16.783 |
| 1358 | 12/15/2010 | 9:27:17 | 0 | 14.8489 | 16.783 |
| 1359 | 12/15/2010 | 9:27:18 | 0 | 14.8511 | 16.782 |
| 1360 | 12/15/2010 | 9:27:19 | 0 | 14.8497 | 16.783 |
| 1361 | 12/15/2010 | 9:27:20 | 0 | 14.8494 | 16.783 |
| 1362 | 12/15/2010 | 9:27:21 | 0 | 14.8465 | 16.782 |
| 1363 | 12/15/2010 | 9:27:22 | 0 | 14.8502 | 16.783 |
| 1364 | 12/15/2010 | 9:27:23 | 0 | 14.8494 | 16.783 |
| 1365 | 12/15/2010 | 9:27:24 | 0 | 14.8543 | 16.783 |
| 1366 | 12/15/2010 | 9:27:25 | 0 | 14.9038 | 16.782 |
| 1367 | 12/15/2010 | 9:27:26 | 0 | 14.848  | 16.783 |
| 1368 | 12/15/2010 | 9:27:27 | 0 | 14.8508 | 16.782 |
| 1369 | 12/15/2010 | 9:27:28 | 0 | 14.8501 | 16.782 |
| 1370 | 12/15/2010 | 9:27:29 | 0 | 14.8502 | 16.782 |
| 1371 | 12/15/2010 | 9:27:30 | 0 | 14.8479 | 16.783 |
| 1372 | 12/15/2010 | 9:27:31 | 0 | 14.8493 | 16.782 |
| 1373 | 12/15/2010 | 9:27:32 | 0 | 14.8511 | 16.783 |
| 1374 | 12/15/2010 | 9:27:33 | 0 | 14.8734 | 16.781 |
| 1375 | 12/15/2010 | 9:27:34 | 0 | 14.8496 | 16.782 |
| 1376 | 12/15/2010 | 9:27:35 | 0 | 14.8511 | 16.782 |
| 1377 | 12/15/2010 | 9:27:36 | 0 | 14.8549 | 16.782 |
| 1378 | 12/15/2010 | 9:27:37 | 0 | 14.8506 | 16.783 |
| 1379 | 12/15/2010 | 9:27:38 | 0 | 14.8525 | 16.782 |
| 1380 | 12/15/2010 | 9:27:39 | 0 | 14.8507 | 16.781 |
| 1381 | 12/15/2010 | 9:27:40 | 0 | 14.8507 | 16.781 |
| 1382 | 12/15/2010 | 9:27:41 | 0 | 14.8521 | 16.782 |
| 1383 | 12/15/2010 | 9:27:42 | 0 | 14.8502 | 16.781 |
| 1384 | 12/15/2010 | 9:27:43 | 0 | 14.8499 | 16.782 |
| 1385 | 12/15/2010 | 9:27:44 | 0 | 14.8506 | 16.782 |
| 1386 | 12/15/2010 | 9:27:45 | 0 | 14.8483 | 16.782 |
| 1387 | 12/15/2010 | 9:27:46 | 0 | 14.8531 | 16.781 |
| 1388 | 12/15/2010 | 9:27:47 | 0 | 14.8478 | 16.782 |
| 1389 | 12/15/2010 | 9:27:48 | 0 | 14.8518 | 16.782 |
| 1390 | 12/15/2010 | 9:27:49 | 0 | 14.8504 | 16.782 |
| 1391 | 12/15/2010 | 9:27:50 | 0 | 14.8493 | 16.782 |
| 1392 | 12/15/2010 | 9:27:51 | 0 | 14.8511 | 16.781 |
| 1393 | 12/15/2010 | 9:27:52 | 0 | 14.8526 | 16.781 |
| 1394 | 12/15/2010 | 9:27:53 | 0 | 14.8486 | 16.782 |
| 1395 | 12/15/2010 | 9:27:54 | 0 | 14.8475 | 16.782 |
| 1396 | 12/15/2010 | 9:27:55 | 0 | 14.8473 | 16.782 |
| 1397 | 12/15/2010 | 9:27:56 | 0 | 14.8504 | 16.782 |
| 1398 | 12/15/2010 | 9:27:57 | 0 | 14.8467 | 16.781 |
| 1399 | 12/15/2010 | 9:27:58 | 0 | 14.8486 | 16.782 |
| 1400 | 12/15/2010 | 9:27:59 | 0 | 14.8491 | 16.781 |
| 1401 | 12/15/2010 | 9:28:00 | 0 | 14.8501 | 16.782 |
| 1402 | 12/15/2010 | 9:28:01 | 0 | 14.8496 | 16.781 |
| 1403 | 12/15/2010 | 9:28:02 | 0 | 14.8483 | 16.781 |
| 1404 | 12/15/2010 | 9:28:03 | 0 | 14.8507 | 16.782 |
| 1405 | 12/15/2010 | 9:28:04 | 0 | 14.8484 | 16.782 |
| 1406 | 12/15/2010 | 9:28:05 | 0 | 14.8476 | 16.781 |
| 1407 | 12/15/2010 | 9:28:06 | 0 | 14.8486 | 16.781 |
| 1408 | 12/15/2010 | 9:28:07 | 0 | 14.8455 | 16.781 |
| 1409 | 12/15/2010 | 9:28:08 | 0 | 14.852  | 16.782 |
| 1410 | 12/15/2010 | 9:28:09 | 0 | 14.8489 | 16.781 |
| 1411 | 12/15/2010 | 9:28:10 | 0 | 14.8445 | 16.781 |
| 1412 | 12/15/2010 | 9:28:11 | 0 | 14.8531 | 16.781 |
| 1413 | 12/15/2010 | 9:28:12 | 0 | 14.8509 | 16.781 |
| 1414 | 12/15/2010 | 9:28:13 | 0 | 14.8462 | 16.781 |
| 1415 | 12/15/2010 | 9:28:14 | 0 | 14.8506 | 16.782 |
| 1416 | 12/15/2010 | 9:28:15 | 0 | 14.8467 | 16.781 |
| 1417 | 12/15/2010 | 9:28:16 | 0 | 14.8626 | 16.781 |
| 1418 | 12/15/2010 | 9:28:17 | 0 | 14.8478 | 16.781 |
| 1419 | 12/15/2010 | 9:28:18 | 0 | 14.8492 | 16.782 |
| 1420 | 12/15/2010 | 9:28:19 | 0 | 14.8442 | 16.781 |
| 1421 | 12/15/2010 | 9:28:20 | 0 | 14.8519 | 16.781 |
| 1422 | 12/15/2010 | 9:28:21 | 0 | 14.8477 | 16.781 |
| 1423 | 12/15/2010 | 9:28:22 | 0 | 14.8452 | 16.781 |
| 1424 | 12/15/2010 | 9:28:23 | 0 | 14.8487 | 16.781 |
| 1425 | 12/15/2010 | 9:28:24 | 0 | 14.8515 | 16.781 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1426 | 12/15/2010 | 9:28:25 | 0 | 14.8477 | 16.781 |
| 1427 | 12/15/2010 | 9:28:26 | 0 | 14.8514 | 16.781 |
| 1428 | 12/15/2010 | 9:28:27 | 0 | 14.8432 | 16.781 |
| 1429 | 12/15/2010 | 9:28:28 | 0 | 14.8472 | 16.782 |
| 1430 | 12/15/2010 | 9:28:29 | 0 | 14.8559 | 16.781 |
| 1431 | 12/15/2010 | 9:28:30 | 0 | 14.8494 | 16.782 |
| 1432 | 12/15/2010 | 9:28:31 | 0 | 14.8494 | 16.781 |
| 1433 | 12/15/2010 | 9:28:32 | 0 | 14.846  | 16.781 |
| 1434 | 12/15/2010 | 9:28:33 | 0 | 14.847  | 16.781 |
| 1435 | 12/15/2010 | 9:28:34 | 0 | 14.8477 | 16.781 |
| 1436 | 12/15/2010 | 9:28:35 | 0 | 14.8487 | 16.781 |
| 1437 | 12/15/2010 | 9:28:36 | 0 | 14.8434 | 16.781 |
| 1438 | 12/15/2010 | 9:28:37 | 0 | 14.8487 | 16.781 |
| 1439 | 12/15/2010 | 9:28:38 | 0 | 14.8455 | 16.78  |
| 1440 | 12/15/2010 | 9:28:39 | 0 | 14.8497 | 16.781 |
| 1441 | 12/15/2010 | 9:28:40 | 0 | 14.8446 | 16.781 |
| 1442 | 12/15/2010 | 9:28:41 | 0 | 14.8479 | 16.781 |
| 1443 | 12/15/2010 | 9:28:42 | 0 | 14.8459 | 16.781 |
| 1444 | 12/15/2010 | 9:28:43 | 0 | 14.8439 | 16.781 |
| 1445 | 12/15/2010 | 9:28:44 | 0 | 14.8463 | 16.78  |
| 1446 | 12/15/2010 | 9:28:45 | 0 | 14.8517 | 16.781 |
| 1447 | 12/15/2010 | 9:28:46 | 0 | 14.8394 | 16.781 |
| 1448 | 12/15/2010 | 9:28:47 | 0 | 14.8323 | 16.781 |
| 1449 | 12/15/2010 | 9:28:48 | 0 | 14.8496 | 16.78  |
| 1450 | 12/15/2010 | 9:28:49 | 0 | 14.8522 | 16.781 |
| 1451 | 12/15/2010 | 9:28:50 | 0 | 14.8424 | 16.781 |
| 1452 | 12/15/2010 | 9:28:51 | 0 | 14.6506 | 16.781 |
| 1453 | 12/15/2010 | 9:28:52 | 0 | 14.8471 | 16.781 |
| 1454 | 12/15/2010 | 9:28:53 | 0 | 14.8458 | 16.761 |
| 1455 | 12/15/2010 | 9:28:54 | 0 | 14.8551 | 16.781 |
| 1456 | 12/15/2010 | 9:28:55 | 0 | 14.8427 | 16.761 |
| 1457 | 12/15/2010 | 9:28:56 | 0 | 14.8486 | 16.761 |
| 1458 | 12/15/2010 | 9:28:57 | 0 | 14.8471 | 16.781 |
| 1459 | 12/15/2010 | 9:28:58 | 0 | 14.8379 | 16.78  |
| 1460 | 12/15/2010 | 9:28:59 | 0 | 14.8575 | 16.781 |
| 1461 | 12/15/2010 | 9:29:00 | 0 | 14.8263 | 16.781 |
| 1462 | 12/15/2010 | 9:29:01 | 0 | 14.8544 | 16.781 |
| 1463 | 12/15/2010 | 9:29:02 | 0 | 14.8508 | 16.781 |
| 1464 | 12/15/2010 | 9:29:03 | 0 | 14.8394 | 16.781 |
| 1465 | 12/15/2010 | 9:29:04 | 0 | 14.8536 | 16.781 |
| 1466 | 12/15/2010 | 9:29:05 | 0 | 14.8287 | 16.781 |
| 1467 | 12/15/2010 | 9:29:06 | 0 | 14.8451 | 16.781 |
| 1468 | 12/15/2010 | 9:29:07 | 0 | 14.8571 | 16.781 |
| 1469 | 12/15/2010 | 9:29:08 | 0 | 14.8408 | 16.78  |
| 1470 | 12/15/2010 | 9:29:09 | 0 | 14.8479 | 16.781 |
| 1471 | 12/15/2010 | 9:29:10 | 0 | 14.8456 | 16.781 |
| 1472 | 12/15/2010 | 9:29:11 | 0 | 14.8499 | 16.78  |
| 1473 | 12/15/2010 | 9:29:12 | 0 | 14.8556 | 16.78  |
| 1474 | 12/15/2010 | 9:29:13 | 0 | 14.8339 | 16.78  |
| 1475 | 12/15/2010 | 9:29:14 | 0 | 14.8556 | 16.781 |
| 1476 | 12/15/2010 | 9:29:15 | 0 | 14.8474 | 16.781 |
| 1477 | 12/15/2010 | 9:29:16 | 0 | 14.8457 | 16.78  |
| 1478 | 12/15/2010 | 9:29:17 | 0 | 14.854  | 16.78  |
| 1479 | 12/15/2010 | 9:29:18 | 0 | 14.8446 | 16.781 |
| 1480 | 12/15/2010 | 9:29:19 | 0 | 14.8493 | 16.781 |
| 1481 | 12/15/2010 | 9:29:20 | 0 | 14.8476 | 16.781 |
| 1482 | 12/15/2010 | 9:29:21 | 0 | 14.8503 | 16.781 |
| 1483 | 12/15/2010 | 9:29:22 | 0 | 14.8398 | 16.781 |
| 1484 | 12/15/2010 | 9:29:23 | 0 | 14.8491 | 16.781 |
| 1485 | 12/15/2010 | 9:29:24 | 0 | 14.8513 | 16.781 |
| 1486 | 12/15/2010 | 9:29:25 | 0 | 14.8432 | 16.78  |
| 1487 | 12/15/2010 | 9:29:26 | 0 | 14.8537 | 16.781 |
| 1488 | 12/15/2010 | 9:29:27 | 0 | 14.8532 | 16.781 |
| 1489 | 12/15/2010 | 9:29:28 | 0 | 14.8481 | 16.78  |
| 1490 | 12/15/2010 | 9:29:29 | 0 | 14.8479 | 16.781 |
| 1491 | 12/15/2010 | 9:29:30 | 0 | 14.8508 | 16.781 |
| 1492 | 12/15/2010 | 9:29:31 | 0 | 14.8471 | 16.78  |
| 1493 | 12/15/2010 | 9:29:32 | 0 | 14.8481 | 16.781 |
| 1494 | 12/15/2010 | 9:29:33 | 0 | 14.8454 | 16.78  |
| 1495 | 12/15/2010 | 9:29:34 | 0 | 14.8464 | 16.781 |
| 1496 | 12/15/2010 | 9:29:35 | 0 | 14.8463 | 16.781 |
| 1497 | 12/15/2010 | 9:29:36 | 0 | 14.846  | 16.781 |
| 1498 | 12/15/2010 | 9:29:37 | 0 | 14.6501 | 16.781 |
| 1499 | 12/15/2010 | 9:29:38 | 0 | 14.8463 | 16.781 |
| 1500 | 12/15/2010 | 9:29:39 | 0 | 14.8592 | 16.781 |
| 1501 | 12/15/2010 | 9:29:40 | 0 | 14.852  | 16.761 |
| 1502 | 12/15/2010 | 9:29:41 | 0 | 14.8476 | 16.781 |
| 1503 | 12/15/2010 | 9:29:42 | 0 | 14.8446 | 16.781 |
| 1504 | 12/15/2010 | 9:29:43 | 0 | 14.847  | 16.78  |
| 1505 | 12/15/2010 | 9:29:44 | 0 | 14.8408 | 16.781 |
| 1506 | 12/15/2010 | 9:29:45 | 0 | 14.8248 | 16.781 |
| 1507 | 12/15/2010 | 9:29:46 | 0 | 14.8494 | 16.781 |
| 1508 | 12/15/2010 | 9:29:47 | 0 | 14.8439 | 16.781 |
| 1509 | 12/15/2010 | 9:29:48 | 0 | 14.841  | 16.781 |
| 1510 | 12/15/2010 | 9:29:49 | 0 | 14.8486 | 16.781 |
| 1511 | 12/15/2010 | 9:29:50 | 0 | 14.846  | 16.781 |
| 1512 | 12/15/2010 | 9:29:51 | 0 | 14.8467 | 16.781 |
| 1513 | 12/15/2010 | 9:29:52 | 0 | 14.8469 | 16.781 |
| 1514 | 12/15/2010 | 9:29:53 | 0 | 14.8474 | 16.78  |
| 1515 | 12/15/2010 | 9:29:54 | 0 | 14.8444 | 16.781 |
| 1516 | 12/15/2010 | 9:29:55 | 0 | 14.8444 | 16.781 |
| 1517 | 12/15/2010 | 9:29:56 | 0 | 14.8444 | 16.781 |
| 1518 | 12/15/2010 | 9:29:57 | 0 | 14.8445 | 16.781 |
| 1519 | 12/15/2010 | 9:29:58 | 0 | 14.8482 | 16.781 |
| 1520 | 12/15/2010 | 9:29:59 | 0 | 14.8476 | 16.78  |
| 1521 | 12/15/2010 | 9:30:00 | 0 | 14.8437 | 16.781 |
| 1522 | 12/15/2010 | 9:30:03 | 0 | 14.8459 | 16.766 |
| 1523 | 12/15/2010 | 9:30:06 | 0 | 14.8414 | 16.761 |
| 1524 | 12/15/2010 | 9:30:09 | 0 | 14.8434 | 16.758 |
| 1525 | 12/15/2010 | 9:30:12 | 0 | 14.8444 | 16.755 |
| 1526 | 12/15/2010 | 9:30:15 | 0 | 14.8446 | 16.752 |
| 1527 | 12/15/2010 | 9:30:18 | 0 | 14.8444 | 16.751 |
| 1528 | 12/15/2010 | 9:30:21 | 0 | 14.8404 | 16.75  |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1529 | 12/15/2010 | 9:30:24 | 0 | 14.8425 | 16.747 |
| 1530 | 12/15/2010 | 9:30:27 | 0 | 14.8466 | 16.746 |
| 1531 | 12/15/2010 | 9:30:30 | 0 | 14.8329 | 16.745 |
| 1532 | 12/15/2010 | 9:30:33 | 0 | 14.8359 | 16.744 |
| 1533 | 12/15/2010 | 9:30:36 | 0 | 14.8412 | 16.742 |
| 1534 | 12/15/2010 | 9:30:39 | 0 | 14.8413 | 16.741 |
| 1535 | 12/15/2010 | 9:30:42 | 0 | 14.8395 | 16.74  |
| 1536 | 12/15/2010 | 9:30:45 | 0 | 14.8416 | 16.738 |
| 1537 | 12/15/2010 | 9:30:48 | 0 | 14.8422 | 16.737 |
| 1538 | 12/15/2010 | 9:30:51 | 0 | 14.8349 | 16.737 |
| 1539 | 12/15/2010 | 9:30:54 | 0 | 14.8384 | 16.737 |
| 1540 | 12/15/2010 | 9:30:57 | 0 | 14.841  | 16.735 |
| 1541 | 12/15/2010 | 9:31:00 | 0 | 14.9498 | 16.735 |
| 1542 | 12/15/2010 | 9:31:03 | 0 | 14.8398 | 16.733 |
| 1543 | 12/15/2010 | 9:31:06 | 0 | 14.8419 | 16.733 |
| 1544 | 12/15/2010 | 9:31:09 | 0 | 14.84   | 16.733 |
| 1545 | 12/15/2010 | 9:31:12 | 0 | 14.8421 | 16.731 |
| 1546 | 12/15/2010 | 9:31:15 | 0 | 14.8326 | 16.731 |
| 1547 | 12/15/2010 | 9:31:18 | 0 | 14.8225 | 16.731 |
| 1549 | 12/15/2010 | 9:31:21 | 0 | 14.8358 | 16.73  |
| 1549 | 12/15/2010 | 9:31:24 | 0 | 14.8459 | 16.73  |
| 1550 | 12/15/2010 | 9:31:27 | 0 | 14.843  | 16.729 |
| 1551 | 12/15/2010 | 9:31:30 | 0 | 14.8426 | 16.73  |
| 1552 | 12/15/2010 | 9:31:33 | 0 | 14.8385 | 16.729 |
| 1553 | 12/15/2010 | 9:31:36 | 0 | 14.8394 | 16.728 |
| 1554 | 12/15/2010 | 9:31:39 | 0 | 14.8452 | 16.728 |
| 1555 | 12/15/2010 | 9:31:42 | 0 | 14.84   | 16.727 |
| 1556 | 12/15/2010 | 9:31:45 | 0 | 14.848  | 16.727 |
| 1557 | 12/15/2010 | 9:31:48 | 0 | 14.8433 | 16.727 |
| 1558 | 12/15/2010 | 9:31:51 | 0 | 14.8438 | 16.727 |
| 1559 | 12/15/2010 | 9:31:54 | 0 | 14.8421 | 16.725 |
| 1560 | 12/15/2010 | 9:31:57 | 0 | 14.8409 | 16.726 |
| 1561 | 12/15/2010 | 9:32:00 | 0 | 14.8416 | 16.725 |
| 1562 | 12/15/2010 | 9:32:03 | 0 | 14.8381 | 16.726 |
| 1563 | 12/15/2010 | 9:32:06 | 0 | 14.8366 | 16.725 |
| 1564 | 12/15/2010 | 9:32:09 | 0 | 14.8451 | 16.724 |
| 1565 | 12/15/2010 | 9:32:12 | 0 | 14.8428 | 16.724 |
| 1566 | 12/15/2010 | 9:32:15 | 0 | 14.8498 | 16.724 |
| 1567 | 12/15/2010 | 9:32:19 | 0 | 14.8449 | 16.724 |
| 1568 | 12/15/2010 | 9:32:21 | 0 | 14.8416 | 16.723 |
| 1569 | 12/15/2010 | 9:32:24 | 0 | 14.8445 | 16.723 |
| 1570 | 12/15/2010 | 9:32:27 | 0 | 14.8445 | 16.723 |
| 1571 | 12/15/2010 | 9:32:30 | 0 | 14.8397 | 16.723 |
| 1572 | 12/15/2010 | 9:32:33 | 0 | 14.846  | 16.723 |
| 1573 | 12/15/2010 | 9:32:36 | 0 | 14.8289 | 16.723 |
| 1574 | 12/15/2010 | 9:32:39 | 0 | 14.8406 | 16.723 |
| 1575 | 12/15/2010 | 9:32:42 | 0 | 14.8404 | 16.722 |
| 1576 | 12/15/2010 | 9:32:45 | 0 | 14.8465 | 16.723 |
| 1577 | 12/15/2010 | 9:32:48 | 0 | 14.844  | 16.722 |
| 1578 | 12/15/2010 | 9:32:51 | 0 | 14.8425 | 16.722 |
| 1579 | 12/15/2010 | 9:32:54 | 0 | 14.8506 | 16.722 |
| 1580 | 12/15/2010 | 9:32:57 | 0 | 14.8409 | 16.722 |
| 1581 | 12/15/2010 | 9:33:00 | 0 | 14.8516 | 16.722 |
| 1582 | 12/15/2010 | 9:33:03 | 0 | 14.8404 | 16.722 |
| 1583 | 12/15/2010 | 9:33:06 | 0 | 14.8472 | 16.722 |
| 1584 | 12/15/2010 | 9:33:09 | 0 | 14.8368 | 16.722 |
| 1585 | 12/15/2010 | 9:33:12 | 0 | 14.8494 | 16.722 |
| 1596 | 12/15/2010 | 9:33:15 | 0 | 14.8458 | 16.722 |
| 1587 | 12/15/2010 | 9:33:18 | 0 | 14.8358 | 16.722 |
| 1588 | 12/15/2010 | 9:33:21 | 0 | 14.8375 | 16.722 |
| 1589 | 12/15/2010 | 9:33:24 | 0 | 14.8277 | 16.722 |
| 1590 | 12/15/2010 | 9:33:27 | 0 | 14.8369 | 16.722 |
| 1591 | 12/15/2010 | 9:33:30 | 0 | 14.8374 | 16.722 |
| 1592 | 12/15/2010 | 9:33:33 | 0 | 14.9415 | 16.722 |
| 1593 | 12/15/2010 | 9:33:36 | 0 | 14.8441 | 16.722 |
| 1594 | 12/15/2010 | 9:33:39 | 0 | 14.843  | 16.722 |
| 1595 | 12/15/2010 | 9:33:42 | 0 | 14.8423 | 16.723 |
| 1596 | 12/15/2010 | 9:33:45 | 0 | 14.837  | 16.722 |
| 1597 | 12/15/2010 | 9:33:48 | 0 | 14.8397 | 16.723 |
| 1598 | 12/15/2010 | 9:33:51 | 0 | 14.8409 | 16.722 |
| 1599 | 12/15/2010 | 9:33:54 | 0 | 14.8441 | 16.723 |
| 1600 | 12/15/2010 | 9:33:57 | 0 | 14.8397 | 16.723 |
| 1601 | 12/15/2010 | 9:34:00 | 0 | 14.8354 | 16.723 |
| 1602 | 12/15/2010 | 9:34:03 | 0 | 14.8361 | 16.723 |
| 1603 | 12/15/2010 | 9:34:06 | 0 | 14.8369 | 16.723 |
| 1604 | 12/15/2010 | 9:34:09 | 0 | 14.8356 | 16.723 |
| 1605 | 12/15/2010 | 9:34:12 | 0 | 14.8431 | 16.724 |
| 1606 | 12/15/2010 | 9:34:15 | 0 | 14.8364 | 16.724 |
| 1607 | 12/15/2010 | 9:34:18 | 0 | 14.8374 | 16.724 |
| 1608 | 12/15/2010 | 9:34:21 | 0 | 14.8378 | 16.725 |
| 1609 | 12/15/2010 | 9:34:24 | 0 | 14.8364 | 16.724 |
| 1610 | 12/15/2010 | 9:34:27 | 0 | 14.8364 | 16.724 |
| 1611 | 12/15/2010 | 9:34:30 | 0 | 14.8388 | 16.725 |
| 1612 | 12/15/2010 | 9:34:33 | 0 | 14.8322 | 16.725 |
| 1613 | 12/15/2010 | 9:34:36 | 0 | 14.8371 | 16.725 |
| 1614 | 12/15/2010 | 9:34:39 | 0 | 14.8402 | 16.725 |
| 1615 | 12/15/2010 | 9:34:42 | 0 | 14.8349 | 16.725 |
| 1616 | 12/15/2010 | 9:34:45 | 0 | 14.8323 | 16.725 |
| 1617 | 12/15/2010 | 9:34:48 | 0 | 14.8309 | 16.725 |
| 1618 | 12/15/2010 | 9:34:51 | 0 | 14.8351 | 16.728 |
| 1619 | 12/15/2010 | 9:34:54 | 0 | 14.8366 | 16.728 |
| 1620 | 12/15/2010 | 9:34:57 | 0 | 14.8317 | 16.725 |
| 1621 | 12/15/2010 | 9:35:00 | 0 | 14.8385 | 16.725 |
| 1622 | 12/15/2010 | 9:35:03 | 0 | 14.8441 | 16.725 |
| 1623 | 12/15/2010 | 9:35:06 | 0 | 14.7586 | 16.725 |
| 1624 | 12/15/2010 | 9:35:09 | 0 | 14.5299 | 16.726 |
| 1625 | 12/15/2010 | 9:35:12 | 0 | 13.7498 | 16.726 |
| 1626 | 12/15/2010 | 9:35:15 | 0 | 12.858  | 16.726 |
| 1627 | 12/15/2010 | 9:35:18 | 0 | 12.9953 | 16.726 |
| 1628 | 12/15/2010 | 9:35:21 | 0 | 13.1278 | 16.726 |
| 1629 | 12/15/2010 | 9:35:24 | 0 | 13.2529 | 16.727 |
| 1630 | 12/15/2010 | 9:35:27 | 0 | 13.3689 | 16.727 |
| 1631 | 12/15/2010 | 9:35:30 | 0 | 13.4736 | 16.726 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1632 | 12/15/2010 | 9:35:33 | 0 | 13.5703 | 16.727 |
| 1633 | 12/15/2010 | 9:35:36 | 0 | 13.6628 | 16.727 |
| 1634 | 12/15/2010 | 9:35:39 | 0 | 13.7448 | 16.728 |
| 1635 | 12/15/2010 | 9:35:42 | 0 | 13.8282 | 16.727 |
| 1636 | 12/15/2010 | 9:35:45 | 0 | 13.8966 | 18.727 |
| 1637 | 12/15/2010 | 9:35:48 | 0 | 13.9623 | 16.727 |
| 1638 | 12/15/2010 | 9:35:51 | 0 | 14.0243 | 16.727 |
| 1639 | 12/15/2010 | 9:35:54 | 0 | 14.0825 | 16.727 |
| 1640 | 12/15/2010 | 9:35:57 | 0 | 14.1409 | 16.727 |
| 1641 | 12/15/2010 | 9:36:00 | 0 | 14.1872 | 16.727 |
| 1642 | 12/15/2010 | 9:36:03 | 0 | 14.2348 | 16.727 |
| 1643 | 12/15/2010 | 9:36:06 | 0 | 14.2725 | 16.727 |
| 1644 | 12/15/2010 | 9:36:09 | 0 | 14.3136 | 16.727 |
| 1645 | 12/15/2010 | 9:36:12 | 0 | 14.3509 | 16.727 |
| 1646 | 12/15/2010 | 9:36:15 | 0 | 14.3826 | 18.727 |
| 1647 | 12/15/2010 | 9:36:18 | 0 | 14.4159 | 16.727 |
| 1648 | 12/15/2010 | 9:36:21 | 0 | 14.4408 | 16.727 |
| 1649 | 12/15/2010 | 9:36:24 | 0 | 14.4681 | 16.727 |
| 1650 | 12/15/2010 | 9:36:27 | 0 | 14.4925 | 16.728 |
| 1651 | 12/15/2010 | 9:36:30 | 0 | 14.5156 | 16.728 |
| 1652 | 12/15/2010 | 9:36:33 | 0 | 14.5339 | 16.727 |
| 1653 | 12/15/2010 | 9:36:36 | 0 | 14.5531 | 18.728 |
| 1654 | 12/15/2010 | 9:36:39 | 0 | 14.5752 | 16.728 |
| 1655 | 12/15/2010 | 9:36:42 | 0 | 14.5939 | 16.728 |
| 1656 | 12/15/2010 | 9:36:45 | 0 | 14.6067 | 16.728 |
| 1657 | 12/15/2010 | 9:36:48 | 0 | 14.6163 | 16.729 |
| 1658 | 12/15/2010 | 9:36:51 | 0 | 14.6308 | 16.728 |
| 1659 | 12/15/2010 | 9:36:54 | 0 | 14.6449 | 16.729 |
| 1660 | 12/15/2010 | 9:36:57 | 0 | 14.6494 | 16.729 |
| 1661 | 12/15/2010 | 9:37:00 | 0 | 14.6656 | 16.729 |
| 1662 | 12/15/2010 | 9:37:03 | 0 | 14.672  | 16.729 |
| 1663 | 12/15/2010 | 9:37:06 | 0 | 14.686  | 16.73  |
| 1664 | 12/15/2010 | 9:37:09 | 0 | 14.6903 | 16.73  |
| 1665 | 12/15/2010 | 9:37:12 | 0 | 14.6978 | 16.731 |
| 1666 | 12/15/2010 | 9:37:15 | 0 | 14.7016 | 16.73  |
| 1667 | 12/15/2010 | 9:37:18 | 0 | 14.7087 | 16.73  |
| 1668 | 12/15/2010 | 9:37:21 | 0 | 14.7164 | 16.731 |
| 1669 | 12/15/2010 | 9:37:24 | 0 | 14.723  | 16.731 |
| 1670 | 12/15/2010 | 9:37:27 | 0 | 14.7222 | 16.731 |
| 1671 | 12/15/2010 | 9:37:30 | 0 | 14.7277 | 16.731 |
| 1672 | 12/15/2010 | 9:37:33 | 0 | 14.733  | 16.732 |
| 1673 | 12/15/2010 | 9:37:36 | 0 | 14.7385 | 16.732 |
| 1674 | 12/15/2010 | 9:37:39 | 0 | 14.7397 | 16.732 |
| 1675 | 12/15/2010 | 9:37:42 | 0 | 14.7428 | 16.732 |
| 1676 | 12/15/2010 | 9:37:45 | 0 | 14.7466 | 16.732 |
| 1677 | 12/15/2010 | 9:37:48 | 0 | 14.7514 | 16.732 |
| 1678 | 12/15/2010 | 9:37:51 | 0 | 14.7588 | 16.733 |
| 1679 | 12/15/2010 | 9:37:54 | 0 | 14.7606 | 16.734 |
| 1680 | 12/15/2010 | 9:37:57 | 0 | 14.7586 | 16.734 |
| 1681 | 12/15/2010 | 9:38:00 | 0 | 14.7638 | 16.733 |
| 1682 | 12/15/2010 | 9:38:03 | 0 | 14.7595 | 16.733 |
| 1683 | 12/15/2010 | 9:38:06 | 0 | 14.7641 | 16.734 |
| 1684 | 12/15/2010 | 9:38:09 | 0 | 14.7652 | 16.733 |
| 1685 | 12/15/2010 | 9:38:12 | 0 | 14.7715 | 16.733 |
| 1686 | 12/15/2010 | 9:38:15 | 0 | 14.7713 | 16.734 |
| 1687 | 12/15/2010 | 9:38:18 | 0 | 14.7703 | 16.734 |
| 1688 | 12/15/2010 | 9:38:21 | 0 | 14.7773 | 16.734 |
| 1689 | 12/15/2010 | 9:38:24 | 0 | 14.7713 | 16.733 |
| 1690 | 12/15/2010 | 9:38:27 | 0 | 14.7753 | 16.733 |
| 1691 | 12/15/2010 | 9:38:30 | 0 | 14.7766 | 16.734 |
| 1692 | 12/15/2010 | 9:38:33 | 0 | 14.7796 | 16.734 |
| 1693 | 12/15/2010 | 9:38:36 | 0 | 14.7813 | 16.734 |
| 1694 | 12/15/2010 | 9:38:39 | 0 | 14.779  | 16.734 |
| 1695 | 12/15/2010 | 9:38:42 | 0 | 14.782  | 16.733 |
| 1696 | 12/15/2010 | 9:38:45 | 0 | 14.7781 | 16.733 |
| 1697 | 12/15/2010 | 9:38:48 | 0 | 14.7775 | 16.733 |
| 1698 | 12/15/2010 | 9:38:51 | 0 | 14.7815 | 16.733 |
| 1699 | 12/15/2010 | 9:38:54 | 0 | 14.781  | 18.733 |
| 1700 | 12/15/2010 | 9:38:57 | 0 | 14.782  | 16.734 |
| 1701 | 12/15/2010 | 9:39:00 | 0 | 14.7807 | 16.733 |
| 1702 | 12/15/2010 | 9:39:03 | 0 | 14.7838 | 16.734 |
| 1703 | 12/15/2010 | 9:39:06 | 0 | 14.7863 | 16.734 |
| 1704 | 12/15/2010 | 9:39:09 | 0 | 14.7838 | 16.733 |
| 1705 | 12/15/2010 | 9:39:12 | 0 | 14.7877 | 16.732 |
| 1706 | 12/15/2010 | 9:39:15 | 0 | 14.7891 | 16.733 |
| 1707 | 12/15/2010 | 9:39:18 | 0 | 14.7927 | 16.733 |
| 1708 | 12/15/2010 | 9:39:21 | 0 | 14.7929 | 16.732 |
| 1709 | 12/15/2010 | 9:39:24 | 0 | 14.7925 | 16.732 |
| 1710 | 12/15/2010 | 9:39:27 | 0 | 14.7925 | 16.732 |
| 1711 | 12/15/2010 | 9:39:30 | 0 | 14.7927 | 16.732 |
| 1712 | 12/15/2010 | 9:39:33 | 0 | 14.7953 | 16.732 |
| 1713 | 12/15/2010 | 9:39:36 | 0 | 14.7973 | 16.732 |
| 1714 | 12/15/2010 | 9:39:39 | 0 | 14.7896 | 16.732 |
| 1715 | 12/15/2010 | 9:39:42 | 0 | 14.7941 | 16.731 |
| 1716 | 12/15/2010 | 9:39:45 | 0 | 14.7917 | 16.731 |
| 1717 | 12/15/2010 | 9:39:48 | 0 | 14.7942 | 16.731 |
| 1718 | 12/15/2010 | 9:39:51 | 0 | 14.7937 | 16.731 |
| 1719 | 12/15/2010 | 9:39:54 | 0 | 14.7927 | 16.731 |
| 1720 | 12/15/2010 | 9:39:57 | 0 | 14.789  | 18.731 |
| 1721 | 12/15/2010 | 9:40:00 | 0 | 14.7956 | 18.731 |
| 1722 | 12/15/2010 | 9:40:05 | 0 | 14.7951 | 18.728 |
| 1723 | 12/15/2010 | 9:40:10 | 0 | 14.7948 | 16.727 |
| 1724 | 12/15/2010 | 9:40:15 | 0 | 14.7979 | 16.725 |
| 1725 | 12/15/2010 | 9:40:20 | 0 | 14.795  | 16.725 |
| 1726 | 12/15/2010 | 9:40:25 | 0 | 14.7927 | 16.723 |
| 1727 | 12/15/2010 | 9:40:30 | 0 | 14.8013 | 16.722 |
| 1728 | 12/15/2010 | 9:40:35 | 0 | 14.8045 | 16.722 |
| 1729 | 12/15/2010 | 9:40:40 | 0 | 14.7983 | 16.721 |
| 1730 | 12/15/2010 | 9:40:45 | 0 | 14.8048 | 16.722 |
| 1731 | 12/15/2010 | 9:40:50 | 0 | 14.7947 | 16.721 |
| 1732 | 12/15/2010 | 9:40:55 | 0 | 14.7926 | 16.72  |
| 1733 | 12/15/2010 | 9:41:00 | 0 | 14.8078 | 16.72  |
| 1734 | 12/15/2010 | 9:41:05 | 0 | 14.7995 | 16.719 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1735 | 12/15/2010 | 9:41:10 | 0 | 14.803  | 16.719 |
| 1736 | 12/15/2010 | 9:41:15 | 0 | 14.7979 | 16.719 |
| 1737 | 12/15/2010 | 9:41:20 | 0 | 14.8008 | 16.718 |
| 1738 | 12/15/2010 | 9:41:25 | 0 | 14.7973 | 16.719 |
| 1739 | 12/15/2010 | 9:41:30 | 0 | 14.8003 | 16.719 |
| 1740 | 12/15/2010 | 9:41:35 | 0 | 14.8043 | 16.718 |
| 1741 | 12/15/2010 | 9:41:40 | 0 | 14.8    | 16.719 |
| 1742 | 12/15/2010 | 9:41:45 | 0 | 14.803  | 16.718 |
| 1743 | 12/15/2010 | 9:41:50 | 0 | 14.8051 | 16.718 |
| 1744 | 12/15/2010 | 9:41:55 | 0 | 14.8035 | 16.718 |
| 1745 | 12/15/2010 | 9:42:00 | 0 | 14.8017 | 16.717 |
| 1746 | 12/15/2010 | 9:42:05 | 0 | 14.7996 | 16.717 |
| 1747 | 12/15/2010 | 9:42:10 | 0 | 14.7988 | 16.717 |
| 1748 | 12/15/2010 | 9:42:15 | 0 | 14.806  | 16.717 |
| 1749 | 12/15/2010 | 9:42:20 | 0 | 14.8013 | 16.716 |
| 1750 | 12/15/2010 | 9:42:25 | 0 | 14.8055 | 16.717 |
| 1751 | 12/15/2010 | 9:42:30 | 0 | 14.7999 | 16.716 |
| 1752 | 12/15/2010 | 9:42:35 | 0 | 14.8073 | 16.716 |
| 1753 | 12/15/2010 | 9:42:40 | 0 | 14.8102 | 16.716 |
| 1754 | 12/15/2010 | 9:42:45 | 0 | 14.8043 | 16.716 |
| 1755 | 12/15/2010 | 9:42:50 | 0 | 14.8083 | 16.715 |
| 1756 | 12/15/2010 | 9:42:55 | 0 | 14.8031 | 16.715 |
| 1757 | 12/15/2010 | 9:43:00 | 0 | 14.8018 | 16.715 |
| 1758 | 12/15/2010 | 9:43:05 | 0 | 14.8093 | 16.715 |
| 1759 | 12/15/2010 | 9:43:10 | 0 | 14.8074 | 16.715 |
| 1760 | 12/15/2010 | 9:43:15 | 0 | 14.8028 | 16.714 |
| 1761 | 12/15/2010 | 9:43:20 | 0 | 14.8087 | 16.714 |
| 1762 | 12/15/2010 | 9:43:25 | 0 | 14.8053 | 16.714 |
| 1763 | 12/15/2010 | 9:43:30 | 0 | 14.8083 | 16.714 |
| 1764 | 12/15/2010 | 9:43:35 | 0 | 14.8072 | 16.714 |
| 1765 | 12/15/2010 | 9:43:40 | 0 | 14.8048 | 16.714 |
| 1766 | 12/15/2010 | 9:43:45 | 0 | 14.8048 | 16.713 |
| 1767 | 12/15/2010 | 9:43:50 | 0 | 14.8121 | 16.713 |
| 1768 | 12/15/2010 | 9:43:55 | 0 | 14.809  | 16.713 |
| 1769 | 12/15/2010 | 9:44:00 | 0 | 14.8079 | 16.713 |
| 1770 | 12/15/2010 | 9:44:05 | 0 | 14.8018 | 16.712 |
| 1771 | 12/15/2010 | 9:44:10 | 0 | 14.8068 | 16.712 |
| 1772 | 12/15/2010 | 9:44:15 | 0 | 14.8071 | 16.712 |
| 1773 | 12/15/2010 | 9:44:20 | 0 | 14.8083 | 16.712 |
| 1774 | 12/15/2010 | 9:44:25 | 0 | 14.8052 | 16.711 |
| 1775 | 12/15/2010 | 9:44:30 | 0 | 14.7991 | 16.711 |
| 1776 | 12/15/2010 | 9:44:35 | 0 | 14.8056 | 16.711 |
| 1777 | 12/15/2010 | 9:44:40 | 0 | 14.8057 | 16.711 |
| 1778 | 12/15/2010 | 9:44:45 | 0 | 14.8064 | 16.711 |
| 1779 | 12/15/2010 | 9:44:50 | 0 | 14.8113 | 16.711 |
| 1780 | 12/15/2010 | 9:44:55 | 0 | 14.8023 | 16.71  |
| 1781 | 12/15/2010 | 9:45:00 | 0 | 14.8112 | 16.711 |
| 1782 | 12/15/2010 | 9:45:05 | 0 | 14.8098 | 16.71  |
| 1783 | 12/15/2010 | 9:45:10 | 0 | 14.8095 | 16.711 |
| 1784 | 12/15/2010 | 9:45:15 | 0 | 14.8142 | 16.71  |
| 1785 | 12/15/2010 | 9:45:20 | 0 | 14.815  | 16.71  |
| 1786 | 12/15/2010 | 9:45:25 | 0 | 14.7994 | 16.709 |
| 1787 | 12/15/2010 | 9:45:30 | 0 | 14.8021 | 16.71  |
| 1788 | 12/15/2010 | 9:45:35 | 0 | 14.8126 | 16.709 |
| 1789 | 12/15/2010 | 9:45:40 | 0 | 14.8048 | 16.71  |
| 1790 | 12/15/2010 | 9:45:45 | 0 | 14.813  | 16.71  |
| 1791 | 12/15/2010 | 9:45:50 | 0 | 14.8087 | 16.71  |
| 1792 | 12/15/2010 | 9:45:55 | 0 | 14.8119 | 16.711 |
| 1793 | 12/15/2010 | 9:46:00 | 0 | 14.8058 | 16.71  |
| 1794 | 12/15/2010 | 9:46:05 | 0 | 14.8128 | 16.711 |
| 1795 | 12/15/2010 | 9:46:10 | 0 | 14.8082 | 16.71  |
| 1796 | 12/15/2010 | 9:46:15 | 0 | 14.815  | 16.71  |
| 1797 | 12/15/2010 | 9:46:20 | 0 | 14.814  | 16.711 |
| 1798 | 12/15/2010 | 9:46:25 | 0 | 14.8093 | 16.711 |
| 1799 | 12/15/2010 | 9:46:30 | 0 | 14.8081 | 16.711 |
| 1800 | 12/15/2010 | 9:46:35 | 0 | 14.8144 | 16.71  |
| 1801 | 12/15/2010 | 9:46:40 | 0 | 14.8112 | 16.711 |
| 1802 | 12/15/2010 | 9:46:45 | 0 | 14.8119 | 16.711 |
| 1803 | 12/15/2010 | 9:46:50 | 0 | 14.8132 | 16.711 |
| 1804 | 12/15/2010 | 9:46:55 | 0 | 14.8069 | 16.711 |
| 1805 | 12/15/2010 | 9:47:00 | 0 | 14.8076 | 16.711 |
| 1806 | 12/15/2010 | 9:47:05 | 0 | 14.8088 | 16.711 |
| 1807 | 12/15/2010 | 9:47:10 | 0 | 14.8102 | 16.71  |
| 1808 | 12/15/2010 | 9:47:15 | 0 | 14.8127 | 16.71  |
| 1809 | 12/15/2010 | 9:47:20 | 0 | 14.814  | 16.711 |
| 1810 | 12/15/2010 | 9:47:25 | 0 | 14.81   | 16.711 |
| 1811 | 12/15/2010 | 9:47:30 | 0 | 14.8134 | 16.711 |
| 1812 | 12/15/2010 | 9:47:35 | 0 | 14.8036 | 16.711 |
| 1813 | 12/15/2010 | 9:47:40 | 0 | 14.824  | 16.711 |
| 1814 | 12/15/2010 | 9:47:45 | 0 | 14.8021 | 16.711 |
| 1815 | 12/15/2010 | 9:47:50 | 0 | 14.8138 | 16.71  |
| 1816 | 12/15/2010 | 9:47:55 | 0 | 14.812  | 16.711 |
| 1817 | 12/15/2010 | 9:48:00 | 0 | 14.8145 | 16.71  |
| 1818 | 12/15/2010 | 9:48:05 | 0 | 14.8137 | 16.71  |
| 1819 | 12/15/2010 | 9:48:10 | 0 | 14.814  | 16.711 |
| 1820 | 12/15/2010 | 9:48:15 | 0 | 14.8138 | 16.711 |
| 1821 | 12/15/2010 | 9:48:20 | 0 | 14.8159 | 16.711 |
| 1822 | 12/15/2010 | 9:48:25 | 0 | 14.8013 | 16.711 |
| 1823 | 12/15/2010 | 9:48:30 | 0 | 14.8102 | 16.711 |
| 1824 | 12/15/2010 | 9:48:35 | 0 | 14.8131 | 16.71  |
| 1825 | 12/15/2010 | 9:48:40 | 0 | 14.8152 | 16.711 |
| 1826 | 12/15/2010 | 9:48:45 | 0 | 14.8142 | 16.711 |
| 1827 | 12/15/2010 | 9:48:50 | 0 | 14.8119 | 16.71  |
| 1828 | 12/15/2010 | 9:48:55 | 0 | 14.8105 | 16.711 |
| 1829 | 12/15/2010 | 9:49:00 | 0 | 14.8167 | 16.71  |
| 1830 | 12/15/2010 | 9:49:05 | 0 | 14.815  | 16.711 |
| 1831 | 12/15/2010 | 9:49:10 | 0 | 14.8152 | 16.71  |
| 1832 | 12/15/2010 | 9:49:15 | 0 | 14.8088 | 16.71  |
| 1833 | 12/15/2010 | 9:49:20 | 0 | 14.8133 | 16.711 |
| 1834 | 12/15/2010 | 9:49:25 | 0 | 14.8076 | 16.711 |
| 1835 | 12/15/2010 | 9:49:30 | 0 | 14.8184 | 16.711 |
| 1836 | 12/15/2010 | 9:49:35 | 0 | 14.8131 | 16.71  |
| 1837 | 12/15/2010 | 9:49:40 | 0 | 14.8159 | 16.71  |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1838 | 12/15/2010 | 9:49:45 | 0 | 14.8136 | 16.711 |
| 1839 | 12/15/2010 | 9:49:50 | 0 | 14.8131 | 16.711 |
| 1840 | 12/15/2010 | 9:49:55 | 0 | 14.8122 | 16.71  |
| 1841 | 12/15/2010 | 9:50:00 | 0 | 14.8115 | 16.711 |
| 1842 | 12/15/2010 | 9:50:01 | 0 | 14.8105 | 16.719 |
| 1843 | 12/15/2010 | 9:50:02 | 0 | 14.8154 | 16.724 |
| 1844 | 12/15/2010 | 9:50:03 | 0 | 14.8149 | 16.727 |
| 1845 | 12/15/2010 | 9:50:04 | 0 | 14.9148 | 16.73  |
| 1846 | 12/15/2010 | 9:50:05 | 0 | 14.8159 | 16.732 |
| 1847 | 12/15/2010 | 9:50:06 | 0 | 14.8164 | 16.733 |
| 1849 | 12/15/2010 | 9:50:07 | 0 | 14.8141 | 16.735 |
| 1849 | 12/15/2010 | 9:50:08 | 0 | 14.8162 | 16.737 |
| 1850 | 12/15/2010 | 9:50:09 | 0 | 14.8157 | 16.738 |
| 1851 | 12/15/2010 | 9:50:10 | 0 | 14.8133 | 16.739 |
| 1852 | 12/15/2010 | 9:50:11 | 0 | 14.8106 | 16.74  |
| 1853 | 12/15/2010 | 9:50:12 | 0 | 14.8097 | 16.742 |
| 1854 | 12/15/2010 | 9:50:13 | 0 | 14.8113 | 16.742 |
| 1855 | 12/15/2010 | 9:50:14 | 0 | 14.8086 | 16.743 |
| 1856 | 12/15/2010 | 9:50:15 | 0 | 14.7333 | 16.743 |
| 1857 | 12/15/2010 | 9:50:16 | 0 | 13.7522 | 16.745 |
| 1858 | 12/15/2010 | 9:50:17 | 0 | 14.3743 | 16.746 |
| 1859 | 12/15/2010 | 9:50:18 | 0 | 14.4492 | 16.746 |
| 1860 | 12/15/2010 | 9:50:19 | 0 | 14.5742 | 16.748 |
| 1861 | 12/15/2010 | 9:50:20 | 0 | 14.6372 | 16.748 |
| 1862 | 12/15/2010 | 9:50:21 | 0 | 14.7033 | 16.748 |
| 1863 | 12/15/2010 | 9:50:22 | 0 | 14.7191 | 16.749 |
| 1864 | 12/15/2010 | 9:50:23 | 0 | 14.7144 | 16.749 |
| 1865 | 12/15/2010 | 9:50:24 | 0 | 14.717  | 16.75  |
| 1866 | 12/15/2010 | 9:50:25 | 0 | 14.8212 | 16.751 |
| 1867 | 12/15/2010 | 9:50:26 | 0 | 14.8549 | 16.751 |
| 1868 | 12/15/2010 | 9:50:27 | 0 | 15.0614 | 16.752 |
| 1869 | 12/15/2010 | 9:50:28 | 0 | 15.6011 | 16.753 |
| 1870 | 12/15/2010 | 9:50:29 | 0 | 15.0537 | 16.753 |
| 1871 | 12/15/2010 | 9:50:30 | 0 | 13.1712 | 16.754 |
| 1872 | 12/15/2010 | 9:50:31 | 0 | 10.9267 | 16.754 |
| 1873 | 12/15/2010 | 9:50:32 | 0 | 8.8636  | 16.754 |
| 1874 | 12/15/2010 | 9:50:33 | 0 | 6.7269  | 16.755 |
| 1875 | 12/15/2010 | 9:50:34 | 0 | 4.5792  | 16.756 |
| 1876 | 12/15/2010 | 9:50:35 | 0 | 2.8344  | 16.756 |
| 1877 | 12/15/2010 | 9:50:36 | 0 | 2.8272  | 16.757 |
| 1878 | 12/15/2010 | 9:50:37 | 0 | 2.8391  | 16.757 |
| 1879 | 12/15/2010 | 9:50:38 | 0 | 2.8233  | 16.757 |
| 1880 | 12/15/2010 | 9:50:39 | 0 | 2.8301  | 16.758 |
| 1881 | 12/15/2010 | 9:50:40 | 0 | 2.8297  | 16.758 |
| 1882 | 12/15/2010 | 9:50:41 | 0 | 2.8264  | 16.758 |
| 1883 | 12/15/2010 | 9:50:42 | 0 | 2.809   | 16.758 |
| 1884 | 12/15/2010 | 9:50:43 | 0 | 2.8167  | 16.759 |
| 1885 | 12/15/2010 | 9:50:44 | 0 | 2.8305  | 16.759 |
| 1886 | 12/15/2010 | 9:50:45 | 0 | 2.81    | 16.759 |
| 1887 | 12/15/2010 | 9:50:46 | 0 | 2.8095  | 16.759 |
| 1888 | 12/15/2010 | 9:50:47 | 0 | 2.8172  | 16.759 |
| 1889 | 12/15/2010 | 9:50:48 | 0 | 2.8139  | 16.759 |
| 1890 | 12/15/2010 | 9:50:49 | 0 | 2.8079  | 16.759 |
| 1891 | 12/15/2010 | 9:50:50 | 0 | 2.8081  | 16.759 |
| 1892 | 12/15/2010 | 9:50:51 | 0 | 2.8023  | 16.758 |
| 1893 | 12/15/2010 | 9:50:52 | 0 | 2.8017  | 16.759 |
| 1894 | 12/15/2010 | 9:50:53 | 0 | 2.7997  | 16.759 |
| 1895 | 12/15/2010 | 9:50:54 | 0 | 2.7919  | 16.759 |
| 1896 | 12/15/2010 | 9:50:55 | 0 | 2.7952  | 16.758 |
| 1897 | 12/15/2010 | 9:50:56 | 0 | 2.7926  | 16.758 |
| 1898 | 12/15/2010 | 9:50:57 | 0 | 2.7844  | 16.758 |
| 1899 | 12/15/2010 | 9:50:58 | 0 | 2.7818  | 16.757 |
| 1900 | 12/15/2010 | 9:50:59 | 0 | 2.7814  | 16.756 |
| 1901 | 12/15/2010 | 9:51:00 | 0 | 2.7819  | 16.756 |
| 1902 | 12/15/2010 | 9:51:01 | 0 | 2.775   | 16.756 |
| 1903 | 12/15/2010 | 9:51:02 | 0 | 2.7711  | 16.755 |
| 1904 | 12/15/2010 | 9:51:03 | 0 | 2.7814  | 16.754 |
| 1905 | 12/15/2010 | 9:51:04 | 0 | 2.7668  | 16.753 |
| 1906 | 12/15/2010 | 9:51:05 | 0 | 2.7604  | 16.753 |
| 1907 | 12/15/2010 | 9:51:06 | 0 | 2.7713  | 16.753 |
| 1908 | 12/15/2010 | 9:51:07 | 0 | 2.7624  | 16.752 |
| 1909 | 12/15/2010 | 9:51:08 | 0 | 2.7565  | 16.751 |
| 1910 | 12/15/2010 | 9:51:09 | 0 | 2.7616  | 16.75  |
| 1911 | 12/15/2010 | 9:51:10 | 0 | 2.756   | 16.75  |
| 1912 | 12/15/2010 | 9:51:11 | 0 | 2.7516  | 18.749 |
| 1913 | 12/15/2010 | 9:51:12 | 0 | 2.752   | 16.749 |
| 1914 | 12/15/2010 | 9:51:13 | 0 | 2.7534  | 18.747 |
| 1915 | 12/15/2010 | 9:51:14 | 0 | 2.7437  | 18.747 |
| 1916 | 12/15/2010 | 9:51:15 | 0 | 2.7425  | 16.745 |
| 1917 | 12/15/2010 | 9:51:16 | 0 | 2.7353  | 16.744 |
| 1918 | 12/15/2010 | 9:51:17 | 0 | 2.739   | 16.743 |
| 1919 | 12/15/2010 | 9:51:18 | 0 | 2.7313  | 16.742 |
| 1920 | 12/15/2010 | 9:51:19 | 0 | 2.7288  | 16.741 |
| 1921 | 12/15/2010 | 9:51:20 | 0 | 2.7274  | 16.74  |
| 1922 | 12/15/2010 | 9:51:21 | 0 | 2.7293  | 16.739 |
| 1923 | 12/15/2010 | 9:51:22 | 0 | 2.7229  | 16.738 |
| 1924 | 12/15/2010 | 9:51:23 | 0 | 2.7204  | 16.736 |
| 1925 | 12/15/2010 | 9:51:24 | 0 | 2.7197  | 16.736 |
| 1926 | 12/15/2010 | 9:51:25 | 0 | 2.7153  | 16.734 |
| 1927 | 12/15/2010 | 9:51:26 | 0 | 2.7169  | 16.732 |
| 1928 | 12/15/2010 | 9:51:27 | 0 | 2.7075  | 16.731 |
| 1929 | 12/15/2010 | 9:51:28 | 0 | 2.7075  | 16.73  |
| 1930 | 12/15/2010 | 9:51:29 | 0 | 2.7062  | 16.729 |
| 1931 | 12/15/2010 | 9:51:30 | 0 | 2.7018  | 16.727 |
| 1932 | 12/15/2010 | 9:51:31 | 0 | 2.6961  | 16.726 |
| 1933 | 12/15/2010 | 9:51:32 | 0 | 2.6961  | 16.724 |
| 1934 | 12/15/2010 | 9:51:33 | 0 | 2.6913  | 16.722 |
| 1935 | 12/15/2010 | 9:51:34 | 0 | 2.8903  | 16.72  |
| 1936 | 12/15/2010 | 9:51:35 | 0 | 2.6666  | 18.719 |
| 1937 | 12/15/2010 | 9:51:36 | 0 | 2.6719  | 16.717 |
| 1938 | 12/15/2010 | 9:51:37 | 0 | 2.6739  | 16.715 |
| 1939 | 12/15/2010 | 9:51:38 | 0 | 2.6968  | 16.712 |
| 1940 | 12/15/2010 | 9:51:39 | 0 | 2.694   | 16.71  |

|      |            |         |   |        |        |
|------|------------|---------|---|--------|--------|
| 1941 | 12/15/2010 | 9:51:40 | 0 | 2.6946 | 16.706 |
| 1942 | 12/15/2010 | 9:51:41 | 0 | 2.6956 | 16.703 |
| 1943 | 12/15/2010 | 9:51:42 | 0 | 2.6985 | 16.698 |
| 1944 | 12/15/2010 | 9:51:43 | 0 | 2.6953 | 16.693 |
| 1945 | 12/15/2010 | 9:51:44 | 0 | 2.6926 | 16.688 |
| 1946 | 12/15/2010 | 9:51:45 | 0 | 2.6931 | 16.682 |
| 1947 | 12/15/2010 | 9:51:46 | 0 | 2.7005 | 16.676 |
| 1948 | 12/15/2010 | 9:51:47 | 0 | 2.6882 | 16.671 |
| 1949 | 12/15/2010 | 9:51:48 | 0 | 2.6952 | 16.663 |
| 1950 | 12/15/2010 | 9:51:49 | 0 | 2.6953 | 16.656 |
| 1951 | 12/15/2010 | 9:51:50 | 0 | 2.6971 | 16.648 |
| 1952 | 12/15/2010 | 9:51:51 | 0 | 2.698  | 16.641 |
| 1953 | 12/15/2010 | 9:51:52 | 0 | 2.6981 | 16.633 |
| 1954 | 12/15/2010 | 9:51:53 | 0 | 2.6993 | 16.625 |
| 1955 | 12/15/2010 | 9:51:54 | 0 | 2.7026 | 16.616 |
| 1956 | 12/15/2010 | 9:51:55 | 0 | 2.7001 | 16.609 |
| 1957 | 12/15/2010 | 9:51:56 | 0 | 2.7032 | 16.6   |
| 1958 | 12/15/2010 | 9:51:57 | 0 | 2.7016 | 16.594 |
| 1959 | 12/15/2010 | 9:51:58 | 0 | 2.6995 | 16.587 |
| 1960 | 12/15/2010 | 9:51:59 | 0 | 2.7081 | 16.58  |
| 1961 | 12/15/2010 | 9:52:00 | 0 | 2.7057 | 16.574 |
| 1962 | 12/15/2010 | 9:52:01 | 0 | 2.704  | 16.567 |
| 1963 | 12/15/2010 | 9:52:02 | 0 | 2.7028 | 16.562 |
| 1964 | 12/15/2010 | 9:52:03 | 0 | 2.7098 | 16.557 |
| 1965 | 12/15/2010 | 9:52:04 | 0 | 2.7089 | 16.552 |
| 1966 | 12/15/2010 | 9:52:05 | 0 | 2.6981 | 16.548 |
| 1967 | 12/15/2010 | 9:52:06 | 0 | 2.6973 | 16.546 |
| 1968 | 12/15/2010 | 9:52:07 | 0 | 2.7076 | 16.544 |
| 1969 | 12/15/2010 | 9:52:08 | 0 | 2.706  | 16.542 |
| 1970 | 12/15/2010 | 9:52:09 | 0 | 2.7055 | 16.54  |
| 1971 | 12/15/2010 | 9:52:10 | 0 | 2.7035 | 16.538 |
| 1972 | 12/15/2010 | 9:52:11 | 0 | 2.7017 | 16.538 |
| 1973 | 12/15/2010 | 9:52:12 | 0 | 2.7033 | 16.536 |
| 1974 | 12/15/2010 | 9:52:13 | 0 | 2.6998 | 16.536 |
| 1975 | 12/15/2010 | 9:52:14 | 0 | 2.7017 | 16.536 |
| 1976 | 12/15/2010 | 9:52:15 | 0 | 2.7011 | 16.536 |
| 1977 | 12/15/2010 | 9:52:16 | 0 | 2.6996 | 16.535 |
| 1978 | 12/15/2010 | 9:52:17 | 0 | 2.6981 | 16.534 |
| 1979 | 12/15/2010 | 9:52:18 | 0 | 2.6988 | 16.533 |
| 1980 | 12/15/2010 | 9:52:19 | 0 | 2.6969 | 16.533 |
| 1981 | 12/15/2010 | 9:52:20 | 0 | 2.6996 | 16.532 |
| 1982 | 12/15/2010 | 9:52:21 | 0 | 2.7001 | 16.53  |
| 1983 | 12/15/2010 | 9:52:22 | 0 | 2.6978 | 16.529 |
| 1984 | 12/15/2010 | 9:52:23 | 0 | 2.7023 | 16.528 |
| 1985 | 12/15/2010 | 9:52:24 | 0 | 2.7012 | 16.527 |
| 1986 | 12/15/2010 | 9:52:25 | 0 | 2.7035 | 16.521 |
| 1987 | 12/15/2010 | 9:52:26 | 0 | 2.6995 | 16.526 |
| 1988 | 12/15/2010 | 9:52:27 | 0 | 2.7013 | 16.522 |
| 1989 | 12/15/2010 | 9:52:26 | 0 | 2.6995 | 16.52  |
| 1990 | 12/15/2010 | 9:52:29 | 0 | 2.6993 | 16.517 |
| 1991 | 12/15/2010 | 9:52:30 | 0 | 2.7036 | 16.515 |
| 1992 | 12/15/2010 | 9:52:31 | 0 | 2.7007 | 16.512 |
| 1993 | 12/15/2010 | 9:52:32 | 0 | 2.6998 | 16.509 |
| 1994 | 12/15/2010 | 9:52:33 | 0 | 2.7011 | 16.506 |
| 1995 | 12/15/2010 | 9:52:34 | 0 | 2.7024 | 16.503 |
| 1996 | 12/15/2010 | 9:52:35 | 0 | 2.701  | 16.5   |
| 1997 | 12/15/2010 | 9:52:36 | 0 | 2.7019 | 16.496 |
| 1998 | 12/15/2010 | 9:52:37 | 0 | 2.6983 | 16.492 |
| 1999 | 12/15/2010 | 9:52:38 | 0 | 2.7019 | 16.488 |
| 2000 | 12/15/2010 | 9:52:39 | 0 | 2.7042 | 16.484 |
| 2001 | 12/15/2010 | 9:52:40 | 0 | 2.7013 | 16.479 |
| 2002 | 12/15/2010 | 9:52:41 | 0 | 2.7005 | 16.475 |
| 2003 | 12/15/2010 | 9:52:42 | 0 | 2.7003 | 16.469 |
| 2004 | 12/15/2010 | 9:52:43 | 0 | 2.7024 | 16.465 |
| 2005 | 12/15/2010 | 9:52:44 | 0 | 2.7031 | 16.46  |
| 2006 | 12/15/2010 | 9:52:45 | 0 | 2.701  | 16.454 |
| 2007 | 12/15/2010 | 9:52:46 | 0 | 2.7038 | 16.448 |
| 2008 | 12/15/2010 | 9:52:47 | 0 | 2.7033 | 16.442 |
| 2009 | 12/15/2010 | 9:52:48 | 0 | 2.7072 | 16.434 |

**Technical Memorandum—Field Report  
Slug Tests at Burn Site Groundwater Study Area  
Groundwater Monitoring Wells**

**Table A-2  
Transducer Field Data for CYN-MW10**



## Serial Number

1040608

## Project ID

BSG Slug tests

## Location

CYN-MW10

## Level

Unit

ft

## Offset

0.00 ft

## Altitude

6350 ft

## Temperature

Unit

## Deg C

| Date | Time       | 100 ms  | Level | Temperature    |
|------|------------|---------|-------|----------------|
| 1    | 12/16/2010 | 0:20:00 | 0     | 10.7297 15.311 |
| 2    | 12/16/2010 | 0:20:01 | 0     | 10.7302 15.32  |
| 3    | 12/16/2010 | 0:20:02 | 0     | 10.7304 15.325 |
| 4    | 12/16/2010 | 0:20:03 | 0     | 10.7312 15.329 |
| 5    | 12/16/2010 | 0:20:04 | 0     | 10.7298 15.332 |
| 6    | 12/16/2010 | 0:20:05 | 0     | 10.7267 15.334 |
| 7    | 12/16/2010 | 0:20:06 | 0     | 10.7332 15.336 |
| 8    | 12/16/2010 | 0:20:07 | 0     | 10.7312 15.338 |
| 9    | 12/16/2010 | 0:20:08 | 0     | 10.731 15.34   |
| 10   | 12/16/2010 | 0:20:09 | 0     | 10.7331 15.34  |
| 11   | 12/16/2010 | 0:20:10 | 0     | 10.7336 15.34  |
| 12   | 12/16/2010 | 0:20:11 | 0     | 10.8275 15.344 |
| 13   | 12/16/2010 | 0:20:12 | 0     | 11.5109 15.344 |
| 14   | 12/16/2010 | 0:20:13 | 0     | 12.0925 15.346 |
| 15   | 12/16/2010 | 0:20:14 | 0     | 12.7562 15.346 |
| 16   | 12/16/2010 | 0:20:15 | 0     | 12.853 15.348  |
| 17   | 12/16/2010 | 0:20:16 | 0     | 12.7784 15.349 |
| 18   | 12/16/2010 | 0:20:17 | 0     | 12.5281 15.349 |
| 19   | 12/16/2010 | 0:20:18 | 0     | 12.7638 15.351 |
| 20   | 12/16/2010 | 0:20:19 | 0     | 13.5062 15.351 |
| 21   | 12/16/2010 | 0:20:20 | 0     | 12.0172 15.352 |
| 22   | 12/16/2010 | 0:20:21 | 0     | 12.7867 15.353 |
| 23   | 12/16/2010 | 0:20:22 | 0     | 12.7901 15.354 |
| 24   | 12/16/2010 | 0:20:23 | 0     | 12.8894 15.354 |
| 25   | 12/16/2010 | 0:20:24 | 0     | 12.6753 15.356 |
| 26   | 12/16/2010 | 0:20:25 | 0     | 12.7509 15.356 |
| 27   | 12/16/2010 | 0:20:26 | 0     | 12.6847 15.356 |
| 28   | 12/16/2010 | 0:20:27 | 0     | 12.6708 15.357 |
| 29   | 12/16/2010 | 0:20:28 | 0     | 12.6562 15.358 |
| 30   | 12/16/2010 | 0:20:29 | 0     | 12.6473 15.359 |
| 31   | 12/16/2010 | 0:20:30 | 0     | 12.6313 15.359 |
| 32   | 12/16/2010 | 0:20:31 | 0     | 12.6227 15.36  |
| 33   | 12/16/2010 | 0:20:32 | 0     | 12.6099 15.361 |
| 34   | 12/16/2010 | 0:20:33 | 0     | 12.5987 15.361 |
| 35   | 12/16/2010 | 0:20:34 | 0     | 12.5853 15.361 |
| 36   | 12/16/2010 | 0:20:35 | 0     | 12.5817 15.362 |
| 37   | 12/16/2010 | 0:20:36 | 0     | 12.5816 15.363 |
| 38   | 12/16/2010 | 0:20:37 | 0     | 12.5756 15.363 |
| 39   | 12/16/2010 | 0:20:38 | 0     | 12.5394 15.364 |
| 40   | 12/16/2010 | 0:20:39 | 0     | 12.4952 15.364 |
| 41   | 12/16/2010 | 0:20:40 | 0     | 12.631 15.365  |
| 42   | 12/16/2010 | 0:20:41 | 0     | 12.5013 15.365 |
| 43   | 12/16/2010 | 0:20:42 | 0     | 12.4696 15.365 |
| 44   | 12/16/2010 | 0:20:43 | 0     | 12.4891 15.367 |
| 45   | 12/16/2010 | 0:20:44 | 0     | 12.4658 15.368 |
| 46   | 12/16/2010 | 0:20:45 | 0     | 12.4062 15.368 |
| 47   | 12/16/2010 | 0:20:46 | 0     | 12.4131 15.367 |
| 48   | 12/16/2010 | 0:20:47 | 0     | 12.4445 15.367 |
| 49   | 12/16/2010 | 0:20:48 | 0     | 12.4355 15.368 |
| 50   | 12/16/2010 | 0:20:49 | 0     | 12.4246 15.368 |
| 51   | 12/16/2010 | 0:20:50 | 0     | 12.4149 15.368 |
| 52   | 12/16/2010 | 0:20:51 | 0     | 12.4037 15.37  |
| 53   | 12/16/2010 | 0:20:52 | 0     | 12.3951 15.37  |
| 54   | 12/16/2010 | 0:20:53 | 0     | 12.3851 15.37  |
| 55   | 12/16/2010 | 0:20:54 | 0     | 12.3749 15.371 |
| 56   | 12/16/2010 | 0:20:55 | 0     | 12.3698 15.371 |
| 57   | 12/16/2010 | 0:20:56 | 0     | 12.3544 15.371 |
| 58   | 12/16/2010 | 0:20:57 | 0     | 12.3463 15.371 |
| 59   | 12/16/2010 | 0:20:58 | 0     | 12.3346 15.372 |
| 60   | 12/16/2010 | 0:20:59 | 0     | 12.326 15.373  |
| 61   | 12/16/2010 | 0:21:00 | 0     | 12.3109 15.372 |
| 62   | 12/16/2010 | 0:21:01 | 0     | 12.3129 15.373 |
| 63   | 12/16/2010 | 0:21:02 | 0     | 12.2987 15.374 |
| 64   | 12/16/2010 | 0:21:03 | 0     | 12.2285 15.373 |
| 65   | 12/16/2010 | 0:21:04 | 0     | 12.2905 15.373 |
| 66   | 12/16/2010 | 0:21:05 | 0     | 12.2708 15.374 |
| 67   | 12/16/2010 | 0:21:06 | 0     | 12.2633 15.374 |
| 68   | 12/16/2010 | 0:21:07 | 0     | 12.2481 15.374 |
| 69   | 12/16/2010 | 0:21:08 | 0     | 12.2475 15.375 |
| 70   | 12/16/2010 | 0:21:09 | 0     | 12.2342 15.375 |
| 71   | 12/16/2010 | 0:21:10 | 0     | 12.2275 15.375 |
| 72   | 12/16/2010 | 0:21:11 | 0     | 12.2197 15.375 |
| 73   | 12/16/2010 | 0:21:12 | 0     | 12.2118 15.375 |
| 74   | 12/16/2010 | 0:21:13 | 0     | 12.2026 15.378 |
| 75   | 12/16/2010 | 0:21:14 | 0     | 12.1923 15.378 |
| 76   | 12/16/2010 | 0:21:15 | 0     | 12.1837 15.377 |
| 77   | 12/16/2010 | 0:21:16 | 0     | 12.1728 15.378 |
| 78   | 12/16/2010 | 0:21:17 | 0     | 12.1653 15.377 |
| 79   | 12/16/2010 | 0:21:18 | 0     | 12.1613 15.377 |
| 80   | 12/16/2010 | 0:21:19 | 0     | 12.1489 15.377 |
| 81   | 12/16/2010 | 0:21:20 | 0     | 12.1337 15.377 |
| 82   | 12/16/2010 | 0:21:21 | 0     | 12.1338 15.378 |
| 83   | 12/16/2010 | 0:21:22 | 0     | 12.1296 15.377 |
| 84   | 12/16/2010 | 0:21:23 | 0     | 12.1155 15.377 |
| 85   | 12/16/2010 | 0:21:24 | 0     | 12.1127 15.378 |
| 86   | 12/16/2010 | 0:21:25 | 0     | 12.1016 15.378 |
| 87   | 12/16/2010 | 0:21:26 | 0     | 12.0931 15.378 |
| 88   | 12/16/2010 | 0:21:27 | 0     | 12.1315 15.378 |
| 89   | 12/16/2010 | 0:21:28 | 0     | 12.0542 15.379 |
| 90   | 12/16/2010 | 0:21:29 | 0     | 12.0519 15.379 |
| 91   | 12/16/2010 | 0:21:30 | 0     | 11.9738 15.379 |
| 92   | 12/16/2010 | 0:21:31 | 0     | 12.0217 15.379 |
| 93   | 12/16/2010 | 0:21:32 | 0     | 12.0473 15.379 |
| 94   | 12/16/2010 | 0:21:33 | 0     | 12.0406 15.378 |
| 95   | 12/10/2010 | 0:21:34 | 0     | 12.0321 15.379 |
| 96   | 12/16/2010 | 0:21:35 | 0     | 12.0228 15.379 |
| 97   | 12/16/2010 | 0:21:36 | 0     | 12.0162 15.378 |
| 98   | 12/16/2010 | 0:21:37 | 0     | 12.0088 15.379 |
| 99   | 12/16/2010 | 0:21:38 | 0     | 12.0024 15.38  |
| 100  | 12/16/2010 | 0:21:39 | 0     | 11.9968 15.38  |
| 101  | 12/16/2010 | 0:21:40 | 0     | 11.9871 15.38  |
| 102  | 12/16/2010 | 0:21:41 | 0     | 11.9835 15.38  |
| 103  | 12/16/2010 | 0:21:42 | 0     | 11.9742 15.38  |
| 104  | 12/16/2010 | 0:21:43 | 0     | 11.9862 15.379 |
| 105  | 12/16/2010 | 0:21:44 | 0     | 11.9599 15.38  |
| 106  | 12/16/2010 | 0:21:45 | 0     | 11.9543 15.38  |
| 107  | 12/16/2010 | 0:21:46 | 0     | 11.9455 15.38  |
| 108  | 12/16/2010 | 0:21:47 | 0     | 11.9359 15.381 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 109 | 12/16/2010 | 8:21:48 | 0 | 11.9318 | 15.38  |
| 110 | 12/16/2010 | 8:21:49 | 0 | 11.9245 | 15.381 |
| 111 | 12/16/2010 | 8:21:50 | 0 | 11.9168 | 15.38  |
| 112 | 12/16/2010 | 8:21:51 | 0 | 11.9124 | 15.381 |
| 113 | 12/16/2010 | 8:21:52 | 0 | 11.9038 | 15.38  |
| 114 | 12/16/2010 | 8:21:53 | 0 | 11.9166 | 15.381 |
| 115 | 12/16/2010 | 8:21:54 | 0 | 11.8911 | 15.38  |
| 116 | 12/16/2010 | 8:21:55 | 0 | 11.8854 | 15.381 |
| 117 | 12/16/2010 | 8:21:56 | 0 | 11.8896 | 15.38  |
| 118 | 12/16/2010 | 8:21:57 | 0 | 11.8895 | 15.38  |
| 119 | 12/16/2010 | 8:21:58 | 0 | 11.8647 | 15.38  |
| 120 | 12/16/2010 | 8:21:59 | 0 | 11.8573 | 15.381 |
| 121 | 12/16/2010 | 8:22:00 | 0 | 11.8515 | 15.381 |
| 122 | 12/16/2010 | 8:22:01 | 0 | 11.8448 | 15.381 |
| 123 | 12/16/2010 | 8:22:02 | 0 | 11.8391 | 15.381 |
| 124 | 12/16/2010 | 8:22:03 | 9 | 11.8346 | 15.38  |
| 125 | 12/16/2010 | 8:22:04 | 0 | 11.826  | 15.38  |
| 126 | 12/16/2010 | 8:22:05 | 0 | 11.8211 | 15.381 |
| 127 | 12/16/2010 | 8:22:06 | 0 | 11.8138 | 15.381 |
| 128 | 12/16/2010 | 8:22:07 | 0 | 11.8082 | 15.381 |
| 129 | 12/16/2010 | 8:22:08 | 0 | 11.8032 | 15.381 |
| 130 | 12/16/2010 | 8:22:09 | 0 | 11.7967 | 15.381 |
| 131 | 12/16/2010 | 8:22:10 | 0 | 11.7884 | 15.381 |
| 132 | 12/16/2010 | 8:22:11 | 0 | 11.7835 | 15.381 |
| 133 | 12/16/2010 | 8:22:12 | 0 | 11.7771 | 15.38  |
| 134 | 12/16/2010 | 8:22:13 | 0 | 11.7723 | 15.381 |
| 135 | 12/16/2010 | 8:22:14 | 0 | 11.7669 | 15.381 |
| 136 | 12/16/2010 | 8:22:15 | 0 | 11.7584 | 15.381 |
| 137 | 12/16/2010 | 8:22:16 | 0 | 11.7542 | 15.381 |
| 138 | 12/16/2010 | 8:22:17 | 0 | 11.7501 | 15.38  |
| 139 | 12/16/2010 | 8:22:18 | 0 | 11.7427 | 15.38  |
| 140 | 12/16/2010 | 8:22:19 | 0 | 11.7384 | 15.381 |
| 141 | 12/16/2010 | 8:22:20 | 0 | 11.7313 | 15.38  |
| 142 | 12/16/2010 | 8:22:21 | 0 | 11.7268 | 15.381 |
| 143 | 12/16/2010 | 8:22:22 | 0 | 11.7225 | 15.38  |
| 144 | 12/16/2010 | 8:22:23 | 0 | 11.7141 | 15.38  |
| 145 | 12/16/2010 | 8:22:24 | 0 | 11.7104 | 15.38  |
| 146 | 12/16/2010 | 8:22:25 | 0 | 11.7029 | 15.381 |
| 147 | 12/16/2010 | 8:22:26 | 0 | 11.6987 | 15.381 |
| 148 | 12/16/2010 | 8:22:27 | 0 | 11.6912 | 15.381 |
| 149 | 12/16/2010 | 8:22:28 | 0 | 11.6883 | 15.38  |
| 150 | 12/16/2010 | 8:22:29 | 0 | 11.684  | 15.381 |
| 151 | 12/16/2010 | 8:22:30 | 0 | 11.6766 | 15.38  |
| 152 | 12/16/2010 | 8:22:31 | 0 | 11.6703 | 15.381 |
| 153 | 12/16/2010 | 8:22:32 | 0 | 11.6685 | 15.38  |
| 154 | 12/16/2010 | 8:22:33 | 0 | 11.6594 | 15.381 |
| 155 | 12/16/2010 | 8:22:34 | 9 | 11.6567 | 15.381 |
| 156 | 12/16/2010 | 8:22:35 | 0 | 11.6492 | 15.361 |
| 157 | 12/16/2010 | 8:22:36 | 0 | 11.6457 | 15.38  |
| 158 | 12/16/2010 | 8:22:37 | 9 | 11.6414 | 15.38  |
| 158 | 12/16/2010 | 8:22:38 | 0 | 11.6371 | 15.381 |
| 160 | 12/16/2010 | 8:22:39 | 0 | 11.6298 | 15.381 |
| 161 | 12/16/2010 | 8:22:40 | 0 | 11.6243 | 15.38  |
| 162 | 12/16/2010 | 8:22:41 | 0 | 11.6181 | 15.38  |
| 163 | 12/16/2010 | 8:22:42 | 0 | 11.8147 | 15.38  |
| 164 | 12/16/2010 | 8:22:43 | 0 | 11.6095 | 15.38  |
| 165 | 12/16/2010 | 8:22:44 | 0 | 11.6058 | 15.381 |
| 166 | 12/16/2010 | 8:22:45 | 0 | 11.5987 | 15.38  |
| 167 | 12/16/2010 | 8:22:46 | 0 | 11.5973 | 15.379 |
| 168 | 12/16/2010 | 8:22:47 | 0 | 11.589  | 15.38  |
| 169 | 12/16/2010 | 8:22:48 | 0 | 11.5879 | 15.38  |
| 170 | 12/16/2010 | 8:22:49 | 0 | 11.5823 | 15.38  |
| 171 | 12/16/2010 | 8:22:50 | 0 | 11.579  | 15.381 |
| 172 | 12/16/2010 | 8:22:51 | 0 | 11.571  | 15.38  |
| 173 | 12/16/2010 | 8:22:52 | 0 | 11.5643 | 15.38  |
| 174 | 12/16/2010 | 8:22:53 | 0 | 11.5625 | 15.38  |
| 175 | 12/16/2010 | 8:22:54 | 0 | 11.5585 | 15.38  |
| 176 | 12/16/2010 | 8:22:55 | 0 | 11.5536 | 15.38  |
| 177 | 12/16/2010 | 8:22:56 | 0 | 11.5498 | 15.38  |
| 178 | 12/16/2010 | 8:22:57 | 0 | 11.5436 | 15.38  |
| 179 | 12/16/2010 | 8:22:58 | 0 | 11.5373 | 15.38  |
| 180 | 12/16/2010 | 8:22:59 | 0 | 11.535  | 15.379 |
| 181 | 12/16/2010 | 8:23:00 | 0 | 11.5317 | 15.38  |
| 182 | 12/16/2010 | 8:23:01 | 0 | 11.5263 | 15.379 |
| 183 | 12/16/2010 | 8:23:02 | 0 | 11.5249 | 15.379 |
| 184 | 12/16/2010 | 8:23:03 | 0 | 11.5147 | 15.379 |
| 185 | 12/16/2010 | 8:23:04 | 0 | 11.5141 | 15.379 |
| 186 | 12/16/2010 | 8:23:05 | 0 | 11.5091 | 15.379 |
| 187 | 12/16/2010 | 8:23:06 | 0 | 11.5019 | 15.38  |
| 188 | 12/16/2010 | 8:23:07 | 0 | 11.4998 | 15.379 |
| 189 | 12/16/2010 | 8:23:08 | 0 | 11.4965 | 15.379 |
| 190 | 12/16/2010 | 8:23:09 | 0 | 11.4827 | 15.378 |
| 191 | 12/16/2010 | 8:23:10 | 0 | 11.4875 | 15.379 |
| 192 | 12/16/2010 | 8:23:11 | 0 | 11.4826 | 15.378 |
| 193 | 12/16/2010 | 8:23:12 | 0 | 11.4786 | 15.379 |
| 194 | 12/16/2010 | 8:23:13 | 0 | 11.4721 | 15.378 |
| 195 | 12/16/2010 | 8:23:14 | 0 | 11.4716 | 15.378 |
| 196 | 12/16/2010 | 8:23:15 | 0 | 11.4645 | 15.379 |
| 197 | 12/16/2010 | 8:23:16 | 0 | 11.4604 | 15.379 |
| 198 | 12/16/2010 | 8:23:17 | 9 | 11.4577 | 15.378 |
| 199 | 12/16/2010 | 8:23:18 | 0 | 11.4556 | 15.379 |
| 200 | 12/16/2010 | 8:23:19 | 0 | 11.4502 | 15.378 |
| 201 | 12/16/2010 | 8:23:20 | 0 | 11.4482 | 15.379 |
| 202 | 12/16/2010 | 8:23:21 | 0 | 11.4401 | 15.379 |
| 203 | 12/16/2010 | 8:23:22 | 0 | 11.4421 | 15.378 |
| 204 | 12/16/2010 | 8:23:23 | 0 | 11.4384 | 15.378 |
| 205 | 12/16/2010 | 8:23:24 | 0 | 11.4313 | 15.378 |
| 206 | 12/16/2010 | 8:23:25 | 0 | 11.4287 | 15.378 |
| 207 | 12/16/2010 | 8:23:26 | 0 | 11.4226 | 15.378 |
| 208 | 12/16/2010 | 8:23:27 | 0 | 11.4208 | 15.379 |
| 209 | 12/16/2010 | 8:23:28 | 0 | 11.4166 | 15.379 |
| 210 | 12/16/2010 | 8:23:29 | 0 | 11.4115 | 15.377 |
| 211 | 12/16/2010 | 8:23:30 | 0 | 11.4071 | 15.379 |
| 212 | 12/16/2010 | 8:23:31 | 0 | 11.4037 | 15.378 |
| 213 | 12/16/2010 | 8:23:32 | 0 | 11.4017 | 15.378 |
| 214 | 12/16/2010 | 8:23:33 | 0 | 11.401  | 15.378 |
| 215 | 12/16/2010 | 8:23:34 | 0 | 11.3938 | 15.378 |
| 216 | 12/16/2010 | 8:23:35 | 0 | 11.3912 | 15.377 |
| 217 | 12/16/2010 | 8:23:36 | 0 | 11.3838 | 15.377 |
| 218 | 12/16/2010 | 8:23:37 | 0 | 11.3845 | 15.378 |
| 219 | 12/16/2010 | 8:23:38 | 0 | 11.38   | 15.377 |
| 220 | 12/16/2010 | 8:23:38 | 0 | 11.377  | 15.378 |
| 221 | 12/16/2010 | 8:23:40 | 0 | 11.3734 | 15.378 |
| 222 | 12/16/2010 | 8:23:41 | 0 | 11.3669 | 15.378 |
| 223 | 12/16/2010 | 8:23:42 | 0 | 11.3658 | 15.378 |
| 224 | 12/16/2010 | 8:23:43 | 0 | 11.3829 | 15.377 |
| 225 | 12/16/2010 | 8:23:44 | 0 | 11.3587 | 15.378 |
| 226 | 12/16/2010 | 8:23:45 | 0 | 11.3554 | 15.377 |
| 227 | 12/16/2010 | 8:23:46 | 0 | 11.3533 | 15.377 |
| 228 | 12/16/2010 | 8:23:47 | 0 | 11.3486 | 15.377 |
| 229 | 12/16/2010 | 8:23:48 | 0 | 11.3482 | 15.377 |
| 230 | 12/16/2010 | 8:23:49 | 0 | 11.3416 | 15.377 |
| 231 | 12/16/2010 | 8:23:50 | 0 | 11.339  | 15.377 |
| 232 | 12/16/2010 | 8:23:51 | 0 | 11.3319 | 15.377 |
| 233 | 12/16/2010 | 8:23:52 | 0 | 11.333  | 15.376 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 234 | 12/16/2010 | 8:23:53 | 0 | 11.3295 | 15.377 |
| 235 | 12/16/2010 | 8:23:54 | 0 | 11.3263 | 15.377 |
| 236 | 12/16/2010 | 8:23:55 | 8 | 11.3207 | 15.377 |
| 237 | 12/16/2010 | 8:23:56 | 0 | 11.3197 | 15.377 |
| 238 | 12/16/2010 | 8:23:57 | 0 | 11.3134 | 15.377 |
| 239 | 12/16/2010 | 8:23:58 | 8 | 11.3143 | 15.377 |
| 240 | 12/16/2010 | 8:23:58 | 8 | 11.3101 | 15.377 |
| 241 | 12/16/2010 | 8:24:00 | 0 | 11.307  | 15.377 |
| 242 | 12/16/2010 | 8:24:01 | 0 | 11.3065 | 15.377 |
| 243 | 12/16/2010 | 8:24:02 | 0 | 11.3024 | 15.377 |
| 244 | 12/16/2010 | 8:24:03 | 0 | 11.299  | 15.377 |
| 245 | 12/16/2010 | 8:24:04 | 0 | 11.2937 | 15.376 |
| 246 | 12/16/2010 | 8:24:05 | 0 | 11.2897 | 15.376 |
| 247 | 12/16/2010 | 8:24:06 | 0 | 11.2906 | 15.376 |
| 248 | 12/16/2010 | 8:24:07 | 0 | 11.2851 | 15.376 |
| 249 | 12/16/2010 | 8:24:08 | 0 | 11.2826 | 15.376 |
| 250 | 12/16/2010 | 8:24:09 | 8 | 11.2817 | 15.376 |
| 251 | 12/16/2010 | 8:24:18 | 0 | 11.2766 | 15.376 |
| 252 | 12/16/2010 | 8:24:11 | 0 | 11.2712 | 15.375 |
| 253 | 12/16/2010 | 8:24:12 | 0 | 11.2687 | 15.378 |
| 254 | 12/16/2010 | 8:24:13 | 0 | 11.2684 | 15.376 |
| 255 | 12/16/2010 | 8:24:14 | 0 | 11.2661 | 15.376 |
| 256 | 12/16/2010 | 8:24:15 | 0 | 11.2624 | 15.375 |
| 257 | 12/16/2010 | 8:24:16 | 0 | 11.2596 | 15.376 |
| 258 | 12/16/2010 | 8:24:17 | 0 | 11.2578 | 15.375 |
| 259 | 12/16/2010 | 8:24:18 | 8 | 11.2524 | 15.378 |
| 260 | 12/16/2010 | 8:24:18 | 9 | 11.2516 | 15.375 |
| 261 | 12/16/2010 | 8:24:20 | 9 | 11.2499 | 15.375 |
| 262 | 12/16/2010 | 8:24:21 | 0 | 11.247  | 15.375 |
| 263 | 12/16/2010 | 8:24:22 | 0 | 11.2432 | 15.375 |
| 264 | 12/16/2010 | 8:24:23 | 0 | 11.2401 | 15.375 |
| 265 | 12/16/2010 | 8:24:24 | 0 | 11.2374 | 15.375 |
| 266 | 12/16/2010 | 8:24:25 | 0 | 11.2336 | 15.375 |
| 267 | 12/16/2010 | 8:24:26 | 8 | 11.4416 | 15.375 |
| 268 | 12/16/2010 | 8:24:27 | 0 | 11.246  | 15.375 |
| 269 | 12/16/2010 | 8:24:28 | 0 | 11.1627 | 15.375 |
| 270 | 12/16/2010 | 8:24:29 | 0 | 11.0902 | 15.375 |
| 271 | 12/16/2010 | 8:24:38 | 8 | 11.2205 | 15.375 |
| 272 | 12/16/2010 | 8:24:31 | 0 | 11.2171 | 15.375 |
| 273 | 12/16/2010 | 8:24:32 | 0 | 11.2153 | 15.375 |
| 274 | 12/16/2010 | 8:24:33 | 8 | 11.2168 | 15.375 |
| 275 | 12/16/2010 | 8:24:34 | 0 | 11.2109 | 15.375 |
| 276 | 12/16/2010 | 8:24:35 | 0 | 11.2105 | 15.374 |
| 277 | 12/16/2010 | 8:24:36 | 0 | 11.2078 | 15.375 |
| 278 | 12/16/2010 | 8:24:37 | 8 | 11.2032 | 15.374 |
| 279 | 12/16/2010 | 8:24:36 | 0 | 11.1992 | 15.374 |
| 280 | 12/16/2010 | 8:24:39 | 0 | 11.1993 | 15.375 |
| 281 | 12/16/2010 | 8:24:40 | 0 | 11.198  | 15.374 |
| 282 | 12/16/2010 | 8:24:41 | 8 | 11.1944 | 15.375 |
| 283 | 12/16/2010 | 8:24:42 | 8 | 11.1902 | 15.374 |
| 284 | 12/16/2010 | 8:24:43 | 0 | 11.1885 | 15.374 |
| 285 | 12/16/2010 | 8:24:44 | 0 | 11.1888 | 15.374 |
| 286 | 12/16/2010 | 8:24:45 | 0 | 11.1878 | 15.374 |
| 287 | 12/16/2010 | 8:24:46 | 8 | 11.1821 | 15.374 |
| 288 | 12/16/2010 | 8:24:47 | 8 | 11.1831 | 15.374 |
| 289 | 12/16/2010 | 8:24:46 | 0 | 11.1916 | 15.374 |
| 290 | 12/16/2010 | 8:24:49 | 0 | 11.1973 | 15.374 |
| 291 | 12/16/2010 | 8:24:50 | 8 | 11.1888 | 15.374 |
| 292 | 12/16/2010 | 8:24:51 | 8 | 11.1758 | 15.374 |
| 293 | 12/16/2010 | 8:24:52 | 0 | 11.3813 | 15.374 |
| 294 | 12/16/2010 | 8:24:53 | 0 | 11.2749 | 15.374 |
| 295 | 12/16/2010 | 8:24:54 | 0 | 11.152  | 15.374 |
| 296 | 12/16/2010 | 8:24:55 | 0 | 11.1779 | 15.374 |
| 297 | 12/16/2010 | 8:24:56 | 0 | 11.1992 | 15.373 |
| 298 | 12/16/2010 | 8:24:57 | 0 | 11.156  | 15.373 |
| 299 | 12/16/2010 | 8:24:58 | 0 | 11.1543 | 15.373 |
| 300 | 12/16/2010 | 8:24:59 | 8 | 11.1527 | 15.373 |
| 301 | 12/16/2010 | 8:25:00 | 0 | 11.1495 | 15.373 |
| 302 | 12/16/2010 | 8:25:03 | 0 | 11.1431 | 15.356 |
| 303 | 12/16/2010 | 8:25:06 | 0 | 11.1226 | 15.353 |
| 304 | 12/16/2010 | 8:25:09 | 0 | 11.1377 | 15.35  |
| 305 | 12/16/2010 | 8:25:12 | 8 | 11.1239 | 15.347 |
| 306 | 12/16/2010 | 8:25:15 | 0 | 11.1148 | 15.345 |
| 307 | 12/16/2010 | 8:25:18 | 0 | 11.3095 | 15.343 |
| 308 | 12/16/2010 | 8:25:21 | 0 | 11.1116 | 15.341 |
| 309 | 12/16/2010 | 8:25:24 | 8 | 11.0988 | 15.34  |
| 310 | 12/16/2010 | 8:25:27 | 0 | 11.0941 | 15.338 |
| 311 | 12/16/2010 | 8:25:30 | 0 | 11.0885 | 15.338 |
| 312 | 12/16/2010 | 8:25:33 | 0 | 11.0831 | 15.334 |
| 313 | 12/16/2010 | 8:25:36 | 9 | 11.0808 | 15.334 |
| 314 | 12/16/2010 | 8:25:39 | 0 | 11.0747 | 15.333 |
| 315 | 12/16/2010 | 8:25:42 | 0 | 11.0727 | 15.331 |
| 316 | 12/16/2010 | 8:25:45 | 9 | 11.0632 | 15.33  |
| 317 | 12/16/2010 | 8:25:46 | 0 | 11.0585 | 15.329 |
| 318 | 12/16/2010 | 8:25:51 | 0 | 11.0541 | 15.328 |
| 319 | 12/16/2010 | 8:25:54 | 0 | 11.0476 | 15.327 |
| 320 | 12/16/2010 | 8:25:57 | 0 | 11.0485 | 15.326 |
| 321 | 12/16/2010 | 8:26:00 | 8 | 11.0416 | 15.326 |
| 322 | 12/16/2010 | 8:26:83 | 0 | 11.0482 | 15.325 |
| 323 | 12/16/2010 | 8:26:06 | 0 | 11.029  | 15.323 |
| 324 | 12/16/2010 | 8:26:09 | 0 | 11.0255 | 15.323 |
| 325 | 12/16/2010 | 8:26:12 | 0 | 11.8267 | 15.323 |
| 326 | 12/16/2010 | 8:26:15 | 0 | 11.0156 | 15.322 |
| 327 | 12/16/2010 | 8:26:18 | 0 | 11.0129 | 15.321 |
| 328 | 12/16/2010 | 8:26:21 | 0 | 11.0071 | 15.321 |
| 329 | 12/16/2010 | 8:26:24 | 0 | 11.0052 | 15.32  |
| 330 | 12/16/2010 | 8:26:27 | 0 | 11.0021 | 15.319 |
| 331 | 12/16/2010 | 8:26:30 | 0 | 10.9971 | 15.319 |
| 332 | 12/16/2010 | 8:26:33 | 0 | 10.9928 | 15.316 |
| 333 | 12/16/2010 | 8:26:36 | 0 | 10.9867 | 15.316 |
| 334 | 12/16/2010 | 8:26:39 | 0 | 10.9862 | 15.316 |
| 335 | 12/16/2010 | 8:26:42 | 8 | 10.9823 | 15.317 |
| 336 | 12/16/2010 | 8:26:45 | 9 | 10.976  | 15.317 |
| 337 | 12/16/2010 | 8:28:48 | 9 | 18.6755 | 15.317 |
| 338 | 12/16/2010 | 8:26:51 | 0 | 10.9727 | 15.316 |
| 339 | 12/16/2010 | 8:26:54 | 0 | 10.9695 | 15.316 |
| 340 | 12/16/2010 | 8:26:57 | 0 | 10.966  | 15.316 |
| 341 | 12/16/2010 | 8:27:00 | 8 | 10.9636 | 15.315 |
| 342 | 12/16/2010 | 8:27:83 | 0 | 10.9571 | 15.315 |
| 343 | 12/16/2010 | 8:27:06 | 0 | 10.6568 | 15.315 |
| 344 | 12/16/2010 | 8:27:09 | 0 | 10.9534 | 15.315 |
| 345 | 12/16/2010 | 8:27:12 | 0 | 10.9485 | 15.314 |
| 346 | 12/16/2010 | 8:27:15 | 0 | 10.9446 | 15.314 |
| 347 | 12/16/2010 | 8:27:18 | 0 | 10.9437 | 15.314 |
| 348 | 12/16/2010 | 8:27:21 | 0 | 10.9374 | 15.314 |
| 349 | 12/16/2010 | 8:27:24 | 0 | 10.9394 | 15.313 |
| 350 | 12/16/2010 | 8:27:27 | 0 | 10.9329 | 15.314 |
| 351 | 12/16/2010 | 8:27:30 | 0 | 10.933  | 15.313 |
| 352 | 12/16/2010 | 8:27:33 | 0 | 18.9285 | 15.313 |
| 353 | 12/16/2010 | 8:27:36 | 0 | 18.9261 | 15.312 |
| 354 | 12/16/2010 | 8:27:38 | 0 | 10.9232 | 15.312 |
| 355 | 12/16/2010 | 8:27:42 | 0 | 10.9188 | 15.312 |
| 356 | 12/16/2010 | 8:27:45 | 9 | 10.6183 | 15.312 |
| 357 | 12/16/2010 | 8:27:48 | 0 | 10.9167 | 15.312 |
| 358 | 12/16/2010 | 8:27:51 | 0 | 10.9109 | 15.311 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 359 | 12/16/2010 | 8:27:54 | 0 | 10.9108 | 15.311 |
| 360 | 12/16/2010 | 8:27:57 | 0 | 10.9119 | 15.311 |
| 361 | 12/16/2010 | 8:28:00 | 0 | 10.904  | 15.311 |
| 362 | 12/16/2010 | 8:28:03 | 0 | 10.9041 | 15.311 |
| 363 | 12/16/2010 | 8:28:06 | 0 | 10.9009 | 15.311 |
| 364 | 12/16/2010 | 8:28:09 | 0 | 10.8981 | 15.31  |
| 365 | 12/16/2010 | 8:28:12 | 0 | 10.897  | 15.31  |
| 366 | 12/16/2010 | 8:28:15 | 0 | 10.8951 | 15.31  |
| 367 | 12/16/2010 | 8:28:18 | 0 | 10.8924 | 15.31  |
| 368 | 12/16/2010 | 8:28:21 | 0 | 10.8898 | 15.31  |
| 369 | 12/16/2010 | 8:28:24 | 0 | 10.8884 | 15.31  |
| 370 | 12/16/2010 | 8:28:27 | 0 | 10.8888 | 15.31  |
| 371 | 12/16/2010 | 8:28:30 | 0 | 10.8854 | 15.31  |
| 372 | 12/16/2010 | 8:28:33 | 0 | 10.8821 | 15.309 |
| 373 | 12/16/2010 | 8:28:36 | 0 | 10.8817 | 15.309 |
| 374 | 12/16/2010 | 8:28:39 | 0 | 10.8811 | 15.309 |
| 375 | 12/16/2010 | 8:28:42 | 0 | 10.8764 | 15.309 |
| 376 | 12/16/2010 | 8:28:45 | 0 | 10.8752 | 15.309 |
| 377 | 12/16/2010 | 8:28:48 | 0 | 10.8754 | 15.308 |
| 378 | 12/16/2010 | 8:28:51 | 0 | 10.8718 | 15.308 |
| 379 | 12/16/2010 | 8:28:54 | 0 | 10.868  | 15.308 |
| 380 | 12/16/2010 | 8:28:57 | 0 | 10.868  | 15.308 |
| 381 | 12/16/2010 | 8:29:00 | 0 | 10.8658 | 15.308 |
| 382 | 12/16/2010 | 8:29:03 | 0 | 10.8616 | 15.308 |
| 383 | 12/16/2010 | 8:29:06 | 0 | 10.8622 | 15.308 |
| 384 | 12/16/2010 | 8:29:09 | 0 | 10.8598 | 15.307 |
| 385 | 12/16/2010 | 8:29:12 | 0 | 10.8611 | 15.308 |
| 386 | 12/16/2010 | 8:29:15 | 0 | 10.8604 | 15.307 |
| 387 | 12/16/2010 | 8:29:18 | 0 | 10.8589 | 15.307 |
| 388 | 12/16/2010 | 8:29:21 | 0 | 10.8562 | 15.307 |
| 389 | 12/16/2010 | 8:29:24 | 0 | 10.8507 | 15.307 |
| 390 | 12/16/2010 | 8:29:27 | 0 | 10.8519 | 15.306 |
| 391 | 12/16/2010 | 8:29:30 | 0 | 10.8501 | 15.306 |
| 392 | 12/16/2010 | 8:29:33 | 0 | 10.8506 | 15.306 |
| 393 | 12/16/2010 | 8:29:36 | 0 | 10.8477 | 15.307 |
| 394 | 12/16/2010 | 8:29:39 | 0 | 10.8456 | 15.306 |
| 395 | 12/16/2010 | 8:29:42 | 0 | 10.8434 | 15.306 |
| 396 | 12/16/2010 | 8:29:45 | 0 | 10.8447 | 15.306 |
| 397 | 12/16/2010 | 8:29:48 | 0 | 10.8448 | 15.306 |
| 398 | 12/16/2010 | 8:29:51 | 0 | 10.8399 | 15.308 |
| 399 | 12/16/2010 | 8:29:54 | 0 | 10.8416 | 15.306 |
| 400 | 12/16/2010 | 8:29:57 | 0 | 10.8382 | 15.306 |
| 401 | 12/16/2010 | 8:30:00 | 0 | 10.8364 | 15.305 |
| 402 | 12/16/2010 | 8:30:05 | 0 | 10.8353 | 15.302 |
| 403 | 12/16/2010 | 8:30:10 | 0 | 10.8344 | 15.301 |
| 404 | 12/16/2010 | 8:30:15 | 0 | 10.8331 | 15.3   |
| 405 | 12/16/2010 | 8:30:20 | 0 | 10.8273 | 15.299 |
| 406 | 12/16/2010 | 8:30:25 | 0 | 10.8269 | 15.3   |
| 407 | 12/16/2010 | 8:30:30 | 0 | 10.8251 | 15.299 |
| 408 | 12/16/2010 | 8:30:35 | 0 | 10.8232 | 15.298 |
| 409 | 12/16/2010 | 8:30:40 | 0 | 10.8217 | 15.298 |
| 410 | 12/16/2010 | 8:30:45 | 0 | 10.8207 | 15.297 |
| 411 | 12/16/2010 | 8:30:50 | 0 | 10.8184 | 15.297 |
| 412 | 12/16/2010 | 8:30:55 | 0 | 10.8178 | 15.297 |
| 413 | 12/16/2010 | 8:31:00 | 0 | 10.8153 | 15.296 |
| 414 | 12/16/2010 | 8:31:05 | 0 | 10.8147 | 15.296 |
| 415 | 12/16/2010 | 8:31:10 | 0 | 10.8438 | 15.296 |
| 416 | 12/16/2010 | 8:31:15 | 0 | 10.8128 | 15.296 |
| 417 | 12/16/2010 | 8:31:20 | 0 | 10.8133 | 15.296 |
| 418 | 12/16/2010 | 8:31:25 | 0 | 10.8057 | 15.296 |
| 419 | 12/16/2010 | 8:31:30 | 0 | 10.8085 | 15.295 |
| 420 | 12/16/2010 | 8:31:35 | 0 | 10.8068 | 15.295 |
| 421 | 12/16/2010 | 8:31:40 | 0 | 10.8071 | 15.295 |
| 422 | 12/16/2010 | 8:31:45 | 0 | 10.8037 | 15.294 |
| 423 | 12/16/2010 | 8:31:50 | 0 | 10.804  | 15.294 |
| 424 | 12/16/2010 | 8:31:55 | 0 | 10.6021 | 15.294 |
| 425 | 12/16/2010 | 8:32:00 | 0 | 10.801  | 15.293 |
| 426 | 12/16/2010 | 8:32:05 | 0 | 10.6178 | 15.294 |
| 427 | 12/16/2010 | 8:32:10 | 0 | 10.8005 | 15.294 |
| 428 | 12/16/2010 | 8:32:15 | 0 | 10.7824 | 15.294 |
| 429 | 12/16/2010 | 8:32:20 | 0 | 10.7987 | 15.293 |
| 430 | 12/16/2010 | 8:32:25 | 0 | 10.7966 | 15.294 |
| 431 | 12/16/2010 | 8:32:30 | 0 | 10.7945 | 15.294 |
| 432 | 12/16/2010 | 8:32:35 | 0 | 10.794  | 15.293 |
| 433 | 12/16/2010 | 8:32:40 | 0 | 10.7904 | 15.293 |
| 434 | 12/16/2010 | 8:32:45 | 0 | 10.7953 | 15.263 |
| 435 | 12/16/2010 | 8:32:50 | 0 | 10.7907 | 15.293 |
| 436 | 12/16/2010 | 8:32:55 | 0 | 10.7725 | 15.293 |
| 437 | 12/16/2010 | 8:33:00 | 0 | 10.7981 | 15.294 |
| 438 | 12/16/2010 | 8:33:05 | 0 | 10.7893 | 15.293 |
| 439 | 12/16/2010 | 8:33:10 | 0 | 10.7866 | 15.293 |
| 440 | 12/16/2010 | 8:33:15 | 0 | 10.7626 | 15.282 |
| 441 | 12/16/2010 | 8:33:20 | 0 | 10.7851 | 15.292 |
| 442 | 12/16/2010 | 8:33:25 | 0 | 10.7698 | 15.293 |
| 443 | 12/16/2010 | 8:33:30 | 0 | 10.7872 | 15.293 |
| 444 | 12/16/2010 | 8:33:35 | 0 | 10.7831 | 15.292 |
| 445 | 12/16/2010 | 8:33:40 | 0 | 10.7855 | 15.293 |
| 446 | 12/16/2010 | 8:33:45 | 0 | 10.7875 | 15.292 |
| 447 | 12/16/2010 | 8:33:50 | 0 | 10.784  | 15.293 |
| 448 | 12/16/2010 | 8:33:55 | 0 | 10.7677 | 15.292 |
| 449 | 12/16/2010 | 8:34:00 | 0 | 10.8986 | 15.292 |
| 450 | 12/16/2010 | 8:34:05 | 0 | 10.7768 | 15.262 |
| 451 | 12/16/2010 | 8:34:10 | 0 | 10.7623 | 15.292 |
| 452 | 12/16/2010 | 8:34:15 | 0 | 10.7894 | 15.292 |
| 453 | 12/16/2010 | 8:34:20 | 0 | 10.7623 | 15.292 |
| 454 | 12/16/2010 | 8:34:25 | 0 | 10.7803 | 15.293 |
| 455 | 12/16/2010 | 8:34:30 | 0 | 10.7798 | 15.292 |
| 456 | 12/16/2010 | 8:34:35 | 0 | 10.7757 | 15.293 |
| 457 | 12/16/2010 | 8:34:40 | 0 | 10.7765 | 15.292 |
| 458 | 12/16/2010 | 8:34:45 | 0 | 10.7772 | 15.292 |
| 459 | 12/16/2010 | 8:34:50 | 0 | 10.7765 | 15.292 |
| 460 | 12/16/2010 | 8:34:55 | 0 | 10.778  | 15.292 |
| 461 | 12/16/2010 | 8:35:00 | 0 | 10.7844 | 15.292 |
| 462 | 12/16/2010 | 8:35:01 | 0 | 10.7776 | 15.301 |
| 463 | 12/16/2010 | 8:35:02 | 0 | 10.7749 | 15.306 |
| 464 | 12/16/2010 | 8:35:03 | 0 | 10.764  | 15.308 |
| 465 | 12/16/2010 | 8:35:04 | 0 | 10.7506 | 15.312 |
| 466 | 12/16/2010 | 8:35:05 | 0 | 10.2063 | 15.313 |
| 467 | 12/16/2010 | 8:35:06 | 0 | 9.5349  | 15.315 |
| 468 | 12/16/2010 | 8:35:07 | 0 | 8.9814  | 15.317 |
| 469 | 12/16/2010 | 8:35:08 | 0 | 8.6533  | 15.319 |
| 470 | 12/16/2010 | 8:35:09 | 0 | 8.6702  | 15.32  |
| 471 | 12/16/2010 | 8:35:10 | 0 | 8.8869  | 15.321 |
| 472 | 12/16/2010 | 8:35:11 | 0 | 8.7066  | 15.321 |
| 473 | 12/16/2010 | 8:35:12 | 0 | 8.7153  | 15.323 |
| 474 | 12/16/2010 | 8:35:13 | 0 | 8.735   | 15.323 |
| 475 | 12/16/2010 | 8:35:14 | 0 | 8.7485  | 15.325 |
| 476 | 12/16/2010 | 8:35:15 | 0 | 8.7694  | 15.325 |
| 477 | 12/16/2010 | 8:35:16 | 0 | 8.7705  | 15.326 |
| 478 | 12/16/2010 | 8:35:17 | 0 | 8.7686  | 15.327 |
| 479 | 12/16/2010 | 8:35:18 | 0 | 8.6015  | 15.327 |
| 480 | 12/16/2010 | 8:35:19 | 0 | 8.6131  | 15.326 |
| 481 | 12/16/2010 | 8:35:20 | 0 | 8.8281  | 15.32  |
| 482 | 12/16/2010 | 8:35:21 | 0 | 8.6398  | 15.33  |
| 483 | 12/16/2010 | 8:35:22 | 0 | 8.652   | 15.33  |

|     |            |         |   |        |        |
|-----|------------|---------|---|--------|--------|
| 484 | 12/16/2010 | 8:35:23 | 0 | 8.8627 | 15.331 |
| 485 | 12/16/2010 | 8:35:24 | 0 | 8.8733 | 15.332 |
| 486 | 12/16/2010 | 8:35:25 | 0 | 8.8899 | 15.332 |
| 487 | 12/16/2010 | 8:35:26 | 0 | 8.8988 | 15.333 |
| 489 | 12/16/2010 | 8:35:27 | 0 | 8.9109 | 15.333 |
| 489 | 12/16/2010 | 9:35:29 | 0 | 8.9246 | 15.334 |
| 490 | 12/16/2010 | 8:35:29 | 0 | 8.9325 | 15.335 |
| 491 | 12/16/2010 | 8:39:30 | 0 | 8.9462 | 15.335 |
| 492 | 12/16/2010 | 9:35:31 | 0 | 8.9584 | 15.335 |
| 493 | 12/16/2010 | 8:35:32 | 0 | 9.968  | 15.336 |
| 494 | 12/16/2010 | 8:35:33 | 0 | 8.9795 | 15.338 |
| 495 | 12/16/2010 | 8:35:34 | 0 | 8.9918 | 15.337 |
| 496 | 12/16/2010 | 8:35:35 | 0 | 9.0036 | 15.338 |
| 497 | 12/16/2010 | 8:35:36 | 0 | 9.0138 | 15.338 |
| 498 | 12/16/2010 | 8:35:37 | 0 | 9.0207 | 15.339 |
| 499 | 12/16/2010 | 8:35:38 | 0 | 8.0342 | 15.339 |
| 500 | 12/16/2010 | 8:35:39 | 0 | 9.0441 | 15.34  |
| 501 | 12/16/2010 | 9:35:40 | 0 | 9.0559 | 15.34  |
| 502 | 12/16/2010 | 8:36:41 | 0 | 9.0653 | 15.34  |
| 503 | 12/16/2010 | 8:36:42 | 0 | 9.0755 | 15.341 |
| 504 | 12/16/2010 | 8:35:43 | 0 | 9.0856 | 15.341 |
| 505 | 12/16/2010 | 8:35:44 | 0 | 9.0933 | 15.342 |
| 506 | 12/16/2010 | 8:35:45 | 0 | 9.1024 | 15.342 |
| 507 | 12/16/2010 | 8:35:46 | 0 | 9.1161 | 15.342 |
| 508 | 12/16/2010 | 8:35:47 | 0 | 9.128  | 15.342 |
| 509 | 12/16/2010 | 9:35:48 | 0 | 9.1369 | 15.342 |
| 510 | 12/16/2010 | 8:35:49 | 0 | 9.1437 | 15.342 |
| 511 | 12/16/2010 | 8:35:50 | 0 | 9.1538 | 15.343 |
| 512 | 12/16/2010 | 8:35:51 | 0 | 9.1641 | 15.343 |
| 513 | 12/16/2010 | 8:35:52 | 0 | 9.1744 | 15.343 |
| 514 | 12/16/2010 | 8:35:53 | 0 | 9.1646 | 15.344 |
| 515 | 12/16/2010 | 8:35:54 | 0 | 9.192  | 15.344 |
| 516 | 12/16/2010 | 8:35:55 | 0 | 9.201  | 15.345 |
| 517 | 12/16/2010 | 8:35:56 | 0 | 9.2083 | 15.345 |
| 518 | 12/16/2010 | 8:35:57 | 0 | 9.2194 | 15.346 |
| 519 | 12/16/2010 | 8:35:58 | 0 | 9.2277 | 15.346 |
| 520 | 12/16/2010 | 8:35:59 | 0 | 9.2382 | 15.346 |
| 521 | 12/16/2010 | 8:38:00 | 0 | 9.2462 | 15.346 |
| 522 | 12/16/2010 | 8:38:01 | 0 | 9.2535 | 15.347 |
| 523 | 12/16/2010 | 8:36:02 | 0 | 9.2633 | 15.347 |
| 524 | 12/16/2010 | 8:36:03 | 0 | 9.2741 | 15.347 |
| 525 | 12/16/2010 | 9:36:04 | 0 | 9.2817 | 15.347 |
| 526 | 12/16/2010 | 8:36:85 | 0 | 9.2917 | 15.347 |
| 527 | 12/16/2010 | 8:36:08 | 0 | 9.3083 | 15.348 |
| 528 | 12/16/2010 | 8:38:07 | 0 | 9.3081 | 15.348 |
| 529 | 12/16/2010 | 8:38:08 | 0 | 9.3143 | 15.349 |
| 538 | 12/16/2010 | 8:36:09 | 8 | 9.3248 | 15.346 |
| 531 | 12/16/2010 | 8:36:10 | 8 | 9.3333 | 15.349 |
| 532 | 12/16/2010 | 8:36:11 | 0 | 9.3414 | 15.349 |
| 533 | 12/16/2010 | 8:36:12 | 0 | 9.3494 | 15.349 |
| 534 | 12/16/2010 | 8:36:13 | 0 | 9.3567 | 15.35  |
| 535 | 12/16/2010 | 9:36:14 | 0 | 9.3673 | 15.349 |
| 536 | 12/16/2010 | 8:36:15 | 0 | 9.3749 | 15.35  |
| 537 | 12/16/2010 | 8:38:16 | 0 | 9.3819 | 15.35  |
| 538 | 12/16/2010 | 8:36:17 | 0 | 9.3892 | 15.35  |
| 539 | 12/16/2010 | 8:36:18 | 0 | 9.4015 | 15.35  |
| 540 | 12/16/2010 | 8:38:19 | 0 | 9.408  | 15.351 |
| 541 | 12/16/2010 | 8:38:20 | 0 | 9.4137 | 15.351 |
| 542 | 12/16/2010 | 8:36:21 | 0 | 9.4228 | 15.351 |
| 543 | 12/16/2010 | 8:38:22 | 0 | 9.4285 | 15.351 |
| 544 | 12/16/2010 | 8:38:23 | 0 | 9.4353 | 15.351 |
| 545 | 12/16/2010 | 9:36:24 | 0 | 9.4436 | 15.361 |
| 546 | 12/16/2010 | 8:36:25 | 0 | 9.4505 | 15.351 |
| 547 | 12/16/2010 | 8:36:26 | 0 | 9.4575 | 15.361 |
| 548 | 12/16/2010 | 8:38:27 | 0 | 9.4658 | 15.351 |
| 549 | 12/16/2010 | 8:36:28 | 0 | 9.4784 | 15.352 |
| 550 | 12/16/2010 | 8:36:29 | 0 | 9.482  | 15.351 |
| 551 | 12/16/2010 | 8:36:30 | 0 | 9.4891 | 15.351 |
| 552 | 12/16/2010 | 8:38:31 | 8 | 9.4951 | 15.351 |
| 553 | 12/16/2010 | 8:36:32 | 0 | 9.5036 | 15.351 |
| 554 | 12/16/2010 | 8:36:33 | 0 | 9.5107 | 15.352 |
| 555 | 12/16/2010 | 8:36:34 | 0 | 9.517  | 15.352 |
| 556 | 12/16/2010 | 8:36:35 | 0 | 9.5244 | 15.352 |
| 557 | 12/16/2010 | 9:36:36 | 0 | 9.5314 | 15.352 |
| 558 | 12/16/2010 | 8:36:37 | 0 | 9.5393 | 15.352 |
| 559 | 12/16/2010 | 8:36:38 | 0 | 9.5472 | 15.353 |
| 560 | 12/16/2010 | 8:36:39 | 8 | 9.5547 | 15.353 |
| 561 | 12/16/2010 | 8:38:40 | 0 | 9.5632 | 15.353 |
| 562 | 12/16/2010 | 8:38:41 | 8 | 9.5668 | 15.363 |
| 563 | 12/16/2010 | 8:36:42 | 0 | 9.5725 | 15.355 |
| 564 | 12/16/2010 | 8:36:43 | 0 | 9.5826 | 15.353 |
| 565 | 12/16/2010 | 8:36:44 | 0 | 9.5877 | 15.353 |
| 566 | 12/16/2010 | 8:36:45 | 0 | 9.5937 | 15.352 |
| 567 | 12/16/2010 | 8:38:46 | 0 | 9.6009 | 15.353 |
| 568 | 12/16/2010 | 8:38:47 | 8 | 9.6071 | 15.353 |
| 569 | 12/16/2010 | 8:36:48 | 8 | 9.6151 | 15.353 |
| 570 | 12/16/2010 | 8:36:49 | 0 | 9.6214 | 15.353 |
| 571 | 12/16/2010 | 8:36:50 | 0 | 9.6295 | 15.353 |
| 572 | 12/16/2010 | 8:38:51 | 0 | 9.632  | 15.353 |
| 573 | 12/16/2010 | 8:36:52 | 0 | 9.6419 | 15.354 |
| 574 | 12/16/2010 | 8:36:53 | 0 | 9.6493 | 15.354 |
| 575 | 12/16/2010 | 9:36:54 | 0 | 9.6544 | 15.354 |
| 576 | 12/16/2010 | 8:36:55 | 0 | 9.6623 | 15.354 |
| 577 | 12/16/2010 | 8:36:56 | 0 | 9.6674 | 15.354 |
| 578 | 12/16/2010 | 8:36:57 | 0 | 9.6712 | 15.354 |
| 579 | 12/16/2010 | 8:36:58 | 0 | 9.6789 | 15.354 |
| 580 | 12/16/2010 | 8:36:59 | 0 | 9.685  | 15.356 |
| 581 | 12/16/2010 | 8:37:00 | 0 | 9.6908 | 15.355 |
| 582 | 12/16/2010 | 8:37:81 | 0 | 9.6964 | 15.354 |
| 583 | 12/16/2010 | 8:37:82 | 0 | 9.7005 | 15.354 |
| 584 | 12/16/2010 | 8:37:03 | 0 | 9.7076 | 15.355 |
| 585 | 12/16/2010 | 8:37:04 | 8 | 9.7125 | 15.354 |
| 586 | 12/16/2010 | 8:37:85 | 0 | 9.7192 | 15.355 |
| 587 | 12/16/2010 | 8:37:06 | 0 | 9.7269 | 15.356 |
| 588 | 12/16/2010 | 8:37:07 | 8 | 9.7307 | 15.354 |
| 589 | 12/16/2010 | 8:37:08 | 8 | 9.7382 | 15.354 |
| 590 | 12/16/2010 | 8:37:09 | 8 | 9.7431 | 15.355 |
| 591 | 12/16/2010 | 8:37:10 | 0 | 9.7486 | 15.355 |
| 592 | 12/16/2010 | 8:37:11 | 0 | 9.7549 | 15.355 |
| 593 | 12/16/2010 | 8:37:12 | 8 | 9.762  | 15.355 |
| 594 | 12/16/2010 | 8:37:13 | 0 | 9.7674 | 15.355 |
| 595 | 12/16/2010 | 8:37:14 | 0 | 9.789  | 15.355 |
| 596 | 12/16/2010 | 8:37:15 | 8 | 9.7789 | 15.355 |
| 597 | 12/16/2010 | 9:37:16 | 0 | 9.7812 | 15.355 |
| 598 | 12/16/2010 | 8:37:17 | 0 | 9.7884 | 15.356 |
| 599 | 12/16/2010 | 8:37:18 | 0 | 9.7941 | 15.356 |
| 600 | 12/16/2010 | 8:37:19 | 0 | 9.7999 | 15.355 |
| 601 | 12/16/2010 | 8:37:20 | 0 | 9.8055 | 15.355 |
| 602 | 12/16/2010 | 8:37:21 | 0 | 9.8082 | 15.355 |
| 603 | 12/16/2010 | 8:37:22 | 0 | 9.8169 | 15.355 |
| 604 | 12/16/2010 | 8:37:23 | 0 | 9.8225 | 15.355 |
| 605 | 12/16/2010 | 8:37:24 | 8 | 9.6247 | 15.356 |
| 606 | 12/16/2010 | 8:37:25 | 8 | 8.8325 | 15.356 |
| 607 | 12/16/2010 | 8:37:26 | 0 | 9.8372 | 15.356 |
| 608 | 12/16/2010 | 8:37:27 | 0 | 9.8409 | 15.355 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 609 | 12/16/2010 | 8:37:28 | 0 | 9.8459  | 15.356 |
| 810 | 12/16/2010 | 8:37:29 | 0 | 9.8509  | 15.355 |
| 811 | 12/16/2010 | 8:37:30 | 0 | 9.8576  | 15.355 |
| 612 | 12/16/2010 | 8:37:31 | 0 | 9.8618  | 15.356 |
| 613 | 12/16/2010 | 8:37:32 | 0 | 9.8694  | 15.356 |
| 614 | 12/16/2010 | 8:37:33 | 0 | 9.8718  | 15.356 |
| 615 | 12/16/2010 | 8:37:34 | 0 | 9.8773  | 15.356 |
| 616 | 12/16/2010 | 8:37:35 | 0 | 9.8888  | 15.356 |
| 817 | 12/16/2010 | 8:37:36 | 0 | 9.8882  | 15.356 |
| 618 | 12/16/2010 | 8:37:37 | 0 | 9.888   | 15.356 |
| 619 | 12/16/2010 | 8:37:38 | 0 | 9.899   | 15.356 |
| 620 | 12/16/2010 | 8:37:39 | 0 | 9.9997  | 15.356 |
| 621 | 12/16/2010 | 8:37:40 | 0 | 9.9086  | 15.356 |
| 622 | 12/16/2010 | 8:37:41 | 0 | 9.9128  | 15.357 |
| 623 | 12/16/2010 | 8:37:42 | 0 | 9.9157  | 15.356 |
| 624 | 12/16/2010 | 8:37:43 | 0 | 9.9201  | 15.356 |
| 825 | 12/16/2010 | 8:37:44 | 8 | 9.9269  | 15.356 |
| 826 | 12/16/2010 | 8:37:45 | 0 | 9.9296  | 15.356 |
| 627 | 12/16/2010 | 8:37:46 | 0 | 9.9333  | 15.357 |
| 628 | 12/16/2010 | 8:37:47 | 0 | 9.9394  | 15.356 |
| 629 | 12/16/2010 | 8:37:48 | 0 | 9.9409  | 15.357 |
| 630 | 12/16/2010 | 8:37:49 | 0 | 9.9499  | 15.356 |
| 831 | 12/16/2010 | 8:37:50 | 0 | 9.9535  | 15.356 |
| 632 | 12/16/2010 | 8:37:51 | 0 | 9.9579  | 15.356 |
| 633 | 12/16/2010 | 8:37:52 | 0 | 9.9641  | 15.357 |
| 634 | 12/16/2010 | 8:37:53 | 0 | 9.9667  | 15.356 |
| 635 | 12/16/2010 | 8:37:54 | 0 | 9.9717  | 15.357 |
| 636 | 12/16/2010 | 8:37:55 | 0 | 9.9756  | 15.357 |
| 637 | 12/16/2010 | 8:37:56 | 0 | 9.9795  | 15.357 |
| 638 | 12/16/2010 | 8:37:57 | 0 | 9.9823  | 15.357 |
| 839 | 12/16/2010 | 8:37:58 | 0 | 9.9863  | 15.357 |
| 840 | 12/16/2010 | 8:37:59 | 0 | 9.99    | 15.367 |
| 641 | 12/16/2010 | 8:38:00 | 0 | 9.9983  | 15.358 |
| 642 | 12/16/2010 | 8:38:01 | 0 | 9.9985  | 15.357 |
| 643 | 12/16/2010 | 8:39:02 | 0 | 10.0039 | 15.358 |
| 844 | 12/16/2010 | 8:39:03 | 0 | 10.0112 | 15.356 |
| 845 | 12/16/2010 | 8:39:04 | 0 | 10.0139 | 15.357 |
| 846 | 12/16/2010 | 8:38:05 | 0 | 10.0163 | 15.357 |
| 647 | 12/16/2010 | 8:39:06 | 0 | 10.0224 | 15.357 |
| 649 | 12/16/2010 | 8:38:07 | 0 | 10.0273 | 15.357 |
| 649 | 12/16/2010 | 9:39:08 | 0 | 10.0278 | 15.356 |
| 850 | 12/16/2010 | 8:38:09 | 0 | 10.0339 | 15.358 |
| 651 | 12/16/2010 | 9:39:10 | 0 | 10.0351 | 15.356 |
| 652 | 12/16/2010 | 6:38:11 | 0 | 10.0419 | 15.358 |
| 653 | 12/16/2010 | 9:38:12 | 0 | 10.0458 | 15.358 |
| 654 | 12/16/2010 | 8:38:13 | 0 | 10.0474 | 15.358 |
| 855 | 12/16/2010 | 8:38:14 | 0 | 10.0538 | 15.358 |
| 656 | 12/16/2010 | 8:38:15 | 0 | 10.0578 | 15.358 |
| 657 | 12/16/2010 | 6:38:16 | 0 | 10.0586 | 15.358 |
| 858 | 12/16/2010 | 8:38:17 | 0 | 10.0655 | 15.358 |
| 659 | 12/16/2010 | 8:38:18 | 0 | 10.0677 | 15.356 |
| 660 | 12/16/2010 | 8:39:19 | 0 | 10.0738 | 15.358 |
| 661 | 12/16/2010 | 8:39:20 | 0 | 10.0769 | 15.358 |
| 662 | 12/16/2010 | 8:36:21 | 0 | 10.0801 | 15.358 |
| 863 | 12/16/2010 | 8:36:22 | 0 | 10.0818 | 15.358 |
| 664 | 12/16/2010 | 8:38:23 | 0 | 10.0886 | 15.358 |
| 665 | 12/16/2010 | 8:38:24 | 0 | 10.0902 | 15.356 |
| 666 | 12/16/2010 | 8:38:25 | 0 | 10.0943 | 15.356 |
| 867 | 12/16/2010 | 8:36:26 | 0 | 10.098  | 15.358 |
| 668 | 12/16/2010 | 8:36:27 | 0 | 10.1009 | 15.358 |
| 669 | 12/16/2010 | 8:39:29 | 0 | 10.1052 | 15.358 |
| 670 | 12/16/2010 | 8:38:29 | 0 | 10.1103 | 15.358 |
| 871 | 12/16/2010 | 8:38:30 | 0 | 10.1123 | 15.359 |
| 672 | 12/16/2010 | 9:39:31 | 0 | 10.1189 | 15.358 |
| 673 | 12/16/2010 | 6:38:32 | 0 | 10.1166 | 15.359 |
| 674 | 12/16/2010 | 6:38:33 | 0 | 10.1224 | 15.356 |
| 875 | 12/16/2010 | 8:38:34 | 8 | 10.1287 | 15.358 |
| 676 | 12/16/2010 | 8:38:35 | 0 | 10.1288 | 15.359 |
| 677 | 12/16/2010 | 8:38:36 | 0 | 10.1332 | 15.359 |
| 678 | 12/16/2010 | 6:38:37 | 0 | 10.1376 | 15.36  |
| 679 | 12/16/2010 | 8:38:38 | 0 | 10.1488 | 15.359 |
| 680 | 12/16/2010 | 8:38:39 | 0 | 10.1449 | 15.359 |
| 681 | 12/16/2010 | 8:38:40 | 0 | 10.1463 | 15.359 |
| 682 | 12/16/2010 | 8:39:41 | 0 | 10.1482 | 15.359 |
| 683 | 12/16/2010 | 8:38:42 | 0 | 10.1549 | 15.359 |
| 684 | 12/16/2010 | 8:38:43 | 0 | 10.1543 | 15.359 |
| 685 | 12/16/2010 | 9:38:44 | 0 | 10.1593 | 15.39  |
| 686 | 12/16/2010 | 8:38:45 | 0 | 10.1648 | 15.36  |
| 687 | 12/16/2010 | 8:36:46 | 0 | 10.1648 | 15.36  |
| 688 | 12/16/2010 | 8:36:47 | 0 | 10.1672 | 15.356 |
| 889 | 12/16/2010 | 8:36:48 | 0 | 10.17   | 15.38  |
| 690 | 12/16/2010 | 8:38:49 | 0 | 10.1734 | 15.359 |
| 691 | 12/16/2010 | 8:39:50 | 0 | 10.1812 | 15.36  |
| 692 | 12/16/2010 | 8:38:51 | 0 | 10.1823 | 15.36  |
| 893 | 12/16/2010 | 8:39:52 | 0 | 10.1853 | 15.39  |
| 694 | 12/16/2010 | 8:38:53 | 0 | 10.1888 | 15.36  |
| 695 | 12/16/2010 | 8:38:54 | 0 | 10.1917 | 15.38  |
| 896 | 12/16/2010 | 8:38:55 | 0 | 10.1954 | 15.38  |
| 697 | 12/16/2010 | 8:38:56 | 0 | 10.197  | 15.36  |
| 698 | 12/16/2010 | 8:38:57 | 0 | 10.1994 | 15.359 |
| 699 | 12/16/2010 | 8:38:58 | 0 | 10.2043 | 15.39  |
| 700 | 12/16/2010 | 8:38:59 | 0 | 10.205  | 15.36  |
| 701 | 12/16/2010 | 8:39:00 | 0 | 10.2075 | 15.361 |
| 702 | 12/16/2010 | 8:39:01 | 0 | 10.2133 | 15.36  |
| 703 | 12/16/2010 | 8:39:02 | 0 | 10.2153 | 15.391 |
| 704 | 12/16/2010 | 8:39:03 | 0 | 10.215  | 15.361 |
| 705 | 12/16/2010 | 8:39:04 | 0 | 10.2229 | 15.361 |
| 706 | 12/16/2010 | 8:39:05 | 0 | 10.226  | 15.361 |
| 707 | 12/16/2010 | 8:39:00 | 8 | 10.2292 | 15.38  |
| 708 | 12/16/2010 | 8:39:07 | 0 | 10.228  | 15.381 |
| 709 | 12/16/2010 | 9:39:08 | 0 | 10.2317 | 15.38  |
| 710 | 12/16/2010 | 8:39:09 | 0 | 10.2356 | 15.36  |
| 711 | 12/16/2010 | 8:39:18 | 0 | 10.2363 | 15.361 |
| 712 | 12/16/2010 | 8:39:11 | 0 | 10.2427 | 15.391 |
| 713 | 12/16/2010 | 9:39:12 | 0 | 10.2414 | 15.361 |
| 714 | 12/16/2010 | 8:39:13 | 0 | 10.2439 | 15.361 |
| 715 | 12/16/2010 | 8:39:14 | 0 | 10.2509 | 15.361 |
| 716 | 12/16/2010 | 9:39:15 | 0 | 10.2537 | 15.361 |
| 717 | 12/16/2010 | 8:39:18 | 0 | 10.2531 | 15.361 |
| 718 | 12/16/2010 | 8:39:17 | 0 | 10.2585 | 15.381 |
| 719 | 12/16/2010 | 8:39:16 | 0 | 10.2611 | 15.361 |
| 720 | 12/16/2010 | 8:39:19 | 0 | 10.2643 | 15.381 |
| 721 | 12/16/2010 | 8:39:20 | 0 | 10.2828 | 15.391 |
| 722 | 12/16/2010 | 9:39:21 | 0 | 10.2686 | 15.362 |
| 723 | 12/16/2010 | 8:39:22 | 0 | 10.2714 | 15.362 |
| 724 | 12/16/2010 | 8:39:23 | 0 | 10.2727 | 15.361 |
| 725 | 12/16/2010 | 8:39:24 | 0 | 10.2728 | 15.361 |
| 726 | 12/16/2010 | 8:39:25 | 0 | 10.2795 | 15.362 |
| 727 | 12/16/2010 | 8:39:26 | 0 | 10.2768 | 15.362 |
| 728 | 12/16/2010 | 8:39:27 | 0 | 10.2833 | 15.362 |
| 729 | 12/16/2010 | 8:39:28 | 0 | 10.2849 | 15.362 |
| 730 | 12/16/2010 | 8:39:29 | 0 | 10.2905 | 15.362 |
| 731 | 12/16/2010 | 8:39:38 | 0 | 10.2909 | 15.392 |
| 732 | 12/16/2010 | 8:39:31 | 0 | 10.2935 | 15.362 |
| 733 | 12/16/2010 | 8:39:32 | 0 | 10.2917 | 15.362 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 734 | 12/16/2018 | 8:39:33 | 0 | 10.2958 | 15.381 |
| 735 | 12/16/2018 | 8:39:34 | 0 | 10.2985 | 15.362 |
| 736 | 12/16/2010 | 8:39:35 | 0 | 10.3018 | 15.362 |
| 737 | 12/16/2010 | 8:39:36 | 8 | 18.3883 | 15.362 |
| 738 | 12/16/2018 | 8:39:37 | 0 | 10.3091 | 15.362 |
| 739 | 12/16/2010 | 8:39:38 | 0 | 10.3085 | 15.362 |
| 740 | 12/16/2010 | 8:39:39 | 8 | 10.3127 | 15.362 |
| 741 | 12/16/2018 | 8:38:40 | 0 | 10.3148 | 15.362 |
| 742 | 12/16/2010 | 8:39:41 | 0 | 10.3167 | 15.362 |
| 743 | 12/16/2010 | 8:39:42 | 0 | 10.3191 | 15.362 |
| 744 | 12/16/2010 | 8:39:43 | 8 | 10.3228 | 15.362 |
| 745 | 12/16/2010 | 8:39:44 | 0 | 10.324  | 15.362 |
| 746 | 12/16/2010 | 8:39:45 | 0 | 10.3258 | 15.382 |
| 747 | 12/16/2010 | 8:39:48 | 0 | 10.3287 | 15.362 |
| 748 | 12/16/2010 | 8:38:47 | 8 | 10.3294 | 15.362 |
| 749 | 12/16/2010 | 8:38:48 | 0 | 10.3348 | 15.362 |
| 750 | 12/16/2010 | 8:39:49 | 0 | 10.3358 | 15.382 |
| 751 | 12/16/2010 | 8:39:50 | 0 | 10.3385 | 15.362 |
| 752 | 12/16/2018 | 8:39:51 | 8 | 10.3414 | 15.363 |
| 753 | 12/16/2010 | 8:38:52 | 0 | 10.3415 | 15.382 |
| 754 | 12/16/2010 | 8:39:53 | 0 | 10.3453 | 15.383 |
| 755 | 12/16/2018 | 8:39:54 | 0 | 10.3467 | 15.363 |
| 756 | 12/16/2018 | 8:39:55 | 8 | 10.3485 | 15.382 |
| 757 | 12/16/2010 | 8:39:56 | 0 | 10.3511 | 15.363 |
| 758 | 12/16/2010 | 8:39:57 | 0 | 10.351  | 15.363 |
| 759 | 12/16/2018 | 8:39:58 | 0 | 10.3564 | 15.363 |
| 760 | 12/16/2018 | 8:38:58 | 8 | 10.3628 | 15.363 |
| 761 | 12/16/2010 | 8:40:00 | 0 | 10.3581 | 15.383 |
| 762 | 12/16/2010 | 8:40:03 | 0 | 10.3663 | 15.349 |
| 763 | 12/16/2010 | 8:40:06 | 0 | 10.3718 | 15.344 |
| 764 | 12/16/2018 | 8:48:09 | 8 | 10.3761 | 15.34  |
| 765 | 12/16/2010 | 8:40:12 | 0 | 10.3838 | 15.337 |
| 766 | 12/16/2010 | 8:40:15 | 0 | 10.3876 | 15.336 |
| 767 | 12/16/2018 | 8:40:18 | 0 | 10.3946 | 15.333 |
| 768 | 12/16/2010 | 8:48:21 | 8 | 10.3975 | 15.332 |
| 769 | 12/16/2010 | 8:40:24 | 0 | 10.4075 | 15.331 |
| 770 | 12/16/2010 | 8:40:27 | 0 | 10.4098 | 15.33  |
| 771 | 12/16/2010 | 8:40:36 | 0 | 10.4152 | 15.326 |
| 772 | 12/16/2018 | 8:48:33 | 8 | 10.4223 | 15.327 |
| 773 | 12/16/2010 | 8:48:36 | 0 | 10.4247 | 15.326 |
| 774 | 12/16/2010 | 8:40:39 | 0 | 10.4314 | 15.325 |
| 775 | 12/16/2010 | 8:40:42 | 0 | 10.4359 | 15.325 |
| 776 | 12/16/2018 | 8:40:45 | 0 | 10.4431 | 15.323 |
| 777 | 12/16/2018 | 8:48:48 | 8 | 10.4487 | 15.323 |
| 778 | 12/16/2010 | 8:40:51 | 0 | 10.4512 | 15.322 |
| 779 | 12/16/2010 | 8:40:54 | 0 | 10.4545 | 15.322 |
| 780 | 12/16/2018 | 8:40:57 | 0 | 10.4614 | 15.321 |
| 781 | 12/16/2018 | 8:41:00 | 8 | 10.4642 | 15.321 |
| 782 | 12/16/2010 | 8:41:03 | 0 | 10.4702 | 15.32  |
| 783 | 12/16/2010 | 8:41:06 | 0 | 10.4704 | 15.32  |
| 784 | 12/16/2010 | 8:41:09 | 0 | 10.4753 | 15.318 |
| 785 | 12/16/2018 | 8:41:12 | 8 | 10.4788 | 15.318 |
| 786 | 12/16/2010 | 8:41:15 | 0 | 10.486  | 15.317 |
| 787 | 12/16/2010 | 8:41:18 | 0 | 10.4872 | 15.317 |
| 788 | 12/16/2018 | 8:41:21 | 8 | 10.493  | 15.317 |
| 789 | 12/16/2010 | 8:41:24 | 0 | 10.4984 | 15.317 |
| 790 | 12/16/2010 | 8:41:27 | 0 | 10.5017 | 15.316 |
| 791 | 12/16/2010 | 8:41:38 | 8 | 10.5062 | 15.316 |
| 792 | 12/16/2018 | 8:41:33 | 8 | 10.5062 | 15.315 |
| 793 | 12/16/2010 | 8:41:36 | 0 | 10.5106 | 15.315 |
| 794 | 12/16/2010 | 8:41:39 | 0 | 10.5147 | 15.314 |
| 795 | 12/16/2010 | 8:41:42 | 0 | 10.5176 | 15.314 |
| 796 | 12/16/2018 | 8:41:45 | 8 | 10.5223 | 15.313 |
| 797 | 12/16/2018 | 8:41:48 | 0 | 10.5258 | 15.313 |
| 798 | 12/16/2010 | 8:41:51 | 0 | 10.5285 | 15.313 |
| 799 | 12/16/2010 | 8:41:54 | 0 | 10.5318 | 15.312 |
| 800 | 12/16/2010 | 8:41:57 | 8 | 10.5388 | 15.312 |
| 801 | 12/16/2010 | 8:42:06 | 0 | 10.5392 | 15.312 |
| 802 | 12/16/2010 | 8:42:03 | 0 | 10.5427 | 15.311 |
| 803 | 12/16/2018 | 8:42:06 | 8 | 10.5458 | 15.311 |
| 804 | 12/16/2010 | 8:42:09 | 0 | 10.5508 | 15.31  |
| 805 | 12/16/2010 | 8:42:12 | 0 | 10.550  | 15.31  |
| 806 | 12/16/2018 | 8:42:15 | 8 | 10.5555 | 15.31  |
| 807 | 12/16/2010 | 8:42:18 | 0 | 10.5569 | 15.31  |
| 808 | 12/16/2010 | 8:42:21 | 0 | 10.5588 | 15.309 |
| 809 | 12/16/2010 | 8:42:24 | 0 | 10.5593 | 15.31  |
| 810 | 12/16/2018 | 8:42:27 | 8 | 10.5834 | 15.309 |
| 811 | 12/16/2010 | 8:42:30 | 0 | 10.5887 | 15.309 |
| 812 | 12/16/2010 | 8:42:33 | 0 | 10.5713 | 15.308 |
| 813 | 12/16/2010 | 8:42:36 | 0 | 10.5707 | 15.308 |
| 814 | 12/16/2010 | 8:42:39 | 8 | 10.5765 | 15.308 |
| 815 | 12/16/2010 | 8:42:42 | 0 | 10.5774 | 15.307 |
| 816 | 12/16/2010 | 8:42:45 | 0 | 10.5827 | 15.307 |
| 817 | 12/16/2010 | 8:42:48 | 0 | 10.5821 | 15.307 |
| 818 | 12/16/2010 | 8:42:51 | 0 | 10.5815 | 15.387 |
| 819 | 12/16/2018 | 8:42:54 | 8 | 10.5874 | 15.307 |
| 820 | 12/16/2018 | 8:42:57 | 0 | 10.5896 | 15.307 |
| 821 | 12/16/2010 | 8:43:06 | 0 | 10.59   | 15.307 |
| 822 | 12/16/2010 | 8:43:03 | 0 | 10.5928 | 15.306 |
| 823 | 12/16/2010 | 8:43:06 | 0 | 10.5948 | 15.387 |
| 824 | 12/16/2018 | 8:43:09 | 8 | 10.5968 | 15.306 |
| 825 | 12/16/2010 | 8:43:12 | 0 | 10.5984 | 15.306 |
| 826 | 12/16/2010 | 8:43:15 | 0 | 10.6056 | 15.306 |
| 827 | 12/16/2010 | 8:43:18 | 8 | 10.6052 | 15.387 |
| 828 | 12/16/2018 | 8:43:21 | 8 | 10.6082 | 15.306 |
| 829 | 12/16/2010 | 8:43:24 | 0 | 10.6066 | 15.306 |
| 830 | 12/16/2010 | 8:43:27 | 0 | 10.6082 | 15.306 |
| 831 | 12/16/2010 | 8:43:30 | 8 | 10.6114 | 15.306 |
| 832 | 12/16/2018 | 8:43:33 | 0 | 10.6132 | 15.305 |
| 833 | 12/16/2010 | 8:43:36 | 0 | 10.6163 | 15.305 |
| 834 | 12/16/2010 | 8:43:39 | 0 | 10.6187 | 15.305 |
| 835 | 12/16/2010 | 8:43:42 | 0 | 10.6199 | 15.306 |
| 836 | 12/16/2018 | 8:43:45 | 8 | 10.6223 | 15.306 |
| 837 | 12/16/2018 | 8:43:48 | 0 | 10.6211 | 15.305 |
| 838 | 12/16/2010 | 8:43:51 | 0 | 10.6295 | 15.306 |
| 839 | 12/16/2010 | 8:43:54 | 0 | 10.6257 | 15.385 |
| 840 | 12/16/2010 | 8:43:57 | 8 | 10.628  | 15.306 |
| 841 | 12/16/2018 | 8:44:00 | 0 | 10.6302 | 15.306 |
| 842 | 12/16/2010 | 8:44:03 | 0 | 10.6328 | 15.305 |
| 843 | 12/16/2010 | 8:44:06 | 8 | 10.6312 | 15.306 |
| 844 | 12/16/2018 | 8:44:08 | 0 | 10.6233 | 15.305 |
| 845 | 12/16/2010 | 8:44:12 | 0 | 10.6351 | 15.385 |
| 846 | 12/16/2010 | 8:44:15 | 8 | 10.6384 | 15.306 |
| 847 | 12/16/2018 | 8:44:18 | 0 | 10.6404 | 15.305 |
| 848 | 12/16/2010 | 8:44:21 | 0 | 10.6338 | 15.385 |
| 849 | 12/16/2010 | 8:44:24 | 8 | 10.6395 | 15.305 |
| 850 | 12/16/2010 | 8:44:27 | 0 | 10.6454 | 15.305 |
| 851 | 12/16/2010 | 8:44:30 | 0 | 10.6452 | 15.385 |
| 852 | 12/16/2018 | 8:44:33 | 8 | 10.6429 | 15.305 |
| 853 | 12/16/2010 | 8:44:36 | 0 | 10.6484 | 15.305 |
| 854 | 12/16/2010 | 8:44:39 | 0 | 10.6512 | 15.304 |
| 855 | 12/16/2018 | 8:44:42 | 0 | 10.6496 | 15.305 |
| 856 | 12/16/2010 | 8:44:45 | 0 | 10.6494 | 15.305 |
| 857 | 12/16/2010 | 8:44:46 | 8 | 10.6536 | 15.305 |
| 858 | 12/16/2010 | 8:44:51 | 8 | 10.6548 | 15.304 |

|     |            |         |   |         |        |
|-----|------------|---------|---|---------|--------|
| 859 | 12/16/2010 | 9:44:54 | 0 | 10.6557 | 15.304 |
| 860 | 12/16/2010 | 8:44:57 | 0 | 10.6573 | 15.305 |
| 861 | 12/16/2010 | 8:45:00 | 0 | 10.6548 | 15.304 |
| 862 | 12/16/2010 | 8:45:05 | 0 | 10.6585 | 15.301 |
| 863 | 12/16/2010 | 8:45:10 | 0 | 10.6588 | 15.3   |
| 864 | 12/16/2010 | 8:45:15 | 0 | 10.6837 | 15.299 |
| 865 | 12/16/2010 | 8:45:20 | 0 | 10.6598 | 15.299 |
| 866 | 12/16/2010 | 8:45:25 | 0 | 10.6649 | 15.294 |
| 867 | 12/16/2010 | 8:45:30 | 0 | 19.6657 | 15.297 |
| 868 | 12/16/2010 | 8:45:35 | 0 | 10.669  | 15.294 |
| 869 | 12/16/2010 | 8:45:40 | 0 | 10.6697 | 15.296 |
| 870 | 12/16/2010 | 8:45:45 | 9 | 10.6732 | 15.295 |
| 871 | 12/16/2010 | 8:45:50 | 0 | 10.675  | 15.294 |
| 872 | 12/16/2010 | 8:45:55 | 0 | 10.6727 | 15.294 |
| 873 | 12/16/2010 | 8:46:00 | 0 | 10.6767 | 15.294 |
| 874 | 12/16/2010 | 8:46:05 | 0 | 10.68   | 15.294 |
| 875 | 12/16/2010 | 8:48:19 | 0 | 10.6788 | 15.293 |
| 878 | 12/16/2010 | 8:48:15 | 0 | 19.6819 | 15.292 |
| 977 | 12/16/2010 | 8:46:20 | 0 | 10.6835 | 15.293 |
| 978 | 12/16/2010 | 8:46:25 | 0 | 10.6798 | 15.292 |
| 879 | 12/16/2010 | 8:46:30 | 0 | 19.6813 | 15.292 |
| 880 | 12/16/2010 | 8:48:35 | 0 | 19.6852 | 15.291 |
| 881 | 12/16/2010 | 8:46:40 | 0 | 10.6833 | 15.291 |
| 882 | 12/16/2010 | 8:46:45 | 0 | 19.6881 | 15.291 |
| 883 | 12/16/2010 | 8:46:50 | 9 | 19.6869 | 15.29  |
| 884 | 12/16/2010 | 8:46:55 | 9 | 19.6907 | 15.29  |
| 885 | 12/16/2010 | 8:47:00 | 0 | 10.6889 | 15.29  |
| 886 | 12/16/2010 | 8:47:05 | 0 | 10.6904 | 15.29  |
| 887 | 12/16/2010 | 8:47:10 | 9 | 19.6927 | 15.289 |
| 888 | 12/16/2010 | 8:47:15 | 9 | 19.6934 | 15.289 |
| 888 | 12/16/2010 | 8:47:20 | 9 | 10.6959 | 15.289 |
| 890 | 12/16/2010 | 8:47:25 | 0 | 10.695  | 15.289 |
| 891 | 12/16/2010 | 8:47:30 | 9 | 10.688  | 15.288 |
| 892 | 12/16/2010 | 8:47:35 | 0 | 10.6973 | 15.288 |
| 993 | 12/16/2010 | 8:47:40 | 0 | 10.6987 | 15.287 |
| 894 | 12/16/2010 | 8:47:45 | 0 | 19.6982 | 15.287 |
| 895 | 12/16/2010 | 9:47:50 | 0 | 19.6985 | 15.287 |
| 896 | 12/16/2010 | 8:47:55 | 0 | 10.7001 | 15.286 |
| 887 | 12/16/2010 | 8:48:00 | 0 | 10.7024 | 15.286 |
| 898 | 12/16/2010 | 8:48:05 | 0 | 10.7027 | 15.287 |
| 899 | 12/16/2010 | 9:48:10 | 0 | 10.7051 | 15.286 |
| 900 | 12/16/2010 | 8:48:15 | 0 | 10.7037 | 15.286 |
| 901 | 12/16/2010 | 9:48:20 | 0 | 10.7062 | 15.286 |
| 902 | 12/16/2010 | 8:48:25 | 0 | 10.7065 | 15.286 |
| 903 | 12/16/2010 | 8:48:30 | 0 | 10.7038 | 15.295 |
| 904 | 12/16/2010 | 8:48:35 | 0 | 10.7046 | 15.285 |
| 905 | 12/16/2010 | 8:49:40 | 0 | 19.7973 | 15.285 |
| 906 | 12/16/2010 | 8:48:45 | 0 | 10.7081 | 15.285 |
| 907 | 12/16/2010 | 8:48:50 | 0 | 19.7112 | 15.284 |
| 908 | 12/16/2010 | 8:48:55 | 0 | 10.7075 | 15.285 |
| 909 | 12/16/2010 | 8:49:00 | 0 | 10.7084 | 15.295 |
| 910 | 12/16/2010 | 8:49:05 | 0 | 10.709  | 15.285 |
| 911 | 12/16/2010 | 8:49:10 | 0 | 10.7107 | 15.285 |
| 912 | 12/16/2010 | 8:49:15 | 0 | 10.7099 | 15.284 |
| 913 | 12/16/2010 | 8:49:20 | 9 | 10.7129 | 15.284 |
| 914 | 12/16/2010 | 8:49:25 | 0 | 19.7128 | 15.284 |
| 915 | 12/16/2010 | 8:49:30 | 0 | 10.7118 | 15.283 |
| 916 | 12/16/2010 | 8:49:35 | 9 | 10.7157 | 15.282 |
| 917 | 12/16/2010 | 9:49:40 | 9 | 10.711  | 15.282 |
| 919 | 12/16/2010 | 8:49:45 | 9 | 10.7132 | 15.282 |
| 919 | 12/16/2010 | 8:49:50 | 0 | 10.7153 | 15.283 |
| 920 | 12/16/2010 | 8:49:55 | 0 | 10.7097 | 15.282 |
| 921 | 12/16/2010 | 8:50:00 | 0 | 10.7149 | 15.282 |
| 922 | 12/16/2010 | 9:50:01 | 0 | 10.7138 | 15.29  |
| 923 | 12/16/2010 | 8:50:02 | 0 | 10.7137 | 15.295 |
| 924 | 12/16/2010 | 8:50:03 | 0 | 10.7188 | 15.299 |
| 925 | 12/16/2010 | 9:50:04 | 0 | 10.7146 | 15.301 |
| 926 | 12/16/2010 | 8:50:05 | 0 | 10.7174 | 15.302 |
| 927 | 12/16/2010 | 8:50:06 | 0 | 10.7148 | 15.304 |
| 928 | 12/16/2010 | 8:50:07 | 0 | 10.7137 | 15.306 |
| 929 | 12/16/2010 | 8:50:08 | 0 | 10.7157 | 15.307 |
| 939 | 12/16/2010 | 8:50:09 | 9 | 10.7144 | 15.309 |
| 931 | 12/16/2010 | 8:50:10 | 0 | 10.7171 | 15.31  |
| 932 | 12/16/2010 | 8:50:11 | 0 | 10.7134 | 15.311 |
| 933 | 12/16/2010 | 8:50:12 | 0 | 11.1785 | 15.312 |
| 934 | 12/16/2010 | 8:50:13 | 0 | 11.828  | 15.313 |
| 935 | 12/16/2010 | 8:50:14 | 0 | 12.4949 | 15.314 |
| 936 | 12/16/2010 | 8:50:15 | 0 | 12.8385 | 15.314 |
| 937 | 12/16/2010 | 8:50:18 | 0 | 12.7986 | 15.315 |
| 938 | 12/16/2010 | 9:50:17 | 9 | 12.7777 | 15.315 |
| 939 | 12/16/2010 | 8:50:18 | 0 | 12.7208 | 15.317 |
| 940 | 12/16/2010 | 8:50:19 | 0 | 12.3108 | 15.317 |
| 941 | 12/16/2010 | 8:50:20 | 0 | 12.5783 | 15.318 |
| 942 | 12/16/2010 | 8:50:21 | 0 | 12.7984 | 15.318 |
| 943 | 12/16/2010 | 8:50:22 | 0 | 12.9093 | 15.318 |
| 944 | 12/16/2010 | 8:50:23 | 0 | 12.7297 | 15.32  |
| 945 | 12/16/2010 | 8:50:24 | 0 | 12.8869 | 15.32  |
| 946 | 12/16/2010 | 8:50:25 | 0 | 12.6838 | 15.321 |
| 947 | 12/16/2010 | 8:50:26 | 0 | 12.87   | 15.321 |
| 949 | 12/16/2010 | 8:50:27 | 0 | 12.6556 | 15.323 |
| 949 | 12/16/2010 | 8:50:28 | 0 | 12.6413 | 15.322 |
| 950 | 12/16/2010 | 8:50:29 | 0 | 12.6341 | 15.323 |
| 951 | 12/16/2010 | 8:50:30 | 0 | 12.2488 | 15.323 |
| 952 | 12/16/2010 | 8:50:31 | 0 | 12.5582 | 15.324 |
| 953 | 12/16/2010 | 8:50:32 | 0 | 12.5904 | 15.325 |
| 954 | 12/16/2010 | 8:50:33 | 0 | 12.5131 | 15.325 |
| 955 | 12/16/2010 | 8:50:34 | 0 | 12.5714 | 15.326 |
| 956 | 12/16/2010 | 8:50:35 | 0 | 12.5428 | 15.326 |
| 957 | 12/16/2010 | 8:50:36 | 9 | 12.5519 | 15.326 |
| 958 | 12/16/2010 | 8:50:37 | 0 | 12.5386 | 15.326 |
| 959 | 12/16/2010 | 8:50:38 | 0 | 12.5284 | 15.327 |
| 960 | 12/16/2010 | 8:50:39 | 0 | 12.5212 | 15.327 |
| 961 | 12/16/2010 | 8:50:40 | 0 | 12.5099 | 15.327 |
| 962 | 12/16/2010 | 8:50:41 | 0 | 12.4945 | 15.327 |
| 963 | 12/16/2010 | 8:50:42 | 0 | 12.4682 | 15.328 |
| 964 | 12/16/2010 | 8:50:43 | 0 | 12.4746 | 15.329 |
| 965 | 12/16/2010 | 8:50:44 | 0 | 12.4627 | 15.328 |
| 966 | 12/16/2010 | 8:50:45 | 0 | 12.4538 | 15.33  |
| 967 | 12/16/2010 | 8:50:46 | 0 | 12.4436 | 15.33  |
| 968 | 12/16/2010 | 8:50:47 | 0 | 12.4328 | 15.33  |
| 969 | 12/16/2010 | 8:50:48 | 0 | 12.421  | 15.331 |
| 970 | 12/16/2010 | 8:50:49 | 0 | 12.4127 | 15.331 |
| 971 | 12/16/2010 | 8:50:50 | 0 | 12.4034 | 15.332 |
| 972 | 12/16/2010 | 8:50:51 | 0 | 12.3919 | 15.332 |
| 973 | 12/16/2010 | 8:50:52 | 0 | 12.3776 | 15.331 |
| 974 | 12/16/2010 | 8:50:53 | 9 | 12.3696 | 15.332 |
| 975 | 12/16/2010 | 8:50:54 | 0 | 12.3601 | 15.333 |
| 976 | 12/16/2010 | 8:50:55 | 0 | 12.3519 | 15.333 |
| 977 | 12/16/2010 | 8:50:56 | 0 | 12.3437 | 15.332 |
| 978 | 12/16/2010 | 8:50:57 | 0 | 12.3344 | 15.334 |
| 979 | 12/16/2010 | 8:50:56 | 0 | 12.3202 | 15.334 |
| 980 | 12/16/2010 | 8:50:59 | 0 | 12.3116 | 15.333 |
| 981 | 12/16/2010 | 8:51:00 | 0 | 12.3018 | 15.333 |
| 982 | 12/16/2010 | 8:51:01 | 0 | 12.2844 | 15.335 |
| 983 | 12/16/2010 | 8:51:02 | 0 | 12.2844 | 15.335 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 984  | 12/16/2010 | 8:51:03 | 0 | 12.2751 | 15.335 |
| 985  | 12/16/2010 | 8:51:04 | 0 | 12.265  | 15.335 |
| 986  | 12/16/2010 | 8:51:05 | 0 | 12.2553 | 15.335 |
| 987  | 12/16/2010 | 8:51:06 | 0 | 12.2465 | 15.336 |
| 988  | 12/16/2010 | 8:51:07 | 0 | 12.2375 | 15.335 |
| 989  | 12/16/2010 | 8:51:08 | 0 | 12.2315 | 15.335 |
| 990  | 12/16/2010 | 8:51:09 | 0 | 12.2198 | 15.336 |
| 991  | 12/16/2010 | 8:51:10 | 0 | 12.2108 | 15.336 |
| 992  | 12/16/2010 | 8:51:11 | 0 | 12.2065 | 15.337 |
| 993  | 12/16/2010 | 8:51:12 | 0 | 12.2211 | 15.337 |
| 994  | 12/16/2010 | 8:51:13 | 0 | 12.1757 | 15.337 |
| 996  | 12/16/2010 | 8:51:14 | 0 | 12.2094 | 15.337 |
| 998  | 12/16/2010 | 8:51:15 | 0 | 12.1669 | 15.338 |
| 997  | 12/16/2010 | 8:51:16 | 0 | 12.1604 | 15.337 |
| 998  | 12/16/2010 | 8:51:17 | 0 | 12.1534 | 15.337 |
| 999  | 12/16/2010 | 8:51:18 | 0 | 12.1109 | 15.337 |
| 1000 | 12/16/2010 | 8:51:19 | 0 | 12.1263 | 15.338 |
| 1001 | 12/16/2010 | 8:51:20 | 0 | 12.1264 | 15.338 |
| 1002 | 12/16/2010 | 8:51:21 | 0 | 12.1204 | 15.339 |
| 1003 | 12/16/2010 | 8:51:22 | 0 | 12.1115 | 15.338 |
| 1004 | 12/16/2010 | 8:51:23 | 0 | 12.1047 | 15.338 |
| 1005 | 12/16/2010 | 8:51:24 | 0 | 12.0978 | 15.339 |
| 1006 | 12/16/2010 | 8:51:25 | 0 | 12.0866 | 15.339 |
| 1007 | 12/16/2010 | 8:51:26 | 0 | 12.0793 | 15.339 |
| 1008 | 12/16/2010 | 8:51:27 | 0 | 12.0705 | 15.34  |
| 1009 | 12/16/2010 | 8:51:28 | 0 | 12.0612 | 15.339 |
| 1010 | 12/16/2010 | 8:51:29 | 0 | 12.048  | 15.339 |
| 1011 | 12/16/2010 | 8:51:30 | 0 | 12.0442 | 15.339 |
| 1012 | 12/16/2010 | 8:51:31 | 0 | 12.0432 | 15.34  |
| 1013 | 12/16/2010 | 8:51:32 | 0 | 12.0394 | 15.339 |
| 1014 | 12/16/2010 | 8:51:33 | 0 | 12.0279 | 15.339 |
| 1015 | 12/16/2010 | 8:51:34 | 0 | 12.0172 | 15.341 |
| 1016 | 12/16/2010 | 8:51:35 | 0 | 12.0091 | 15.34  |
| 1017 | 12/16/2010 | 8:51:36 | 0 | 12.0003 | 15.339 |
| 1018 | 12/16/2010 | 8:51:37 | 0 | 11.9914 | 15.341 |
| 1019 | 12/16/2010 | 8:51:38 | 0 | 11.9874 | 15.341 |
| 1020 | 12/16/2010 | 8:51:39 | 0 | 11.9788 | 15.34  |
| 1021 | 12/16/2010 | 8:51:40 | 0 | 11.9705 | 15.341 |
| 1022 | 12/16/2010 | 8:51:41 | 0 | 11.9636 | 15.341 |
| 1023 | 12/16/2010 | 8:51:42 | 0 | 11.9581 | 15.341 |
| 1024 | 12/16/2010 | 8:51:43 | 0 | 11.9512 | 15.341 |
| 1025 | 12/16/2010 | 8:51:44 | 0 | 11.943  | 15.341 |
| 1026 | 12/16/2010 | 8:51:45 | 0 | 11.937  | 15.341 |
| 1027 | 12/16/2010 | 8:51:46 | 0 | 11.9277 | 15.341 |
| 1028 | 12/16/2010 | 8:51:47 | 0 | 11.9233 | 15.341 |
| 1029 | 12/16/2010 | 8:51:48 | 0 | 11.9154 | 15.341 |
| 1030 | 12/16/2010 | 8:51:49 | 0 | 11.9061 | 15.342 |
| 1031 | 12/16/2010 | 8:51:50 | 0 | 11.9007 | 15.342 |
| 1032 | 12/16/2010 | 8:51:51 | 0 | 11.8958 | 15.342 |
| 1033 | 12/16/2010 | 8:51:52 | 0 | 11.8875 | 15.342 |
| 1034 | 12/16/2010 | 8:51:53 | 0 | 11.8837 | 15.342 |
| 1035 | 12/16/2010 | 8:51:54 | 0 | 11.874  | 15.342 |
| 1036 | 12/16/2010 | 8:51:55 | 0 | 11.8682 | 15.342 |
| 1037 | 12/16/2010 | 8:51:56 | 0 | 11.8609 | 15.342 |
| 1038 | 12/16/2010 | 8:51:57 | 0 | 11.8536 | 15.342 |
| 1039 | 12/16/2010 | 8:51:58 | 0 | 11.8478 | 15.343 |
| 1040 | 12/16/2010 | 8:51:59 | 0 | 11.8336 | 15.342 |
| 1041 | 12/16/2010 | 8:52:00 | 0 | 11.8369 | 15.343 |
| 1042 | 12/16/2010 | 8:52:01 | 0 | 11.8293 | 15.342 |
| 1043 | 12/16/2010 | 8:52:02 | 0 | 11.8207 | 15.342 |
| 1044 | 12/16/2010 | 8:52:03 | 0 | 11.8153 | 15.343 |
| 1045 | 12/16/2010 | 8:52:04 | 0 | 11.812  | 15.343 |
| 1046 | 12/16/2010 | 8:52:05 | 0 | 11.8044 | 15.343 |
| 1047 | 12/16/2010 | 8:52:06 | 0 | 11.8001 | 15.343 |
| 1048 | 12/16/2010 | 8:52:07 | 0 | 11.7918 | 15.342 |
| 1049 | 12/16/2010 | 8:52:08 | 0 | 11.7896 | 15.343 |
| 1050 | 12/16/2010 | 8:52:09 | 0 | 11.7792 | 15.343 |
| 1051 | 12/16/2010 | 8:52:10 | 0 | 11.7744 | 15.343 |
| 1052 | 12/16/2010 | 8:52:11 | 0 | 11.7684 | 15.344 |
| 1053 | 12/16/2010 | 8:52:12 | 0 | 11.7623 | 15.343 |
| 1054 | 12/16/2010 | 8:52:13 | 0 | 11.7585 | 15.343 |
| 1055 | 12/16/2010 | 8:52:14 | 0 | 11.7535 | 15.343 |
| 1056 | 12/16/2010 | 8:52:15 | 0 | 11.7442 | 15.344 |
| 1057 | 12/16/2010 | 8:52:16 | 0 | 11.7378 | 15.343 |
| 1058 | 12/16/2010 | 8:52:17 | 0 | 11.735  | 15.344 |
| 1059 | 12/16/2010 | 8:52:18 | 0 | 11.7279 | 15.344 |
| 1060 | 12/16/2010 | 8:52:19 | 0 | 11.7205 | 15.343 |
| 1061 | 12/16/2010 | 8:52:20 | 0 | 11.7144 | 15.344 |
| 1062 | 12/16/2010 | 8:52:21 | 0 | 11.7089 | 15.343 |
| 1063 | 12/16/2010 | 8:52:22 | 0 | 11.704  | 15.343 |
| 1064 | 12/16/2010 | 8:52:23 | 0 | 11.7028 | 15.344 |
| 1065 | 12/16/2010 | 8:52:24 | 0 | 11.891  | 15.343 |
| 1066 | 12/16/2010 | 8:52:25 | 0 | 11.6925 | 15.344 |
| 1067 | 12/16/2010 | 8:52:26 | 0 | 11.6845 | 15.344 |
| 1068 | 12/16/2010 | 8:52:27 | 0 | 11.677  | 15.344 |
| 1068 | 12/16/2010 | 8:52:28 | 0 | 11.6713 | 15.344 |
| 1070 | 12/16/2010 | 8:52:29 | 0 | 11.6671 | 15.344 |
| 1071 | 12/16/2010 | 8:52:30 | 0 | 11.6608 | 15.344 |
| 1072 | 12/16/2010 | 8:52:31 | 0 | 11.6556 | 15.343 |
| 1073 | 12/16/2010 | 8:52:32 | 0 | 11.6518 | 15.344 |
| 1074 | 12/16/2010 | 8:52:33 | 0 | 11.8453 | 15.344 |
| 1075 | 12/16/2010 | 8:52:34 | 0 | 11.6409 | 15.344 |
| 1076 | 12/16/2010 | 8:52:35 | 0 | 11.6334 | 15.345 |
| 1077 | 12/16/2010 | 8:52:36 | 0 | 11.6299 | 15.344 |
| 1076 | 12/16/2010 | 8:52:37 | 0 | 11.8248 | 15.344 |
| 1079 | 12/16/2010 | 8:52:38 | 0 | 11.6208 | 15.345 |
| 1080 | 12/16/2010 | 8:52:39 | 0 | 11.614  | 15.344 |
| 1081 | 12/16/2010 | 8:52:40 | 0 | 11.61   | 15.344 |
| 1082 | 12/16/2010 | 8:52:41 | 0 | 11.6039 | 15.343 |
| 1083 | 12/16/2010 | 8:52:42 | 0 | 11.6004 | 15.344 |
| 1084 | 12/16/2010 | 8:52:43 | 0 | 11.5984 | 15.344 |
| 1085 | 12/16/2010 | 8:52:44 | 0 | 11.5891 | 15.343 |
| 1086 | 12/16/2010 | 8:52:45 | 0 | 11.5811 | 15.345 |
| 1087 | 12/16/2010 | 8:52:46 | 0 | 11.5809 | 15.344 |
| 1088 | 12/16/2010 | 8:52:47 | 0 | 11.5748 | 15.344 |
| 1089 | 12/16/2010 | 8:52:48 | 8 | 11.5714 | 15.344 |
| 1090 | 12/16/2010 | 8:52:49 | 0 | 11.5677 | 15.344 |
| 1091 | 12/16/2010 | 8:52:50 | 0 | 11.5588 | 15.344 |
| 1092 | 12/16/2010 | 8:52:51 | 0 | 11.5581 | 15.344 |
| 1083 | 12/16/2010 | 8:52:52 | 0 | 11.5522 | 15.344 |
| 1094 | 12/16/2010 | 8:52:53 | 0 | 11.5453 | 15.344 |
| 1095 | 12/16/2010 | 8:52:54 | 0 | 11.5456 | 15.344 |
| 1096 | 12/16/2010 | 8:52:55 | 0 | 11.5413 | 15.344 |
| 1097 | 12/16/2010 | 8:52:56 | 0 | 11.5325 | 15.344 |
| 1098 | 12/16/2010 | 8:52:57 | 0 | 11.5291 | 15.344 |
| 1099 | 12/16/2010 | 8:52:58 | 0 | 11.5254 | 15.344 |
| 1100 | 12/16/2010 | 8:52:59 | 0 | 11.5189 | 15.344 |
| 1101 | 12/16/2010 | 8:53:00 | 0 | 11.515  | 15.344 |
| 1102 | 12/16/2010 | 8:53:01 | 0 | 11.5127 | 15.344 |
| 1103 | 12/16/2010 | 8:53:02 | 0 | 11.5064 | 15.345 |
| 1104 | 12/16/2010 | 8:53:03 | 0 | 11.5032 | 15.344 |
| 1105 | 12/16/2010 | 8:53:04 | 0 | 11.4991 | 15.344 |
| 1106 | 12/16/2010 | 8:53:05 | 0 | 11.4957 | 15.344 |
| 1107 | 12/16/2010 | 8:53:06 | 0 | 11.4876 | 15.345 |
| 1108 | 12/16/2010 | 8:53:07 | 0 | 11.4859 | 15.344 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1109 | 12/16/2010 | 6:53:06 | 0 | 11.4622 | 15.344 |
| 1110 | 12/16/2010 | 6:53:09 | 0 | 11.4783 | 15.345 |
| 1111 | 12/16/2010 | 6:53:10 | 0 | 11.4703 | 15.344 |
| 1112 | 12/16/2010 | 6:53:11 | 0 | 11.4679 | 15.344 |
| 1113 | 12/16/2010 | 6:53:12 | 0 | 11.4654 | 15.344 |
| 1114 | 12/16/2010 | 6:53:13 | 0 | 11.4813 | 15.344 |
| 1115 | 12/16/2010 | 6:53:14 | 0 | 11.4581 | 15.345 |
| 1116 | 12/16/2010 | 6:53:15 | 0 | 11.454  | 15.344 |
| 1117 | 12/16/2010 | 6:53:16 | 0 | 11.4471 | 15.344 |
| 1118 | 12/16/2010 | 6:53:17 | 0 | 11.4437 | 15.345 |
| 1119 | 12/16/2010 | 6:53:18 | 0 | 11.4381 | 15.345 |
| 1120 | 12/16/2010 | 6:53:19 | 0 | 11.4372 | 15.346 |
| 1121 | 12/16/2010 | 6:53:20 | 0 | 11.4337 | 15.344 |
| 1122 | 12/16/2010 | 6:53:21 | 0 | 11.4261 | 15.345 |
| 1123 | 12/16/2010 | 6:53:22 | 0 | 11.4257 | 15.344 |
| 1124 | 12/16/2010 | 6:53:23 | 0 | 11.4201 | 15.344 |
| 1125 | 12/16/2010 | 6:53:24 | 0 | 11.4172 | 15.345 |
| 1126 | 12/16/2010 | 6:53:25 | 0 | 11.4137 | 15.345 |
| 1127 | 12/16/2010 | 6:53:26 | 0 | 11.6619 | 15.345 |
| 1128 | 12/16/2010 | 6:53:27 | 0 | 11.5103 | 15.344 |
| 1129 | 12/16/2010 | 6:53:28 | 0 | 11.3919 | 15.344 |
| 1130 | 12/16/2010 | 6:53:29 | 0 | 11.3116 | 15.344 |
| 1131 | 12/16/2010 | 6:53:30 | 0 | 11.3955 | 15.344 |
| 1132 | 12/16/2010 | 6:53:31 | 0 | 11.3518 | 15.345 |
| 1133 | 12/16/2010 | 6:53:32 | 0 | 11.3931 | 15.345 |
| 1134 | 12/16/2010 | 6:53:33 | 0 | 11.3854 | 15.345 |
| 1135 | 12/16/2010 | 6:53:34 | 0 | 11.3826 | 15.345 |
| 1136 | 12/16/2010 | 6:53:35 | 0 | 11.3432 | 15.344 |
| 1137 | 12/16/2010 | 6:53:36 | 0 | 11.3754 | 15.345 |
| 1138 | 12/16/2010 | 6:53:37 | 0 | 11.3666 | 15.345 |
| 1139 | 12/16/2010 | 6:53:38 | 0 | 11.364  | 15.344 |
| 1140 | 12/16/2010 | 6:53:39 | 0 | 11.3664 | 15.344 |
| 1141 | 12/16/2010 | 6:53:40 | 0 | 11.361  | 15.345 |
| 1142 | 12/16/2010 | 6:53:41 | 0 | 11.3572 | 15.344 |
| 1143 | 12/16/2010 | 6:53:42 | 0 | 11.3538 | 15.345 |
| 1144 | 12/16/2010 | 6:53:43 | 0 | 11.347  | 15.345 |
| 1145 | 12/16/2010 | 6:53:44 | 0 | 11.3822 | 15.345 |
| 1146 | 12/16/2010 | 6:53:45 | 0 | 11.3445 | 15.344 |
| 1147 | 12/16/2010 | 6:53:48 | 0 | 11.3274 | 15.345 |
| 1148 | 12/16/2010 | 6:53:47 | 0 | 11.333  | 15.345 |
| 1149 | 12/16/2010 | 6:53:48 | 0 | 11.3536 | 15.344 |
| 1150 | 12/16/2010 | 6:53:49 | 0 | 11.3415 | 15.344 |
| 1151 | 12/16/2010 | 9:53:50 | 0 | 11.3332 | 15.345 |
| 1152 | 12/16/2010 | 6:53:51 | 0 | 11.3203 | 15.344 |
| 1153 | 12/16/2010 | 6:53:52 | 0 | 11.3181 | 15.344 |
| 1154 | 12/16/2010 | 6:53:53 | 0 | 11.3162 | 15.345 |
| 1155 | 12/16/2010 | 6:53:54 | 0 | 11.3126 | 15.344 |
| 1156 | 12/16/2010 | 6:53:55 | 0 | 11.3068 | 15.345 |
| 1157 | 12/16/2010 | 6:53:58 | 0 | 11.308  | 15.344 |
| 1158 | 12/16/2010 | 6:53:57 | 0 | 11.3015 | 15.345 |
| 1159 | 12/16/2010 | 6:53:56 | 0 | 11.3027 | 15.345 |
| 1160 | 12/16/2010 | 6:53:59 | 0 | 11.2965 | 15.344 |
| 1161 | 12/16/2010 | 6:54:00 | 0 | 11.2927 | 15.345 |
| 1162 | 12/16/2010 | 6:54:01 | 0 | 11.2881 | 15.345 |
| 1163 | 12/16/2010 | 6:54:02 | 0 | 11.2887 | 15.344 |
| 1164 | 12/16/2010 | 6:54:03 | 0 | 11.2973 | 15.345 |
| 1165 | 12/16/2010 | 6:54:04 | 0 | 11.2602 | 15.345 |
| 1166 | 12/16/2010 | 6:54:05 | 0 | 11.2776 | 15.345 |
| 1167 | 12/16/2010 | 6:54:06 | 0 | 11.2761 | 15.345 |
| 1168 | 12/16/2010 | 6:54:07 | 0 | 11.2742 | 15.344 |
| 1169 | 12/16/2010 | 6:54:06 | 0 | 11.2697 | 15.345 |
| 1170 | 12/16/2010 | 6:54:09 | 0 | 11.2859 | 15.345 |
| 1171 | 12/16/2010 | 6:54:10 | 0 | 11.2654 | 15.344 |
| 1172 | 12/16/2010 | 6:54:11 | 0 | 11.2636 | 15.345 |
| 1173 | 12/16/2010 | 6:54:12 | 0 | 11.2575 | 15.344 |
| 1174 | 12/16/2010 | 6:54:13 | 0 | 11.2536 | 15.345 |
| 1175 | 12/16/2010 | 6:54:14 | 0 | 11.2526 | 15.346 |
| 1176 | 12/16/2010 | 9:54:15 | 0 | 11.2484 | 15.345 |
| 1177 | 12/16/2010 | 6:54:16 | 0 | 11.2467 | 15.345 |
| 1178 | 12/16/2010 | 6:54:17 | 0 | 11.2434 | 15.345 |
| 1179 | 12/16/2010 | 6:54:16 | 0 | 11.2421 | 15.346 |
| 1180 | 12/16/2010 | 6:54:19 | 0 | 11.2391 | 15.346 |
| 1181 | 12/16/2010 | 6:54:20 | 0 | 11.2354 | 15.345 |
| 1182 | 12/16/2010 | 6:54:21 | 0 | 11.2339 | 15.345 |
| 1183 | 12/16/2010 | 6:54:22 | 0 | 11.2291 | 15.345 |
| 1184 | 12/16/2010 | 6:54:23 | 0 | 11.2291 | 15.345 |
| 1185 | 12/16/2010 | 6:54:24 | 0 | 11.2261 | 15.345 |
| 1186 | 12/16/2010 | 6:54:25 | 0 | 11.2241 | 15.345 |
| 1187 | 12/16/2010 | 6:54:26 | 0 | 11.2195 | 15.345 |
| 1188 | 12/16/2010 | 6:54:27 | 0 | 11.1849 | 15.345 |
| 1189 | 12/16/2010 | 6:54:28 | 0 | 11.2123 | 15.345 |
| 1190 | 12/16/2010 | 6:54:29 | 0 | 11.212  | 15.345 |
| 1191 | 12/16/2010 | 6:54:38 | 0 | 11.2092 | 15.344 |
| 1192 | 12/16/2010 | 6:54:31 | 0 | 11.2067 | 15.345 |
| 1193 | 12/16/2010 | 6:54:32 | 0 | 11.206  | 15.345 |
| 1194 | 12/16/2010 | 6:54:33 | 0 | 11.2013 | 15.345 |
| 1195 | 12/16/2010 | 6:54:34 | 0 | 11.2181 | 15.345 |
| 1196 | 12/16/2010 | 6:54:35 | 0 | 11.1974 | 15.345 |
| 1197 | 12/16/2010 | 6:54:36 | 0 | 11.1944 | 15.346 |
| 1198 | 12/16/2010 | 6:54:37 | 0 | 11.2745 | 15.345 |
| 1199 | 12/16/2010 | 6:54:38 | 0 | 11.1881 | 15.345 |
| 1200 | 12/16/2010 | 6:54:39 | 0 | 11.0452 | 15.345 |
| 1201 | 12/16/2010 | 6:54:40 | 0 | 11.1128 | 15.345 |
| 1202 | 12/16/2010 | 6:54:41 | 0 | 11.1848 | 15.345 |
| 1203 | 12/16/2010 | 6:54:42 | 0 | 11.1798 | 15.345 |
| 1204 | 12/16/2010 | 6:54:43 | 0 | 11.1751 | 15.345 |
| 1205 | 12/16/2010 | 6:54:44 | 0 | 11.1765 | 15.345 |
| 1206 | 12/16/2010 | 6:54:45 | 0 | 11.1724 | 15.345 |
| 1207 | 12/16/2010 | 6:54:46 | 0 | 11.1692 | 15.345 |
| 1208 | 12/16/2010 | 6:54:47 | 0 | 11.1697 | 15.346 |
| 1209 | 12/16/2010 | 6:54:48 | 0 | 11.1675 | 15.345 |
| 1210 | 12/16/2010 | 6:54:49 | 0 | 11.1664 | 15.345 |
| 1211 | 12/16/2010 | 6:54:50 | 0 | 11.1588 | 15.345 |
| 1212 | 12/16/2010 | 6:54:51 | 0 | 11.1577 | 15.345 |
| 1213 | 12/16/2010 | 6:54:52 | 0 | 11.1576 | 15.345 |
| 1214 | 12/16/2010 | 6:54:53 | 0 | 11.1549 | 15.345 |
| 1215 | 12/16/2010 | 6:54:54 | 0 | 11.1519 | 15.346 |
| 1216 | 12/16/2010 | 6:54:55 | 0 | 11.1491 | 15.348 |
| 1217 | 12/16/2010 | 6:54:56 | 0 | 11.1485 | 15.346 |
| 1218 | 12/16/2010 | 6:54:57 | 0 | 11.1431 | 15.345 |
| 1219 | 12/16/2010 | 6:54:58 | 0 | 11.1443 | 15.345 |
| 1220 | 12/16/2010 | 6:54:59 | 0 | 11.1402 | 15.346 |
| 1221 | 12/16/2010 | 6:55:00 | 0 | 11.14   | 15.345 |
| 1222 | 12/16/2010 | 6:55:03 | 0 | 11.1307 | 15.332 |
| 1223 | 12/16/2010 | 6:55:06 | 0 | 11.1263 | 15.325 |
| 1224 | 12/16/2010 | 6:55:09 | 0 | 11.1179 | 15.322 |
| 1225 | 12/16/2010 | 6:55:12 | 0 | 11.1142 | 15.32  |
| 1226 | 12/16/2010 | 6:55:15 | 0 | 11.1065 | 15.317 |
| 1227 | 12/16/2010 | 6:55:16 | 0 | 11.103  | 15.315 |
| 1228 | 12/16/2010 | 6:55:21 | 0 | 11.0949 | 15.315 |
| 1229 | 12/16/2010 | 6:55:24 | 0 | 11.086  | 15.313 |
| 1230 | 12/16/2010 | 6:55:27 | 0 | 11.0846 | 15.311 |
| 1231 | 12/16/2010 | 6:55:30 | 0 | 11.0794 | 15.31  |
| 1232 | 12/16/2010 | 6:55:33 | 0 | 11.0774 | 15.309 |
| 1233 | 12/16/2010 | 6:55:36 | 0 | 11.0665 | 15.307 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1234 | 12/16/2010 | 8:55:39 | 0 | 11.0615 | 15.306 |
| 1235 | 12/16/2010 | 8:55:42 | 0 | 11.0564 | 15.305 |
| 1236 | 12/16/2010 | 8:55:45 | 0 | 11.0529 | 15.304 |
| 1237 | 12/16/2010 | 8:55:48 | 0 | 11.048  | 15.304 |
| 1238 | 12/16/2010 | 8:55:51 | 0 | 11.0427 | 15.303 |
| 1239 | 12/16/2010 | 8:56:54 | 0 | 11.0391 | 15.302 |
| 1240 | 12/16/2010 | 8:55:57 | 0 | 11.0347 | 15.301 |
| 1241 | 12/16/2010 | 8:56:00 | 0 | 11.0302 | 15.3   |
| 1242 | 12/16/2010 | 9:56:03 | 0 | 11.0238 | 15.3   |
| 1243 | 12/16/2010 | 9:56:06 | 0 | 11.0207 | 15.299 |
| 1244 | 12/16/2010 | 9:56:08 | 0 | 11.0169 | 15.299 |
| 1245 | 12/16/2010 | 8:56:12 | 0 | 11.0143 | 15.298 |
| 1246 | 12/16/2010 | 9:56:15 | 0 | 11.0069 | 15.298 |
| 1247 | 12/16/2010 | 9:56:18 | 0 | 11.0019 | 15.297 |
| 1249 | 12/16/2010 | 9:56:21 | 0 | 11.001  | 15.297 |
| 1249 | 12/16/2010 | 9:56:24 | 0 | 10.9944 | 15.296 |
| 1250 | 12/16/2010 | 9:56:27 | 0 | 10.9908 | 15.296 |
| 1251 | 12/16/2010 | 9:56:30 | 0 | 10.9904 | 15.296 |
| 1252 | 12/16/2010 | 9:56:33 | 0 | 10.9821 | 15.295 |
| 1253 | 12/16/2010 | 9:56:36 | 0 | 10.9799 | 15.295 |
| 1254 | 12/16/2010 | 9:56:39 | 0 | 10.9791 | 15.294 |
| 1255 | 12/16/2010 | 9:56:42 | 0 | 10.9741 | 15.295 |
| 1256 | 12/16/2010 | 9:56:45 | 0 | 10.9695 | 15.294 |
| 1257 | 12/16/2010 | 9:56:49 | 0 | 10.9659 | 15.295 |
| 1258 | 12/16/2010 | 9:56:51 | 0 | 10.963  | 15.294 |
| 1259 | 12/16/2010 | 9:56:54 | 0 | 10.9599 | 15.294 |
| 1260 | 12/16/2010 | 9:56:57 | 0 | 10.9505 | 15.294 |
| 1291 | 12/16/2010 | 9:57:00 | 0 | 10.9516 | 15.293 |
| 1262 | 12/16/2010 | 8:57:03 | 0 | 10.9491 | 15.293 |
| 1263 | 12/16/2010 | 9:57:06 | 0 | 10.9407 | 15.294 |
| 1264 | 12/16/2010 | 9:57:09 | 0 | 10.943  | 15.294 |
| 1265 | 12/16/2010 | 9:57:12 | 0 | 10.9415 | 15.292 |
| 1266 | 12/16/2010 | 9:57:15 | 0 | 10.9385 | 15.293 |
| 1267 | 12/16/2010 | 9:57:19 | 0 | 10.931  | 15.292 |
| 1268 | 12/16/2010 | 9:57:21 | 0 | 10.9333 | 15.292 |
| 1269 | 12/16/2010 | 8:57:24 | 0 | 10.9275 | 15.292 |
| 1270 | 12/16/2010 | 9:57:27 | 0 | 10.9257 | 15.293 |
| 1271 | 12/16/2010 | 9:57:30 | 0 | 10.9274 | 15.294 |
| 1272 | 12/16/2010 | 9:57:33 | 0 | 10.9419 | 15.292 |
| 1273 | 12/16/2010 | 9:57:36 | 0 | 10.9201 | 15.292 |
| 1274 | 12/16/2010 | 9:57:39 | 0 | 10.9152 | 15.292 |
| 1275 | 12/16/2010 | 9:57:42 | 0 | 10.9127 | 15.291 |
| 1278 | 12/16/2010 | 9:57:45 | 0 | 10.9192 | 15.291 |
| 1277 | 12/16/2010 | 9:57:49 | 0 | 10.9071 | 15.291 |
| 1279 | 12/16/2010 | 9:57:51 | 0 | 10.9069 | 15.291 |
| 1279 | 12/16/2010 | 9:57:54 | 0 | 10.9017 | 15.291 |
| 1290 | 12/16/2010 | 9:57:57 | 0 | 10.898  | 15.291 |
| 1281 | 12/16/2010 | 9:56:00 | 0 | 10.8991 | 15.29  |
| 1282 | 12/16/2010 | 8:58:03 | 0 | 10.9963 | 15.291 |
| 1283 | 12/16/2010 | 9:56:06 | 0 | 10.9961 | 15.291 |
| 1284 | 12/16/2010 | 9:58:09 | 0 | 10.8948 | 15.291 |
| 1285 | 12/16/2010 | 9:56:12 | 0 | 10.8892 | 15.29  |
| 1286 | 12/16/2010 | 9:56:15 | 0 | 10.888  | 15.291 |
| 1287 | 12/16/2010 | 9:58:18 | 0 | 10.8876 | 15.291 |
| 1299 | 12/16/2010 | 9:58:21 | 0 | 10.8827 | 15.29  |
| 1299 | 12/16/2010 | 9:58:24 | 0 | 10.8802 | 15.29  |
| 1290 | 12/16/2010 | 8:58:27 | 0 | 10.9799 | 15.29  |
| 1291 | 12/16/2010 | 9:58:30 | 0 | 10.9762 | 15.29  |
| 1292 | 12/16/2010 | 9:58:33 | 0 | 10.8743 | 15.29  |
| 1293 | 12/16/2010 | 9:58:39 | 0 | 10.9751 | 15.29  |
| 1294 | 12/16/2010 | 9:56:39 | 0 | 10.9729 | 15.29  |
| 1295 | 12/16/2010 | 8:56:42 | 0 | 10.9701 | 15.269 |
| 1296 | 12/16/2010 | 9:58:45 | 0 | 10.8669 | 15.299 |
| 1297 | 12/16/2010 | 9:58:48 | 0 | 10.8672 | 15.299 |
| 1298 | 12/16/2010 | 8:58:51 | 0 | 10.8655 | 15.299 |
| 1299 | 12/16/2010 | 6:58:54 | 0 | 10.867  | 15.286 |
| 1300 | 12/16/2010 | 9:56:57 | 0 | 10.863  | 15.288 |
| 1301 | 12/16/2010 | 9:59:00 | 0 | 10.8604 | 15.268 |
| 1302 | 12/16/2010 | 8:59:03 | 0 | 10.9606 | 15.267 |
| 1303 | 12/16/2010 | 9:59:06 | 0 | 10.9563 | 15.288 |
| 1304 | 12/16/2010 | 9:59:09 | 0 | 10.9546 | 15.287 |
| 1305 | 12/16/2010 | 8:59:12 | 0 | 10.854  | 15.297 |
| 1306 | 12/16/2010 | 9:59:15 | 0 | 10.8503 | 15.297 |
| 1307 | 12/16/2010 | 8:59:19 | 0 | 10.8511 | 15.297 |
| 1308 | 12/16/2010 | 8:59:21 | 0 | 10.8478 | 15.286 |
| 1309 | 12/16/2010 | 9:59:24 | 0 | 10.9529 | 15.286 |
| 1310 | 12/16/2010 | 9:59:27 | 0 | 10.647  | 15.286 |
| 1311 | 12/16/2010 | 9:59:30 | 0 | 10.8442 | 15.286 |
| 1312 | 12/16/2010 | 9:59:33 | 0 | 10.8407 | 15.285 |
| 1313 | 12/16/2010 | 9:59:36 | 0 | 10.8431 | 15.285 |
| 1314 | 12/16/2010 | 9:59:39 | 0 | 10.8409 | 15.289 |
| 1315 | 12/16/2010 | 9:59:42 | 0 | 10.8404 | 15.295 |
| 1316 | 12/16/2010 | 9:56:45 | 0 | 10.9381 | 15.286 |
| 1317 | 12/16/2010 | 8:59:49 | 0 | 10.8391 | 15.284 |
| 1318 | 12/16/2010 | 8:59:51 | 0 | 10.8379 | 15.295 |
| 1319 | 12/16/2010 | 9:59:54 | 0 | 10.8371 | 15.295 |
| 1320 | 12/16/2010 | 9:59:57 | 0 | 10.8354 | 15.285 |
| 1321 | 12/16/2010 | 9:00:00 | 0 | 10.9306 | 15.286 |
| 1322 | 12/16/2010 | 9:00:05 | 0 | 10.9313 | 15.282 |
| 1323 | 12/16/2010 | 9:00:10 | 0 | 10.9297 | 15.29  |
| 1324 | 12/16/2010 | 9:00:15 | 0 | 10.9271 | 15.28  |
| 1325 | 12/16/2010 | 9:00:20 | 0 | 10.7232 | 15.279 |
| 1326 | 12/16/2010 | 9:00:25 | 0 | 10.9239 | 15.277 |
| 1327 | 12/16/2010 | 9:00:30 | 0 | 10.9183 | 15.277 |
| 1329 | 12/16/2010 | 9:00:35 | 0 | 10.9186 | 15.277 |
| 1329 | 12/16/2010 | 9:00:40 | 0 | 10.9172 | 15.276 |
| 1330 | 12/16/2010 | 9:00:45 | 0 | 10.9193 | 15.275 |
| 1331 | 12/16/2010 | 9:00:50 | 0 | 10.9151 | 15.275 |
| 1332 | 12/16/2010 | 9:00:55 | 0 | 10.9131 | 15.274 |
| 1333 | 12/16/2010 | 9:01:00 | 0 | 10.9108 | 15.274 |
| 1334 | 12/16/2010 | 9:01:05 | 0 | 10.912  | 15.274 |
| 1335 | 12/16/2010 | 9:01:10 | 0 | 10.8070 | 15.274 |
| 1338 | 12/16/2010 | 9:01:15 | 0 | 10.8098 | 15.273 |
| 1337 | 12/16/2010 | 9:01:20 | 0 | 10.8067 | 15.273 |
| 1339 | 12/16/2010 | 9:01:25 | 0 | 10.8044 | 15.273 |
| 1339 | 12/16/2010 | 9:01:30 | 0 | 10.9038 | 15.273 |
| 1340 | 12/16/2010 | 9:01:35 | 0 | 10.8038 | 15.272 |
| 1341 | 12/16/2010 | 9:01:40 | 0 | 10.8009 | 15.272 |
| 1342 | 12/16/2010 | 9:01:45 | 0 | 10.8029 | 15.272 |
| 1343 | 12/16/2010 | 9:01:50 | 0 | 10.7988 | 15.272 |
| 1344 | 12/16/2010 | 0:01:55 | 0 | 10.7999 | 15.271 |
| 1345 | 12/16/2010 | 9:02:00 | 0 | 10.7933 | 15.271 |
| 1349 | 12/16/2010 | 9:02:05 | 0 | 10.7984 | 15.271 |
| 1347 | 12/16/2010 | 9:02:10 | 0 | 10.7844 | 15.271 |
| 1349 | 12/16/2010 | 9:02:15 | 0 | 10.7937 | 15.27  |
| 1349 | 12/16/2010 | 9:02:20 | 0 | 10.7958 | 15.271 |
| 1350 | 12/16/2010 | 9:02:25 | 0 | 10.7908 | 15.27  |
| 1351 | 12/16/2010 | 9:02:30 | 0 | 10.7934 | 15.271 |
| 1352 | 12/16/2010 | 9:02:35 | 0 | 10.7994 | 15.27  |
| 1353 | 12/16/2010 | 9:02:40 | 0 | 10.7882 | 15.271 |
| 1354 | 12/16/2010 | 9:02:45 | 0 | 10.7884 | 15.27  |
| 1355 | 12/16/2010 | 9:02:50 | 0 | 10.7883 | 15.27  |
| 1356 | 12/16/2010 | 9:02:55 | 0 | 10.7879 | 15.27  |
| 1357 | 12/16/2010 | 9:03:00 | 0 | 10.7867 | 15.27  |
| 1358 | 12/16/2010 | 9:03:05 | 0 | 10.784  | 15.27  |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1359 | 12/16/2010 | 9:03:10 | 0 | 10.7824 | 15.27  |
| 1360 | 12/16/2010 | 9:03:15 | 0 | 10.7837 | 15.27  |
| 1361 | 12/16/2010 | 9:03:20 | 0 | 10.7846 | 15.271 |
| 1362 | 12/16/2010 | 9:03:25 | 0 | 10.7794 | 15.271 |
| 1363 | 12/16/2010 | 9:03:30 | 0 | 10.7932 | 15.27  |
| 1364 | 12/16/2010 | 9:03:35 | 0 | 10.761  | 15.271 |
| 1365 | 12/16/2010 | 9:03:40 | 0 | 10.783  | 15.27  |
| 1366 | 12/16/2010 | 9:03:45 | 0 | 10.7607 | 15.271 |
| 1367 | 12/16/2010 | 9:03:50 | 0 | 10.7809 | 15.271 |
| 1368 | 12/16/2010 | 9:03:55 | 0 | 10.7756 | 15.271 |
| 1369 | 12/16/2010 | 9:04:00 | 0 | 10.7777 | 15.271 |
| 1370 | 12/16/2010 | 9:04:05 | 0 | 10.779  | 15.271 |
| 1371 | 12/16/2010 | 9:04:10 | 0 | 10.7777 | 15.272 |
| 1372 | 12/16/2010 | 9:04:15 | 0 | 10.7765 | 15.272 |
| 1373 | 12/16/2010 | 9:04:20 | 0 | 10.7747 | 15.272 |
| 1374 | 12/16/2010 | 9:04:25 | 0 | 10.7779 | 15.273 |
| 1375 | 12/16/2010 | 9:04:30 | 0 | 10.7742 | 15.272 |
| 1376 | 12/16/2010 | 9:04:35 | 0 | 10.7737 | 15.273 |
| 1377 | 12/16/2010 | 9:04:40 | 0 | 10.7754 | 15.273 |
| 1378 | 12/16/2010 | 9:04:45 | 0 | 10.7751 | 15.273 |
| 1379 | 12/16/2010 | 9:04:50 | 0 | 10.7759 | 15.273 |
| 1380 | 12/16/2010 | 9:04:55 | 0 | 10.7742 | 15.272 |
| 1381 | 12/16/2010 | 9:05:00 | 0 | 10.7727 | 15.273 |
| 1382 | 12/16/2010 | 9:05:01 | 0 | 10.7731 | 15.28  |
| 1383 | 12/16/2010 | 9:05:02 | 0 | 10.7687 | 15.288 |
| 1384 | 12/16/2010 | 9:05:03 | 0 | 10.7726 | 15.29  |
| 1385 | 12/16/2010 | 9:05:04 | 0 | 10.7727 | 15.291 |
| 1386 | 12/16/2010 | 9:05:05 | 0 | 10.7725 | 15.294 |
| 1387 | 12/16/2010 | 9:05:06 | 0 | 10.7729 | 15.295 |
| 1388 | 12/16/2010 | 9:05:07 | 0 | 10.7743 | 15.297 |
| 1389 | 12/16/2010 | 9:05:08 | 0 | 10.7747 | 15.299 |
| 1390 | 12/16/2010 | 9:05:09 | 0 | 10.7736 | 15.3   |
| 1391 | 12/16/2010 | 9:05:10 | 0 | 10.7738 | 15.3   |
| 1392 | 12/16/2010 | 9:05:11 | 0 | 10.7707 | 15.302 |
| 1393 | 12/16/2010 | 9:05:12 | 0 | 10.7725 | 15.303 |
| 1394 | 12/16/2010 | 9:05:13 | 0 | 10.774  | 15.303 |
| 1395 | 12/16/2010 | 9:05:14 | 0 | 10.7733 | 15.304 |
| 1396 | 12/16/2010 | 9:05:15 | 0 | 10.7721 | 15.305 |
| 1397 | 12/16/2010 | 9:05:16 | 0 | 10.7744 | 15.306 |
| 1398 | 12/16/2010 | 9:05:17 | 0 | 10.7759 | 15.306 |
| 1399 | 12/16/2010 | 9:05:18 | 0 | 10.7732 | 15.307 |
| 1400 | 12/16/2010 | 9:05:18 | 0 | 10.7741 | 15.308 |
| 1401 | 12/16/2010 | 9:05:20 | 0 | 10.7362 | 15.309 |
| 1402 | 12/16/2010 | 9:05:21 | 0 | 10.7722 | 15.31  |
| 1403 | 12/16/2010 | 9:05:22 | 0 | 10.7527 | 15.31  |
| 1404 | 12/16/2010 | 9:05:23 | 0 | 10.7726 | 15.31  |
| 1405 | 12/16/2010 | 9:05:24 | 0 | 10.7713 | 15.31  |
| 1406 | 12/16/2010 | 9:05:25 | 0 | 10.7742 | 15.311 |
| 1407 | 12/16/2010 | 9:05:26 | 0 | 10.7746 | 15.312 |
| 1408 | 12/16/2010 | 9:05:27 | 0 | 10.7726 | 15.312 |
| 1409 | 12/16/2010 | 9:05:26 | 0 | 10.7732 | 15.313 |
| 1410 | 12/16/2010 | 9:05:29 | 0 | 10.7713 | 15.313 |
| 1411 | 12/16/2010 | 9:05:30 | 0 | 10.7705 | 15.314 |
| 1412 | 12/16/2010 | 9:05:31 | 0 | 10.7831 | 15.315 |
| 1413 | 12/16/2010 | 9:05:32 | 0 | 10.7733 | 15.315 |
| 1414 | 12/16/2010 | 9:05:33 | 0 | 10.7699 | 15.316 |
| 1415 | 12/16/2010 | 9:05:34 | 0 | 10.8742 | 15.317 |
| 1416 | 12/16/2010 | 9:05:35 | 0 | 10.7309 | 15.317 |
| 1417 | 12/16/2010 | 9:05:36 | 0 | 10.643  | 15.317 |
| 1418 | 12/16/2010 | 9:05:37 | 0 | 10.6306 | 15.318 |
| 1419 | 12/16/2010 | 9:05:38 | 0 | 10.723  | 15.318 |
| 1420 | 12/16/2010 | 9:05:39 | 0 | 10.6832 | 15.318 |
| 1421 | 12/16/2010 | 9:05:40 | 0 | 10.1827 | 15.319 |
| 1422 | 12/16/2010 | 9:05:41 | 0 | 9.6638  | 15.319 |
| 1423 | 12/16/2010 | 9:05:42 | 0 | 8.9582  | 15.32  |
| 1424 | 12/16/2010 | 9:05:43 | 0 | 8.846   | 15.32  |
| 1425 | 12/16/2010 | 8:05:44 | 0 | 8.6867  | 15.321 |
| 1426 | 12/16/2010 | 9:05:45 | 0 | 8.8767  | 15.321 |
| 1427 | 12/16/2010 | 9:05:46 | 0 | 8.8938  | 15.321 |
| 1428 | 12/16/2010 | 9:05:47 | 0 | 8.7127  | 15.321 |
| 1429 | 12/16/2010 | 9:05:48 | 0 | 8.7261  | 15.321 |
| 1430 | 12/16/2010 | 9:05:48 | 0 | 8.7398  | 15.322 |
| 1431 | 12/16/2010 | 9:05:50 | 0 | 8.7547  | 15.322 |
| 1432 | 12/16/2010 | 9:05:51 | 0 | 8.7875  | 15.323 |
| 1433 | 12/16/2010 | 8:05:52 | 0 | 8.7791  | 15.323 |
| 1434 | 12/16/2010 | 9:05:53 | 0 | 8.7932  | 15.323 |
| 1435 | 12/16/2010 | 9:05:54 | 0 | 8.8091  | 15.323 |
| 1436 | 12/16/2010 | 9:05:55 | 0 | 8.8221  | 15.324 |
| 1437 | 12/16/2010 | 9:05:56 | 0 | 8.8315  | 15.324 |
| 1438 | 12/16/2010 | 9:05:57 | 0 | 8.8442  | 15.324 |
| 1439 | 12/16/2010 | 9:05:58 | 0 | 8.8574  | 15.325 |
| 1440 | 12/16/2010 | 9:05:59 | 0 | 8.8742  | 15.325 |
| 1441 | 12/16/2010 | 9:06:00 | 0 | 9.8822  | 15.325 |
| 1442 | 12/16/2010 | 8:06:01 | 0 | 8.896   | 15.326 |
| 1443 | 12/16/2010 | 9:06:02 | 0 | 8.9036  | 15.326 |
| 1444 | 12/16/2010 | 9:06:03 | 0 | 8.9197  | 15.326 |
| 1445 | 12/16/2010 | 9:06:04 | 0 | 8.827   | 15.325 |
| 1446 | 12/16/2010 | 9:06:05 | 0 | 8.9387  | 15.328 |
| 1447 | 12/16/2010 | 8:06:06 | 0 | 8.9514  | 15.328 |
| 1448 | 12/16/2010 | 9:08:07 | 0 | 8.9615  | 15.326 |
| 1449 | 12/16/2010 | 9:06:08 | 0 | 8.9736  | 15.327 |
| 1450 | 12/16/2010 | 9:06:09 | 0 | 8.9834  | 15.327 |
| 1451 | 12/16/2010 | 9:06:10 | 0 | 8.9981  | 15.328 |
| 1452 | 12/16/2010 | 9:06:11 | 0 | 9.0058  | 15.327 |
| 1453 | 12/16/2010 | 9:06:12 | 0 | 9.0168  | 15.327 |
| 1454 | 12/16/2010 | 9:06:13 | 0 | 9.0295  | 15.328 |
| 1455 | 12/16/2010 | 9:06:14 | 0 | 9.0393  | 15.328 |
| 1456 | 12/16/2010 | 9:06:15 | 0 | 9.0471  | 15.328 |
| 1457 | 12/16/2010 | 8:06:18 | 0 | 9.0583  | 15.328 |
| 1458 | 12/16/2010 | 9:06:17 | 0 | 9.0681  | 15.329 |
| 1459 | 12/16/2010 | 9:06:18 | 0 | 9.0808  | 15.328 |
| 1460 | 12/16/2010 | 8:06:19 | 0 | 9.0905  | 15.329 |
| 1461 | 12/16/2010 | 9:08:20 | 0 | 9.0962  | 15.329 |
| 1462 | 12/16/2010 | 9:08:21 | 0 | 9.1075  | 15.329 |
| 1463 | 12/16/2010 | 9:06:22 | 0 | 9.12    | 15.328 |
| 1464 | 12/16/2010 | 9:06:23 | 0 | 9.1284  | 15.328 |
| 1465 | 12/16/2010 | 9:08:24 | 0 | 9.139   | 15.33  |
| 1466 | 12/16/2010 | 9:08:25 | 0 | 9.1503  | 15.33  |
| 1467 | 12/16/2010 | 9:06:26 | 0 | 9.1809  | 15.33  |
| 1468 | 12/16/2010 | 9:06:27 | 0 | 9.1651  | 15.33  |
| 1469 | 12/16/2010 | 9:08:28 | 0 | 9.1745  | 15.33  |
| 1470 | 12/16/2010 | 9:06:29 | 0 | 9.1873  | 15.331 |
| 1471 | 12/16/2010 | 9:06:30 | 0 | 9.1994  | 15.331 |
| 1472 | 12/16/2010 | 9:06:31 | 0 | 9.2955  | 15.331 |
| 1473 | 12/16/2010 | 9:06:32 | 0 | 9.2145  | 15.331 |
| 1474 | 12/16/2010 | 9:06:33 | 0 | 9.2265  | 15.331 |
| 1475 | 12/16/2010 | 9:08:34 | 0 | 9.2355  | 15.331 |
| 1476 | 12/16/2010 | 9:06:35 | 0 | 9.2422  | 15.332 |
| 1477 | 12/16/2010 | 9:06:36 | 0 | 9.2518  | 15.332 |
| 1478 | 12/16/2010 | 9:08:37 | 0 | 9.2606  | 15.332 |
| 1479 | 12/16/2010 | 9:06:36 | 0 | 9.2714  | 15.332 |
| 1480 | 12/16/2010 | 9:08:39 | 0 | 9.2809  | 15.332 |
| 1481 | 12/16/2010 | 9:08:40 | 0 | 9.2884  | 15.332 |
| 1482 | 12/16/2010 | 9:06:41 | 0 | 9.2985  | 15.332 |
| 1483 | 12/16/2010 | 9:06:42 | 0 | 9.3018  | 15.332 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1484 | 12/16/2010 | 9:06:43 | 0 | 9.3109  | 15.333 |
| 1485 | 12/16/2010 | 9:06:44 | 0 | 9.3215  | 15.333 |
| 1486 | 12/16/2010 | 9:06:45 | 0 | 9.3324  | 15.333 |
| 1487 | 12/16/2010 | 9:08:46 | 0 | 9.3374  | 15.333 |
| 1488 | 12/16/2010 | 9:06:47 | 0 | 9.3449  | 15.334 |
| 1489 | 12/16/2010 | 9:06:48 | 0 | 9.3553  | 15.334 |
| 1490 | 12/16/2010 | 9:08:49 | 0 | 9.3628  | 15.334 |
| 1491 | 12/16/2010 | 9:06:50 | 0 | 9.3712  | 15.334 |
| 1492 | 12/16/2010 | 9:06:51 | 0 | 9.3795  | 15.334 |
| 1493 | 12/16/2010 | 9:06:52 | 0 | 9.3862  | 15.334 |
| 1494 | 12/16/2010 | 9:06:53 | 0 | 9.3942  | 15.334 |
| 1495 | 12/16/2010 | 8:06:54 | 0 | 9.4028  | 15.335 |
| 1496 | 12/16/2010 | 9:06:55 | 0 | 8.414   | 15.335 |
| 1497 | 12/16/2010 | 9:06:56 | 0 | 9.421   | 15.335 |
| 1498 | 12/16/2010 | 9:06:57 | 0 | 9.4246  | 15.335 |
| 1499 | 12/16/2010 | 9:06:58 | 0 | 9.435   | 15.335 |
| 1500 | 12/16/2010 | 9:06:59 | 0 | 8.4415  | 15.338 |
| 1501 | 12/16/2010 | 9:07:00 | 0 | 9.4484  | 15.335 |
| 1502 | 12/16/2010 | 9:07:01 | 0 | 9.4587  | 15.336 |
| 1503 | 12/16/2010 | 9:07:02 | 0 | 9.4677  | 15.336 |
| 1504 | 12/16/2010 | 9:07:03 | 0 | 9.4726  | 15.336 |
| 1505 | 12/16/2010 | 9:07:04 | 0 | 9.4778  | 15.336 |
| 1506 | 12/16/2010 | 9:07:05 | 0 | 9.4878  | 15.337 |
| 1507 | 12/16/2010 | 9:07:06 | 0 | 9.4906  | 15.337 |
| 1508 | 12/16/2010 | 9:07:07 | 0 | 9.5027  | 15.336 |
| 1509 | 12/16/2010 | 9:07:08 | 0 | 9.5091  | 15.336 |
| 1510 | 12/16/2010 | 9:07:09 | 0 | 9.5151  | 15.337 |
| 1511 | 12/16/2010 | 9:07:10 | 0 | 9.5249  | 15.337 |
| 1512 | 12/16/2010 | 9:07:11 | 0 | 9.5329  | 15.338 |
| 1513 | 12/16/2010 | 9:07:12 | 0 | 9.5381  | 15.338 |
| 1514 | 12/16/2010 | 9:07:13 | 0 | 9.542   | 15.338 |
| 1515 | 12/16/2010 | 9:07:14 | 0 | 8.552   | 15.338 |
| 1516 | 12/16/2010 | 9:07:15 | 0 | 9.5593  | 15.338 |
| 1517 | 12/16/2010 | 9:07:16 | 0 | 9.5631  | 15.339 |
| 1518 | 12/16/2010 | 9:07:17 | 0 | 8.5715  | 15.338 |
| 1519 | 12/16/2010 | 9:07:18 | 0 | 8.5782  | 15.338 |
| 1520 | 12/16/2010 | 9:07:19 | 0 | 9.5837  | 15.338 |
| 1521 | 12/16/2010 | 9:07:20 | 0 | 9.5926  | 15.338 |
| 1522 | 12/16/2010 | 9:07:21 | 0 | 9.6009  | 15.338 |
| 1523 | 12/16/2010 | 9:07:22 | 0 | 8.6067  | 15.338 |
| 1524 | 12/16/2010 | 9:07:23 | 0 | 9.6132  | 15.338 |
| 1525 | 12/16/2010 | 9:07:24 | 0 | 9.6212  | 15.339 |
| 1526 | 12/16/2010 | 9:07:25 | 0 | 9.6263  | 15.339 |
| 1527 | 12/16/2010 | 8:07:26 | 0 | 8.6337  | 15.339 |
| 1528 | 12/16/2010 | 9:07:27 | 0 | 9.8406  | 15.339 |
| 1529 | 12/16/2010 | 9:07:28 | 0 | 9.6442  | 15.339 |
| 1530 | 12/16/2010 | 9:07:29 | 0 | 8.6529  | 15.339 |
| 1531 | 12/16/2010 | 9:07:30 | 0 | 9.658   | 15.338 |
| 1532 | 12/16/2010 | 9:07:31 | 0 | 9.6535  | 15.339 |
| 1533 | 12/16/2010 | 9:07:32 | 0 | 9.6707  | 15.338 |
| 1534 | 12/16/2010 | 9:07:33 | 0 | 9.8745  | 15.34  |
| 1535 | 12/16/2010 | 8:07:34 | 0 | 8.6835  | 15.34  |
| 1536 | 12/16/2010 | 9:07:35 | 0 | 9.6879  | 15.339 |
| 1537 | 12/16/2010 | 9:07:36 | 0 | 9.6948  | 15.34  |
| 1538 | 12/16/2010 | 9:07:37 | 0 | 9.7008  | 15.34  |
| 1539 | 12/16/2010 | 9:07:38 | 0 | 9.7073  | 15.34  |
| 1540 | 12/16/2010 | 9:07:39 | 0 | 9.7134  | 15.34  |
| 1541 | 12/16/2010 | 9:07:40 | 0 | 9.7189  | 15.341 |
| 1542 | 12/16/2010 | 9:07:41 | 0 | 9.7248  | 15.34  |
| 1543 | 12/16/2010 | 9:07:42 | 0 | 9.7295  | 15.34  |
| 1544 | 12/16/2010 | 9:07:43 | 0 | 9.7383  | 15.341 |
| 1545 | 12/16/2010 | 9:07:44 | 0 | 9.7425  | 15.341 |
| 1546 | 12/16/2010 | 9:07:45 | 0 | 9.7487  | 15.34  |
| 1547 | 12/16/2010 | 9:07:46 | 0 | 9.7549  | 15.34  |
| 1548 | 12/16/2010 | 9:07:47 | 0 | 9.7585  | 15.341 |
| 1549 | 12/16/2010 | 9:07:48 | 0 | 9.7658  | 15.341 |
| 1550 | 12/16/2010 | 9:07:49 | 0 | 9.7739  | 15.341 |
| 1551 | 12/16/2010 | 9:07:50 | 0 | 9.7794  | 15.341 |
| 1552 | 12/16/2010 | 9:07:51 | 0 | 9.7822  | 15.342 |
| 1553 | 12/16/2010 | 9:07:52 | 0 | 8.789   | 15.342 |
| 1554 | 12/16/2010 | 9:07:53 | 0 | 9.794   | 15.341 |
| 1555 | 12/16/2010 | 9:07:54 | 0 | 9.7995  | 15.342 |
| 1556 | 12/16/2010 | 9:07:55 | 0 | 9.8042  | 15.342 |
| 1557 | 12/16/2010 | 8:07:56 | 0 | 9.8088  | 15.342 |
| 1558 | 12/16/2010 | 9:07:57 | 0 | 9.8163  | 15.342 |
| 1559 | 12/16/2010 | 9:07:58 | 0 | 9.8194  | 15.342 |
| 1560 | 12/16/2010 | 8:07:58 | 0 | 8.8274  | 15.341 |
| 1561 | 12/16/2010 | 9:08:00 | 0 | 9.6332  | 15.342 |
| 1562 | 12/16/2010 | 9:08:01 | 0 | 9.6362  | 15.342 |
| 1563 | 12/16/2010 | 9:08:02 | 0 | 9.8402  | 15.342 |
| 1564 | 12/16/2010 | 9:08:03 | 0 | 8.8482  | 15.342 |
| 1565 | 12/16/2010 | 8:08:04 | 0 | 8.8531  | 15.342 |
| 1566 | 12/16/2010 | 9:08:05 | 0 | 9.8584  | 15.342 |
| 1567 | 12/16/2010 | 9:08:06 | 0 | 9.6588  | 15.342 |
| 1568 | 12/16/2010 | 9:08:07 | 0 | 9.8661  | 15.342 |
| 1569 | 12/16/2010 | 9:08:08 | 0 | 9.8704  | 15.342 |
| 1570 | 12/16/2010 | 9:08:09 | 0 | 9.8781  | 15.342 |
| 1571 | 12/16/2010 | 9:08:10 | 0 | 8.884   | 15.342 |
| 1572 | 12/16/2010 | 8:08:11 | 0 | 8.8876  | 15.342 |
| 1573 | 12/16/2010 | 9:08:12 | 0 | 9.8907  | 15.343 |
| 1574 | 12/16/2010 | 9:08:13 | 0 | 9.8989  | 15.342 |
| 1575 | 12/16/2010 | 9:08:14 | 0 | 9.9012  | 15.343 |
| 1576 | 12/16/2010 | 9:08:15 | 0 | 9.9091  | 15.342 |
| 1577 | 12/16/2010 | 8:08:16 | 0 | 9.8116  | 15.342 |
| 1578 | 12/16/2010 | 9:08:17 | 0 | 9.9146  | 15.343 |
| 1578 | 12/16/2010 | 9:08:18 | 0 | 9.9217  | 15.343 |
| 1580 | 12/16/2010 | 9:08:19 | 0 | 9.9261  | 15.343 |
| 1581 | 12/16/2010 | 9:08:20 | 0 | 9.9278  | 15.343 |
| 1582 | 12/16/2010 | 8:08:21 | 0 | 8.9327  | 15.343 |
| 1583 | 12/16/2010 | 9:08:22 | 0 | 9.9394  | 15.343 |
| 1584 | 12/16/2010 | 9:08:23 | 0 | 9.9438  | 15.343 |
| 1585 | 12/16/2010 | 9:08:24 | 0 | 8.8503  | 15.344 |
| 1586 | 12/16/2010 | 9:08:25 | 0 | 9.9531  | 15.343 |
| 1587 | 12/16/2010 | 9:08:26 | 0 | 9.9575  | 15.343 |
| 1588 | 12/16/2010 | 9:08:27 | 0 | 8.9642  | 15.343 |
| 1588 | 12/16/2010 | 9:08:28 | 8 | 9.9656  | 15.343 |
| 1590 | 12/16/2010 | 9:08:29 | 0 | 9.9684  | 15.343 |
| 1591 | 12/16/2010 | 9:08:30 | 0 | 9.9748  | 15.344 |
| 1592 | 12/16/2010 | 8:08:31 | 0 | 9.9796  | 15.344 |
| 1593 | 12/16/2010 | 9:08:32 | 0 | 9.9859  | 15.343 |
| 1594 | 12/16/2010 | 9:08:33 | 0 | 9.9883  | 15.344 |
| 1595 | 12/16/2010 | 8:08:34 | 0 | 9.9923  | 15.344 |
| 1596 | 12/16/2010 | 9:08:35 | 0 | 9.9944  | 15.344 |
| 1597 | 12/16/2010 | 9:08:36 | 0 | 10.0018 | 15.344 |
| 1598 | 12/16/2010 | 8:08:37 | 0 | 10.0055 | 15.344 |
| 1599 | 12/16/2010 | 9:08:38 | 0 | 10.0076 | 15.345 |
| 1600 | 12/16/2010 | 9:08:39 | 0 | 10.0133 | 15.345 |
| 1601 | 12/16/2010 | 9:08:40 | 0 | 10.0188 | 15.345 |
| 1602 | 12/16/2010 | 9:08:41 | 0 | 10.0198 | 15.344 |
| 1603 | 12/16/2010 | 9:08:42 | 0 | 10.0261 | 15.344 |
| 1604 | 12/16/2010 | 9:08:43 | 0 | 10.0286 | 15.344 |
| 1605 | 12/16/2010 | 9:08:44 | 0 | 10.0329 | 15.345 |
| 1606 | 12/16/2010 | 9:08:45 | 0 | 10.0368 | 15.345 |
| 1607 | 12/16/2010 | 9:08:46 | 8 | 10.0418 | 15.345 |
| 1608 | 12/16/2010 | 9:08:47 | 0 | 10.0432 | 15.344 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1609 | 12/16/2010 | 9:08:48 | 0 | 10.0497 | 15.345 |
| 1610 | 12/16/2010 | 9:08:49 | 0 | 10.053  | 15.344 |
| 1611 | 12/16/2010 | 9:08:50 | 0 | 10.0559 | 15.346 |
| 1612 | 12/16/2010 | 9:08:51 | 0 | 10.0635 | 15.345 |
| 1613 | 12/16/2010 | 9:08:52 | 0 | 10.0684 | 15.345 |
| 1614 | 12/16/2010 | 9:08:53 | 0 | 10.0686 | 15.345 |
| 1615 | 12/16/2010 | 9:08:54 | 0 | 10.072  | 15.345 |
| 1616 | 12/16/2010 | 9:08:55 | 0 | 10.0764 | 15.346 |
| 1617 | 12/16/2010 | 9:08:56 | 0 | 10.0819 | 15.344 |
| 1618 | 12/16/2010 | 9:08:57 | 0 | 10.0837 | 15.346 |
| 1619 | 12/16/2010 | 9:08:58 | 0 | 10.0869 | 15.346 |
| 1620 | 12/16/2010 | 9:08:59 | 0 | 10.0891 | 15.345 |
| 1621 | 12/16/2010 | 9:09:00 | 0 | 10.095  | 15.346 |
| 1622 | 12/16/2010 | 9:09:01 | 0 | 10.0967 | 15.346 |
| 1623 | 12/16/2010 | 9:09:02 | 0 | 10.0979 | 15.346 |
| 1624 | 12/16/2010 | 9:09:03 | 0 | 10.1038 | 15.346 |
| 1625 | 12/16/2010 | 9:09:04 | 0 | 10.109  | 15.346 |
| 1626 | 12/16/2010 | 9:09:05 | 0 | 10.1109 | 15.346 |
| 1627 | 12/16/2010 | 9:09:06 | 0 | 10.1162 | 15.346 |
| 1628 | 12/16/2010 | 9:09:07 | 0 | 10.1211 | 15.346 |
| 1629 | 12/16/2010 | 9:09:08 | 0 | 10.1224 | 15.346 |
| 1630 | 12/16/2010 | 9:09:09 | 0 | 10.1259 | 15.346 |
| 1631 | 12/16/2010 | 9:09:10 | 0 | 10.1293 | 15.346 |
| 1632 | 12/16/2010 | 9:09:11 | 0 | 10.1315 | 15.346 |
| 1633 | 12/16/2010 | 9:09:12 | 0 | 10.1413 | 15.346 |
| 1634 | 12/16/2010 | 9:09:13 | 0 | 10.1388 | 15.346 |
| 1635 | 12/16/2010 | 9:09:14 | 0 | 10.1454 | 15.347 |
| 1636 | 12/16/2010 | 9:09:15 | 0 | 10.1452 | 15.346 |
| 1637 | 12/16/2010 | 9:09:16 | 0 | 10.1505 | 15.346 |
| 1638 | 12/16/2010 | 9:09:17 | 0 | 10.1561 | 15.347 |
| 1639 | 12/16/2010 | 9:09:18 | 0 | 10.1553 | 15.346 |
| 1640 | 12/16/2010 | 9:09:19 | 0 | 10.1632 | 15.346 |
| 1641 | 12/16/2010 | 9:09:20 | 0 | 10.1627 | 15.347 |
| 1642 | 12/16/2010 | 9:09:21 | 0 | 10.1684 | 15.346 |
| 1643 | 12/16/2010 | 9:09:22 | 0 | 10.1696 | 15.347 |
| 1644 | 12/16/2010 | 9:09:23 | 0 | 10.1716 | 15.347 |
| 1645 | 12/16/2010 | 9:09:24 | 0 | 10.1737 | 15.347 |
| 1646 | 12/16/2010 | 9:09:25 | 0 | 10.1803 | 15.347 |
| 1647 | 12/16/2010 | 9:09:26 | 0 | 10.1809 | 15.347 |
| 1649 | 12/16/2010 | 9:09:27 | 0 | 10.1835 | 15.347 |
| 1649 | 12/16/2010 | 9:09:26 | 0 | 10.1674 | 15.347 |
| 1650 | 12/16/2010 | 9:09:29 | 0 | 10.1903 | 15.347 |
| 1651 | 12/16/2010 | 9:09:30 | 0 | 10.1958 | 15.347 |
| 1652 | 12/16/2010 | 9:09:31 | 0 | 10.1956 | 15.347 |
| 1653 | 12/16/2010 | 9:09:32 | 0 | 10.2032 | 15.347 |
| 1654 | 12/16/2010 | 9:09:33 | 0 | 10.2024 | 15.347 |
| 1655 | 12/16/2010 | 9:09:34 | 0 | 10.2088 | 15.347 |
| 1656 | 12/16/2010 | 9:09:35 | 0 | 10.2098 | 15.347 |
| 1657 | 12/16/2010 | 9:09:36 | 0 | 10.2155 | 15.347 |
| 1658 | 12/16/2010 | 9:09:37 | 0 | 10.2152 | 15.346 |
| 1659 | 12/16/2010 | 9:09:38 | 0 | 10.2169 | 15.347 |
| 1660 | 12/16/2010 | 9:09:39 | 0 | 10.2194 | 15.347 |
| 1661 | 12/16/2010 | 9:09:40 | 0 | 10.2261 | 15.346 |
| 1662 | 12/16/2010 | 9:09:41 | 0 | 10.2311 | 15.349 |
| 1663 | 12/16/2010 | 9:09:42 | 0 | 10.2279 | 15.347 |
| 1664 | 12/16/2010 | 9:09:43 | 0 | 10.231  | 15.347 |
| 1665 | 12/16/2010 | 9:06:44 | 0 | 10.2368 | 15.346 |
| 1666 | 12/16/2010 | 9:09:45 | 0 | 10.2385 | 15.347 |
| 1667 | 12/16/2010 | 9:09:46 | 0 | 10.2408 | 15.346 |
| 1668 | 12/16/2010 | 9:09:47 | 0 | 10.2433 | 15.346 |
| 1669 | 12/16/2010 | 9:09:46 | 0 | 10.246  | 15.347 |
| 1670 | 12/16/2010 | 9:09:49 | 0 | 10.2494 | 15.346 |
| 1671 | 12/16/2010 | 9:09:50 | 0 | 10.2512 | 15.346 |
| 1672 | 12/16/2010 | 9:09:51 | 0 | 10.2519 | 15.346 |
| 1673 | 12/16/2010 | 9:09:52 | 0 | 10.2597 | 15.346 |
| 1674 | 12/16/2010 | 9:09:53 | 0 | 10.2602 | 15.349 |
| 1675 | 12/16/2010 | 9:09:54 | 0 | 10.2627 | 15.347 |
| 1676 | 12/16/2010 | 9:09:55 | 0 | 10.2653 | 15.349 |
| 1677 | 12/16/2010 | 9:09:56 | 0 | 10.2689 | 15.346 |
| 1676 | 12/16/2010 | 9:09:57 | 0 | 10.2709 | 15.346 |
| 1679 | 12/16/2010 | 9:09:58 | 0 | 10.2711 | 15.346 |
| 1680 | 12/16/2010 | 9:09:59 | 0 | 10.2736 | 15.347 |
| 1681 | 12/16/2010 | 9:10:00 | 0 | 10.276  | 15.346 |
| 1682 | 12/16/2010 | 9:10:03 | 0 | 10.2829 | 15.333 |
| 1663 | 12/16/2010 | 9:10:06 | 0 | 10.2925 | 15.326 |
| 1684 | 12/16/2010 | 9:10:09 | 0 | 10.3002 | 15.325 |
| 1665 | 12/16/2010 | 9:10:12 | 0 | 10.3073 | 15.322 |
| 1666 | 12/16/2010 | 9:10:15 | 0 | 10.3174 | 15.32  |
| 1667 | 12/16/2010 | 9:10:16 | 0 | 10.3218 | 15.316 |
| 1668 | 12/16/2010 | 9:10:21 | 0 | 10.3295 | 15.317 |
| 1669 | 12/16/2010 | 9:10:24 | 0 | 10.3379 | 15.315 |
| 1690 | 12/16/2010 | 9:10:27 | 0 | 10.3411 | 15.313 |
| 1691 | 12/16/2010 | 9:10:30 | 0 | 10.3494 | 15.312 |
| 1692 | 12/16/2010 | 9:10:33 | 0 | 10.356  | 15.311 |
| 1693 | 12/16/2010 | 9:10:36 | 0 | 10.3603 | 15.31  |
| 1694 | 12/16/2010 | 9:10:39 | 0 | 10.3687 | 15.308 |
| 1695 | 12/16/2010 | 9:10:42 | 0 | 10.3742 | 15.308 |
| 1696 | 12/16/2010 | 9:10:45 | 0 | 10.3788 | 15.307 |
| 1697 | 12/16/2010 | 9:10:46 | 0 | 10.3849 | 15.306 |
| 1698 | 12/16/2010 | 9:19:51 | 0 | 10.3813 | 15.306 |
| 1699 | 12/16/2010 | 9:10:54 | 0 | 10.3989 | 15.305 |
| 1700 | 12/16/2010 | 9:10:57 | 0 | 10.4036 | 15.305 |
| 1701 | 12/16/2010 | 9:11:00 | 0 | 10.4071 | 15.303 |
| 1702 | 12/16/2010 | 9:11:03 | 0 | 10.4111 | 15.303 |
| 1703 | 12/16/2010 | 9:11:06 | 0 | 10.4211 | 15.303 |
| 1704 | 12/16/2010 | 9:11:09 | 0 | 10.4235 | 15.302 |
| 1705 | 12/16/2010 | 9:11:12 | 0 | 10.4267 | 15.301 |
| 1706 | 12/16/2010 | 9:11:15 | 0 | 10.433  | 15.301 |
| 1707 | 12/16/2010 | 9:11:16 | 0 | 10.4416 | 15.3   |
| 1706 | 12/16/2010 | 9:11:21 | 0 | 10.4423 | 15.3   |
| 1709 | 12/16/2010 | 9:11:24 | 0 | 10.4455 | 15.3   |
| 1710 | 12/16/2010 | 9:11:27 | 0 | 10.4537 | 15.3   |
| 1711 | 12/16/2010 | 9:11:30 | 0 | 10.4546 | 15.298 |
| 1712 | 12/16/2010 | 9:11:33 | 0 | 10.4642 | 15.299 |
| 1713 | 12/16/2010 | 9:11:36 | 0 | 10.4702 | 15.298 |
| 1714 | 12/16/2010 | 9:11:39 | 0 | 10.4695 | 15.297 |
| 1715 | 12/16/2010 | 9:11:42 | 0 | 10.474  | 15.298 |
| 1716 | 12/16/2010 | 9:11:45 | 0 | 10.4795 | 15.298 |
| 1717 | 12/16/2010 | 9:11:46 | 0 | 10.4838 | 15.298 |
| 1718 | 12/16/2010 | 9:11:51 | 0 | 10.488  | 15.297 |
| 1719 | 12/16/2010 | 9:11:54 | 0 | 10.4893 | 15.298 |
| 1720 | 12/16/2010 | 9:11:57 | 0 | 10.4943 | 15.297 |
| 1721 | 12/16/2010 | 9:12:00 | 0 | 10.4973 | 15.298 |
| 1722 | 12/16/2010 | 9:12:03 | 0 | 10.5015 | 15.298 |
| 1723 | 12/16/2010 | 9:12:06 | 0 | 10.5064 | 15.296 |
| 1724 | 12/16/2010 | 9:12:09 | 0 | 10.5103 | 15.296 |
| 1725 | 12/16/2010 | 9:12:12 | 0 | 10.5134 | 15.296 |
| 1726 | 12/16/2010 | 9:12:15 | 0 | 10.5167 | 15.295 |
| 1727 | 12/16/2010 | 9:12:16 | 0 | 10.521  | 15.295 |
| 1728 | 12/16/2010 | 9:12:21 | 0 | 10.5198 | 15.295 |
| 1729 | 12/16/2010 | 9:12:24 | 0 | 10.5241 | 15.295 |
| 1730 | 12/16/2010 | 9:12:27 | 0 | 10.5295 | 15.295 |
| 1731 | 12/16/2010 | 9:12:30 | 0 | 10.5353 | 15.294 |
| 1732 | 12/16/2010 | 9:12:33 | 0 | 10.5355 | 15.294 |
| 1733 | 12/16/2010 | 9:12:36 | 0 | 10.5398 | 15.294 |

|      |            |         |   |         |        |
|------|------------|---------|---|---------|--------|
| 1734 | 12/16/2010 | 9:12:39 | 0 | 10.5436 | 15.294 |
| 1735 | 12/16/2010 | 9:12:42 | 0 | 10.5458 | 15.294 |
| 1736 | 12/16/2010 | 9:12:45 | 0 | 10.5501 | 15.294 |
| 1737 | 12/16/2010 | 9:12:48 | 0 | 10.5534 | 15.293 |
| 1738 | 12/16/2010 | 9:12:51 | 0 | 10.5513 | 15.292 |
| 1739 | 12/16/2010 | 9:12:54 | 0 | 10.5551 | 15.292 |
| 1740 | 12/16/2010 | 9:12:57 | 0 | 10.5615 | 15.283 |
| 1741 | 12/16/2010 | 9:13:00 | 0 | 10.5643 | 15.293 |
| 1742 | 12/16/2010 | 9:13:03 | 0 | 10.5669 | 15.292 |
| 1743 | 12/16/2010 | 9:13:06 | 0 | 10.5676 | 15.292 |
| 1744 | 12/16/2010 | 9:13:09 | 0 | 10.5738 | 15.292 |
| 1745 | 12/16/2010 | 9:13:12 | 0 | 10.5729 | 15.291 |
| 1746 | 12/16/2010 | 9:13:15 | 0 | 10.5772 | 15.292 |
| 1747 | 12/16/2010 | 9:13:18 | 0 | 10.5795 | 15.292 |
| 1748 | 12/16/2010 | 9:13:21 | 0 | 10.5826 | 15.292 |
| 1749 | 12/16/2010 | 9:13:24 | 0 | 10.5828 | 15.292 |
| 1750 | 12/16/2010 | 9:13:27 | 0 | 10.5858 | 15.292 |
| 1751 | 12/16/2010 | 9:13:30 | 0 | 10.5895 | 15.291 |
| 1752 | 12/16/2010 | 9:13:33 | 0 | 10.5905 | 15.291 |
| 1753 | 12/16/2010 | 9:13:36 | 0 | 10.5928 | 15.291 |
| 1754 | 12/16/2010 | 9:13:39 | 0 | 10.5966 | 15.291 |
| 1755 | 12/16/2010 | 9:13:42 | 0 | 10.5963 | 15.291 |
| 1756 | 12/16/2010 | 9:13:45 | 0 | 10.5959 | 15.291 |
| 1757 | 12/16/2010 | 9:13:48 | 0 | 10.6018 | 15.291 |
| 1758 | 12/16/2010 | 9:13:51 | 0 | 10.6044 | 15.291 |
| 1759 | 12/16/2010 | 9:13:54 | 0 | 10.6031 | 15.291 |
| 1760 | 12/16/2010 | 9:13:57 | 0 | 10.6939 | 15.291 |
| 1761 | 12/16/2010 | 9:14:00 | 0 | 10.6089 | 15.291 |
| 1782 | 12/16/2010 | 9:14:03 | 0 | 10.6118 | 15.291 |
| 1763 | 12/16/2010 | 9:14:06 | 0 | 10.6114 | 15.291 |
| 1764 | 12/16/2010 | 9:14:09 | 0 | 10.6159 | 15.29  |
| 1765 | 12/16/2010 | 9:14:12 | 0 | 10.6188 | 15.29  |
| 1766 | 12/16/2010 | 9:14:15 | 0 | 10.6169 | 15.291 |
| 1767 | 12/16/2010 | 9:14:18 | 0 | 10.6234 | 15.29  |
| 1768 | 12/16/2010 | 9:14:21 | 0 | 10.6251 | 15.291 |
| 1769 | 12/16/2010 | 9:14:24 | 0 | 10.6238 | 15.29  |
| 1779 | 12/16/2010 | 9:14:27 | 0 | 10.6272 | 15.29  |
| 1771 | 12/16/2010 | 9:14:30 | 0 | 10.6293 | 15.29  |
| 1772 | 12/16/2010 | 9:14:33 | 0 | 10.6307 | 15.29  |
| 1773 | 12/16/2010 | 9:14:36 | 0 | 10.6301 | 15.28  |
| 1774 | 12/16/2010 | 9:14:39 | 0 | 10.6341 | 15.289 |
| 1775 | 12/16/2010 | 9:14:42 | 0 | 10.6372 | 15.289 |
| 1776 | 12/16/2010 | 9:14:45 | 0 | 10.6368 | 15.269 |
| 1777 | 12/16/2010 | 9:14:48 | 0 | 10.6351 | 15.28  |
| 1778 | 12/16/2010 | 9:14:51 | 0 | 10.6399 | 15.29  |
| 1779 | 12/16/2010 | 9:14:54 | 0 | 10.6396 | 15.29  |
| 1769 | 12/16/2010 | 9:14:57 | 0 | 10.6417 | 15.29  |
| 1761 | 12/16/2010 | 9:15:00 | 0 | 10.6455 | 15.29  |
| 1782 | 12/16/2010 | 9:15:05 | 0 | 10.6444 | 15.287 |
| 1763 | 12/16/2010 | 9:15:19 | 0 | 10.6453 | 15.285 |
| 1784 | 12/16/2010 | 9:15:15 | 0 | 10.6511 | 15.284 |
| 1765 | 12/16/2010 | 9:15:20 | 0 | 10.6509 | 15.285 |
| 1766 | 12/16/2010 | 9:15:25 | 0 | 10.6539 | 15.284 |
| 1787 | 12/16/2010 | 9:15:39 | 0 | 10.6595 | 15.284 |
| 1768 | 12/16/2010 | 9:15:35 | 0 | 10.6586 | 15.284 |
| 1799 | 12/16/2010 | 9:15:40 | 0 | 10.6625 | 15.283 |
| 1790 | 12/16/2010 | 9:15:45 | 0 | 10.6613 | 15.284 |
| 1791 | 12/16/2010 | 9:15:50 | 0 | 10.6619 | 15.264 |
| 1792 | 12/16/2010 | 9:15:55 | 0 | 10.664  | 15.283 |
| 1793 | 12/16/2010 | 9:18:00 | 0 | 10.6687 | 15.284 |
| 1794 | 12/16/2010 | 9:16:95 | 0 | 10.6685 | 15.263 |
| 1796 | 12/16/2010 | 9:16:19 | 0 | 10.6735 | 15.284 |
| 1796 | 12/16/2010 | 9:16:15 | 0 | 10.6737 | 15.284 |
| 1797 | 12/16/2010 | 9:16:20 | 0 | 10.6723 | 15.284 |
| 1798 | 12/16/2010 | 9:18:25 | 0 | 10.6785 | 15.284 |
| 1799 | 12/16/2010 | 9:16:30 | 0 | 10.6757 | 15.284 |
| 1800 | 12/16/2010 | 9:16:35 | 0 | 10.6771 | 15.284 |
| 1801 | 12/16/2010 | 9:16:40 | 0 | 10.6798 | 15.284 |
| 1802 | 12/16/2010 | 9:16:45 | 0 | 10.6861 | 15.284 |
| 1803 | 12/16/2010 | 9:16:50 | 0 | 10.6817 | 15.284 |
| 1804 | 12/16/2010 | 9:16:55 | 0 | 10.6859 | 15.284 |
| 1605 | 12/16/2010 | 9:17:00 | 0 | 10.6883 | 15.284 |
| 1606 | 12/16/2010 | 9:17:05 | 0 | 10.6846 | 15.284 |
| 1607 | 12/16/2010 | 9:17:10 | 0 | 10.6863 | 15.284 |
| 1608 | 12/16/2010 | 9:17:15 | 0 | 10.6864 | 15.284 |
| 1809 | 12/16/2010 | 9:17:29 | 0 | 10.8903 | 15.284 |
| 1619 | 12/16/2010 | 9:17:25 | 0 | 10.6911 | 15.284 |
| 1611 | 12/16/2010 | 9:17:30 | 0 | 10.6912 | 15.284 |
| 1612 | 12/16/2010 | 9:17:35 | 0 | 10.6933 | 15.284 |
| 1613 | 12/16/2010 | 9:17:40 | 0 | 10.6911 | 15.283 |
| 1614 | 12/16/2010 | 9:17:45 | 0 | 10.6967 | 15.283 |
| 1615 | 12/16/2010 | 9:17:50 | 0 | 10.6938 | 15.283 |
| 1618 | 12/16/2010 | 9:17:55 | 0 | 10.6995 | 15.283 |
| 1817 | 12/16/2010 | 9:16:99 | 0 | 10.6962 | 15.283 |
| 1616 | 12/16/2010 | 9:16:95 | 0 | 10.6986 | 15.283 |
| 1619 | 12/16/2010 | 9:16:10 | 0 | 10.6992 | 15.283 |
| 1620 | 12/16/2010 | 9:16:15 | 0 | 10.6995 | 15.282 |
| 1821 | 12/16/2010 | 9:18:20 | 0 | 10.6981 | 15.262 |
| 1822 | 12/16/2010 | 9:18:25 | 0 | 10.7931 | 15.261 |
| 1823 | 12/16/2010 | 9:16:39 | 0 | 10.7925 | 15.262 |
| 1824 | 12/16/2010 | 9:18:35 | 0 | 10.7934 | 15.261 |
| 1825 | 12/16/2010 | 9:16:49 | 0 | 10.7054 | 15.281 |
| 1826 | 12/16/2010 | 9:16:45 | 0 | 10.7925 | 15.28  |
| 1827 | 12/16/2010 | 9:18:50 | 0 | 10.7971 | 15.28  |
| 1828 | 12/16/2010 | 9:18:55 | 0 | 10.7076 | 15.28  |
| 1829 | 12/16/2010 | 9:19:00 | 0 | 10.706  | 15.28  |
| 1630 | 12/16/2010 | 9:19:05 | 0 | 10.798  | 15.29  |
| 1831 | 12/16/2010 | 9:19:19 | 0 | 10.7065 | 15.28  |
| 1832 | 12/16/2010 | 9:19:15 | 0 | 10.7066 | 15.26  |
| 1633 | 12/16/2010 | 9:19:20 | 0 | 10.7094 | 15.279 |
| 1634 | 12/16/2010 | 9:19:25 | 0 | 10.7988 | 15.279 |
| 1835 | 12/16/2010 | 9:19:39 | 0 | 10.711  | 15.279 |
| 1636 | 12/16/2010 | 9:19:35 | 0 | 10.7127 | 15.278 |
| 1837 | 12/16/2010 | 9:19:40 | 0 | 10.7983 | 15.279 |
| 1636 | 12/16/2010 | 9:19:45 | 0 | 10.711  | 15.279 |
| 1839 | 12/16/2010 | 9:19:50 | 0 | 10.7195 | 15.279 |
| 1649 | 12/16/2010 | 9:19:55 | 0 | 10.712  | 15.279 |
| 1841 | 12/16/2010 | 9:20:00 | 0 | 10.7142 | 15.279 |



**Technical Memorandum—Field Report  
Slug Tests at Burn Site Groundwater Study Area  
Groundwater Monitoring Wells**

**Table A-3  
Transducer Field Data for CYN-MW11**



Serial Number

71040608

Project ID

CYN Slug tests

Location

CYN MW11

Level

Unit

Offset

0.00 ft

Altitude

6000 ft

Temperature

Unit

Deg C

|    | Date      | Time    | 100 ms | Level   | Temperature |
|----|-----------|---------|--------|---------|-------------|
| 1  | 1/28/2011 | 9:20:00 | 0      | 21.1846 | 15.936      |
| 2  | 1/28/2011 | 9:20:01 | 0      | 21.1833 | 15.951      |
| 3  | 1/28/2011 | 9:20:02 | 0      | 21.1865 | 15.961      |
| 4  | 1/28/2011 | 9:20:03 | 0      | 21.1844 | 15.967      |
| 5  | 1/28/2011 | 9:20:04 | 0      | 21.1838 | 15.973      |
| 6  | 1/28/2011 | 9:20:05 | 0      | 21.1848 | 15.978      |
| 7  | 1/28/2011 | 9:20:06 | 0      | 21.4997 | 15.982      |
| 8  | 1/28/2011 | 9:20:07 | 0      | 21.1693 | 15.986      |
| 9  | 1/28/2011 | 9:20:08 | 0      | 21.1938 | 15.989      |
| 10 | 1/28/2011 | 9:20:09 | 0      | 21.2665 | 15.993      |
| 11 | 1/28/2011 | 9:20:10 | 0      | 21.1439 | 15.996      |
| 12 | 1/28/2011 | 9:20:11 | 0      | 21.1541 | 15.998      |
| 13 | 1/28/2011 | 9:20:12 | 0      | 20.6664 | 16.001      |
| 14 | 1/28/2011 | 9:20:13 | 0      | 19.9912 | 16.003      |
| 15 | 1/28/2011 | 9:20:14 | 0      | 19.3484 | 16.005      |
| 16 | 1/28/2011 | 9:20:15 | 0      | 19.0223 | 16.008      |
| 17 | 1/28/2011 | 9:20:16 | 0      | 18.0682 | 16.01       |
| 18 | 1/28/2011 | 9:20:17 | 0      | 19.0925 | 16.012      |
| 19 | 1/28/2011 | 9:20:18 | 0      | 19.1284 | 16.014      |
| 20 | 1/28/2011 | 9:20:19 | 0      | 19.1579 | 16.016      |
| 21 | 1/28/2011 | 9:20:20 | 0      | 19.1833 | 16.018      |
| 22 | 1/28/2011 | 9:20:21 | 0      | 19.2118 | 16.02       |
| 23 | 1/28/2011 | 9:20:22 | 0      | 19.2373 | 16.022      |
| 24 | 1/28/2011 | 9:20:23 | 0      | 19.2627 | 16.024      |
| 25 | 1/28/2011 | 9:20:24 | 0      | 19.2871 | 16.025      |
| 26 | 1/28/2011 | 9:20:25 | 0      | 19.3109 | 16.027      |
| 27 | 1/28/2011 | 9:20:26 | 0      | 19.3339 | 16.029      |
| 28 | 1/28/2011 | 9:20:27 | 0      | 19.3551 | 16.031      |
| 29 | 1/28/2011 | 9:20:28 | 0      | 19.3817 | 16.032      |
| 30 | 1/28/2011 | 9:20:29 | 0      | 19.4048 | 18.035      |
| 31 | 1/28/2011 | 9:20:30 | 0      | 19.4257 | 16.035      |
| 32 | 1/28/2011 | 9:20:31 | 0      | 19.4451 | 16.038      |
| 33 | 1/28/2011 | 9:20:32 | 0      | 19.4667 | 16.039      |
| 34 | 1/28/2011 | 9:20:33 | 0      | 19.4872 | 16.041      |
| 35 | 1/28/2011 | 9:20:34 | 0      | 19.5057 | 18.043      |
| 36 | 1/28/2011 | 9:20:35 | 0      | 19.5256 | 16.045      |
| 37 | 1/28/2011 | 9:20:38 | 0      | 19.5493 | 16.046      |
| 38 | 1/28/2011 | 9:20:37 | 0      | 19.5641 | 16.048      |
| 39 | 1/28/2011 | 9:20:38 | 0      | 19.5844 | 16.049      |
| 40 | 1/28/2011 | 9:20:39 | 0      | 19.6011 | 16.051      |
| 41 | 1/28/2011 | 9:20:40 | 0      | 19.6173 | 16.052      |
| 42 | 1/28/2011 | 9:20:41 | 0      | 19.6362 | 18.053      |
| 43 | 1/28/2011 | 9:20:42 | 0      | 19.6546 | 16.055      |
| 44 | 1/28/2011 | 9:20:43 | 0      | 19.6712 | 16.057      |
| 45 | 1/28/2011 | 9:20:44 | 0      | 19.6883 | 16.058      |
| 46 | 1/28/2011 | 9:20:45 | 0      | 19.7031 | 16.06       |
| 47 | 1/28/2011 | 9:20:46 | 0      | 19.7203 | 16.06       |
| 48 | 1/28/2011 | 9:20:47 | 0      | 19.735  | 16.062      |
| 49 | 1/28/2011 | 9:20:48 | 0      | 19.7508 | 16.064      |
| 50 | 1/28/2011 | 9:20:49 | 0      | 19.767  | 16.066      |
| 51 | 1/28/2011 | 9:20:50 | 0      | 19.7798 | 16.07       |
| 52 | 1/28/2011 | 9:20:51 | 0      | 19.7965 | 16.069      |
| 53 | 1/28/2011 | 9:20:52 | 0      | 19.8114 | 16.068      |
| 54 | 1/28/2011 | 9:20:53 | 0      | 19.8245 | 16.07       |
| 55 | 1/28/2011 | 9:20:54 | 0      | 19.8398 | 16.07       |
| 56 | 1/28/2011 | 9:20:55 | 0      | 19.8531 | 16.072      |
| 57 | 1/28/2011 | 9:20:56 | 0      | 19.8704 | 16.07       |
| 58 | 1/28/2011 | 9:20:57 | 0      | 19.8851 | 16.073      |
| 59 | 1/28/2011 | 9:20:58 | 0      | 19.9961 | 16.071      |
| 60 | 1/28/2011 | 9:20:59 | 0      | 19.9137 | 16.076      |
| 61 | 1/28/2011 | 9:21:00 | 0      | 19.9236 | 16.078      |
| 62 | 1/28/2011 | 9:21:01 | 0      | 19.937  | 16.076      |
| 63 | 1/28/2011 | 9:21:02 | 0      | 19.9453 | 16.06       |
| 64 | 1/28/2011 | 9:21:03 | 0      | 19.9595 | 16.062      |
| 65 | 1/28/2011 | 9:21:04 | 0      | 19.9732 | 16.062      |
| 66 | 1/28/2011 | 9:21:05 | 0      | 19.9882 | 16.063      |
| 67 | 1/28/2011 | 9:21:06 | 0      | 19.9976 | 18.064      |
| 68 | 1/28/2011 | 9:21:07 | 0      | 20.0115 | 18.064      |
| 69 | 1/28/2011 | 9:21:08 | 0      | 20.022  | 16.064      |
| 70 | 1/28/2011 | 9:21:09 | 0      | 20.0314 | 16.057      |
| 71 | 1/28/2011 | 9:21:10 | 0      | 20.0441 | 16.052      |
| 72 | 1/28/2011 | 9:21:11 | 0      | 20.0529 | 16.048      |
| 73 | 1/28/2011 | 9:21:12 | 0      | 20.0654 | 16.045      |
| 74 | 1/28/2011 | 9:21:13 | 0      | 20.0766 | 16.043      |
| 75 | 1/28/2011 | 9:21:14 | 0      | 20.0864 | 16.042      |
| 76 | 1/28/2011 | 9:21:15 | 0      | 20.098  | 16.04       |
| 77 | 1/28/2011 | 9:21:16 | 0      | 20.1058 | 16.04       |
| 78 | 1/28/2011 | 9:21:17 | 0      | 20.1187 | 16.039      |
| 79 | 1/28/2011 | 9:21:18 | 0      | 20.1298 | 16.037      |
| 80 | 1/28/2011 | 9:21:19 | 0      | 20.1378 | 16.037      |
| 81 | 1/28/2011 | 9:21:20 | 0      | 20.1506 | 16.036      |
| 82 | 1/28/2011 | 9:21:21 | 0      | 20.1597 | 16.036      |
| 83 | 1/28/2011 | 9:21:22 | 0      | 20.1892 | 16.034      |
| 84 | 1/28/2011 | 9:21:23 | 0      | 20.1796 | 16.035      |
| 85 | 1/28/2011 | 9:21:24 | 0      | 20.1928 | 16.034      |
| 86 | 1/28/2011 | 9:21:25 | 0      | 20.2004 | 18.033      |
| 87 | 1/28/2011 | 9:21:26 | 0      | 20.2096 | 16.033      |
| 88 | 1/28/2011 | 9:21:27 | 0      | 20.2169 | 16.032      |
| 89 | 1/28/2011 | 9:21:28 | 0      | 20.2229 | 16.032      |
| 90 | 1/28/2011 | 9:21:29 | 0      | 20.2353 | 16.032      |
| 91 | 1/28/2011 | 9:21:30 | 0      | 20.2476 | 16.031      |
| 92 | 1/28/2011 | 9:21:31 | 0      | 20.2545 | 16.03       |
| 93 | 1/28/2011 | 9:21:32 | 0      | 20.2633 | 16.03       |
| 94 | 1/28/2011 | 9:21:33 | 0      | 20.2728 | 16.028      |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 95  | 1/28/2011 | 9:21:34 | 0 | 20.2825 | 16.029 |
| 96  | 1/28/2011 | 9:21:35 | 0 | 20.2918 | 16.029 |
| 97  | 1/28/2011 | 9:21:36 | 0 | 20.298  | 16.028 |
| 98  | 1/28/2011 | 9:21:37 | 0 | 20.3082 | 16.029 |
| 99  | 1/28/2011 | 9:21:38 | 0 | 20.317  | 16.028 |
| 100 | 1/28/2011 | 9:21:39 | 0 | 20.3216 | 16.028 |
| 101 | 1/28/2011 | 9:21:40 | 0 | 20.3308 | 16.027 |
| 102 | 1/28/2011 | 9:21:41 | 0 | 20.3434 | 16.027 |
| 103 | 1/28/2011 | 9:21:42 | 0 | 20.3494 | 16.027 |
| 104 | 1/28/2011 | 9:21:43 | 0 | 20.3583 | 16.026 |
| 105 | 1/28/2011 | 9:21:44 | 0 | 20.3657 | 16.026 |
| 106 | 1/28/2011 | 9:21:45 | 0 | 20.3731 | 16.026 |
| 107 | 1/28/2011 | 9:21:46 | 0 | 20.3825 | 16.026 |
| 108 | 1/28/2011 | 9:21:47 | 0 | 20.3872 | 16.025 |
| 109 | 1/28/2011 | 9:21:48 | 0 | 20.3968 | 16.025 |
| 110 | 1/28/2011 | 9:21:49 | 0 | 20.4029 | 16.025 |
| 111 | 1/28/2011 | 9:21:50 | 0 | 20.4118 | 16.024 |
| 112 | 1/28/2011 | 9:21:51 | 0 | 20.4178 | 16.024 |
| 113 | 1/28/2011 | 9:21:52 | 0 | 20.4241 | 16.023 |
| 114 | 1/28/2011 | 9:21:53 | 0 | 20.4331 | 16.023 |
| 115 | 1/28/2011 | 9:21:54 | 0 | 20.4398 | 16.023 |
| 116 | 1/28/2011 | 9:21:55 | 0 | 20.4485 | 16.023 |
| 117 | 1/28/2011 | 9:21:56 | 0 | 20.4544 | 16.023 |
| 118 | 1/28/2011 | 9:21:57 | 0 | 20.4613 | 16.022 |
| 119 | 1/28/2011 | 9:21:58 | 0 | 20.4658 | 16.022 |
| 120 | 1/28/2011 | 9:21:59 | 0 | 20.4736 | 16.022 |
| 121 | 1/28/2011 | 9:22:00 | 0 | 20.479  | 16.022 |
| 122 | 1/28/2011 | 9:22:01 | 0 | 20.4843 | 16.021 |
| 123 | 1/28/2011 | 8:22:02 | 0 | 20.4944 | 16.021 |
| 124 | 1/28/2011 | 8:22:03 | 0 | 20.5024 | 16.022 |
| 125 | 1/28/2011 | 9:22:04 | 0 | 20.5064 | 16.021 |
| 126 | 1/28/2011 | 9:22:05 | 0 | 20.5125 | 16.021 |
| 127 | 1/28/2011 | 9:22:06 | 0 | 20.5187 | 16.021 |
| 128 | 1/28/2011 | 9:22:07 | 0 | 20.5254 | 16.021 |
| 129 | 1/28/2011 | 9:22:08 | 0 | 20.5318 | 16.02  |
| 130 | 1/28/2011 | 9:22:09 | 0 | 20.538  | 16.02  |
| 131 | 1/28/2011 | 9:22:10 | 0 | 20.5433 | 16.019 |
| 132 | 1/28/2011 | 9:22:11 | 0 | 20.5492 | 16.019 |
| 133 | 1/28/2011 | 9:22:12 | 0 | 20.5571 | 16.02  |
| 134 | 1/28/2011 | 9:22:13 | 0 | 20.5612 | 16.019 |
| 135 | 1/28/2011 | 9:22:14 | 0 | 20.567  | 16.019 |
| 136 | 1/28/2011 | 9:22:15 | 0 | 20.5734 | 16.019 |
| 137 | 1/28/2011 | 9:22:16 | 0 | 20.577  | 16.019 |
| 138 | 1/28/2011 | 9:22:17 | 0 | 20.5852 | 16.018 |
| 139 | 1/28/2011 | 9:22:18 | 0 | 20.5887 | 16.018 |
| 140 | 1/28/2011 | 9:22:19 | 0 | 20.5979 | 16.018 |
| 141 | 1/28/2011 | 9:22:20 | 0 | 20.601  | 16.018 |
| 142 | 1/28/2011 | 9:22:21 | 0 | 20.6069 | 16.018 |
| 143 | 1/28/2011 | 9:22:22 | 0 | 20.6116 | 16.018 |
| 144 | 1/28/2011 | 9:22:23 | 0 | 20.6171 | 16.018 |
| 145 | 1/28/2011 | 9:22:24 | 0 | 20.6225 | 16.017 |
| 146 | 1/28/2011 | 9:22:25 | 0 | 20.6283 | 16.018 |
| 147 | 1/28/2011 | 9:22:26 | 0 | 20.6347 | 16.017 |
| 148 | 1/28/2011 | 9:22:27 | 0 | 20.6407 | 16.017 |
| 149 | 1/28/2011 | 9:22:28 | 0 | 20.6426 | 16.017 |
| 150 | 1/28/2011 | 9:22:29 | 0 | 20.6482 | 16.017 |
| 151 | 1/28/2011 | 9:22:30 | 0 | 20.6527 | 16.017 |
| 152 | 1/28/2011 | 9:22:31 | 0 | 20.657  | 16.017 |
| 153 | 1/28/2011 | 9:22:32 | 0 | 20.6608 | 16.017 |
| 154 | 1/28/2011 | 9:22:33 | 0 | 20.6662 | 16.017 |
| 155 | 1/28/2011 | 9:22:34 | 0 | 20.6722 | 16.016 |
| 156 | 1/28/2011 | 8:22:35 | 0 | 20.676  | 16.016 |
| 157 | 1/28/2011 | 9:22:36 | 0 | 20.6825 | 16.017 |
| 158 | 1/28/2011 | 9:22:37 | 0 | 20.6873 | 16.016 |
| 159 | 1/28/2011 | 9:22:38 | 0 | 20.6842 | 16.016 |
| 160 | 1/28/2011 | 8:22:39 | 0 | 20.6936 | 16.016 |
| 161 | 1/28/2011 | 9:22:40 | 0 | 20.6983 | 16.016 |
| 162 | 1/28/2011 | 9:22:41 | 0 | 20.6999 | 16.016 |
| 163 | 1/28/2011 | 9:22:42 | 0 | 20.7094 | 16.016 |
| 164 | 1/28/2011 | 9:22:43 | 0 | 20.71   | 16.016 |
| 165 | 1/28/2011 | 9:22:44 | 0 | 20.7162 | 16.016 |
| 166 | 1/28/2011 | 9:22:45 | 0 | 20.7201 | 16.016 |
| 167 | 1/28/2011 | 9:22:46 | 0 | 20.7243 | 16.028 |
| 168 | 1/28/2011 | 9:22:47 | 0 | 20.7281 | 16.022 |
| 169 | 1/28/2011 | 9:22:48 | 0 | 20.7332 | 16.02  |
| 170 | 1/28/2011 | 9:22:49 | 0 | 20.739  | 16.019 |
| 171 | 1/28/2011 | 9:22:50 | 0 | 20.7413 | 16.016 |
| 172 | 1/28/2011 | 9:22:51 | 0 | 20.7438 | 16.018 |
| 173 | 1/28/2011 | 9:22:52 | 0 | 20.7497 | 16.017 |
| 174 | 1/28/2011 | 9:22:53 | 0 | 20.7528 | 16.016 |
| 175 | 1/28/2011 | 9:22:54 | 0 | 20.7569 | 16.017 |
| 176 | 1/28/2011 | 9:22:55 | 0 | 20.7614 | 16.016 |
| 177 | 1/28/2011 | 9:22:56 | 0 | 20.7621 | 16.017 |
| 178 | 1/28/2011 | 9:22:57 | 0 | 20.7686 | 16.017 |
| 179 | 1/28/2011 | 9:22:58 | 0 | 20.7699 | 16.017 |
| 180 | 1/28/2011 | 9:22:59 | 0 | 20.7766 | 16.016 |
| 181 | 1/28/2011 | 9:23:00 | 0 | 20.7773 | 16.017 |
| 182 | 1/28/2011 | 9:23:01 | 0 | 20.7817 | 16.016 |
| 183 | 1/28/2011 | 9:23:02 | 0 | 20.786  | 16.017 |
| 184 | 1/28/2011 | 9:23:03 | 0 | 20.7857 | 16.016 |
| 185 | 1/28/2011 | 9:23:04 | 0 | 20.7938 | 16.016 |
| 186 | 1/28/2011 | 9:23:05 | 0 | 20.7968 | 16.016 |
| 187 | 1/28/2011 | 9:23:06 | 0 | 20.7994 | 16.015 |
| 188 | 1/28/2011 | 9:23:07 | 0 | 20.8026 | 16.015 |
| 188 | 1/28/2011 | 9:23:09 | 0 | 20.8075 | 16.015 |
| 190 | 1/28/2011 | 9:23:09 | 0 | 20.81   | 16.016 |
| 191 | 1/28/2011 | 9:23:10 | 0 | 20.8102 | 16.015 |
| 192 | 1/28/2011 | 9:23:11 | 0 | 20.9147 | 16.016 |
| 193 | 1/28/2011 | 9:23:12 | 0 | 20.8209 | 16.015 |
| 194 | 1/28/2011 | 9:23:13 | 0 | 20.8235 | 16.016 |
| 195 | 1/28/2011 | 9:23:14 | 0 | 20.8267 | 16.015 |
| 196 | 1/28/2011 | 9:23:15 | 0 | 20.8274 | 16.015 |
| 197 | 1/28/2011 | 9:23:16 | 0 | 20.8319 | 16.015 |
| 198 | 1/28/2011 | 9:23:17 | 0 | 20.8334 | 16.016 |
| 199 | 1/28/2011 | 9:23:18 | 0 | 20.8376 | 16.016 |
| 200 | 1/28/2011 | 8:23:19 | 0 | 20.8406 | 16.015 |
| 201 | 1/28/2011 | 9:23:20 | 0 | 20.8447 | 16.015 |
| 202 | 1/28/2011 | 9:23:21 | 0 | 20.848  | 16.015 |
| 203 | 1/28/2011 | 9:23:22 | 0 | 20.8489 | 16.015 |
| 204 | 1/28/2011 | 9:23:23 | 0 | 20.8529 | 16.015 |
| 205 | 1/28/2011 | 9:23:24 | 0 | 20.8559 | 16.015 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 206 | 1/28/2011 | 9:23:25 | 0 | 20.8585 | 16.015 |
| 207 | 1/28/2011 | 9:23:26 | 0 | 20.8609 | 16.015 |
| 208 | 1/28/2011 | 9:23:27 | 0 | 20.8643 | 16.015 |
| 209 | 1/28/2011 | 9:23:28 | 0 | 20.8652 | 16.015 |
| 210 | 1/28/2011 | 9:23:29 | 0 | 20.8683 | 16.015 |
| 211 | 1/28/2011 | 9:23:30 | 0 | 20.8708 | 16.015 |
| 212 | 1/28/2011 | 9:23:31 | 0 | 20.8742 | 16.015 |
| 213 | 1/28/2011 | 9:23:32 | 0 | 20.8775 | 16.014 |
| 214 | 1/28/2011 | 9:23:33 | 0 | 20.8772 | 16.015 |
| 215 | 1/28/2011 | 9:23:34 | 0 | 20.8932 | 16.015 |
| 216 | 1/28/2011 | 9:23:35 | 0 | 20.8865 | 16.015 |
| 217 | 1/28/2011 | 9:23:36 | 0 | 20.8877 | 16.014 |
| 219 | 1/28/2011 | 9:23:37 | 0 | 20.8899 | 16.015 |
| 219 | 1/28/2011 | 9:23:38 | 0 | 20.891  | 16.014 |
| 220 | 1/28/2011 | 9:23:39 | 0 | 20.8962 | 16.014 |
| 221 | 1/28/2011 | 9:23:40 | 0 | 20.8966 | 16.014 |
| 222 | 1/28/2011 | 9:23:41 | 0 | 20.9017 | 16.015 |
| 223 | 1/28/2011 | 9:23:42 | 0 | 20.9044 | 16.014 |
| 224 | 1/28/2011 | 9:23:43 | 0 | 20.9068 | 16.014 |
| 225 | 1/28/2011 | 9:23:44 | 0 | 20.9049 | 16.015 |
| 226 | 1/28/2011 | 9:23:45 | 0 | 20.9102 | 16.015 |
| 227 | 1/28/2011 | 9:23:46 | 0 | 20.9115 | 16.015 |
| 228 | 1/28/2011 | 9:23:47 | 0 | 20.9112 | 16.015 |
| 229 | 1/28/2011 | 9:23:49 | 0 | 20.9145 | 16.015 |
| 230 | 1/28/2011 | 9:23:49 | 0 | 20.9198 | 16.015 |
| 231 | 1/28/2011 | 9:23:50 | 0 | 20.9202 | 16.015 |
| 232 | 1/28/2011 | 9:23:51 | 0 | 20.9248 | 16.014 |
| 233 | 1/28/2011 | 9:23:52 | 0 | 20.9244 | 16.015 |
| 234 | 1/28/2011 | 9:23:53 | 0 | 20.9274 | 16.014 |
| 235 | 1/28/2011 | 9:23:54 | 0 | 20.9289 | 16.014 |
| 236 | 1/28/2011 | 9:23:55 | 0 | 20.9297 | 16.014 |
| 237 | 1/28/2011 | 9:23:56 | 0 | 20.9337 | 16.015 |
| 238 | 1/28/2011 | 9:23:57 | 0 | 20.9352 | 16.014 |
| 239 | 1/28/2011 | 9:23:58 | 0 | 20.9376 | 16.014 |
| 240 | 1/28/2011 | 9:23:59 | 0 | 20.939  | 16.015 |
| 241 | 1/28/2011 | 9:24:00 | 0 | 20.9385 | 16.014 |
| 242 | 1/28/2011 | 9:24:01 | 0 | 20.9423 | 16.014 |
| 243 | 1/28/2011 | 9:24:02 | 0 | 20.9438 | 16.014 |
| 244 | 1/28/2011 | 9:24:03 | 0 | 20.9455 | 16.015 |
| 245 | 1/28/2011 | 9:24:04 | 0 | 20.9471 | 16.015 |
| 246 | 1/28/2011 | 9:24:05 | 0 | 20.9508 | 16.014 |
| 247 | 1/28/2011 | 9:24:06 | 0 | 20.9529 | 16.014 |
| 248 | 1/28/2011 | 9:24:07 | 0 | 20.9562 | 16.014 |
| 249 | 1/28/2011 | 9:24:08 | 0 | 20.9576 | 16.014 |
| 250 | 1/28/2011 | 9:24:09 | 0 | 20.9578 | 16.014 |
| 251 | 1/28/2011 | 9:24:10 | 0 | 20.9598 | 16.014 |
| 252 | 1/28/2011 | 9:24:11 | 0 | 20.9632 | 16.014 |
| 253 | 1/28/2011 | 9:24:12 | 0 | 20.9632 | 16.014 |
| 254 | 1/28/2011 | 9:24:13 | 0 | 20.9655 | 16.014 |
| 255 | 1/28/2011 | 9:24:14 | 0 | 20.9652 | 16.015 |
| 256 | 1/28/2011 | 9:24:15 | 0 | 20.9702 | 16.014 |
| 257 | 1/28/2011 | 9:24:16 | 0 | 20.9693 | 16.014 |
| 258 | 1/28/2011 | 9:24:17 | 0 | 20.9728 | 16.014 |
| 259 | 1/28/2011 | 9:24:18 | 0 | 20.9752 | 16.014 |
| 260 | 1/28/2011 | 9:24:19 | 0 | 20.9745 | 16.015 |
| 261 | 1/28/2011 | 9:24:20 | 0 | 20.9796 | 16.014 |
| 262 | 1/28/2011 | 9:24:21 | 0 | 20.9789 | 16.014 |
| 263 | 1/28/2011 | 9:24:22 | 0 | 20.9806 | 16.015 |
| 264 | 1/28/2011 | 9:24:23 | 0 | 20.9825 | 16.014 |
| 265 | 1/28/2011 | 9:24:24 | 0 | 20.9825 | 16.014 |
| 266 | 1/28/2011 | 9:24:25 | 0 | 20.9856 | 16.014 |
| 267 | 1/28/2011 | 9:24:26 | 0 | 20.9854 | 16.014 |
| 268 | 1/28/2011 | 9:24:27 | 0 | 20.9892 | 16.014 |
| 269 | 1/28/2011 | 9:24:28 | 0 | 20.9909 | 16.013 |
| 270 | 1/28/2011 | 9:24:29 | 0 | 20.9934 | 16.014 |
| 271 | 1/28/2011 | 9:24:30 | 0 | 20.9942 | 16.015 |
| 272 | 1/28/2011 | 9:24:31 | 0 | 20.9964 | 16.014 |
| 273 | 1/28/2011 | 9:24:32 | 0 | 20.9859 | 16.014 |
| 274 | 1/28/2011 | 9:24:33 | 0 | 20.9986 | 16.014 |
| 275 | 1/28/2011 | 9:24:34 | 0 | 20.999  | 16.014 |
| 276 | 1/28/2011 | 9:24:35 | 0 | 20.9986 | 16.014 |
| 277 | 1/28/2011 | 9:24:36 | 0 | 21.0028 | 16.014 |
| 278 | 1/28/2011 | 9:24:37 | 0 | 21.0018 | 16.014 |
| 279 | 1/28/2011 | 9:24:38 | 0 | 21.0022 | 16.014 |
| 280 | 1/28/2011 | 9:24:39 | 0 | 21.0064 | 16.014 |
| 281 | 1/28/2011 | 9:24:40 | 0 | 21.0065 | 16.014 |
| 282 | 1/28/2011 | 9:24:41 | 0 | 21.0093 | 16.014 |
| 283 | 1/28/2011 | 9:24:42 | 0 | 21.0106 | 16.036 |
| 284 | 1/28/2011 | 9:24:43 | 0 | 21.0099 | 16.022 |
| 285 | 1/28/2011 | 9:24:44 | 0 | 21.0119 | 16.019 |
| 296 | 1/28/2011 | 9:24:45 | 0 | 21.0143 | 16.017 |
| 287 | 1/28/2011 | 9:24:46 | 0 | 21.0138 | 16.017 |
| 288 | 1/28/2011 | 9:24:47 | 0 | 21.0195 | 16.017 |
| 289 | 1/28/2011 | 9:24:48 | 0 | 21.0183 | 16.017 |
| 290 | 1/28/2011 | 9:24:49 | 0 | 21.0204 | 16.015 |
| 291 | 1/28/2011 | 9:24:50 | 0 | 21.0216 | 16.015 |
| 292 | 1/28/2011 | 9:24:51 | 0 | 21.0181 | 16.015 |
| 293 | 1/28/2011 | 9:24:52 | 0 | 21.0224 | 16.015 |
| 294 | 1/28/2011 | 9:24:53 | 0 | 21.0213 | 16.015 |
| 295 | 1/28/2011 | 9:24:54 | 0 | 21.0246 | 16.015 |
| 296 | 1/28/2011 | 9:24:55 | 0 | 21.028  | 16.033 |
| 297 | 1/28/2011 | 9:24:56 | 0 | 21.0283 | 16.023 |
| 299 | 1/28/2011 | 9:24:57 | 0 | 21.0288 | 16.021 |
| 299 | 1/28/2011 | 9:24:58 | 0 | 21.0291 | 16.019 |
| 300 | 1/28/2011 | 9:24:59 | 0 | 21.0306 | 16.017 |
| 301 | 1/28/2011 | 9:25:00 | 0 | 21.0327 | 16.017 |
| 302 | 1/28/2011 | 9:25:05 | 0 | 21.035  | 15.995 |
| 303 | 1/28/2011 | 9:25:10 | 0 | 21.0397 | 15.987 |
| 304 | 1/28/2011 | 9:25:15 | 0 | 21.0451 | 15.982 |
| 305 | 1/28/2011 | 9:25:20 | 0 | 21.0512 | 15.978 |
| 306 | 1/28/2011 | 9:25:25 | 0 | 21.0549 | 15.975 |
| 307 | 1/28/2011 | 9:25:30 | 0 | 21.06   | 15.975 |
| 308 | 1/28/2011 | 9:25:35 | 0 | 21.0638 | 15.972 |
| 309 | 1/28/2011 | 9:25:40 | 0 | 21.0687 | 15.986 |
| 310 | 1/28/2011 | 9:25:45 | 0 | 21.0721 | 15.968 |
| 311 | 1/28/2011 | 9:25:50 | 0 | 21.0743 | 15.966 |
| 312 | 1/28/2011 | 9:25:55 | 0 | 21.0763 | 15.964 |
| 313 | 1/28/2011 | 9:26:00 | 0 | 21.0819 | 15.966 |
| 314 | 1/28/2011 | 9:26:05 | 0 | 21.0832 | 15.963 |
| 315 | 1/28/2011 | 9:26:10 | 0 | 21.0884 | 15.961 |
| 316 | 1/28/2011 | 9:26:15 | 0 | 21.0897 | 15.962 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 317 | 1/28/2011 | 9:26:20 | 0 | 21.0919 | 15.972 |
| 318 | 1/28/2011 | 9:26:25 | 0 | 21.092  | 15.961 |
| 319 | 1/28/2011 | 9:26:30 | 0 | 21.0956 | 15.958 |
| 320 | 1/28/2011 | 9:26:35 | 0 | 21.0984 | 15.961 |
| 321 | 1/28/2011 | 9:26:40 | 0 | 21.1033 | 15.958 |
| 322 | 1/28/2011 | 9:26:45 | 0 | 21.1027 | 15.957 |
| 323 | 1/28/2011 | 9:26:50 | 0 | 21.1026 | 15.955 |
| 324 | 1/28/2011 | 9:26:55 | 0 | 21.1075 | 15.955 |
| 325 | 1/28/2011 | 9:27:00 | 0 | 21.1084 | 15.954 |
| 326 | 1/28/2011 | 9:27:05 | 0 | 21.1111 | 15.953 |
| 327 | 1/28/2011 | 9:27:10 | 0 | 21.1148 | 15.953 |
| 328 | 1/28/2011 | 9:27:15 | 0 | 21.1151 | 15.952 |
| 329 | 1/28/2011 | 9:27:20 | 0 | 21.1162 | 15.951 |
| 330 | 1/28/2011 | 9:27:25 | 0 | 21.1171 | 15.951 |
| 331 | 1/28/2011 | 9:27:30 | 0 | 21.1167 | 15.949 |
| 332 | 1/28/2011 | 9:27:35 | 0 | 21.1227 | 15.949 |
| 333 | 1/28/2011 | 9:27:40 | 0 | 21.1183 | 15.949 |
| 334 | 1/28/2011 | 9:27:45 | 0 | 21.1234 | 15.948 |
| 335 | 1/28/2011 | 9:27:50 | 0 | 21.128  | 15.948 |
| 336 | 1/28/2011 | 9:27:55 | 0 | 21.1254 | 15.947 |
| 337 | 1/28/2011 | 9:28:00 | 0 | 21.128  | 15.948 |
| 338 | 1/28/2011 | 9:28:05 | 0 | 21.1255 | 15.947 |
| 339 | 1/28/2011 | 9:28:10 | 0 | 21.1274 | 15.948 |
| 340 | 1/28/2011 | 9:28:15 | 0 | 21.1271 | 15.947 |
| 341 | 1/28/2011 | 9:28:20 | 0 | 21.1308 | 15.946 |
| 342 | 1/28/2011 | 9:28:25 | 0 | 21.1318 | 15.946 |
| 343 | 1/28/2011 | 9:28:30 | 0 | 21.1302 | 15.946 |
| 344 | 1/28/2011 | 9:28:35 | 0 | 21.1367 | 15.946 |
| 345 | 1/28/2011 | 9:28:40 | 0 | 21.134  | 15.946 |
| 346 | 1/28/2011 | 9:28:45 | 0 | 21.1337 | 15.946 |
| 347 | 1/28/2011 | 9:28:50 | 0 | 21.1361 | 15.946 |
| 348 | 1/28/2011 | 9:28:55 | 0 | 21.137  | 15.946 |
| 349 | 1/28/2011 | 9:29:00 | 0 | 21.1376 | 15.946 |
| 350 | 1/28/2011 | 9:29:05 | 0 | 21.1379 | 15.946 |
| 351 | 1/28/2011 | 9:29:10 | 0 | 21.1376 | 15.946 |
| 352 | 1/28/2011 | 9:29:15 | 0 | 21.1375 | 15.945 |
| 353 | 1/28/2011 | 9:29:20 | 0 | 21.1402 | 15.946 |
| 354 | 1/28/2011 | 9:29:25 | 0 | 21.1388 | 15.945 |
| 355 | 1/28/2011 | 9:29:30 | 0 | 21.1418 | 15.945 |
| 356 | 1/28/2011 | 9:29:35 | 0 | 21.1406 | 15.946 |
| 357 | 1/28/2011 | 9:29:40 | 0 | 21.1433 | 15.946 |
| 358 | 1/28/2011 | 9:29:45 | 0 | 21.1402 | 15.945 |
| 359 | 1/28/2011 | 9:29:50 | 0 | 21.1447 | 15.949 |
| 360 | 1/28/2011 | 9:29:55 | 0 | 21.1445 | 15.947 |
| 361 | 1/28/2011 | 9:30:00 | 0 | 21.1467 | 15.947 |
| 362 | 1/28/2011 | 9:30:01 | 0 | 21.1447 | 15.955 |
| 363 | 1/28/2011 | 9:30:02 | 0 | 21.1438 | 15.961 |
| 364 | 1/28/2011 | 9:30:03 | 0 | 21.1423 | 15.964 |
| 365 | 1/28/2011 | 9:30:04 | 0 | 21.147  | 15.966 |
| 366 | 1/28/2011 | 9:30:05 | 0 | 21.1456 | 15.968 |
| 367 | 1/28/2011 | 9:30:06 | 0 | 21.1434 | 15.97  |
| 368 | 1/28/2011 | 9:30:07 | 0 | 21.1443 | 15.983 |
| 369 | 1/28/2011 | 9:30:08 | 0 | 21.1466 | 15.979 |
| 370 | 1/28/2011 | 9:30:09 | 0 | 21.1491 | 15.978 |
| 371 | 1/28/2011 | 9:30:10 | 0 | 21.1484 | 15.979 |
| 372 | 1/28/2011 | 9:30:11 | 0 | 21.7445 | 15.994 |
| 373 | 1/28/2011 | 9:30:12 | 0 | 22.4163 | 16.008 |
| 374 | 1/28/2011 | 9:30:13 | 0 | 23.1355 | 16.013 |
| 375 | 1/28/2011 | 9:30:14 | 0 | 23.3986 | 16.017 |
| 376 | 1/28/2011 | 9:30:15 | 0 | 23.2106 | 16.02  |
| 377 | 1/28/2011 | 9:30:16 | 0 | 23.2912 | 16.027 |
| 379 | 1/28/2011 | 9:30:17 | 0 | 23.1687 | 16.024 |
| 379 | 1/28/2011 | 9:30:18 | 0 | 23.1776 | 16.014 |
| 380 | 1/28/2011 | 9:30:19 | 0 | 23.1227 | 16.015 |
| 381 | 1/28/2011 | 9:30:20 | 0 | 23.1549 | 16.017 |
| 382 | 1/28/2011 | 9:30:21 | 0 | 23.1095 | 16.02  |
| 383 | 1/28/2011 | 9:30:22 | 0 | 23.1118 | 16.022 |
| 384 | 1/28/2011 | 9:30:23 | 0 | 23.0166 | 16.024 |
| 385 | 1/28/2011 | 9:30:24 | 0 | 23.0202 | 16.026 |
| 386 | 1/28/2011 | 9:30:25 | 0 | 22.9982 | 16.027 |
| 387 | 1/28/2011 | 9:30:26 | 0 | 22.9698 | 16.019 |
| 389 | 1/28/2011 | 9:30:27 | 0 | 22.9502 | 16.042 |
| 389 | 1/28/2011 | 9:30:28 | 0 | 22.9334 | 16.037 |
| 390 | 1/28/2011 | 9:30:29 | 0 | 22.9619 | 16.038 |
| 391 | 1/28/2011 | 9:30:30 | 0 | 22.8855 | 16.038 |
| 392 | 1/28/2011 | 9:30:31 | 0 | 22.8637 | 16.038 |
| 393 | 1/28/2011 | 9:30:32 | 0 | 22.8451 | 16.04  |
| 394 | 1/28/2011 | 9:30:33 | 0 | 22.824  | 16.042 |
| 395 | 1/28/2011 | 9:30:34 | 0 | 22.8064 | 16.043 |
| 396 | 1/28/2011 | 9:30:35 | 0 | 22.7843 | 16.044 |
| 397 | 1/28/2011 | 9:30:36 | 0 | 22.7704 | 16.047 |
| 398 | 1/28/2011 | 9:30:37 | 0 | 22.7505 | 16.048 |
| 399 | 1/28/2011 | 9:30:38 | 0 | 22.7294 | 16.049 |
| 400 | 1/28/2011 | 9:30:39 | 0 | 22.7131 | 16.05  |
| 401 | 1/28/2011 | 9:30:40 | 0 | 22.6973 | 16.051 |
| 402 | 1/28/2011 | 9:30:41 | 0 | 22.679  | 16.053 |
| 403 | 1/28/2011 | 9:30:42 | 0 | 22.6816 | 16.054 |
| 404 | 1/28/2011 | 9:30:43 | 0 | 22.8473 | 16.055 |
| 405 | 1/28/2011 | 9:30:44 | 0 | 22.6272 | 16.057 |
| 406 | 1/28/2011 | 9:30:45 | 0 | 22.6107 | 16.058 |
| 407 | 1/28/2011 | 9:30:46 | 0 | 22.5974 | 16.059 |
| 408 | 1/28/2011 | 9:30:47 | 0 | 22.5816 | 16.06  |
| 409 | 1/28/2011 | 9:30:48 | 0 | 22.5651 | 16.063 |
| 410 | 1/28/2011 | 9:30:49 | 0 | 22.5483 | 16.063 |
| 411 | 1/28/2011 | 9:30:50 | 0 | 22.5361 | 16.064 |
| 412 | 1/28/2011 | 9:30:51 | 0 | 22.5211 | 16.054 |
| 413 | 1/28/2011 | 9:30:52 | 0 | 22.5031 | 16.048 |
| 414 | 1/28/2011 | 9:30:53 | 0 | 22.4893 | 16.044 |
| 415 | 1/28/2011 | 9:30:54 | 0 | 22.4753 | 16.042 |
| 416 | 1/28/2011 | 9:30:55 | 0 | 22.4601 | 16.041 |
| 417 | 1/28/2011 | 9:30:56 | 0 | 22.4474 | 16.038 |
| 418 | 1/28/2011 | 9:30:57 | 0 | 22.4371 | 16.038 |
| 419 | 1/28/2011 | 9:30:58 | 0 | 22.4253 | 16.037 |
| 420 | 1/28/2011 | 9:30:59 | 0 | 22.4083 | 16.036 |
| 421 | 1/28/2011 | 9:31:00 | 0 | 22.3954 | 16.035 |
| 422 | 1/28/2011 | 9:31:01 | 0 | 22.3802 | 16.035 |
| 423 | 1/28/2011 | 9:31:02 | 0 | 22.3689 | 16.035 |
| 424 | 1/28/2011 | 9:31:03 | 0 | 22.3591 | 16.035 |
| 425 | 1/28/2011 | 9:31:04 | 0 | 22.3459 | 16.034 |
| 426 | 1/28/2011 | 9:31:05 | 0 | 22.334  | 16.033 |
| 427 | 1/28/2011 | 9:31:06 | 0 | 22.3218 | 16.034 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 428 | 1/28/2011 | 9:31:07 | 0 | 22.3089 | 16.033 |
| 429 | 1/28/2011 | 9:31:08 | 0 | 22.2958 | 16.033 |
| 430 | 1/28/2011 | 9:31:09 | 0 | 22.286  | 16.033 |
| 431 | 1/28/2011 | 9:31:10 | 0 | 22.2742 | 16.032 |
| 432 | 1/28/2011 | 9:31:11 | 0 | 22.2623 | 16.032 |
| 433 | 1/28/2011 | 9:31:12 | 0 | 22.2498 | 16.032 |
| 434 | 1/28/2011 | 9:31:13 | 0 | 22.238  | 16.032 |
| 435 | 1/28/2011 | 9:31:14 | 0 | 22.2289 | 16.031 |
| 436 | 1/28/2011 | 9:31:15 | 0 | 22.2174 | 16.031 |
| 437 | 1/28/2011 | 9:31:16 | 0 | 22.2066 | 16.031 |
| 438 | 1/28/2011 | 9:31:17 | 0 | 22.1937 | 16.031 |
| 439 | 1/28/2011 | 9:31:18 | 0 | 22.1854 | 16.031 |
| 440 | 1/28/2011 | 9:31:19 | 0 | 22.1769 | 16.031 |
| 441 | 1/28/2011 | 9:31:20 | 0 | 22.1665 | 16.03  |
| 442 | 1/28/2011 | 9:31:21 | 0 | 22.1553 | 16.03  |
| 443 | 1/28/2011 | 9:31:22 | 0 | 22.1456 | 16.03  |
| 444 | 1/28/2011 | 9:31:23 | 0 | 22.1349 | 16.03  |
| 445 | 1/28/2011 | 9:31:24 | 0 | 22.1273 | 16.03  |
| 446 | 1/28/2011 | 9:31:25 | 0 | 22.1155 | 16.029 |
| 447 | 1/28/2011 | 9:31:26 | 0 | 22.1058 | 16.03  |
| 448 | 1/28/2011 | 9:31:27 | 0 | 22.0944 | 16.029 |
| 449 | 1/28/2011 | 9:31:28 | 0 | 22.0853 | 16.029 |
| 450 | 1/28/2011 | 9:31:29 | 0 | 22.0776 | 16.029 |
| 451 | 1/28/2011 | 9:31:30 | 0 | 22.0694 | 16.029 |
| 452 | 1/28/2011 | 9:31:31 | 0 | 22.0614 | 16.028 |
| 453 | 1/28/2011 | 9:31:32 | 0 | 22.0497 | 16.028 |
| 454 | 1/28/2011 | 9:31:33 | 0 | 22.0425 | 16.028 |
| 455 | 1/28/2011 | 9:31:34 | 0 | 22.0332 | 16.028 |
| 456 | 1/28/2011 | 9:31:35 | 0 | 22.0245 | 16.028 |
| 457 | 1/28/2011 | 9:31:36 | 0 | 22.0162 | 16.028 |
| 458 | 1/28/2011 | 9:31:37 | 0 | 22.0088 | 16.029 |
| 459 | 1/28/2011 | 9:31:38 | 0 | 21.9989 | 16.027 |
| 460 | 1/28/2011 | 9:31:39 | 0 | 21.9913 | 16.027 |
| 461 | 1/28/2011 | 9:31:40 | 0 | 21.9814 | 16.027 |
| 462 | 1/28/2011 | 9:31:41 | 0 | 21.9741 | 16.027 |
| 463 | 1/28/2011 | 9:31:42 | 0 | 21.966  | 16.027 |
| 464 | 1/28/2011 | 9:31:43 | 0 | 21.9558 | 16.027 |
| 465 | 1/28/2011 | 9:31:44 | 0 | 21.9515 | 16.027 |
| 466 | 1/28/2011 | 9:31:45 | 0 | 21.9402 | 16.026 |
| 467 | 1/28/2011 | 9:31:46 | 0 | 21.9329 | 16.026 |
| 468 | 1/28/2011 | 9:31:47 | 0 | 21.9262 | 16.026 |
| 469 | 1/28/2011 | 9:31:48 | 0 | 21.9194 | 16.025 |
| 470 | 1/28/2011 | 9:31:49 | 0 | 21.9114 | 16.025 |
| 471 | 1/28/2011 | 9:31:50 | 0 | 21.9049 | 16.026 |
| 472 | 1/28/2011 | 9:31:51 | 0 | 21.8961 | 16.026 |
| 473 | 1/28/2011 | 9:31:52 | 0 | 21.8873 | 16.025 |
| 474 | 1/28/2011 | 9:31:53 | 0 | 21.882  | 16.025 |
| 475 | 1/28/2011 | 9:31:54 | 0 | 21.8756 | 16.025 |
| 476 | 1/28/2011 | 9:31:55 | 0 | 21.8672 | 16.025 |
| 477 | 1/28/2011 | 9:31:56 | 0 | 21.8589 | 16.024 |
| 478 | 1/28/2011 | 9:31:57 | 0 | 21.9546 | 16.025 |
| 479 | 1/28/2011 | 9:31:58 | 0 | 21.8476 | 16.024 |
| 480 | 1/28/2011 | 9:31:59 | 0 | 21.8434 | 16.025 |
| 481 | 1/28/2011 | 9:32:00 | 0 | 21.8357 | 16.024 |
| 482 | 1/28/2011 | 9:32:01 | 0 | 21.8263 | 16.025 |
| 483 | 1/28/2011 | 9:32:02 | 0 | 21.8212 | 16.024 |
| 484 | 1/29/2011 | 9:32:03 | 0 | 21.8169 | 16.024 |
| 485 | 1/28/2011 | 9:32:04 | 0 | 21.8074 | 16.024 |
| 486 | 1/28/2011 | 9:32:05 | 0 | 21.8005 | 16.024 |
| 487 | 1/28/2011 | 9:32:06 | 0 | 21.7985 | 16.024 |
| 488 | 1/28/2011 | 9:32:07 | 0 | 21.7882 | 16.025 |
| 489 | 1/28/2011 | 9:32:08 | 0 | 21.7819 | 16.024 |
| 490 | 1/28/2011 | 9:32:09 | 0 | 21.7768 | 16.024 |
| 491 | 1/28/2011 | 9:32:10 | 0 | 21.7693 | 16.024 |
| 492 | 1/28/2011 | 9:32:11 | 0 | 21.7647 | 16.025 |
| 493 | 1/28/2011 | 9:32:12 | 0 | 21.757  | 16.024 |
| 494 | 1/28/2011 | 9:32:13 | 0 | 21.7535 | 18.024 |
| 495 | 1/28/2011 | 9:32:14 | 0 | 21.749  | 16.024 |
| 496 | 1/28/2011 | 9:32:15 | 0 | 21.7448 | 16.023 |
| 497 | 1/28/2011 | 9:32:16 | 0 | 21.7349 | 16.023 |
| 498 | 1/28/2011 | 9:32:17 | 0 | 21.7315 | 16.024 |
| 499 | 1/28/2011 | 9:32:18 | 0 | 21.7235 | 16.023 |
| 500 | 1/28/2011 | 9:32:19 | 0 | 21.7196 | 16.023 |
| 501 | 1/28/2011 | 9:32:20 | 0 | 21.7151 | 16.023 |
| 502 | 1/28/2011 | 9:32:21 | 0 | 21.7074 | 16.024 |
| 503 | 1/28/2011 | 9:32:22 | 0 | 21.7018 | 16.023 |
| 504 | 1/28/2011 | 9:32:23 | 0 | 21.6988 | 16.023 |
| 505 | 1/28/2011 | 9:32:24 | 0 | 21.6925 | 16.023 |
| 506 | 1/28/2011 | 9:32:25 | 0 | 21.6874 | 16.023 |
| 507 | 1/28/2011 | 9:32:26 | 0 | 21.6831 | 16.023 |
| 508 | 1/28/2011 | 9:32:27 | 0 | 21.6763 | 16.023 |
| 509 | 1/28/2011 | 9:32:28 | 0 | 21.6763 | 16.023 |
| 510 | 1/28/2011 | 9:32:29 | 0 | 21.6666 | 16.023 |
| 511 | 1/28/2011 | 9:32:30 | 0 | 21.6847 | 16.041 |
| 512 | 1/28/2011 | 9:32:31 | 0 | 21.6589 | 16.031 |
| 513 | 1/28/2011 | 9:32:32 | 0 | 21.6552 | 16.028 |
| 514 | 1/28/2011 | 9:32:33 | 0 | 21.6489 | 16.026 |
| 515 | 1/28/2011 | 9:32:34 | 0 | 21.6404 | 16.026 |
| 516 | 1/28/2011 | 9:32:35 | 0 | 21.641  | 16.025 |
| 517 | 1/28/2011 | 9:32:36 | 0 | 21.6377 | 16.025 |
| 518 | 1/28/2011 | 9:32:37 | 0 | 21.6309 | 16.025 |
| 519 | 1/28/2011 | 9:32:38 | 0 | 21.8278 | 16.024 |
| 520 | 1/28/2011 | 9:32:39 | 0 | 21.6212 | 16.041 |
| 521 | 1/28/2011 | 9:32:40 | 0 | 21.618  | 16.033 |
| 522 | 1/28/2011 | 9:32:41 | 0 | 21.6111 | 16.03  |
| 523 | 1/28/2011 | 9:32:42 | 0 | 21.6089 | 16.028 |
| 524 | 1/28/2011 | 9:32:43 | 0 | 21.605  | 16.027 |
| 525 | 1/28/2011 | 9:32:44 | 0 | 21.6017 | 16.027 |
| 528 | 1/28/2011 | 9:32:45 | 0 | 21.596  | 16.026 |
| 527 | 1/28/2011 | 9:32:46 | 0 | 21.5961 | 16.026 |
| 528 | 1/28/2011 | 9:32:47 | 0 | 21.5882 | 16.025 |
| 529 | 1/28/2011 | 9:32:48 | 0 | 21.587  | 16.025 |
| 530 | 1/28/2011 | 9:32:49 | 0 | 21.5792 | 16.025 |
| 531 | 1/28/2011 | 9:32:50 | 0 | 21.5734 | 16.026 |
| 532 | 1/28/2011 | 9:32:51 | 0 | 21.5712 | 16.025 |
| 533 | 1/28/2011 | 9:32:52 | 0 | 21.5675 | 16.025 |
| 534 | 1/28/2011 | 9:32:53 | 0 | 21.5644 | 16.025 |
| 535 | 1/28/2011 | 9:32:54 | 0 | 21.5629 | 16.026 |
| 536 | 1/28/2011 | 9:32:55 | 0 | 21.5559 | 18.024 |
| 537 | 1/28/2011 | 9:32:56 | 0 | 21.5555 | 16.025 |
| 538 | 1/28/2011 | 9:32:57 | 0 | 21.5487 | 16.025 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 539 | 1/28/2011 | 9:32:58 | 0 | 21.546  | 16.025 |
| 540 | 1/28/2011 | 9:32:59 | 0 | 21.5397 | 16.025 |
| 541 | 1/28/2011 | 9:33:00 | 0 | 21.5389 | 16.025 |
| 542 | 1/28/2011 | 9:33:01 | 0 | 21.5382 | 16.025 |
| 543 | 1/28/2011 | 9:33:02 | 0 | 21.5316 | 16.025 |
| 544 | 1/28/2011 | 9:33:03 | 0 | 21.5275 | 16.025 |
| 545 | 1/28/2011 | 9:33:04 | 0 | 21.5258 | 16.024 |
| 546 | 1/28/2011 | 9:33:05 | 0 | 21.5242 | 16.024 |
| 547 | 1/26/2011 | 9:33:06 | 0 | 21.52   | 16.025 |
| 548 | 1/26/2011 | 9:33:07 | 0 | 21.5131 | 16.025 |
| 549 | 1/26/2011 | 9:33:08 | 0 | 21.5111 | 16.024 |
| 550 | 1/26/2011 | 9:33:09 | 0 | 21.5073 | 16.025 |
| 551 | 1/28/2011 | 9:33:10 | 0 | 21.5027 | 16.025 |
| 552 | 1/26/2011 | 9:33:11 | 0 | 21.5008 | 16.024 |
| 553 | 1/26/2011 | 9:33:12 | 0 | 21.4974 | 16.025 |
| 554 | 1/26/2011 | 9:33:13 | 0 | 21.4943 | 16.025 |
| 555 | 1/28/2011 | 9:33:14 | 0 | 21.494  | 16.024 |
| 556 | 1/28/2011 | 9:33:15 | 0 | 21.489  | 16.025 |
| 557 | 1/28/2011 | 9:33:16 | 0 | 21.4841 | 16.025 |
| 558 | 1/28/2011 | 9:33:17 | 0 | 21.4823 | 16.025 |
| 559 | 1/28/2011 | 9:33:18 | 0 | 21.4787 | 16.025 |
| 560 | 1/28/2011 | 9:33:19 | 0 | 21.4753 | 16.025 |
| 561 | 1/28/2011 | 9:33:20 | 0 | 21.4735 | 16.042 |
| 562 | 1/28/2011 | 9:33:21 | 0 | 21.4706 | 16.032 |
| 563 | 1/28/2011 | 9:33:22 | 0 | 21.4686 | 16.03  |
| 564 | 1/28/2011 | 9:33:23 | 0 | 21.4676 | 16.029 |
| 565 | 1/28/2011 | 9:33:24 | 0 | 21.4642 | 16.027 |
| 566 | 1/28/2011 | 9:33:25 | 0 | 21.4583 | 16.027 |
| 567 | 1/28/2011 | 9:33:26 | 0 | 21.4588 | 16.026 |
| 568 | 1/28/2011 | 9:33:27 | 0 | 21.4544 | 16.026 |
| 569 | 1/28/2011 | 9:33:28 | 0 | 21.4518 | 16.026 |
| 570 | 1/28/2011 | 9:33:29 | 0 | 21.4473 | 16.026 |
| 571 | 1/28/2011 | 9:33:30 | 0 | 21.4445 | 16.025 |
| 572 | 1/28/2011 | 9:33:31 | 0 | 21.4413 | 16.025 |
| 573 | 1/26/2011 | 9:33:32 | 0 | 21.441  | 16.025 |
| 574 | 1/26/2011 | 9:33:33 | 0 | 21.4401 | 18.026 |
| 575 | 1/28/2011 | 9:33:34 | 0 | 21.4334 | 16.026 |
| 576 | 1/26/2011 | 9:33:35 | 0 | 21.433  | 16.026 |
| 577 | 1/26/2011 | 9:33:36 | 0 | 21.4304 | 16.026 |
| 578 | 1/28/2011 | 9:33:37 | 0 | 21.4301 | 16.026 |
| 579 | 1/26/2011 | 9:33:38 | 0 | 21.4269 | 16.026 |
| 580 | 1/28/2011 | 9:33:39 | 0 | 21.4251 | 16.025 |
| 581 | 1/26/2011 | 9:33:40 | 0 | 21.4199 | 18.026 |
| 582 | 1/26/2011 | 9:33:41 | 0 | 21.4207 | 16.026 |
| 583 | 1/28/2011 | 9:33:42 | 0 | 21.4151 | 16.025 |
| 584 | 1/26/2011 | 9:33:43 | 0 | 21.4128 | 16.025 |
| 585 | 1/28/2011 | 9:33:44 | 0 | 21.4103 | 16.025 |
| 586 | 1/28/2011 | 9:33:45 | 0 | 21.4105 | 16.026 |
| 587 | 1/26/2011 | 9:33:46 | 0 | 21.406  | 16.025 |
| 588 | 1/26/2011 | 9:33:47 | 0 | 21.4053 | 16.026 |
| 589 | 1/28/2011 | 9:33:49 | 0 | 21.4035 | 16.025 |
| 590 | 1/28/2011 | 9:33:49 | 0 | 21.401  | 16.026 |
| 591 | 1/26/2011 | 9:33:50 | 0 | 21.3977 | 16.026 |
| 592 | 1/26/2011 | 9:33:51 | 0 | 21.3941 | 16.026 |
| 593 | 1/29/2011 | 9:33:52 | 0 | 21.3847 | 16.026 |
| 594 | 1/28/2011 | 9:33:53 | 0 | 21.3905 | 16.025 |
| 595 | 1/28/2011 | 9:33:54 | 0 | 21.3902 | 16.025 |
| 596 | 1/28/2011 | 9:33:55 | 0 | 21.3892 | 16.025 |
| 597 | 1/28/2011 | 9:33:56 | 0 | 21.385  | 16.025 |
| 598 | 1/28/2011 | 9:33:57 | 0 | 21.3946 | 16.026 |
| 599 | 1/28/2011 | 9:33:58 | 0 | 21.38   | 16.025 |
| 600 | 1/28/2011 | 9:33:59 | 0 | 21.3817 | 16.026 |
| 601 | 1/28/2011 | 9:34:00 | 0 | 21.3801 | 16.025 |
| 602 | 1/28/2011 | 9:34:01 | 0 | 21.3772 | 16.026 |
| 603 | 1/28/2011 | 9:34:02 | 0 | 21.3736 | 16.026 |
| 604 | 1/28/2011 | 9:34:03 | 0 | 21.3702 | 16.025 |
| 605 | 1/28/2011 | 9:34:04 | 0 | 21.3723 | 16.035 |
| 606 | 1/28/2011 | 9:34:05 | 0 | 21.3684 | 16.031 |
| 607 | 1/28/2011 | 9:34:06 | 0 | 21.3666 | 16.029 |
| 608 | 1/28/2011 | 9:34:07 | 0 | 21.363  | 16.028 |
| 609 | 1/28/2011 | 9:34:08 | 0 | 21.3626 | 16.028 |
| 610 | 1/28/2011 | 9:34:09 | 0 | 21.3609 | 16.027 |
| 611 | 1/28/2011 | 9:34:10 | 0 | 21.3584 | 16.027 |
| 612 | 1/28/2011 | 9:34:11 | 0 | 21.3566 | 16.027 |
| 613 | 1/28/2011 | 9:34:12 | 0 | 21.3553 | 16.027 |
| 614 | 1/28/2011 | 9:34:13 | 0 | 21.3561 | 16.027 |
| 615 | 1/28/2011 | 9:34:14 | 0 | 21.3475 | 16.027 |
| 616 | 1/28/2011 | 9:34:15 | 0 | 21.3494 | 16.026 |
| 617 | 1/28/2011 | 9:34:16 | 0 | 21.3496 | 16.027 |
| 618 | 1/28/2011 | 9:34:17 | 0 | 21.3493 | 16.025 |
| 619 | 1/28/2011 | 9:34:18 | 0 | 21.346  | 16.027 |
| 620 | 1/28/2011 | 9:34:19 | 0 | 21.3451 | 16.026 |
| 621 | 1/28/2011 | 9:34:20 | 0 | 21.3422 | 16.026 |
| 622 | 1/28/2011 | 9:34:21 | 0 | 21.3442 | 16.026 |
| 623 | 1/28/2011 | 9:34:22 | 0 | 21.3381 | 16.027 |
| 624 | 1/28/2011 | 9:34:23 | 0 | 21.3388 | 16.027 |
| 625 | 1/28/2011 | 9:34:24 | 0 | 21.3365 | 16.026 |
| 626 | 1/28/2011 | 9:34:25 | 0 | 21.3357 | 16.026 |
| 627 | 1/28/2011 | 9:34:26 | 0 | 21.3312 | 16.026 |
| 628 | 1/28/2011 | 9:34:27 | 0 | 21.3351 | 16.026 |
| 629 | 1/28/2011 | 9:34:28 | 0 | 21.3321 | 16.026 |
| 630 | 1/28/2011 | 9:34:29 | 0 | 21.3293 | 16.026 |
| 631 | 1/28/2011 | 9:34:30 | 0 | 21.3294 | 16.026 |
| 632 | 1/26/2011 | 9:34:31 | 0 | 21.3265 | 16.026 |
| 633 | 1/26/2011 | 9:34:32 | 0 | 21.3257 | 16.026 |
| 634 | 1/28/2011 | 9:34:33 | 0 | 21.3251 | 16.026 |
| 635 | 1/26/2011 | 9:34:34 | 0 | 21.3209 | 16.026 |
| 636 | 1/26/2011 | 9:34:35 | 0 | 21.3196 | 16.026 |
| 637 | 1/26/2011 | 9:34:36 | 0 | 21.317  | 16.026 |
| 638 | 1/26/2011 | 9:34:37 | 0 | 21.318  | 16.026 |
| 639 | 1/28/2011 | 9:34:38 | 0 | 21.3134 | 16.026 |
| 640 | 1/26/2011 | 9:34:39 | 0 | 21.3142 | 16.026 |
| 641 | 1/26/2011 | 9:34:40 | 0 | 21.313  | 16.026 |
| 642 | 1/28/2011 | 9:34:41 | 0 | 21.3127 | 16.026 |
| 643 | 1/28/2011 | 9:34:42 | 0 | 21.3107 | 16.026 |
| 644 | 1/28/2011 | 9:34:43 | 0 | 21.3084 | 16.026 |
| 645 | 1/28/2011 | 9:34:44 | 0 | 21.3054 | 16.026 |
| 646 | 1/28/2011 | 9:34:45 | 0 | 21.3096 | 16.026 |
| 647 | 1/28/2011 | 9:34:46 | 0 | 21.3025 | 16.026 |
| 648 | 1/28/2011 | 9:34:47 | 0 | 21.3055 | 16.026 |
| 649 | 1/28/2011 | 9:34:48 | 0 | 21.3046 | 16.026 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 650 | 1/28/2011 | 9:34:48 | 0 | 21.301  | 16.026 |
| 651 | 1/28/2011 | 9:34:50 | 0 | 21.2992 | 16.026 |
| 652 | 1/28/2011 | 9:34:51 | 0 | 21.2973 | 16.027 |
| 653 | 1/28/2011 | 9:34:52 | 0 | 21.3021 | 16.026 |
| 654 | 1/28/2011 | 9:34:53 | 0 | 21.2957 | 16.025 |
| 655 | 1/28/2011 | 9:34:54 | 0 | 21.2936 | 16.026 |
| 656 | 1/28/2011 | 9:34:55 | 0 | 21.2926 | 16.026 |
| 657 | 1/28/2011 | 9:34:56 | 0 | 21.2998 | 16.025 |
| 658 | 1/28/2011 | 9:34:57 | 0 | 21.2945 | 16.026 |
| 659 | 1/28/2011 | 9:34:58 | 0 | 21.2904 | 16.025 |
| 660 | 1/28/2011 | 9:34:59 | 0 | 21.2895 | 16.026 |
| 661 | 1/28/2011 | 9:35:00 | 0 | 21.2879 | 16.025 |
| 662 | 1/28/2011 | 9:35:05 | 0 | 21.2625 | 16.004 |
| 663 | 1/28/2011 | 9:35:10 | 0 | 21.2762 | 15.997 |
| 664 | 1/28/2011 | 9:35:15 | 0 | 21.2736 | 15.992 |
| 665 | 1/28/2011 | 9:35:20 | 0 | 21.2703 | 15.994 |
| 666 | 1/28/2011 | 9:35:25 | 0 | 21.2655 | 15.987 |
| 667 | 1/28/2011 | 9:35:30 | 0 | 21.2618 | 15.984 |
| 668 | 1/28/2011 | 9:35:35 | 0 | 21.2575 | 15.981 |
| 669 | 1/28/2011 | 9:35:40 | 0 | 21.2522 | 15.976 |
| 670 | 1/28/2011 | 9:35:45 | 0 | 21.2504 | 15.977 |
| 671 | 1/28/2011 | 9:35:50 | 0 | 21.2468 | 15.975 |
| 672 | 1/28/2011 | 9:35:55 | 0 | 21.2437 | 15.974 |
| 673 | 1/28/2011 | 9:36:00 | 0 | 21.2394 | 15.975 |
| 674 | 1/28/2011 | 9:36:05 | 0 | 21.2355 | 15.972 |
| 675 | 1/28/2011 | 9:36:10 | 0 | 21.2331 | 15.97  |
| 676 | 1/28/2011 | 9:36:15 | 0 | 21.2315 | 15.969 |
| 677 | 1/28/2011 | 9:36:20 | 0 | 21.2271 | 15.966 |
| 678 | 1/28/2011 | 9:36:25 | 0 | 21.2259 | 15.971 |
| 679 | 1/28/2011 | 9:36:30 | 0 | 21.2211 | 15.968 |
| 680 | 1/28/2011 | 9:36:35 | 0 | 21.2178 | 15.967 |
| 681 | 1/28/2011 | 9:36:40 | 0 | 21.2175 | 15.965 |
| 682 | 1/28/2011 | 9:36:45 | 0 | 21.2179 | 15.964 |
| 683 | 1/28/2011 | 9:36:50 | 0 | 21.2142 | 15.964 |
| 684 | 1/28/2011 | 9:36:55 | 0 | 21.2112 | 15.963 |
| 685 | 1/28/2011 | 9:37:00 | 0 | 21.2122 | 15.962 |
| 686 | 1/28/2011 | 9:37:05 | 0 | 21.2084 | 15.962 |
| 687 | 1/28/2011 | 9:37:10 | 0 | 21.2071 | 15.961 |
| 688 | 1/28/2011 | 9:37:15 | 0 | 21.2059 | 15.96  |
| 689 | 1/28/2011 | 9:37:20 | 0 | 21.2055 | 15.96  |
| 690 | 1/28/2011 | 9:37:25 | 0 | 21.2001 | 15.959 |
| 691 | 1/28/2011 | 9:37:30 | 0 | 21.2003 | 15.959 |
| 692 | 1/28/2011 | 9:37:35 | 0 | 21.2007 | 15.956 |
| 693 | 1/28/2011 | 9:37:40 | 0 | 21.1991 | 15.959 |
| 694 | 1/28/2011 | 9:37:45 | 0 | 21.1967 | 15.957 |
| 695 | 1/28/2011 | 9:37:50 | 0 | 21.1961 | 15.958 |
| 696 | 1/28/2011 | 9:37:55 | 0 | 21.1927 | 15.957 |
| 697 | 1/28/2011 | 9:38:00 | 0 | 21.195  | 15.957 |
| 698 | 1/28/2011 | 9:38:05 | 0 | 21.1931 | 15.957 |
| 699 | 1/28/2011 | 9:38:10 | 0 | 21.1919 | 15.956 |
| 700 | 1/28/2011 | 9:38:15 | 0 | 21.19   | 15.955 |
| 701 | 1/28/2011 | 9:38:20 | 0 | 21.1895 | 15.956 |
| 702 | 1/28/2011 | 9:38:25 | 0 | 21.188  | 15.956 |
| 703 | 1/26/2011 | 9:38:30 | 0 | 21.1884 | 15.955 |
| 704 | 1/28/2011 | 9:38:35 | 0 | 21.1862 | 15.955 |
| 705 | 1/28/2011 | 9:38:40 | 0 | 21.1865 | 15.955 |
| 706 | 1/28/2011 | 9:38:45 | 0 | 21.1852 | 15.955 |
| 707 | 1/28/2011 | 9:38:50 | 0 | 21.1854 | 15.954 |
| 708 | 1/28/2011 | 9:38:55 | 0 | 21.1828 | 15.954 |
| 709 | 1/28/2011 | 9:39:00 | 0 | 21.1853 | 15.954 |
| 710 | 1/28/2011 | 9:39:05 | 0 | 21.1835 | 15.954 |
| 711 | 1/28/2011 | 9:39:10 | 0 | 21.1845 | 15.954 |
| 712 | 1/28/2011 | 9:39:15 | 0 | 21.1819 | 15.957 |
| 713 | 1/28/2011 | 9:39:20 | 0 | 21.1813 | 15.955 |
| 714 | 1/28/2011 | 9:39:25 | 0 | 21.1818 | 15.955 |
| 715 | 1/28/2011 | 9:39:30 | 0 | 21.1813 | 15.954 |
| 716 | 1/28/2011 | 9:39:35 | 0 | 21.1795 | 15.954 |
| 717 | 1/26/2011 | 9:39:40 | 0 | 21.1815 | 15.97  |
| 718 | 1/28/2011 | 9:39:45 | 0 | 21.1826 | 15.994 |
| 719 | 1/28/2011 | 9:39:50 | 0 | 21.1852 | 16.005 |
| 720 | 1/28/2011 | 9:39:55 | 0 | 21.1832 | 16.01  |
| 721 | 1/28/2011 | 9:40:00 | 0 | 21.1792 | 15.996 |
| 722 | 1/28/2011 | 9:40:01 | 0 | 21.1809 | 16.006 |
| 723 | 1/26/2011 | 9:40:02 | 0 | 21.1815 | 16.013 |
| 724 | 1/28/2011 | 9:40:03 | 0 | 21.1826 | 18.017 |
| 725 | 1/28/2011 | 9:40:04 | 0 | 21.1907 | 16.021 |
| 726 | 1/28/2011 | 9:40:05 | 0 | 21.1823 | 16.024 |
| 727 | 1/28/2011 | 9:40:06 | 0 | 21.1812 | 16.027 |
| 726 | 1/28/2011 | 9:40:07 | 0 | 20.8903 | 16.026 |
| 729 | 1/28/2011 | 9:40:08 | 0 | 21.07   | 16.032 |
| 730 | 1/28/2011 | 9:40:09 | 0 | 21.169  | 16.033 |
| 731 | 1/28/2011 | 9:40:10 | 0 | 21.2493 | 16.035 |
| 732 | 1/28/2011 | 9:40:11 | 0 | 21.1677 | 16.038 |
| 733 | 1/28/2011 | 9:40:12 | 0 | 21.1135 | 16.04  |
| 734 | 1/28/2011 | 9:40:13 | 0 | 20.6065 | 16.041 |
| 735 | 1/28/2011 | 9:40:14 | 0 | 20.1247 | 16.042 |
| 736 | 1/28/2011 | 9:40:15 | 0 | 19.4493 | 16.044 |
| 737 | 1/28/2011 | 9:40:16 | 0 | 19.0146 | 16.046 |
| 738 | 1/28/2011 | 9:40:17 | 0 | 19.0572 | 16.046 |
| 739 | 1/28/2011 | 9:40:18 | 0 | 19.0829 | 16.049 |
| 740 | 1/28/2011 | 9:40:19 | 0 | 18.1176 | 16.051 |
| 741 | 1/28/2011 | 9:40:20 | 0 | 19.1486 | 16.053 |
| 742 | 1/28/2011 | 9:40:21 | 0 | 19.1732 | 16.054 |
| 743 | 1/28/2011 | 9:40:22 | 0 | 19.2012 | 16.055 |
| 744 | 1/28/2011 | 9:40:23 | 0 | 19.2262 | 16.057 |
| 745 | 1/28/2011 | 9:40:24 | 0 | 19.2562 | 16.056 |
| 746 | 1/28/2011 | 9:40:25 | 0 | 19.2799 | 16.06  |
| 747 | 1/28/2011 | 9:40:26 | 0 | 19.3041 | 16.061 |
| 748 | 1/28/2011 | 9:40:27 | 0 | 19.3274 | 16.062 |
| 749 | 1/28/2011 | 9:40:28 | 0 | 19.3537 | 16.064 |
| 750 | 1/28/2011 | 9:40:29 | 0 | 19.3746 | 16.065 |
| 751 | 1/28/2011 | 9:40:30 | 0 | 19.3946 | 16.067 |
| 752 | 1/28/2011 | 9:40:31 | 0 | 19.4152 | 16.067 |
| 753 | 1/28/2011 | 9:40:32 | 0 | 19.4375 | 16.068 |
| 754 | 1/28/2011 | 9:40:33 | 0 | 19.4596 | 16.07  |
| 755 | 1/28/2011 | 9:40:34 | 0 | 19.4769 | 16.072 |
| 756 | 1/28/2011 | 9:40:35 | 0 | 19.5007 | 16.073 |
| 757 | 1/28/2011 | 9:40:36 | 0 | 19.5232 | 16.074 |
| 758 | 1/28/2011 | 9:40:37 | 0 | 19.5404 | 16.075 |
| 759 | 1/28/2011 | 9:40:38 | 0 | 19.5581 | 16.076 |
| 760 | 1/26/2011 | 9:40:39 | 0 | 19.5782 | 16.078 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 761 | 1/28/2011 | 9:40:40 | 0 | 19.5933 | 16.079 |
| 762 | 1/28/2011 | 9:40:41 | 0 | 19.6163 | 16.08  |
| 763 | 1/28/2011 | 9:40:42 | 0 | 19.6292 | 16.081 |
| 764 | 1/28/2011 | 9:40:43 | 0 | 19.6486 | 16.082 |
| 765 | 1/28/2011 | 9:40:44 | 0 | 19.6669 | 16.083 |
| 766 | 1/28/2011 | 9:40:45 | 0 | 19.6847 | 16.084 |
| 767 | 1/28/2011 | 9:40:46 | 0 | 19.6999 | 16.085 |
| 768 | 1/28/2011 | 9:40:47 | 0 | 19.7174 | 16.087 |
| 769 | 1/28/2011 | 9:40:48 | 0 | 19.7311 | 16.089 |
| 770 | 1/28/2011 | 9:40:49 | 0 | 19.7464 | 16.089 |
| 771 | 1/28/2011 | 9:40:50 | 0 | 19.7648 | 16.09  |
| 772 | 1/28/2011 | 9:40:51 | 0 | 19.778  | 16.09  |
| 773 | 1/28/2011 | 9:40:52 | 0 | 19.7949 | 16.092 |
| 774 | 1/28/2011 | 9:40:53 | 0 | 19.8113 | 16.093 |
| 775 | 1/28/2011 | 9:40:54 | 0 | 19.8223 | 16.094 |
| 776 | 1/28/2011 | 9:40:55 | 0 | 19.8385 | 16.095 |
| 777 | 1/28/2011 | 9:40:56 | 0 | 19.8538 | 16.096 |
| 778 | 1/28/2011 | 9:40:57 | 0 | 19.8642 | 16.097 |
| 779 | 1/28/2011 | 9:40:59 | 0 | 19.8811 | 16.099 |
| 780 | 1/28/2011 | 9:40:59 | 0 | 19.8893 | 16.1   |
| 781 | 1/28/2011 | 9:41:00 | 0 | 19.9085 | 16.096 |
| 782 | 1/28/2011 | 9:41:01 | 0 | 19.9179 | 16.099 |
| 783 | 1/28/2011 | 9:41:02 | 0 | 19.9364 | 16.099 |
| 784 | 1/28/2011 | 9:41:03 | 0 | 19.9493 | 16.102 |
| 785 | 1/28/2011 | 9:41:04 | 0 | 19.961  | 16.099 |
| 786 | 1/28/2011 | 9:41:05 | 0 | 19.9731 | 16.106 |
| 787 | 1/28/2011 | 9:41:06 | 0 | 19.9863 | 16.103 |
| 788 | 1/28/2011 | 9:41:07 | 0 | 19.9976 | 16.102 |
| 789 | 1/28/2011 | 9:41:08 | 0 | 20.01   | 16.103 |
| 790 | 1/28/2011 | 9:41:09 | 0 | 20.023  | 16.103 |
| 791 | 1/28/2011 | 9:41:10 | 0 | 20.0347 | 16.104 |
| 792 | 1/28/2011 | 9:41:11 | 0 | 20.0454 | 16.09  |
| 793 | 1/28/2011 | 9:41:12 | 0 | 20.055  | 16.081 |
| 794 | 1/28/2011 | 9:41:13 | 0 | 20.067  | 16.076 |
| 795 | 1/28/2011 | 9:41:14 | 0 | 20.0759 | 16.073 |
| 796 | 1/28/2011 | 9:41:15 | 0 | 20.0996 | 16.069 |
| 797 | 1/28/2011 | 9:41:16 | 0 | 20.0965 | 16.067 |
| 798 | 1/28/2011 | 9:41:17 | 0 | 20.1087 | 16.066 |
| 799 | 1/28/2011 | 9:41:18 | 0 | 20.1197 | 16.064 |
| 800 | 1/28/2011 | 9:41:19 | 0 | 20.1299 | 16.063 |
| 801 | 1/28/2011 | 9:41:20 | 0 | 20.1426 | 16.062 |
| 802 | 1/28/2011 | 9:41:21 | 0 | 20.1517 | 16.061 |
| 803 | 1/28/2011 | 9:41:22 | 0 | 20.1605 | 16.06  |
| 804 | 1/28/2011 | 9:41:23 | 0 | 20.1703 | 16.059 |
| 805 | 1/28/2011 | 9:41:24 | 0 | 20.18   | 16.059 |
| 806 | 1/28/2011 | 9:41:25 | 0 | 20.1896 | 16.058 |
| 807 | 1/28/2011 | 9:41:26 | 0 | 20.2001 | 16.057 |
| 909 | 1/28/2011 | 9:41:27 | 0 | 20.211  | 16.056 |
| 809 | 1/28/2011 | 9:41:28 | 0 | 20.2189 | 16.056 |
| 810 | 1/28/2011 | 9:41:29 | 0 | 20.2301 | 16.055 |
| 811 | 1/28/2011 | 9:41:30 | 0 | 20.2397 | 16.054 |
| 812 | 1/28/2011 | 9:41:31 | 0 | 20.25   | 16.054 |
| 813 | 1/28/2011 | 9:41:32 | 0 | 20.2553 | 16.054 |
| 814 | 1/28/2011 | 9:41:33 | 0 | 20.268  | 16.053 |
| 815 | 1/28/2011 | 9:41:34 | 0 | 20.2736 | 16.053 |
| 816 | 1/28/2011 | 9:41:35 | 0 | 20.2825 | 16.052 |
| 817 | 1/28/2011 | 9:41:36 | 0 | 20.2913 | 16.052 |
| 818 | 1/28/2011 | 9:41:37 | 0 | 20.3012 | 16.051 |
| 819 | 1/28/2011 | 9:41:38 | 0 | 20.3081 | 16.049 |
| 920 | 1/28/2011 | 9:41:39 | 0 | 20.3211 | 16.049 |
| 821 | 1/28/2011 | 9:41:40 | 0 | 20.3268 | 16.049 |
| 822 | 1/28/2011 | 9:41:41 | 0 | 20.3336 | 16.048 |
| 823 | 1/28/2011 | 9:41:42 | 0 | 20.3442 | 16.048 |
| 824 | 1/28/2011 | 9:41:43 | 0 | 20.3492 | 16.047 |
| 925 | 1/28/2011 | 9:41:44 | 0 | 20.3594 | 16.048 |
| 826 | 1/28/2011 | 9:41:45 | 0 | 20.3656 | 16.046 |
| 827 | 1/28/2011 | 9:41:46 | 0 | 20.3742 | 16.046 |
| 828 | 1/28/2011 | 9:41:47 | 0 | 20.3845 | 16.047 |
| 829 | 1/28/2011 | 9:41:48 | 0 | 20.3898 | 16.045 |
| 830 | 1/28/2011 | 9:41:49 | 0 | 20.399  | 16.045 |
| 831 | 1/28/2011 | 9:41:50 | 0 | 20.4071 | 16.044 |
| 832 | 1/28/2011 | 9:41:51 | 0 | 20.4136 | 16.044 |
| 633 | 1/28/2011 | 9:41:52 | 0 | 20.4181 | 16.043 |
| 834 | 1/28/2011 | 9:41:53 | 0 | 20.4284 | 16.043 |
| 835 | 1/28/2011 | 9:41:54 | 0 | 20.435  | 16.043 |
| 936 | 1/28/2011 | 9:41:55 | 0 | 20.4411 | 16.042 |
| 837 | 1/28/2011 | 9:41:56 | 0 | 20.4522 | 16.043 |
| 838 | 1/28/2011 | 9:41:57 | 0 | 20.4585 | 16.042 |
| 839 | 1/28/2011 | 9:41:59 | 0 | 20.4635 | 16.042 |
| 840 | 1/28/2011 | 9:41:59 | 0 | 20.4687 | 16.041 |
| 841 | 1/28/2011 | 9:42:00 | 0 | 20.4776 | 16.04  |
| 942 | 1/28/2011 | 9:42:01 | 0 | 20.4825 | 16.041 |
| 843 | 1/28/2011 | 9:42:02 | 0 | 20.4916 | 16.04  |
| 844 | 1/28/2011 | 9:42:03 | 0 | 20.4988 | 16.04  |
| 845 | 1/28/2011 | 9:42:04 | 0 | 20.5034 | 16.04  |
| 846 | 1/28/2011 | 9:42:05 | 0 | 20.5133 | 16.039 |
| 847 | 1/28/2011 | 9:42:06 | 0 | 20.5163 | 16.039 |
| 848 | 1/28/2011 | 9:42:07 | 0 | 20.5181 | 16.039 |
| 849 | 1/28/2011 | 9:42:08 | 0 | 20.5303 | 16.039 |
| 850 | 1/28/2011 | 9:42:09 | 0 | 20.5334 | 16.039 |
| 851 | 1/28/2011 | 9:42:10 | 0 | 20.5431 | 16.038 |
| 852 | 1/28/2011 | 9:42:11 | 0 | 20.5481 | 16.036 |
| 953 | 1/28/2011 | 9:42:12 | 0 | 20.5528 | 16.038 |
| 854 | 1/28/2011 | 9:42:13 | 0 | 20.5589 | 16.037 |
| 855 | 1/28/2011 | 9:42:14 | 0 | 20.5648 | 16.037 |
| 856 | 1/28/2011 | 9:42:15 | 0 | 20.5699 | 16.036 |
| 657 | 1/28/2011 | 9:42:16 | 0 | 20.5756 | 16.036 |
| 958 | 1/28/2011 | 9:42:17 | 0 | 20.5836 | 16.036 |
| 859 | 1/28/2011 | 9:42:18 | 0 | 20.588  | 16.036 |
| 860 | 1/28/2011 | 9:42:19 | 0 | 20.5971 | 16.035 |
| 961 | 1/28/2011 | 9:42:20 | 0 | 20.5991 | 16.035 |
| 862 | 1/28/2011 | 9:42:21 | 0 | 20.6031 | 16.035 |
| 863 | 1/28/2011 | 9:42:22 | 0 | 20.6108 | 16.034 |
| 864 | 1/28/2011 | 9:42:23 | 0 | 20.6166 | 16.035 |
| 965 | 1/28/2011 | 9:42:24 | 0 | 20.6232 | 16.035 |
| 866 | 1/28/2011 | 9:42:25 | 0 | 20.6281 | 16.034 |
| 867 | 1/28/2011 | 9:42:26 | 0 | 20.6285 | 16.034 |
| 868 | 1/28/2011 | 9:42:27 | 0 | 20.6368 | 16.034 |
| 869 | 1/28/2011 | 9:42:29 | 0 | 20.6408 | 16.034 |
| 870 | 1/28/2011 | 9:42:29 | 0 | 20.6457 | 16.034 |
| 871 | 1/28/2011 | 9:42:30 | 0 | 20.6497 | 16.034 |

|     |           |         |   |         |        |
|-----|-----------|---------|---|---------|--------|
| 872 | 1/28/2011 | 9:42:31 | 0 | 20.6524 | 16.033 |
| 873 | 1/28/2011 | 9:42:32 | 0 | 20.6595 | 16.033 |
| 874 | 1/28/2011 | 9:42:33 | 0 | 20.6678 | 16.032 |
| 875 | 1/28/2011 | 9:42:34 | 0 | 20.6711 | 16.033 |
| 876 | 1/28/2011 | 9:42:35 | 0 | 20.676  | 16.032 |
| 877 | 1/28/2011 | 9:42:36 | 0 | 20.6773 | 16.033 |
| 878 | 1/28/2011 | 9:42:37 | 0 | 20.6825 | 16.033 |
| 879 | 1/28/2011 | 9:42:38 | 0 | 20.6905 | 16.032 |
| 880 | 1/28/2011 | 9:42:39 | 0 | 20.6918 | 16.032 |
| 881 | 1/28/2011 | 9:42:40 | 0 | 20.6972 | 16.032 |
| 882 | 1/28/2011 | 9:42:41 | 0 | 20.7005 | 16.032 |
| 883 | 1/28/2011 | 9:42:42 | 0 | 20.7096 | 16.032 |
| 884 | 1/28/2011 | 9:42:43 | 0 | 20.7104 | 16.032 |
| 885 | 1/28/2011 | 9:42:44 | 0 | 20.7137 | 16.032 |
| 886 | 1/28/2011 | 9:42:45 | 0 | 20.7183 | 16.031 |
| 887 | 1/28/2011 | 9:42:46 | 0 | 20.7219 | 16.031 |
| 888 | 1/28/2011 | 9:42:47 | 0 | 20.7281 | 16.031 |
| 889 | 1/28/2011 | 9:42:48 | 0 | 20.7341 | 16.031 |
| 890 | 1/28/2011 | 9:42:49 | 0 | 20.7368 | 16.031 |
| 891 | 1/28/2011 | 9:42:50 | 0 | 20.7401 | 16.031 |
| 892 | 1/28/2011 | 9:42:51 | 0 | 20.7436 | 16.031 |
| 893 | 1/28/2011 | 9:42:52 | 0 | 20.7447 | 16.031 |
| 894 | 1/28/2011 | 9:42:53 | 0 | 20.7487 | 16.031 |
| 895 | 1/28/2011 | 9:42:54 | 0 | 20.7545 | 16.03  |
| 896 | 1/28/2011 | 9:42:55 | 0 | 20.7593 | 16.031 |
| 897 | 1/28/2011 | 9:42:56 | 0 | 20.7641 | 16.031 |
| 898 | 1/28/2011 | 9:42:57 | 0 | 20.7686 | 16.03  |
| 899 | 1/28/2011 | 9:42:58 | 0 | 20.7761 | 16.03  |
| 900 | 1/28/2011 | 9:42:59 | 0 | 20.7761 | 16.029 |
| 901 | 1/28/2011 | 9:43:00 | 0 | 20.7792 | 16.03  |
| 902 | 1/28/2011 | 9:43:01 | 0 | 20.7822 | 16.03  |
| 903 | 1/28/2011 | 9:43:02 | 0 | 20.7871 | 16.03  |
| 904 | 1/28/2011 | 9:43:03 | 0 | 20.7915 | 16.03  |
| 905 | 1/28/2011 | 9:43:04 | 0 | 20.7951 | 16.046 |
| 906 | 1/28/2011 | 9:43:05 | 0 | 20.7944 | 16.038 |
| 907 | 1/28/2011 | 9:43:06 | 0 | 20.8001 | 16.034 |
| 908 | 1/28/2011 | 9:43:07 | 0 | 20.8049 | 18.033 |
| 909 | 1/28/2011 | 9:43:08 | 0 | 20.8075 | 16.032 |
| 910 | 1/28/2011 | 9:43:09 | 0 | 20.8094 | 16.032 |
| 911 | 1/28/2011 | 9:43:10 | 0 | 20.8132 | 16.031 |
| 912 | 1/28/2011 | 9:43:11 | 0 | 20.8159 | 16.031 |
| 913 | 1/28/2011 | 9:43:12 | 0 | 20.8206 | 16.031 |
| 914 | 1/28/2011 | 9:43:13 | 0 | 20.8206 | 16.031 |
| 915 | 1/28/2011 | 9:43:14 | 0 | 20.8255 | 16.031 |
| 916 | 1/28/2011 | 9:43:15 | 0 | 20.8283 | 16.031 |
| 917 | 1/28/2011 | 9:43:16 | 0 | 20.8338 | 16.031 |
| 918 | 1/28/2011 | 9:43:17 | 0 | 20.8362 | 16.03  |
| 919 | 1/28/2011 | 9:43:18 | 0 | 20.8386 | 16.03  |
| 920 | 1/28/2011 | 9:43:19 | 0 | 20.8407 | 16.03  |
| 921 | 1/28/2011 | 9:43:20 | 0 | 20.8446 | 16.03  |
| 922 | 1/28/2011 | 9:43:21 | 0 | 20.8451 | 16.03  |
| 923 | 1/28/2011 | 9:43:22 | 0 | 20.853  | 18.03  |
| 924 | 1/28/2011 | 9:43:23 | 0 | 20.852  | 16.03  |
| 925 | 1/28/2011 | 9:43:24 | 0 | 20.8561 | 16.029 |
| 926 | 1/28/2011 | 9:43:25 | 0 | 20.8582 | 18.029 |
| 927 | 1/28/2011 | 9:43:26 | 0 | 20.8597 | 16.03  |
| 928 | 1/28/2011 | 9:43:27 | 0 | 20.8644 | 16.029 |
| 929 | 1/28/2011 | 9:43:28 | 0 | 20.8683 | 16.029 |
| 930 | 1/28/2011 | 9:43:29 | 0 | 20.9683 | 16.03  |
| 931 | 1/28/2011 | 9:43:30 | 0 | 20.8745 | 16.029 |
| 932 | 1/28/2011 | 9:43:31 | 0 | 20.8756 | 16.029 |
| 933 | 1/28/2011 | 9:43:32 | 0 | 20.8771 | 16.03  |
| 934 | 1/28/2011 | 9:43:33 | 0 | 20.88   | 16.029 |
| 935 | 1/28/2011 | 9:43:34 | 0 | 20.8819 | 16.029 |
| 936 | 1/28/2011 | 9:43:35 | 0 | 20.8877 | 16.029 |
| 937 | 1/28/2011 | 9:43:36 | 0 | 20.8885 | 16.03  |
| 938 | 1/28/2011 | 9:43:37 | 0 | 20.8981 | 18.042 |
| 939 | 1/28/2011 | 9:43:38 | 0 | 20.8939 | 16.036 |
| 940 | 1/28/2011 | 9:43:39 | 0 | 20.8981 | 16.034 |
| 941 | 1/28/2011 | 9:43:40 | 0 | 20.8985 | 16.033 |
| 942 | 1/28/2011 | 9:43:41 | 0 | 20.8989 | 16.032 |
| 943 | 1/28/2011 | 9:43:42 | 0 | 20.9006 | 18.032 |
| 944 | 1/28/2011 | 9:43:43 | 0 | 20.9048 | 16.031 |
| 945 | 1/28/2011 | 9:43:44 | 0 | 20.9093 | 16.031 |
| 946 | 1/28/2011 | 9:43:45 | 0 | 20.9113 | 16.031 |
| 947 | 1/28/2011 | 9:43:46 | 0 | 20.9132 | 16.031 |
| 949 | 1/28/2011 | 9:43:47 | 0 | 20.9157 | 16.031 |
| 949 | 1/28/2011 | 9:43:48 | 0 | 20.9175 | 16.031 |
| 950 | 1/28/2011 | 9:43:49 | 0 | 20.9197 | 16.031 |
| 951 | 1/28/2011 | 9:43:50 | 0 | 20.9212 | 16.03  |
| 952 | 1/28/2011 | 9:43:51 | 0 | 20.9208 | 16.031 |
| 953 | 1/28/2011 | 9:43:52 | 0 | 20.9266 | 16.031 |
| 954 | 1/28/2011 | 9:43:53 | 0 | 20.9272 | 16.03  |
| 955 | 1/28/2011 | 9:43:54 | 0 | 20.9304 | 18.031 |
| 956 | 1/28/2011 | 9:43:55 | 0 | 20.9318 | 16.03  |
| 957 | 1/28/2011 | 9:43:56 | 0 | 20.9343 | 16.03  |
| 958 | 1/28/2011 | 9:43:57 | 0 | 20.9389 | 16.031 |
| 959 | 1/28/2011 | 9:43:58 | 0 | 20.9388 | 16.03  |
| 960 | 1/28/2011 | 9:43:59 | 0 | 20.9402 | 16.03  |
| 961 | 1/28/2011 | 9:44:00 | 0 | 20.9413 | 16.03  |
| 962 | 1/28/2011 | 9:44:01 | 0 | 20.947  | 16.031 |
| 963 | 1/28/2011 | 9:44:02 | 0 | 20.949  | 16.03  |
| 964 | 1/28/2011 | 9:44:03 | 0 | 20.9487 | 16.03  |
| 965 | 1/28/2011 | 9:44:04 | 0 | 20.9505 | 16.03  |
| 966 | 1/28/2011 | 9:44:05 | 0 | 20.9529 | 16.03  |
| 967 | 1/28/2011 | 9:44:06 | 0 | 20.955  | 16.03  |
| 968 | 1/28/2011 | 9:44:07 | 0 | 20.9596 | 16.031 |
| 969 | 1/28/2011 | 9:44:08 | 0 | 20.9587 | 16.03  |
| 970 | 1/28/2011 | 9:44:09 | 0 | 20.96   | 16.029 |
| 971 | 1/28/2011 | 9:44:10 | 0 | 20.9595 | 16.029 |
| 972 | 1/28/2011 | 9:44:11 | 0 | 20.9641 | 16.03  |
| 973 | 1/28/2011 | 9:44:12 | 0 | 20.9655 | 16.03  |
| 974 | 1/28/2011 | 9:44:13 | 0 | 20.9685 | 16.029 |
| 975 | 1/28/2011 | 9:44:14 | 0 | 20.9686 | 16.029 |
| 976 | 1/28/2011 | 9:44:15 | 0 | 20.9686 | 16.029 |
| 977 | 1/28/2011 | 9:44:16 | 0 | 20.9704 | 16.029 |
| 978 | 1/28/2011 | 9:44:17 | 0 | 20.9751 | 16.029 |
| 979 | 1/28/2011 | 9:44:18 | 0 | 20.9748 | 16.029 |
| 980 | 1/28/2011 | 9:44:19 | 0 | 20.9771 | 16.042 |
| 981 | 1/28/2011 | 9:44:20 | 0 | 20.9789 | 16.036 |
| 982 | 1/28/2011 | 9:44:21 | 0 | 20.9803 | 16.034 |

|      |           |         |   |         |        |
|------|-----------|---------|---|---------|--------|
| 983  | 1/28/2011 | 9:44:22 | 0 | 20.9819 | 16.033 |
| 984  | 1/28/2011 | 9:44:23 | 0 | 20.9805 | 16.032 |
| 985  | 1/28/2011 | 9:44:24 | 0 | 20.9874 | 16.032 |
| 886  | 1/28/2011 | 8:44:25 | 0 | 20.9864 | 16.031 |
| 887  | 1/28/2011 | 8:44:26 | 0 | 20.9875 | 16.031 |
| 888  | 1/28/2011 | 9:44:27 | 0 | 20.9814 | 16.031 |
| 989  | 1/28/2011 | 9:44:28 | 0 | 20.8836 | 16.031 |
| 990  | 1/28/2011 | 8:44:28 | 0 | 20.9826 | 16.031 |
| 981  | 1/28/2011 | 8:44:30 | 0 | 20.9954 | 16.031 |
| 882  | 1/28/2011 | 9:44:31 | 0 | 20.9973 | 16.031 |
| 983  | 1/28/2011 | 9:44:32 | 0 | 20.9868 | 16.031 |
| 994  | 1/28/2011 | 9:44:33 | 0 | 20.9871 | 16.03  |
| 995  | 1/28/2011 | 8:44:34 | 0 | 21.0006 | 16.03  |
| 886  | 1/28/2011 | 9:44:35 | 0 | 20.999  | 16.031 |
| 987  | 1/28/2011 | 9:44:36 | 0 | 21.0015 | 16.031 |
| 998  | 1/28/2011 | 9:44:37 | 0 | 21.0022 | 16.031 |
| 999  | 1/28/2011 | 8:44:38 | 0 | 21.0068 | 16.03  |
| 1000 | 1/28/2011 | 8:44:38 | 0 | 21.0057 | 16.031 |
| 1001 | 1/28/2011 | 8:44:40 | 0 | 21.009  | 16.031 |
| 1002 | 1/28/2011 | 9:44:41 | 0 | 21.0082 | 16.03  |
| 1003 | 1/28/2011 | 9:44:42 | 0 | 21.0082 | 16.031 |
| 1004 | 1/28/2011 | 9:44:43 | 0 | 21.0136 | 16.03  |
| 1005 | 1/28/2011 | 9:44:44 | 0 | 21.0135 | 16.031 |
| 1006 | 1/28/2011 | 8:44:45 | 0 | 21.0149 | 16.03  |
| 1007 | 1/28/2011 | 9:44:46 | 0 | 21.0132 | 16.031 |
| 1008 | 1/28/2011 | 9:44:47 | 0 | 21.0173 | 16.031 |
| 1009 | 1/28/2011 | 9:44:48 | 0 | 21.0159 | 16.03  |
| 1010 | 1/28/2011 | 8:44:49 | 0 | 21.0204 | 16.03  |
| 1011 | 1/28/2011 | 9:44:50 | 0 | 21.0205 | 16.031 |
| 1012 | 1/28/2011 | 9:44:51 | 0 | 21.023  | 16.03  |
| 1013 | 1/28/2011 | 9:44:52 | 0 | 21.0244 | 16.031 |
| 1014 | 1/28/2011 | 9:44:53 | 0 | 21.0248 | 16.03  |
| 1015 | 1/28/2011 | 9:44:54 | 0 | 21.0248 | 16.03  |
| 1016 | 1/29/2011 | 9:44:56 | 0 | 21.0278 | 16.031 |
| 1017 | 1/28/2011 | 9:44:56 | 0 | 21.0281 | 16.03  |
| 1018 | 1/28/2011 | 9:44:57 | 0 | 21.03   | 16.03  |
| 1019 | 1/28/2011 | 9:44:58 | 0 | 21.0317 | 16.03  |
| 1020 | 1/28/2011 | 9:44:58 | 0 | 21.0304 | 16.03  |
| 1021 | 1/28/2011 | 9:45:00 | 0 | 21.0327 | 16.03  |
| 1022 | 1/28/2011 | 9:45:05 | 0 | 21.0358 | 16.011 |
| 1023 | 1/28/2011 | 9:45:10 | 0 | 21.0417 | 16.003 |
| 1024 | 1/28/2011 | 9:45:15 | 0 | 21.0478 | 15.888 |
| 1025 | 1/28/2011 | 9:45:20 | 0 | 21.05   | 15.887 |
| 1026 | 1/28/2011 | 9:45:25 | 0 | 21.0676 | 15.883 |
| 1027 | 1/28/2011 | 9:45:30 | 0 | 21.0629 | 15.99  |
| 1028 | 1/28/2011 | 8:45:35 | 0 | 21.0631 | 15.987 |
| 1028 | 1/28/2011 | 8:45:40 | 0 | 21.0701 | 15.987 |
| 1030 | 1/28/2011 | 9:45:45 | 0 | 21.0726 | 15.984 |
| 1031 | 1/28/2011 | 9:45:50 | 0 | 21.0742 | 15.981 |
| 1032 | 1/28/2011 | 8:46:55 | 0 | 21.0815 | 15.88  |
| 1033 | 1/28/2011 | 9:46:00 | 0 | 21.0844 | 15.978 |
| 1034 | 1/28/2011 | 9:46:06 | 0 | 21.0855 | 15.977 |
| 1035 | 1/28/2011 | 8:46:10 | 0 | 21.0886 | 15.975 |
| 1036 | 1/28/2011 | 9:46:15 | 0 | 21.0811 | 15.874 |
| 1037 | 1/28/2011 | 9:46:20 | 0 | 21.0836 | 15.875 |
| 1038 | 1/28/2011 | 9:46:25 | 0 | 21.0844 | 15.874 |
| 1039 | 1/28/2011 | 9:46:30 | 0 | 21.0889 | 15.972 |
| 1040 | 1/28/2011 | 9:46:36 | 0 | 21.1022 | 15.971 |
| 1041 | 1/28/2011 | 9:46:40 | 0 | 21.1052 | 15.97  |
| 1042 | 1/29/2011 | 8:46:46 | 0 | 21.1063 | 15.968 |
| 1043 | 1/28/2011 | 9:46:50 | 0 | 21.1079 | 15.968 |
| 1044 | 1/28/2011 | 9:46:55 | 0 | 21.1112 | 15.968 |
| 1045 | 1/28/2011 | 9:47:00 | 0 | 21.1117 | 15.876 |
| 1046 | 1/28/2011 | 9:47:05 | 0 | 21.1152 | 15.869 |
| 1047 | 1/28/2011 | 9:47:10 | 0 | 21.1157 | 15.987 |
| 1048 | 1/28/2011 | 9:47:15 | 0 | 21.1178 | 15.966 |
| 1049 | 1/28/2011 | 9:47:20 | 0 | 21.1183 | 15.866 |
| 1050 | 1/28/2011 | 9:47:25 | 0 | 21.1204 | 15.973 |
| 1051 | 1/28/2011 | 9:47:30 | 0 | 21.1216 | 15.967 |
| 1052 | 1/28/2011 | 9:47:35 | 0 | 21.1227 | 15.966 |
| 1053 | 1/28/2011 | 9:47:40 | 0 | 21.1222 | 15.865 |
| 1054 | 1/28/2011 | 9:47:45 | 0 | 21.1254 | 15.964 |
| 1055 | 1/28/2011 | 9:47:50 | 0 | 21.1264 | 15.964 |
| 1056 | 1/28/2011 | 9:47:55 | 0 | 21.1275 | 15.864 |
| 1057 | 1/28/2011 | 9:48:00 | 0 | 21.128  | 15.863 |
| 1058 | 1/28/2011 | 9:48:05 | 0 | 21.128  | 15.962 |
| 1058 | 1/28/2011 | 9:48:10 | 0 | 21.1326 | 15.965 |
| 1060 | 1/28/2011 | 9:48:15 | 0 | 21.1299 | 15.963 |
| 1061 | 1/28/2011 | 9:48:20 | 0 | 21.1313 | 15.962 |
| 1062 | 1/28/2011 | 8:48:25 | 0 | 21.1332 | 15.962 |
| 1063 | 1/28/2011 | 9:48:30 | 0 | 21.1312 | 15.961 |
| 1064 | 1/28/2011 | 9:48:35 | 0 | 21.1324 | 15.96  |
| 1065 | 1/28/2011 | 8:48:40 | 0 | 21.1359 | 15.959 |
| 1066 | 1/28/2011 | 9:48:45 | 0 | 21.1338 | 15.96  |
| 1067 | 1/28/2011 | 9:48:50 | 0 | 21.1382 | 15.864 |
| 1068 | 1/28/2011 | 9:48:55 | 0 | 21.1411 | 15.96  |
| 1069 | 1/28/2011 | 9:49:00 | 0 | 21.1371 | 15.96  |
| 1070 | 1/28/2011 | 9:49:05 | 0 | 21.1376 | 15.96  |
| 1071 | 1/28/2011 | 9:49:10 | 0 | 21.1383 | 15.859 |
| 1072 | 1/28/2011 | 9:49:15 | 0 | 21.1385 | 15.859 |
| 1073 | 1/28/2011 | 8:49:20 | 0 | 21.1411 | 15.959 |
| 1074 | 1/28/2011 | 9:49:25 | 0 | 21.1419 | 15.958 |
| 1075 | 1/28/2011 | 9:49:30 | 0 | 21.1419 | 15.958 |
| 1076 | 1/28/2011 | 9:48:35 | 0 | 21.1421 | 15.857 |
| 1077 | 1/28/2011 | 8:48:40 | 0 | 21.1447 | 15.963 |
| 1078 | 1/29/2011 | 9:49:45 | 0 | 21.1439 | 15.959 |
| 1078 | 1/28/2011 | 9:49:50 | 0 | 21.146  | 15.962 |
| 1080 | 1/28/2011 | 9:48:55 | 0 | 21.1427 | 15.86  |
| 1081 | 1/28/2011 | 9:50:00 | 0 | 21.1467 | 15.959 |

**Technical Memorandum—Field Report**  
**Slug Tests at Burn Site Groundwater Study Area**  
**Groundwater Monitoring Wells**

**Table A-4**  
**Transducer Field Data for CYN-MW12**



Serial Number

1040608

Project ID

CYN Slug tests

Location

CYN MW12

Level

Unit

ft

Offset

0.00 ft

Altitude

6000 ft

Temperature

Unit

Deg C

|    | Date      | Time     | 100 ms | Level   | Temperature |
|----|-----------|----------|--------|---------|-------------|
| 1  | 1/28/2011 | 10:55:00 | 0      | 16.2657 | 17.991      |
| 2  | 1/28/2011 | 10:55:01 | 0      | 16.261  | 18.003      |
| 3  | 1/28/2011 | 10:55:02 | 0      | 16.2629 | 18.01       |
| 4  | 1/28/2011 | 10:55:03 | 0      | 16.1085 | 18.015      |
| 5  | 1/28/2011 | 10:55:04 | 0      | 16.2543 | 18.019      |
| 6  | 1/28/2011 | 10:55:05 | 0      | 16.239  | 18.021      |
| 7  | 1/28/2011 | 10:55:06 | 0      | 16.2917 | 18.011      |
| 8  | 1/28/2011 | 10:55:07 | 0      | 16.2755 | 18.014      |
| 9  | 1/28/2011 | 10:55:08 | 0      | 16.2043 | 18.018      |
| 10 | 1/28/2011 | 10:55:09 | 0      | 16.2901 | 18.02       |
| 11 | 1/28/2011 | 10:55:10 | 0      | 16.0886 | 18.023      |
| 12 | 1/28/2011 | 10:55:11 | 0      | 15.4966 | 18.025      |
| 13 | 1/28/2011 | 10:55:12 | 0      | 14.8732 | 18.027      |
| 14 | 1/28/2011 | 10:55:13 | 0      | 14.254  | 18.029      |
| 15 | 1/28/2011 | 10:55:14 | 0      | 14.1776 | 18.032      |
| 16 | 1/28/2011 | 10:55:15 | 0      | 14.1918 | 18.033      |
| 17 | 1/28/2011 | 10:55:16 | 0      | 14.1965 | 18.035      |
| 18 | 1/28/2011 | 10:55:17 | 0      | 14.2002 | 18.037      |
| 19 | 1/28/2011 | 10:55:18 | 0      | 14.2085 | 18.039      |
| 20 | 1/28/2011 | 10:55:19 | 0      | 14.2074 | 18.041      |
| 21 | 1/28/2011 | 10:55:20 | 0      | 14.2087 | 18.043      |
| 22 | 1/28/2011 | 10:55:21 | 0      | 14.2217 | 18.044      |
| 23 | 1/28/2011 | 10:55:22 | 0      | 14.2239 | 18.046      |
| 24 | 1/28/2011 | 10:55:23 | 0      | 14.228  | 18.047      |
| 25 | 1/28/2011 | 10:55:24 | 0      | 14.2313 | 18.05       |
| 26 | 1/28/2011 | 10:55:25 | 0      | 14.2361 | 18.051      |
| 27 | 1/28/2011 | 10:55:26 | 0      | 14.2353 | 18.053      |
| 28 | 1/28/2011 | 10:55:27 | 0      | 14.2405 | 18.055      |
| 29 | 1/28/2011 | 10:55:28 | 0      | 14.2427 | 18.056      |
| 30 | 1/28/2011 | 10:55:29 | 0      | 14.2487 | 18.058      |
| 31 | 1/28/2011 | 10:55:30 | 0      | 14.2522 | 18.06       |
| 32 | 1/28/2011 | 10:55:31 | 0      | 14.2582 | 18.06       |
| 33 | 1/28/2011 | 10:55:32 | 0      | 14.2596 | 18.062      |
| 34 | 1/28/2011 | 10:55:33 | 0      | 14.2627 | 18.064      |
| 35 | 1/28/2011 | 10:55:34 | 0      | 14.2672 | 18.065      |
| 36 | 1/28/2011 | 10:55:35 | 0      | 14.2726 | 18.067      |
| 37 | 1/28/2011 | 10:55:36 | 0      | 14.2733 | 18.068      |
| 38 | 1/28/2011 | 10:55:37 | 0      | 14.2758 | 18.069      |
| 39 | 1/28/2011 | 10:55:38 | 0      | 14.2805 | 18.071      |
| 40 | 1/28/2011 | 10:55:39 | 0      | 14.2824 | 18.071      |
| 41 | 1/28/2011 | 10:55:40 | 0      | 14.2864 | 18.073      |
| 42 | 1/28/2011 | 10:55:41 | 0      | 14.2929 | 18.074      |
| 43 | 1/28/2011 | 10:55:42 | 0      | 14.292  | 18.075      |
| 44 | 1/28/2011 | 10:55:43 | 0      | 14.2954 | 18.077      |
| 45 | 1/28/2011 | 10:55:44 | 0      | 14.3005 | 18.078      |
| 46 | 1/28/2011 | 10:55:45 | 0      | 14.3038 | 18.079      |
| 47 | 1/28/2011 | 10:55:46 | 0      | 14.3092 | 18.08       |
| 48 | 1/28/2011 | 10:55:47 | 0      | 14.3067 | 18.081      |
| 49 | 1/28/2011 | 10:55:48 | 0      | 14.3144 | 18.083      |
| 50 | 1/28/2011 | 10:55:49 | 0      | 14.3125 | 18.084      |
| 51 | 1/28/2011 | 10:55:50 | 0      | 14.3188 | 18.085      |
| 52 | 1/28/2011 | 10:55:51 | 0      | 14.3216 | 18.087      |
| 53 | 1/28/2011 | 10:55:52 | 0      | 14.3238 | 18.088      |
| 54 | 1/28/2011 | 10:55:53 | 0      | 14.3288 | 18.088      |
| 55 | 1/28/2011 | 10:55:54 | 0      | 14.3295 | 18.09       |
| 56 | 1/28/2011 | 10:55:55 | 0      | 14.335  | 18.091      |
| 57 | 1/28/2011 | 10:55:56 | 0      | 14.3375 | 18.092      |
| 58 | 1/28/2011 | 10:55:57 | 0      | 14.3401 | 18.093      |
| 59 | 1/28/2011 | 10:55:58 | 0      | 14.3446 | 18.094      |
| 60 | 1/28/2011 | 10:55:59 | 0      | 14.3456 | 18.095      |
| 61 | 1/28/2011 | 10:56:00 | 0      | 14.3484 | 18.096      |
| 62 | 1/28/2011 | 10:56:01 | 0      | 14.3543 | 18.098      |
| 63 | 1/28/2011 | 10:56:02 | 0      | 14.3549 | 18.099      |
| 64 | 1/28/2011 | 10:56:03 | 0      | 14.3584 | 18.1        |
| 65 | 1/28/2011 | 10:56:04 | 0      | 14.364  | 18.101      |
| 66 | 1/28/2011 | 10:56:05 | 0      | 14.3647 | 18.102      |
| 67 | 1/28/2011 | 10:56:06 | 0      | 14.3697 | 18.079      |
| 68 | 1/28/2011 | 10:56:07 | 0      | 14.3733 | 18.081      |
| 69 | 1/28/2011 | 10:56:08 | 0      | 14.3755 | 18.104      |
| 70 | 1/28/2011 | 10:56:09 | 0      | 14.3772 | 18.098      |
| 71 | 1/28/2011 | 10:56:10 | 0      | 14.3833 | 18.097      |
| 72 | 1/28/2011 | 10:56:11 | 0      | 14.3839 | 18.096      |
| 73 | 1/28/2011 | 10:56:12 | 0      | 14.3832 | 18.096      |
| 74 | 1/28/2011 | 10:56:13 | 0      | 14.3875 | 18.097      |
| 75 | 1/28/2011 | 10:56:14 | 0      | 14.3932 | 18.098      |
| 76 | 1/28/2011 | 10:56:15 | 0      | 14.3945 | 18.098      |
| 77 | 1/28/2011 | 10:56:16 | 0      | 14.3983 | 18.1        |
| 78 | 1/28/2011 | 10:56:17 | 0      | 14.4051 | 18.1        |
| 79 | 1/28/2011 | 10:56:18 | 0      | 14.4061 | 18.1        |
| 80 | 1/28/2011 | 10:56:19 | 0      | 14.4059 | 18.101      |
| 81 | 1/28/2011 | 10:56:20 | 0      | 14.4082 | 18.102      |
| 82 | 1/28/2011 | 10:56:21 | 0      | 14.4144 | 18.102      |
| 83 | 1/28/2011 | 10:56:22 | 0      | 14.4154 | 18.104      |
| 84 | 1/28/2011 | 10:56:23 | 0      | 14.4192 | 18.104      |
| 85 | 1/28/2011 | 10:56:24 | 0      | 14.4201 | 18.105      |
| 86 | 1/28/2011 | 10:56:25 | 0      | 14.4231 | 18.105      |
| 87 | 1/28/2011 | 10:56:26 | 0      | 14.4288 | 18.106      |
| 88 | 1/28/2011 | 10:56:27 | 0      | 14.4325 | 18.107      |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 88  | 1/28/2011 | 10:56:28 | 0 | 14.4327 | 18.108 |
| 90  | 1/28/2011 | 10:56:29 | 0 | 14.4373 | 18.109 |
| 91  | 1/28/2011 | 10:56:30 | 0 | 14.4392 | 18.11  |
| 92  | 1/28/2011 | 10:56:31 | 0 | 14.4395 | 18.11  |
| 93  | 1/28/2011 | 10:56:32 | 0 | 14.4412 | 18.11  |
| 94  | 1/28/2011 | 10:56:33 | 0 | 14.4442 | 18.112 |
| 95  | 1/28/2011 | 10:56:34 | 0 | 14.4512 | 18.112 |
| 96  | 1/28/2011 | 10:56:35 | 0 | 14.4526 | 18.112 |
| 97  | 1/28/2011 | 10:56:36 | 0 | 14.4551 | 18.114 |
| 98  | 1/28/2011 | 10:56:37 | 0 | 14.458  | 18.115 |
| 99  | 1/28/2011 | 10:56:38 | 0 | 14.461  | 18.115 |
| 100 | 1/28/2011 | 10:56:39 | 0 | 14.4646 | 18.116 |
| 101 | 1/28/2011 | 10:56:40 | 0 | 14.4674 | 18.116 |
| 102 | 1/28/2011 | 10:56:41 | 0 | 14.4698 | 18.118 |
| 103 | 1/28/2011 | 10:56:42 | 0 | 14.4727 | 18.118 |
| 104 | 1/28/2011 | 10:56:43 | 0 | 14.4757 | 18.115 |
| 105 | 1/28/2011 | 10:56:44 | 0 | 14.4766 | 18.117 |
| 106 | 1/28/2011 | 10:56:45 | 0 | 14.4804 | 18.118 |
| 107 | 1/28/2011 | 10:56:46 | 0 | 14.4839 | 18.118 |
| 108 | 1/28/2011 | 10:56:47 | 0 | 14.4861 | 18.119 |
| 109 | 1/28/2011 | 10:56:48 | 0 | 14.4868 | 18.119 |
| 110 | 1/28/2011 | 10:56:49 | 0 | 14.491  | 18.122 |
| 111 | 1/28/2011 | 10:56:50 | 0 | 14.4951 | 18.12  |
| 112 | 1/28/2011 | 10:56:51 | 0 | 14.4969 | 18.118 |
| 113 | 1/28/2011 | 10:56:52 | 0 | 14.4993 | 18.119 |
| 114 | 1/28/2011 | 10:56:53 | 0 | 14.5002 | 18.123 |
| 115 | 1/28/2011 | 10:56:54 | 0 | 14.5055 | 18.12  |
| 116 | 1/28/2011 | 10:56:55 | 0 | 14.5058 | 18.107 |
| 117 | 1/28/2011 | 10:56:56 | 0 | 14.5074 | 16.106 |
| 118 | 1/28/2011 | 10:56:57 | 0 | 14.5126 | 18.107 |
| 119 | 1/28/2011 | 10:56:58 | 0 | 14.5126 | 18.107 |
| 120 | 1/28/2011 | 10:56:59 | 0 | 14.5147 | 18.107 |
| 121 | 1/28/2011 | 10:57:00 | 0 | 14.5163 | 18.106 |
| 122 | 1/28/2011 | 10:57:01 | 0 | 14.5217 | 18.107 |
| 123 | 1/28/2011 | 10:57:02 | 0 | 14.5239 | 18.108 |
| 124 | 1/28/2011 | 10:57:03 | 0 | 14.5297 | 18.108 |
| 125 | 1/28/2011 | 10:57:04 | 0 | 14.5291 | 18.108 |
| 126 | 1/28/2011 | 10:57:05 | 0 | 14.5321 | 18.109 |
| 127 | 1/28/2011 | 10:57:06 | 0 | 14.5342 | 18.109 |
| 128 | 1/28/2011 | 10:57:07 | 0 | 14.5366 | 18.109 |
| 129 | 1/28/2011 | 10:57:08 | 0 | 14.54   | 18.109 |
| 130 | 1/28/2011 | 10:57:09 | 0 | 14.5431 | 18.11  |
| 131 | 1/28/2011 | 10:57:10 | 0 | 14.5461 | 18.11  |
| 132 | 1/28/2011 | 10:57:11 | 0 | 14.5459 | 18.1   |
| 133 | 1/28/2011 | 10:57:12 | 0 | 14.5513 | 18.094 |
| 134 | 1/28/2011 | 10:57:13 | 0 | 14.5533 | 18.09  |
| 135 | 1/28/2011 | 10:57:14 | 0 | 14.5559 | 18.087 |
| 136 | 1/28/2011 | 10:57:15 | 0 | 14.5577 | 18.085 |
| 137 | 1/28/2011 | 10:57:16 | 0 | 14.56   | 18.083 |
| 138 | 1/28/2011 | 10:57:17 | 0 | 14.5586 | 18.081 |
| 139 | 1/28/2011 | 10:57:18 | 0 | 14.5634 | 18.079 |
| 140 | 1/28/2011 | 10:57:19 | 0 | 14.5679 | 18.078 |
| 141 | 1/28/2011 | 10:57:20 | 0 | 14.5681 | 18.077 |
| 142 | 1/28/2011 | 10:57:21 | 0 | 14.5744 | 18.076 |
| 143 | 1/28/2011 | 10:57:22 | 0 | 14.5743 | 18.074 |
| 144 | 1/28/2011 | 10:57:23 | 0 | 14.5764 | 18.074 |
| 145 | 1/28/2011 | 10:57:24 | 0 | 14.5768 | 18.073 |
| 146 | 1/28/2011 | 10:57:25 | 0 | 14.5816 | 18.071 |
| 147 | 1/28/2011 | 10:57:26 | 0 | 14.5841 | 18.071 |
| 148 | 1/28/2011 | 10:57:27 | 0 | 14.5858 | 18.07  |
| 149 | 1/28/2011 | 10:57:28 | 0 | 14.587  | 18.069 |
| 150 | 1/28/2011 | 10:57:29 | 0 | 14.594  | 18.068 |
| 151 | 1/28/2011 | 10:57:30 | 0 | 14.5953 | 18.068 |
| 152 | 1/28/2011 | 10:57:31 | 0 | 14.5962 | 18.067 |
| 153 | 1/28/2011 | 10:57:32 | 0 | 14.5996 | 18.065 |
| 154 | 1/28/2011 | 10:57:33 | 0 | 14.6025 | 18.066 |
| 155 | 1/28/2011 | 10:57:34 | 0 | 14.6046 | 18.064 |
| 156 | 1/28/2011 | 10:57:35 | 0 | 14.6057 | 18.063 |
| 157 | 1/28/2011 | 10:57:36 | 0 | 14.6079 | 18.063 |
| 158 | 1/28/2011 | 10:57:37 | 0 | 14.609  | 18.063 |
| 159 | 1/28/2011 | 10:57:38 | 0 | 14.6112 | 18.062 |
| 160 | 1/28/2011 | 10:57:39 | 0 | 14.6161 | 18.062 |
| 161 | 1/28/2011 | 10:57:40 | 0 | 14.6158 | 18.06  |
| 162 | 1/28/2011 | 10:57:41 | 0 | 14.6211 | 18.06  |
| 163 | 1/28/2011 | 10:57:42 | 0 | 14.6229 | 18.059 |
| 164 | 1/28/2011 | 10:57:43 | 0 | 14.6232 | 18.059 |
| 165 | 1/28/2011 | 10:57:44 | 0 | 14.6272 | 18.058 |
| 166 | 1/28/2011 | 10:57:45 | 0 | 14.6299 | 18.057 |
| 167 | 1/28/2011 | 10:57:46 | 0 | 14.632  | 18.056 |
| 168 | 1/28/2011 | 10:57:47 | 0 | 14.6376 | 18.056 |
| 169 | 1/28/2011 | 10:57:48 | 0 | 14.6363 | 18.055 |
| 170 | 1/28/2011 | 10:57:49 | 0 | 14.6405 | 18.055 |
| 171 | 1/28/2011 | 10:57:50 | 0 | 14.6412 | 18.054 |
| 172 | 1/28/2011 | 10:57:51 | 0 | 14.6442 | 18.054 |
| 173 | 1/28/2011 | 10:57:52 | 0 | 14.6479 | 18.053 |
| 174 | 1/28/2011 | 10:57:53 | 0 | 14.6475 | 18.053 |
| 175 | 1/28/2011 | 10:57:54 | 0 | 14.6496 | 18.052 |
| 176 | 1/28/2011 | 10:57:55 | 0 | 14.6538 | 18.052 |
| 177 | 1/28/2011 | 10:57:56 | 0 | 14.6542 | 18.051 |
| 178 | 1/28/2011 | 10:57:57 | 0 | 14.6565 | 18.05  |
| 179 | 1/28/2011 | 10:57:58 | 0 | 14.6562 | 18.05  |
| 180 | 1/28/2011 | 10:57:59 | 0 | 14.6629 | 18.05  |
| 181 | 1/28/2011 | 10:58:00 | 0 | 14.6626 | 18.049 |
| 182 | 1/28/2011 | 10:58:01 | 0 | 14.6677 | 18.049 |
| 183 | 1/28/2011 | 10:58:02 | 0 | 14.6715 | 18.048 |
| 184 | 1/28/2011 | 10:58:03 | 0 | 14.6724 | 18.047 |
| 185 | 1/28/2011 | 10:58:04 | 0 | 14.6728 | 18.047 |
| 186 | 1/28/2011 | 10:58:05 | 0 | 14.6767 | 18.046 |
| 187 | 1/28/2011 | 10:58:06 | 0 | 14.6752 | 18.046 |
| 188 | 1/28/2011 | 10:58:07 | 0 | 14.6804 | 18.046 |
| 189 | 1/28/2011 | 10:58:08 | 0 | 14.6826 | 18.046 |
| 190 | 1/28/2011 | 10:58:09 | 0 | 14.6847 | 18.045 |
| 191 | 1/28/2011 | 10:58:10 | 0 | 14.686  | 18.045 |
| 192 | 1/28/2011 | 10:58:11 | 0 | 14.6893 | 18.044 |
| 193 | 1/28/2011 | 10:58:12 | 0 | 14.6928 | 18.044 |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 194 | 1/28/2011 | 10:58:13 | 0 | 14.6944 | 18.043 |
| 195 | 1/28/2011 | 10:58:14 | 0 | 14.6957 | 18.043 |
| 196 | 1/28/2011 | 10:58:15 | 0 | 14.6982 | 18.043 |
| 197 | 1/28/2011 | 10:58:16 | 0 | 14.6993 | 18.042 |
| 198 | 1/28/2011 | 10:58:17 | 0 | 14.7005 | 18.042 |
| 199 | 1/28/2011 | 10:58:18 | 0 | 14.7035 | 18.042 |
| 200 | 1/28/2011 | 10:58:19 | 0 | 14.7075 | 18.042 |
| 201 | 1/28/2011 | 10:58:20 | 0 | 14.7096 | 18.041 |
| 202 | 1/28/2011 | 10:58:21 | 0 | 14.7115 | 18.04  |
| 203 | 1/28/2011 | 10:58:22 | 0 | 14.7171 | 18.04  |
| 204 | 1/28/2011 | 10:58:23 | 0 | 14.7161 | 18.04  |
| 205 | 1/28/2011 | 10:58:24 | 0 | 14.7193 | 18.04  |
| 206 | 1/28/2011 | 10:58:25 | 0 | 14.7217 | 18.039 |
| 207 | 1/28/2011 | 10:58:26 | 0 | 14.7199 | 18.04  |
| 208 | 1/28/2011 | 10:58:27 | 0 | 14.7264 | 18.038 |
| 209 | 1/28/2011 | 10:58:28 | 0 | 14.7269 | 18.038 |
| 210 | 1/28/2011 | 10:58:29 | 0 | 14.7317 | 18.038 |
| 211 | 1/28/2011 | 10:58:30 | 0 | 14.7299 | 18.038 |
| 212 | 1/28/2011 | 10:58:31 | 0 | 14.7325 | 18.037 |
| 213 | 1/28/2011 | 10:58:32 | 0 | 14.7348 | 18.037 |
| 214 | 1/28/2011 | 10:58:33 | 0 | 14.7403 | 18.037 |
| 215 | 1/28/2011 | 10:58:34 | 0 | 14.7392 | 18.036 |
| 216 | 1/28/2011 | 10:58:35 | 0 | 14.7421 | 18.036 |
| 217 | 1/28/2011 | 10:58:36 | 0 | 14.7465 | 18.036 |
| 218 | 1/28/2011 | 10:58:37 | 0 | 14.7493 | 18.036 |
| 219 | 1/28/2011 | 10:58:38 | 0 | 14.7494 | 18.035 |
| 220 | 1/28/2011 | 10:58:39 | 0 | 14.749  | 18.035 |
| 221 | 1/28/2011 | 10:58:40 | 0 | 14.7539 | 18.035 |
| 222 | 1/28/2011 | 10:58:41 | 0 | 14.7542 | 18.034 |
| 223 | 1/28/2011 | 10:58:42 | 0 | 14.7574 | 18.035 |
| 224 | 1/28/2011 | 10:58:43 | 0 | 14.761  | 18.034 |
| 225 | 1/28/2011 | 10:58:44 | 0 | 14.7614 | 18.034 |
| 226 | 1/28/2011 | 10:58:45 | 0 | 14.7638 | 18.034 |
| 227 | 1/28/2011 | 10:58:46 | 0 | 14.7668 | 18.033 |
| 228 | 1/28/2011 | 10:58:47 | 0 | 14.7687 | 18.033 |
| 229 | 1/28/2011 | 10:58:48 | 0 | 14.7691 | 18.033 |
| 230 | 1/28/2011 | 10:58:49 | 0 | 14.7733 | 18.033 |
| 231 | 1/28/2011 | 10:58:50 | 0 | 14.7747 | 18.033 |
| 232 | 1/28/2011 | 10:58:51 | 0 | 14.7743 | 18.033 |
| 233 | 1/28/2011 | 10:58:52 | 0 | 14.78   | 18.032 |
| 234 | 1/28/2011 | 10:58:53 | 0 | 14.78   | 18.031 |
| 235 | 1/28/2011 | 10:58:54 | 0 | 14.7839 | 18.032 |
| 236 | 1/28/2011 | 10:58:55 | 0 | 14.7869 | 18.031 |
| 237 | 1/28/2011 | 10:58:56 | 0 | 14.7885 | 18.031 |
| 238 | 1/28/2011 | 10:58:57 | 0 | 14.7907 | 18.031 |
| 239 | 1/28/2011 | 10:58:58 | 0 | 14.7903 | 18.03  |
| 240 | 1/28/2011 | 10:58:59 | 0 | 14.7917 | 18.031 |
| 241 | 1/28/2011 | 10:59:00 | 0 | 14.7965 | 18.031 |
| 242 | 1/28/2011 | 10:59:01 | 0 | 14.7984 | 18.03  |
| 243 | 1/28/2011 | 10:59:02 | 0 | 14.7993 | 18.03  |
| 244 | 1/28/2011 | 10:59:03 | 0 | 14.8004 | 18.03  |
| 245 | 1/28/2011 | 10:59:04 | 0 | 14.8035 | 18.03  |
| 246 | 1/28/2011 | 10:59:05 | 0 | 14.8057 | 18.029 |
| 247 | 1/28/2011 | 10:59:06 | 0 | 14.8077 | 18.029 |
| 248 | 1/28/2011 | 10:59:07 | 0 | 14.8104 | 18.029 |
| 249 | 1/28/2011 | 10:59:08 | 0 | 14.8115 | 18.029 |
| 250 | 1/28/2011 | 10:59:09 | 0 | 14.8154 | 18.029 |
| 251 | 1/28/2011 | 10:59:10 | 0 | 14.8159 | 18.029 |
| 252 | 1/28/2011 | 10:59:11 | 0 | 14.8166 | 18.028 |
| 253 | 1/28/2011 | 10:59:12 | 0 | 14.819  | 18.028 |
| 254 | 1/28/2011 | 10:59:13 | 0 | 14.8182 | 18.028 |
| 255 | 1/28/2011 | 10:59:14 | 0 | 14.8226 | 18.028 |
| 256 | 1/28/2011 | 10:59:15 | 0 | 14.8244 | 18.028 |
| 257 | 1/28/2011 | 10:59:16 | 0 | 14.826  | 18.028 |
| 258 | 1/28/2011 | 10:59:17 | 0 | 14.8313 | 18.028 |
| 259 | 1/28/2011 | 10:59:18 | 0 | 14.831  | 18.027 |
| 260 | 1/28/2011 | 10:59:19 | 0 | 14.8351 | 18.027 |
| 261 | 1/28/2011 | 10:59:20 | 0 | 14.834  | 18.027 |
| 262 | 1/28/2011 | 10:59:21 | 0 | 14.8356 | 18.027 |
| 263 | 1/28/2011 | 10:59:22 | 0 | 14.8412 | 18.027 |
| 264 | 1/28/2011 | 10:59:23 | 0 | 14.8409 | 18.027 |
| 265 | 1/28/2011 | 10:59:24 | 0 | 14.8432 | 18.027 |
| 266 | 1/28/2011 | 10:59:25 | 0 | 14.8451 | 18.026 |
| 267 | 1/28/2011 | 10:59:26 | 0 | 14.849  | 18.027 |
| 268 | 1/28/2011 | 10:59:27 | 0 | 14.8476 | 18.026 |
| 269 | 1/28/2011 | 10:59:28 | 0 | 14.8541 | 18.026 |
| 270 | 1/28/2011 | 10:59:29 | 0 | 14.8554 | 18.026 |
| 271 | 1/28/2011 | 10:59:30 | 0 | 14.8554 | 18.026 |
| 272 | 1/28/2011 | 10:59:31 | 0 | 14.858  | 18.026 |
| 273 | 1/28/2011 | 10:59:32 | 0 | 14.8617 | 18.025 |
| 274 | 1/28/2011 | 10:59:33 | 0 | 14.8601 | 18.025 |
| 275 | 1/28/2011 | 10:59:34 | 0 | 14.8627 | 18.025 |
| 276 | 1/28/2011 | 10:59:35 | 0 | 14.8643 | 18.026 |
| 277 | 1/28/2011 | 10:59:36 | 0 | 14.8669 | 18.025 |
| 278 | 1/28/2011 | 10:59:37 | 0 | 14.8694 | 18.025 |
| 279 | 1/28/2011 | 10:59:38 | 0 | 14.874  | 18.025 |
| 280 | 1/28/2011 | 10:59:39 | 0 | 14.8711 | 18.025 |
| 281 | 1/28/2011 | 10:59:40 | 0 | 14.8753 | 18.025 |
| 282 | 1/28/2011 | 10:59:41 | 0 | 14.8777 | 18.025 |
| 283 | 1/28/2011 | 10:59:42 | 0 | 14.8799 | 18.025 |
| 284 | 1/28/2011 | 10:59:43 | 0 | 14.8805 | 18.024 |
| 285 | 1/28/2011 | 10:59:44 | 0 | 14.883  | 18.025 |
| 286 | 1/28/2011 | 10:59:45 | 0 | 14.8855 | 18.024 |
| 287 | 1/28/2011 | 10:59:46 | 0 | 14.8854 | 18.024 |
| 288 | 1/28/2011 | 10:59:47 | 0 | 14.8915 | 18.024 |
| 289 | 1/28/2011 | 10:59:46 | 0 | 14.8906 | 18.024 |
| 290 | 1/28/2011 | 10:59:49 | 0 | 14.8925 | 18.023 |
| 291 | 1/28/2011 | 10:59:50 | 0 | 14.8933 | 18.023 |
| 292 | 1/28/2011 | 10:59:51 | 0 | 14.898  | 18.024 |
| 293 | 1/28/2011 | 10:59:52 | 0 | 14.8968 | 18.024 |
| 294 | 1/28/2011 | 10:59:53 | 0 | 14.8983 | 18.023 |
| 295 | 1/28/2011 | 10:59:54 | 0 | 14.9015 | 18.023 |
| 296 | 1/28/2011 | 10:59:55 | 0 | 14.9057 | 18.023 |
| 297 | 1/28/2011 | 10:59:56 | 0 | 14.9041 | 18.023 |
| 298 | 1/28/2011 | 10:59:57 | 0 | 14.907  | 18.023 |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 299 | 1/28/2011 | 10:59:58 | 0 | 14.9079 | 18.023 |
| 300 | 1/28/2011 | 10:59:59 | 0 | 14.9097 | 18.023 |
| 301 | 1/28/2011 | 11:00:00 | 0 | 14.9119 | 18.023 |
| 302 | 1/28/2011 | 11:00:05 | 0 | 14.9214 | 18.001 |
| 303 | 1/28/2011 | 11:00:10 | 0 | 14.9322 | 17.994 |
| 304 | 1/28/2011 | 11:00:15 | 0 | 14.9398 | 17.989 |
| 305 | 1/28/2011 | 11:00:20 | 0 | 14.9456 | 17.985 |
| 306 | 1/28/2011 | 11:00:25 | 0 | 14.9582 | 17.981 |
| 307 | 1/28/2011 | 11:00:30 | 0 | 14.9668 | 17.977 |
| 308 | 1/28/2011 | 11:00:35 | 0 | 14.9741 | 17.975 |
| 309 | 1/28/2011 | 11:00:40 | 0 | 14.9831 | 17.973 |
| 310 | 1/28/2011 | 11:00:45 | 0 | 14.9923 | 17.97  |
| 311 | 1/28/2011 | 11:00:50 | 0 | 15.0039 | 17.968 |
| 312 | 1/28/2011 | 11:00:55 | 0 | 15.011  | 17.967 |
| 313 | 1/28/2011 | 11:01:00 | 0 | 15.0177 | 17.965 |
| 314 | 1/28/2011 | 11:01:05 | 0 | 15.0256 | 17.963 |
| 315 | 1/28/2011 | 11:01:10 | 0 | 15.0331 | 17.963 |
| 316 | 1/28/2011 | 11:01:15 | 0 | 15.0448 | 17.961 |
| 317 | 1/28/2011 | 11:01:20 | 0 | 15.0493 | 17.96  |
| 318 | 1/28/2011 | 11:01:25 | 0 | 15.0582 | 17.959 |
| 319 | 1/28/2011 | 11:01:30 | 0 | 15.0684 | 17.959 |
| 320 | 1/28/2011 | 11:01:35 | 0 | 15.0749 | 17.958 |
| 321 | 1/28/2011 | 11:01:40 | 0 | 15.0817 | 17.958 |
| 322 | 1/28/2011 | 11:01:45 | 0 | 15.089  | 17.957 |
| 323 | 1/28/2011 | 11:01:50 | 0 | 15.0992 | 17.956 |
| 324 | 1/28/2011 | 11:01:55 | 0 | 15.1078 | 17.956 |
| 325 | 1/28/2011 | 11:02:00 | 0 | 15.1144 | 17.955 |
| 326 | 1/28/2011 | 11:02:05 | 0 | 15.1229 | 17.955 |
| 327 | 1/28/2011 | 11:02:10 | 0 | 15.1328 | 17.954 |
| 328 | 1/28/2011 | 11:02:15 | 0 | 15.1331 | 17.954 |
| 329 | 1/28/2011 | 11:02:20 | 0 | 15.1421 | 17.954 |
| 330 | 1/28/2011 | 11:02:25 | 0 | 15.1538 | 17.953 |
| 331 | 1/28/2011 | 11:02:30 | 0 | 15.1576 | 17.96  |
| 332 | 1/28/2011 | 11:02:35 | 0 | 15.1644 | 17.956 |
| 333 | 1/28/2011 | 11:02:40 | 0 | 15.1744 | 17.954 |
| 334 | 1/28/2011 | 11:02:45 | 0 | 15.1802 | 17.958 |
| 335 | 1/28/2011 | 11:02:50 | 0 | 15.1843 | 17.956 |
| 336 | 1/28/2011 | 11:02:55 | 0 | 15.1918 | 17.954 |
| 337 | 1/28/2011 | 11:03:00 | 0 | 15.2022 | 17.955 |
| 338 | 1/28/2011 | 11:03:05 | 0 | 15.2079 | 17.955 |
| 339 | 1/28/2011 | 11:03:10 | 0 | 15.2129 | 17.958 |
| 340 | 1/28/2011 | 11:03:15 | 0 | 15.2198 | 17.956 |
| 341 | 1/28/2011 | 11:03:20 | 0 | 15.2242 | 17.954 |
| 342 | 1/28/2011 | 11:03:25 | 0 | 15.2346 | 17.954 |
| 343 | 1/28/2011 | 11:03:30 | 0 | 15.2413 | 17.953 |
| 344 | 1/28/2011 | 11:03:35 | 0 | 15.2505 | 17.954 |
| 345 | 1/28/2011 | 11:03:40 | 0 | 15.2517 | 17.953 |
| 346 | 1/28/2011 | 11:03:45 | 0 | 15.2611 | 17.952 |
| 347 | 1/28/2011 | 11:03:50 | 0 | 15.268  | 17.952 |
| 348 | 1/28/2011 | 11:03:55 | 0 | 15.2764 | 17.951 |
| 349 | 1/28/2011 | 11:04:00 | 0 | 15.281  | 17.951 |
| 350 | 1/28/2011 | 11:04:05 | 0 | 15.2852 | 17.95  |
| 351 | 1/28/2011 | 11:04:10 | 0 | 15.2951 | 17.95  |
| 352 | 1/28/2011 | 11:04:15 | 0 | 15.3005 | 17.949 |
| 353 | 1/28/2011 | 11:04:20 | 0 | 15.3064 | 17.949 |
| 354 | 1/28/2011 | 11:04:25 | 0 | 15.3107 | 17.949 |
| 355 | 1/28/2011 | 11:04:30 | 0 | 15.316  | 17.948 |
| 356 | 1/28/2011 | 11:04:35 | 0 | 15.3258 | 17.948 |
| 357 | 1/28/2011 | 11:04:40 | 0 | 15.3298 | 17.948 |
| 358 | 1/28/2011 | 11:04:45 | 0 | 15.3344 | 17.948 |
| 359 | 1/28/2011 | 11:04:50 | 0 | 15.3455 | 17.947 |
| 360 | 1/28/2011 | 11:04:55 | 0 | 15.352  | 17.947 |
| 361 | 1/28/2011 | 11:05:00 | 0 | 15.3562 | 17.96  |
| 362 | 1/28/2011 | 11:05:05 | 0 | 15.3583 | 17.948 |
| 363 | 1/28/2011 | 11:05:10 | 0 | 15.3674 | 17.948 |
| 364 | 1/28/2011 | 11:05:15 | 0 | 15.3721 | 17.947 |
| 365 | 1/28/2011 | 11:05:20 | 0 | 15.3759 | 17.947 |
| 366 | 1/28/2011 | 11:05:25 | 0 | 15.3819 | 17.946 |
| 367 | 1/28/2011 | 11:05:30 | 0 | 15.387  | 17.946 |
| 368 | 1/28/2011 | 11:05:35 | 0 | 15.3966 | 17.946 |
| 369 | 1/28/2011 | 11:05:40 | 0 | 15.3999 | 17.946 |
| 370 | 1/28/2011 | 11:05:45 | 0 | 15.4075 | 17.945 |
| 371 | 1/28/2011 | 11:05:50 | 0 | 15.412  | 17.945 |
| 372 | 1/28/2011 | 11:05:55 | 0 | 15.4172 | 17.945 |
| 373 | 1/28/2011 | 11:06:00 | 0 | 15.4216 | 17.945 |
| 374 | 1/28/2011 | 11:06:05 | 0 | 15.4244 | 17.945 |
| 375 | 1/28/2011 | 11:06:10 | 0 | 15.4309 | 17.945 |
| 376 | 1/28/2011 | 11:06:15 | 0 | 15.4368 | 17.944 |
| 377 | 1/28/2011 | 11:06:20 | 0 | 15.4436 | 17.945 |
| 378 | 1/28/2011 | 11:06:25 | 0 | 15.4484 | 17.944 |
| 379 | 1/28/2011 | 11:06:30 | 0 | 15.4515 | 17.945 |
| 380 | 1/28/2011 | 11:06:35 | 0 | 15.4596 | 17.945 |
| 381 | 1/28/2011 | 11:06:40 | 0 | 15.4654 | 17.944 |
| 382 | 1/28/2011 | 11:06:45 | 0 | 15.4659 | 17.944 |
| 383 | 1/28/2011 | 11:06:50 | 0 | 15.4742 | 17.944 |
| 384 | 1/28/2011 | 11:06:55 | 0 | 15.4768 | 17.944 |
| 385 | 1/28/2011 | 11:07:00 | 0 | 15.4862 | 17.945 |
| 386 | 1/28/2011 | 11:07:05 | 0 | 15.4875 | 17.944 |
| 387 | 1/28/2011 | 11:07:10 | 0 | 15.4926 | 17.944 |
| 388 | 1/28/2011 | 11:07:15 | 0 | 15.4964 | 17.945 |
| 389 | 1/28/2011 | 11:07:20 | 0 | 15.5016 | 17.945 |
| 390 | 1/28/2011 | 11:07:25 | 0 | 15.5084 | 17.945 |
| 391 | 1/28/2011 | 11:07:30 | 0 | 15.5131 | 17.945 |
| 392 | 1/28/2011 | 11:07:35 | 0 | 15.5152 | 17.945 |
| 393 | 1/28/2011 | 11:07:40 | 0 | 15.5204 | 17.946 |
| 394 | 1/28/2011 | 11:07:45 | 0 | 15.5245 | 17.948 |
| 395 | 1/28/2011 | 11:07:50 | 0 | 15.532  | 17.947 |
| 396 | 1/28/2011 | 11:07:55 | 0 | 15.5374 | 17.961 |
| 397 | 1/28/2011 | 11:08:00 | 0 | 15.5386 | 17.949 |
| 398 | 1/28/2011 | 11:08:05 | 0 | 15.5435 | 17.948 |
| 399 | 1/28/2011 | 11:08:10 | 0 | 15.5484 | 17.948 |
| 400 | 1/28/2011 | 11:08:15 | 0 | 15.5526 | 17.949 |
| 401 | 1/28/2011 | 11:08:20 | 0 | 15.5572 | 17.948 |
| 402 | 1/28/2011 | 11:08:25 | 0 | 15.5599 | 17.948 |
| 403 | 1/28/2011 | 11:08:30 | 0 | 15.5676 | 17.948 |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 404 | 1/28/2011 | 11:08:35 | 0 | 15.5685 | 17.948 |
| 405 | 1/28/2011 | 11:08:40 | 0 | 15.5749 | 17.948 |
| 406 | 1/28/2011 | 11:08:45 | 0 | 15.5803 | 17.948 |
| 407 | 1/28/2011 | 11:08:50 | 0 | 15.5814 | 17.949 |
| 408 | 1/28/2011 | 11:08:55 | 0 | 15.5868 | 17.948 |
| 409 | 1/28/2011 | 11:09:00 | 0 | 15.5846 | 17.948 |
| 410 | 1/28/2011 | 11:09:05 | 0 | 15.5922 | 17.948 |
| 411 | 1/28/2011 | 11:09:10 | 0 | 15.5968 | 17.948 |
| 412 | 1/28/2011 | 11:09:15 | 0 | 15.6012 | 17.948 |
| 413 | 1/28/2011 | 11:09:20 | 0 | 15.6066 | 17.948 |
| 414 | 1/28/2011 | 11:09:25 | 0 | 15.6095 | 17.948 |
| 415 | 1/28/2011 | 11:09:30 | 0 | 15.6166 | 17.948 |
| 416 | 1/28/2011 | 11:09:35 | 0 | 15.6146 | 17.948 |
| 417 | 1/28/2011 | 11:09:40 | 0 | 15.6218 | 17.948 |
| 418 | 1/28/2011 | 11:09:45 | 0 | 15.626  | 17.954 |
| 419 | 1/28/2011 | 11:09:50 | 0 | 15.6275 | 17.95  |
| 420 | 1/28/2011 | 11:09:55 | 0 | 15.6342 | 17.949 |
| 421 | 1/28/2011 | 11:10:00 | 0 | 15.6393 | 17.949 |
| 422 | 1/28/2011 | 11:10:05 | 0 | 15.6361 | 17.949 |
| 423 | 1/28/2011 | 11:10:10 | 0 | 15.6461 | 17.949 |
| 424 | 1/28/2011 | 11:10:15 | 0 | 15.6486 | 17.949 |
| 425 | 1/28/2011 | 11:10:20 | 0 | 15.6534 | 17.949 |
| 426 | 1/28/2011 | 11:10:25 | 0 | 15.6555 | 17.949 |
| 427 | 1/28/2011 | 11:10:30 | 0 | 15.6558 | 17.948 |
| 428 | 1/28/2011 | 11:10:35 | 0 | 15.6639 | 17.949 |
| 429 | 1/28/2011 | 11:10:40 | 0 | 15.6641 | 17.948 |
| 430 | 1/28/2011 | 11:10:45 | 0 | 15.6714 | 17.948 |
| 431 | 1/28/2011 | 11:10:50 | 0 | 15.6727 | 17.956 |
| 432 | 1/28/2011 | 11:10:55 | 0 | 15.6785 | 17.95  |
| 433 | 1/28/2011 | 11:11:00 | 0 | 15.6766 | 17.949 |
| 434 | 1/28/2011 | 11:11:05 | 0 | 15.6853 | 17.949 |
| 435 | 1/28/2011 | 11:11:10 | 0 | 15.6848 | 17.948 |
| 436 | 1/28/2011 | 11:11:15 | 0 | 15.6923 | 17.96  |
| 437 | 1/28/2011 | 11:11:20 | 0 | 15.6932 | 17.95  |
| 438 | 1/28/2011 | 11:11:25 | 0 | 15.695  | 17.949 |
| 439 | 1/28/2011 | 11:11:30 | 0 | 15.6965 | 17.949 |
| 440 | 1/28/2011 | 11:11:35 | 0 | 15.7068 | 17.948 |
| 441 | 1/28/2011 | 11:11:40 | 0 | 15.7045 | 17.949 |
| 442 | 1/28/2011 | 11:11:45 | 0 | 15.709  | 17.949 |
| 443 | 1/28/2011 | 11:11:50 | 0 | 15.7141 | 17.948 |
| 444 | 1/28/2011 | 11:11:55 | 0 | 15.7144 | 17.952 |
| 445 | 1/28/2011 | 11:12:00 | 0 | 15.7183 | 17.949 |
| 446 | 1/28/2011 | 11:12:05 | 0 | 15.7248 | 17.949 |
| 447 | 1/28/2011 | 11:12:10 | 0 | 15.7259 | 17.949 |
| 448 | 1/28/2011 | 11:12:15 | 0 | 15.728  | 17.948 |
| 449 | 1/28/2011 | 11:12:20 | 0 | 15.7307 | 17.949 |
| 450 | 1/28/2011 | 11:12:25 | 0 | 15.7349 | 17.951 |
| 451 | 1/28/2011 | 11:12:30 | 0 | 15.7412 | 17.95  |
| 452 | 1/28/2011 | 11:12:35 | 0 | 15.7429 | 17.949 |
| 453 | 1/28/2011 | 11:12:40 | 0 | 15.7402 | 17.95  |
| 454 | 1/28/2011 | 11:12:45 | 0 | 15.7463 | 17.949 |
| 455 | 1/28/2011 | 11:12:50 | 0 | 15.7464 | 17.949 |
| 456 | 1/28/2011 | 11:12:55 | 0 | 15.7505 | 17.951 |
| 457 | 1/28/2011 | 11:13:00 | 0 | 15.7566 | 17.949 |
| 458 | 1/28/2011 | 11:13:05 | 0 | 15.7537 | 17.949 |
| 459 | 1/28/2011 | 11:13:10 | 0 | 15.7598 | 17.948 |
| 460 | 1/28/2011 | 11:13:15 | 0 | 15.7647 | 17.948 |
| 461 | 1/28/2011 | 11:13:20 | 0 | 15.7655 | 17.948 |
| 462 | 1/28/2011 | 11:13:25 | 0 | 15.7703 | 17.948 |
| 463 | 1/28/2011 | 11:13:30 | 0 | 15.7697 | 17.953 |
| 464 | 1/28/2011 | 11:13:35 | 0 | 15.7716 | 17.949 |
| 465 | 1/28/2011 | 11:13:40 | 0 | 15.7783 | 17.948 |
| 466 | 1/28/2011 | 11:13:45 | 0 | 15.7812 | 17.948 |
| 467 | 1/28/2011 | 11:13:50 | 0 | 15.7836 | 17.95  |
| 468 | 1/28/2011 | 11:13:55 | 0 | 15.7852 | 17.949 |
| 469 | 1/28/2011 | 11:14:00 | 0 | 15.7888 | 17.956 |
| 470 | 1/28/2011 | 11:14:05 | 0 | 15.7892 | 17.977 |
| 471 | 1/28/2011 | 11:14:10 | 0 | 15.7874 | 17.952 |
| 472 | 1/28/2011 | 11:14:15 | 0 | 15.7924 | 17.951 |
| 473 | 1/28/2011 | 11:14:20 | 0 | 15.8003 | 17.949 |
| 474 | 1/28/2011 | 11:14:25 | 0 | 15.7984 | 17.949 |
| 475 | 1/28/2011 | 11:14:30 | 0 | 15.8022 | 17.974 |
| 476 | 1/28/2011 | 11:14:35 | 0 | 15.8097 | 17.99  |
| 477 | 1/28/2011 | 11:14:40 | 0 | 15.8079 | 17.998 |
| 478 | 1/28/2011 | 11:14:45 | 0 | 15.8095 | 17.987 |
| 479 | 1/28/2011 | 11:14:50 | 0 | 15.8156 | 17.992 |
| 480 | 1/28/2011 | 11:14:55 | 0 | 15.817  | 17.998 |
| 481 | 1/28/2011 | 11:15:00 | 0 | 15.8167 | 18.003 |
| 482 | 1/28/2011 | 11:15:01 | 0 | 15.8176 | 18.012 |
| 483 | 1/28/2011 | 11:15:02 | 0 | 15.8168 | 18.018 |
| 484 | 1/28/2011 | 11:15:03 | 0 | 15.8191 | 18.022 |
| 485 | 1/28/2011 | 11:15:04 | 0 | 15.8197 | 18.025 |
| 486 | 1/28/2011 | 11:15:05 | 0 | 15.8213 | 18.029 |
| 487 | 1/28/2011 | 11:15:06 | 0 | 15.8214 | 18.031 |
| 488 | 1/28/2011 | 11:15:07 | 0 | 15.8242 | 18.033 |
| 489 | 1/28/2011 | 11:15:08 | 0 | 15.8218 | 18.036 |
| 490 | 1/28/2011 | 11:15:09 | 0 | 15.8225 | 18.038 |
| 491 | 1/28/2011 | 11:15:10 | 0 | 15.8285 | 18.04  |
| 492 | 1/28/2011 | 11:15:11 | 0 | 16.0976 | 18.042 |
| 493 | 1/28/2011 | 11:15:12 | 0 | 16.6562 | 18.043 |
| 494 | 1/28/2011 | 11:15:13 | 0 | 17.3148 | 18.046 |
| 495 | 1/28/2011 | 11:15:14 | 0 | 17.9088 | 18.047 |
| 496 | 1/28/2011 | 11:15:15 | 0 | 17.9434 | 18.049 |
| 497 | 1/28/2011 | 11:15:16 | 0 | 17.9224 | 18.05  |
| 498 | 1/28/2011 | 11:15:17 | 0 | 17.8779 | 18.052 |
| 499 | 1/28/2011 | 11:15:18 | 0 | 17.8899 | 18.053 |
| 500 | 1/28/2011 | 11:15:19 | 0 | 17.9019 | 18.054 |
| 501 | 1/28/2011 | 11:15:20 | 0 | 17.8577 | 18.056 |
| 502 | 1/28/2011 | 11:15:21 | 0 | 17.8887 | 18.058 |
| 503 | 1/28/2011 | 11:15:22 | 0 | 17.8622 | 18.059 |
| 504 | 1/28/2011 | 11:15:23 | 0 | 17.8814 | 18.06  |
| 505 | 1/28/2011 | 11:15:24 | 0 | 17.9948 | 18.062 |
| 506 | 1/28/2011 | 11:15:25 | 0 | 17.8369 | 18.063 |
| 507 | 1/28/2011 | 11:15:26 | 0 | 17.8299 | 18.064 |
| 508 | 1/28/2011 | 11:15:27 | 0 | 17.8246 | 18.066 |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 509 | 1/28/2011 | 11:15:28 | 0 | 17.8233 | 18.067 |
| 510 | 1/28/2011 | 11:15:29 | 0 | 17.8214 | 18.069 |
| 511 | 1/28/2011 | 11:15:30 | 0 | 17.8147 | 18.07  |
| 512 | 1/28/2011 | 11:15:31 | 0 | 17.8116 | 18.071 |
| 513 | 1/28/2011 | 11:15:32 | 0 | 17.8067 | 18.072 |
| 514 | 1/28/2011 | 11:15:33 | 0 | 17.8053 | 18.074 |
| 515 | 1/28/2011 | 11:15:34 | 0 | 17.8028 | 18.075 |
| 516 | 1/28/2011 | 11:15:35 | 0 | 17.7989 | 18.076 |
| 517 | 1/28/2011 | 11:15:36 | 0 | 17.7945 | 18.077 |
| 518 | 1/28/2011 | 11:15:37 | 0 | 17.7906 | 18.079 |
| 519 | 1/28/2011 | 11:15:38 | 0 | 17.7886 | 18.08  |
| 520 | 1/28/2011 | 11:15:39 | 0 | 17.7885 | 18.081 |
| 521 | 1/28/2011 | 11:15:40 | 0 | 17.7835 | 18.082 |
| 522 | 1/28/2011 | 11:15:41 | 0 | 17.7811 | 18.066 |
| 523 | 1/28/2011 | 11:15:42 | 0 | 17.7756 | 18.059 |
| 524 | 1/28/2011 | 11:15:43 | 0 | 17.7745 | 18.054 |
| 525 | 1/28/2011 | 11:15:44 | 0 | 17.7705 | 18.052 |
| 526 | 1/28/2011 | 11:15:45 | 0 | 17.7649 | 18.05  |
| 527 | 1/28/2011 | 11:15:46 | 0 | 17.7629 | 18.048 |
| 528 | 1/28/2011 | 11:15:47 | 0 | 17.761  | 16.047 |
| 529 | 1/28/2011 | 11:15:48 | 0 | 17.7606 | 18.046 |
| 530 | 1/28/2011 | 11:15:49 | 0 | 17.7568 | 18.045 |
| 531 | 1/28/2011 | 11:15:50 | 0 | 17.7535 | 16.044 |
| 532 | 1/28/2011 | 11:15:51 | 0 | 17.7499 | 18.043 |
| 533 | 1/28/2011 | 11:15:52 | 0 | 17.7465 | 18.043 |
| 534 | 1/28/2011 | 11:15:53 | 0 | 17.7424 | 18.042 |
| 535 | 1/28/2011 | 11:15:54 | 0 | 17.7401 | 18.042 |
| 536 | 1/28/2011 | 11:15:55 | 0 | 17.7401 | 18.042 |
| 537 | 1/28/2011 | 11:15:56 | 0 | 17.7332 | 18.041 |
| 538 | 1/28/2011 | 11:15:57 | 0 | 17.7337 | 18.04  |
| 539 | 1/28/2011 | 11:15:58 | 0 | 17.7297 | 18.04  |
| 540 | 1/28/2011 | 11:15:59 | 0 | 17.7249 | 18.04  |
| 541 | 1/28/2011 | 11:16:00 | 0 | 17.7252 | 18.039 |
| 542 | 1/28/2011 | 11:16:01 | 0 | 17.7241 | 18.039 |
| 543 | 1/28/2011 | 11:16:02 | 0 | 17.7202 | 18.039 |
| 544 | 1/28/2011 | 11:16:03 | 0 | 17.7187 | 18.038 |
| 545 | 1/28/2011 | 11:16:04 | 0 | 17.7155 | 18.038 |
| 546 | 1/28/2011 | 11:16:05 | 0 | 17.7121 | 18.037 |
| 547 | 1/28/2011 | 11:16:06 | 0 | 17.7123 | 18.036 |
| 548 | 1/28/2011 | 11:16:07 | 0 | 17.708  | 18.037 |
| 549 | 1/28/2011 | 11:16:08 | 0 | 17.7055 | 18.036 |
| 550 | 1/28/2011 | 11:16:09 | 0 | 17.7036 | 18.036 |
| 551 | 1/28/2011 | 11:16:10 | 0 | 17.6999 | 18.035 |
| 552 | 1/28/2011 | 11:16:11 | 0 | 17.6517 | 18.035 |
| 553 | 1/28/2011 | 11:16:12 | 0 | 17.6943 | 18.034 |
| 554 | 1/28/2011 | 11:16:13 | 0 | 17.6872 | 18.034 |
| 555 | 1/28/2011 | 11:16:14 | 0 | 17.692  | 18.034 |
| 556 | 1/28/2011 | 11:16:15 | 0 | 17.6875 | 18.033 |
| 557 | 1/28/2011 | 11:16:16 | 0 | 17.6831 | 18.033 |
| 559 | 1/28/2011 | 11:16:17 | 0 | 17.6796 | 18.033 |
| 559 | 1/28/2011 | 11:16:18 | 0 | 17.6795 | 18.033 |
| 560 | 1/28/2011 | 11:16:19 | 0 | 17.6765 | 18.033 |
| 561 | 1/28/2011 | 11:16:20 | 0 | 17.6757 | 18.032 |
| 562 | 1/28/2011 | 11:16:21 | 0 | 17.6672 | 18.032 |
| 563 | 1/28/2011 | 11:16:22 | 0 | 17.6675 | 18.031 |
| 564 | 1/28/2011 | 11:16:23 | 0 | 17.6635 | 18.031 |
| 565 | 1/28/2011 | 11:16:24 | 0 | 17.6637 | 18.031 |
| 566 | 1/28/2011 | 11:16:25 | 0 | 17.6602 | 18.031 |
| 567 | 1/28/2011 | 11:16:26 | 0 | 17.6596 | 18.031 |
| 568 | 1/28/2011 | 11:16:27 | 0 | 17.6563 | 18.03  |
| 569 | 1/28/2011 | 11:16:28 | 0 | 17.6475 | 18.03  |
| 570 | 1/28/2011 | 11:16:29 | 0 | 17.6498 | 18.03  |
| 571 | 1/28/2011 | 11:16:30 | 0 | 17.6497 | 18.029 |
| 572 | 1/28/2011 | 11:16:31 | 0 | 17.6456 | 18.029 |
| 573 | 1/28/2011 | 11:16:32 | 0 | 17.6435 | 18.029 |
| 574 | 1/28/2011 | 11:16:33 | 0 | 17.6394 | 18.028 |
| 575 | 1/28/2011 | 11:16:34 | 0 | 17.6339 | 18.029 |
| 576 | 1/28/2011 | 11:16:35 | 0 | 17.6386 | 18.028 |
| 577 | 1/28/2011 | 11:16:36 | 0 | 17.6333 | 18.028 |
| 578 | 1/28/2011 | 11:16:37 | 0 | 17.6318 | 18.026 |
| 579 | 1/28/2011 | 11:16:38 | 0 | 17.6275 | 18.027 |
| 580 | 1/28/2011 | 11:16:39 | 0 | 17.625  | 18.027 |
| 581 | 1/28/2011 | 11:16:40 | 0 | 17.6228 | 18.027 |
| 582 | 1/28/2011 | 11:16:41 | 0 | 17.6224 | 18.027 |
| 583 | 1/28/2011 | 11:16:42 | 0 | 17.6195 | 18.026 |
| 584 | 1/28/2011 | 11:16:43 | 0 | 17.6201 | 18.026 |
| 585 | 1/28/2011 | 11:16:44 | 0 | 17.6121 | 18.026 |
| 586 | 1/28/2011 | 11:16:45 | 0 | 17.6128 | 18.026 |
| 587 | 1/28/2011 | 11:16:46 | 0 | 17.6099 | 18.025 |
| 588 | 1/28/2011 | 11:16:47 | 0 | 17.608  | 18.025 |
| 589 | 1/28/2011 | 11:16:48 | 0 | 17.6054 | 18.025 |
| 590 | 1/28/2011 | 11:16:49 | 0 | 17.6019 | 18.025 |
| 591 | 1/28/2011 | 11:16:50 | 0 | 17.6    | 18.025 |
| 592 | 1/28/2011 | 11:16:51 | 0 | 17.5983 | 18.025 |
| 593 | 1/28/2011 | 11:16:52 | 0 | 17.596  | 18.024 |
| 594 | 1/28/2011 | 11:16:53 | 0 | 17.597  | 18.024 |
| 595 | 1/28/2011 | 11:16:54 | 0 | 17.5917 | 18.024 |
| 596 | 1/28/2011 | 11:16:55 | 0 | 17.5903 | 18.023 |
| 597 | 1/28/2011 | 11:16:56 | 0 | 17.5906 | 18.023 |
| 598 | 1/28/2011 | 11:16:57 | 0 | 17.5886 | 18.023 |
| 599 | 1/28/2011 | 11:16:58 | 0 | 17.584  | 18.023 |
| 600 | 1/28/2011 | 11:16:59 | 0 | 17.5833 | 18.023 |
| 601 | 1/28/2011 | 11:17:00 | 0 | 17.5765 | 18.023 |
| 602 | 1/28/2011 | 11:17:01 | 0 | 17.5761 | 18.023 |
| 603 | 1/28/2011 | 11:17:02 | 0 | 17.5742 | 18.023 |
| 604 | 1/28/2011 | 11:17:03 | 0 | 17.5706 | 18.023 |
| 605 | 1/28/2011 | 11:17:04 | 0 | 17.5673 | 18.023 |
| 606 | 1/28/2011 | 11:17:05 | 0 | 17.5674 | 18.022 |
| 607 | 1/28/2011 | 11:17:06 | 0 | 17.5656 | 18.022 |
| 608 | 1/28/2011 | 11:17:07 | 0 | 17.5643 | 18.022 |
| 609 | 1/28/2011 | 11:17:08 | 0 | 17.5622 | 18.022 |
| 610 | 1/28/2011 | 11:17:09 | 0 | 17.5587 | 18.022 |
| 611 | 1/28/2011 | 11:17:10 | 0 | 17.5555 | 18.022 |
| 612 | 1/28/2011 | 11:17:11 | 0 | 17.5548 | 18.021 |
| 613 | 1/28/2011 | 11:17:12 | 0 | 17.5538 | 18.021 |

|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 614 | 1/28/2011 | 11:17:13 | 0 | 17.5514 | 18.021 |
| 615 | 1/28/2011 | 11:17:14 | 0 | 17.5481 | 18.021 |
| 616 | 1/28/2011 | 11:17:15 | 0 | 17.5473 | 18.021 |
| 617 | 1/28/2011 | 11:17:16 | 0 | 17.5409 | 18.021 |
| 618 | 1/28/2011 | 11:17:17 | 0 | 17.5425 | 18.021 |
| 619 | 1/28/2011 | 11:17:18 | 0 | 17.54   | 18.021 |
| 620 | 1/28/2011 | 11:17:19 | 0 | 17.5377 | 18.02  |
| 621 | 1/28/2011 | 11:17:20 | 0 | 17.5359 | 18.021 |
| 622 | 1/28/2011 | 11:17:21 | 0 | 17.5339 | 18.021 |
| 623 | 1/28/2011 | 11:17:22 | 0 | 17.528  | 18.02  |
| 624 | 1/28/2011 | 11:17:23 | 0 | 17.528  | 18.021 |
| 625 | 1/28/2011 | 11:17:24 | 0 | 17.5262 | 18.021 |
| 626 | 1/28/2011 | 11:17:25 | 0 | 17.5262 | 18.019 |
| 627 | 1/28/2011 | 11:17:26 | 0 | 17.5195 | 18.02  |
| 628 | 1/28/2011 | 11:17:27 | 0 | 17.5212 | 18.02  |
| 629 | 1/28/2011 | 11:17:28 | 0 | 17.5173 | 18.02  |
| 630 | 1/28/2011 | 11:17:29 | 0 | 17.5143 | 18.019 |
| 631 | 1/28/2011 | 11:17:30 | 0 | 17.5135 | 18.02  |
| 632 | 1/28/2011 | 11:17:31 | 0 | 17.5116 | 18.019 |
| 633 | 1/28/2011 | 11:17:32 | 0 | 17.5056 | 18.019 |
| 634 | 1/28/2011 | 11:17:33 | 0 | 17.5033 | 18.02  |
| 635 | 1/28/2011 | 11:17:34 | 0 | 17.5041 | 18.02  |
| 636 | 1/28/2011 | 11:17:35 | 0 | 17.5029 | 18.019 |
| 637 | 1/28/2011 | 11:17:36 | 0 | 17.5016 | 18.019 |
| 638 | 1/28/2011 | 11:17:37 | 0 | 17.4969 | 18.019 |
| 639 | 1/28/2011 | 11:17:38 | 0 | 17.4982 | 18.019 |
| 640 | 1/28/2011 | 11:17:39 | 0 | 17.4939 | 18.019 |
| 641 | 1/28/2011 | 11:17:40 | 0 | 17.4932 | 18.019 |
| 642 | 1/28/2011 | 11:17:41 | 0 | 17.4921 | 18.019 |
| 643 | 1/28/2011 | 11:17:42 | 0 | 17.4857 | 18.019 |
| 644 | 1/28/2011 | 11:17:43 | 0 | 17.484  | 18.018 |
| 645 | 1/28/2011 | 11:17:44 | 0 | 17.495  | 18.019 |
| 646 | 1/28/2011 | 11:17:45 | 0 | 17.4791 | 18.019 |
| 647 | 1/28/2011 | 11:17:46 | 0 | 17.4802 | 18.019 |
| 648 | 1/28/2011 | 11:17:47 | 0 | 17.4798 | 18.019 |
| 649 | 1/28/2011 | 11:17:48 | 0 | 17.4768 | 18.019 |
| 650 | 1/28/2011 | 11:17:49 | 0 | 17.4713 | 18.019 |
| 651 | 1/28/2011 | 11:17:50 | 0 | 17.4704 | 18.019 |
| 652 | 1/28/2011 | 11:17:51 | 0 | 17.4693 | 18.018 |
| 653 | 1/28/2011 | 11:17:52 | 0 | 17.4678 | 18.018 |
| 654 | 1/28/2011 | 11:17:53 | 0 | 17.4657 | 18.019 |
| 655 | 1/28/2011 | 11:17:54 | 0 | 17.4658 | 18.019 |
| 656 | 1/28/2011 | 11:17:55 | 0 | 17.4606 | 18.018 |
| 657 | 1/28/2011 | 11:17:56 | 0 | 17.4598 | 18.018 |
| 658 | 1/28/2011 | 11:17:57 | 0 | 17.4576 | 18.018 |
| 659 | 1/28/2011 | 11:17:58 | 0 | 17.457  | 18.018 |
| 660 | 1/28/2011 | 11:17:59 | 0 | 17.4527 | 18.019 |
| 661 | 1/28/2011 | 11:18:00 | 0 | 17.4506 | 18.018 |
| 662 | 1/28/2011 | 11:18:01 | 0 | 17.4507 | 18.019 |
| 663 | 1/29/2011 | 11:18:02 | 0 | 17.4518 | 18.018 |
| 664 | 1/28/2011 | 11:18:03 | 0 | 17.4488 | 18.019 |
| 665 | 1/28/2011 | 11:18:04 | 0 | 17.4456 | 18.018 |
| 666 | 1/28/2011 | 11:18:05 | 0 | 17.4408 | 18.018 |
| 667 | 1/28/2011 | 11:18:06 | 0 | 17.4389 | 18.018 |
| 668 | 1/28/2011 | 11:18:07 | 0 | 17.4383 | 18.018 |
| 669 | 1/28/2011 | 11:18:08 | 0 | 17.4336 | 18.019 |
| 670 | 1/28/2011 | 11:18:09 | 0 | 17.4346 | 18.019 |
| 671 | 1/28/2011 | 11:18:10 | 0 | 17.4339 | 18.018 |
| 672 | 1/28/2011 | 11:18:11 | 0 | 17.4292 | 18.018 |
| 673 | 1/28/2011 | 11:18:12 | 0 | 17.4273 | 18.018 |
| 674 | 1/28/2011 | 11:18:13 | 0 | 17.4287 | 18.018 |
| 675 | 1/28/2011 | 11:18:14 | 0 | 17.4227 | 18.018 |
| 676 | 1/28/2011 | 11:18:15 | 0 | 17.4223 | 18.018 |
| 677 | 1/28/2011 | 11:18:16 | 0 | 17.4185 | 18.018 |
| 678 | 1/28/2011 | 11:18:17 | 0 | 17.4165 | 18.018 |
| 679 | 1/28/2011 | 11:18:18 | 0 | 17.4152 | 18.018 |
| 680 | 1/28/2011 | 11:18:19 | 0 | 17.4134 | 18.018 |
| 681 | 1/28/2011 | 11:18:20 | 0 | 17.4135 | 18.018 |
| 682 | 1/28/2011 | 11:18:21 | 0 | 17.4122 | 18.017 |
| 683 | 1/28/2011 | 11:18:22 | 0 | 17.4117 | 18.018 |
| 684 | 1/28/2011 | 11:18:23 | 0 | 17.4071 | 18.018 |
| 685 | 1/28/2011 | 11:18:24 | 0 | 17.4037 | 18.018 |
| 686 | 1/28/2011 | 11:18:25 | 0 | 17.4037 | 18.018 |
| 687 | 1/28/2011 | 11:18:26 | 0 | 17.3995 | 18.018 |
| 688 | 1/28/2011 | 11:18:27 | 0 | 17.399  | 18.019 |
| 689 | 1/28/2011 | 11:18:28 | 0 | 17.3966 | 18.018 |
| 690 | 1/28/2011 | 11:18:29 | 0 | 17.3952 | 18.018 |
| 691 | 1/28/2011 | 11:18:30 | 0 | 17.3911 | 18.018 |
| 692 | 1/28/2011 | 11:18:31 | 0 | 17.3876 | 18.017 |
| 693 | 1/28/2011 | 11:18:32 | 0 | 17.3889 | 18.018 |
| 694 | 1/28/2011 | 11:18:33 | 0 | 17.3863 | 18.018 |
| 695 | 1/28/2011 | 11:18:34 | 0 | 17.3864 | 18.018 |
| 696 | 1/28/2011 | 11:18:35 | 0 | 17.3822 | 18.018 |
| 697 | 1/28/2011 | 11:18:36 | 0 | 17.3824 | 18.018 |
| 698 | 1/28/2011 | 11:18:37 | 0 | 17.3791 | 18.018 |
| 699 | 1/28/2011 | 11:18:38 | 0 | 17.379  | 18.018 |
| 700 | 1/28/2011 | 11:18:39 | 0 | 17.3755 | 18.018 |
| 701 | 1/28/2011 | 11:18:40 | 0 | 17.3731 | 18.018 |
| 702 | 1/28/2011 | 11:18:41 | 0 | 17.373  | 18.018 |
| 703 | 1/28/2011 | 11:18:42 | 0 | 17.3702 | 18.018 |
| 704 | 1/28/2011 | 11:18:43 | 0 | 17.3694 | 18.018 |
| 705 | 1/28/2011 | 11:18:44 | 0 | 17.3629 | 18.018 |
| 706 | 1/28/2011 | 11:18:45 | 0 | 17.3627 | 18.018 |
| 707 | 1/28/2011 | 11:18:46 | 0 | 17.3651 | 18.018 |
| 708 | 1/28/2011 | 11:18:47 | 0 | 17.3595 | 18.018 |
| 709 | 1/28/2011 | 11:18:48 | 0 | 17.3575 | 18.018 |
| 710 | 1/28/2011 | 11:18:49 | 0 | 17.3556 | 18.018 |
| 711 | 1/28/2011 | 11:18:50 | 0 | 17.3549 | 18.018 |
| 712 | 1/28/2011 | 11:18:51 | 0 | 17.3535 | 18.018 |
| 713 | 1/28/2011 | 11:18:52 | 0 | 17.3501 | 18.018 |
| 714 | 1/28/2011 | 11:18:53 | 0 | 17.3501 | 18.017 |
| 715 | 1/26/2011 | 11:18:54 | 0 | 17.348  | 18.018 |
| 716 | 1/28/2011 | 11:18:55 | 0 | 17.3472 | 18.018 |
| 717 | 1/28/2011 | 11:18:56 | 0 | 17.3429 | 18.018 |
| 718 | 1/28/2011 | 11:18:57 | 0 | 17.3436 | 18.018 |

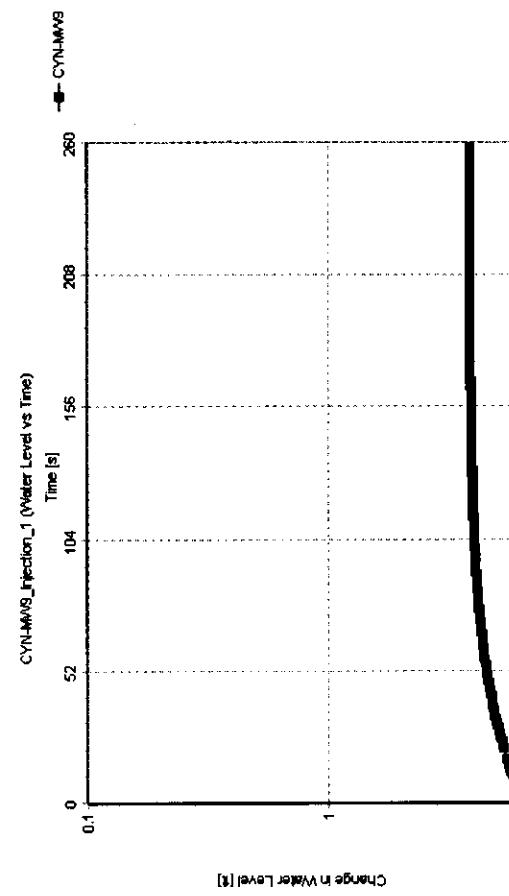
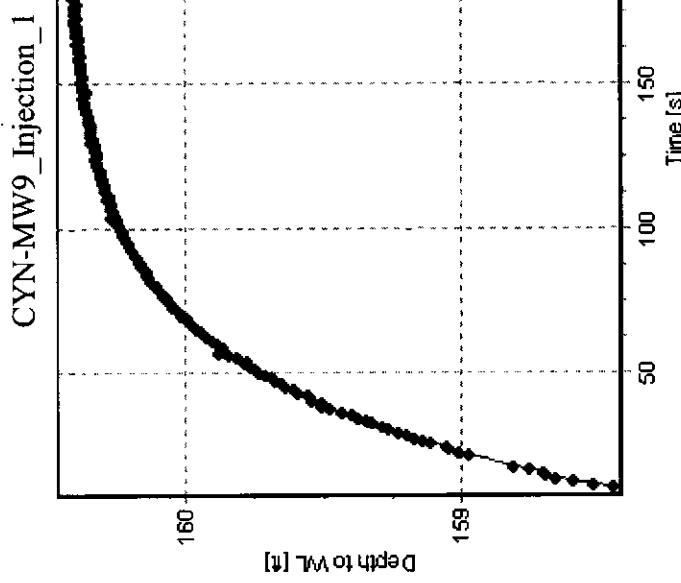
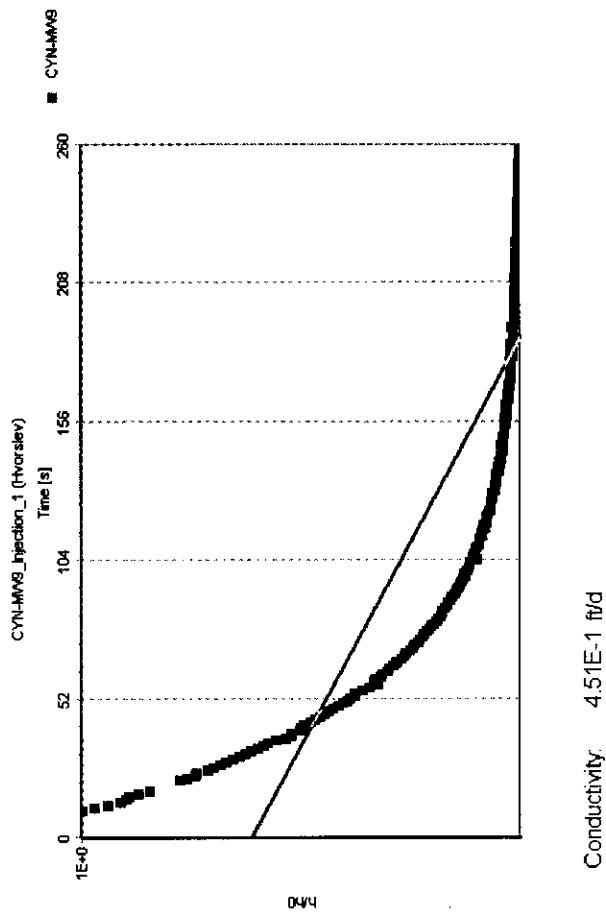
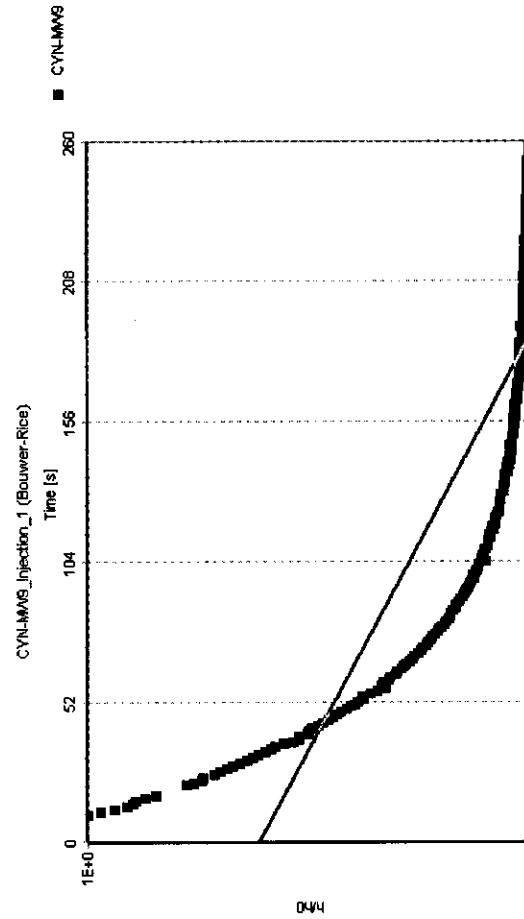
|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 719 | 1/28/2011 | 11:18:58 | 0 | 17.3418 | 18.018 |
| 720 | 1/28/2011 | 11:18:59 | 0 | 17.338  | 18.018 |
| 721 | 1/28/2011 | 11:19:00 | 0 | 17.3402 | 18.018 |
| 722 | 1/28/2011 | 11:19:01 | 0 | 17.3347 | 18.018 |
| 723 | 1/28/2011 | 11:19:02 | 0 | 17.3306 | 18.018 |
| 724 | 1/28/2011 | 11:19:03 | 0 | 17.3311 | 18.018 |
| 725 | 1/28/2011 | 11:19:04 | 0 | 17.3288 | 18.018 |
| 726 | 1/28/2011 | 11:19:05 | 0 | 17.3268 | 18.019 |
| 727 | 1/28/2011 | 11:19:06 | 0 | 17.3262 | 18.018 |
| 728 | 1/28/2011 | 11:19:07 | 0 | 17.3251 | 18.017 |
| 729 | 1/28/2011 | 11:19:08 | 0 | 17.3199 | 18.018 |
| 730 | 1/28/2011 | 11:19:09 | 0 | 17.3205 | 18.018 |
| 731 | 1/28/2011 | 11:19:10 | 0 | 17.3184 | 18.017 |
| 732 | 1/28/2011 | 11:19:11 | 0 | 17.3194 | 18.018 |
| 733 | 1/28/2011 | 11:19:12 | 0 | 17.3151 | 18.018 |
| 734 | 1/28/2011 | 11:19:13 | 0 | 17.3152 | 18.018 |
| 735 | 1/28/2011 | 11:19:14 | 0 | 17.3084 | 18.018 |
| 736 | 1/28/2011 | 11:19:15 | 0 | 17.3089 | 18.019 |
| 737 | 1/28/2011 | 11:19:16 | 0 | 17.3048 | 18.018 |
| 738 | 1/28/2011 | 11:19:17 | 0 | 17.3053 | 18.018 |
| 739 | 1/28/2011 | 11:19:18 | 0 | 17.3046 | 18.018 |
| 740 | 1/28/2011 | 11:19:19 | 0 | 17.3009 | 18.018 |
| 741 | 1/28/2011 | 11:19:20 | 0 | 17.2994 | 18.018 |
| 742 | 1/28/2011 | 11:19:21 | 0 | 17.2983 | 18.018 |
| 743 | 1/28/2011 | 11:19:22 | 0 | 17.2957 | 18.018 |
| 744 | 1/28/2011 | 11:19:23 | 0 | 17.2957 | 18.018 |
| 745 | 1/28/2011 | 11:19:24 | 0 | 17.2942 | 18.018 |
| 746 | 1/28/2011 | 11:19:25 | 0 | 17.2924 | 18.018 |
| 747 | 1/28/2011 | 11:19:26 | 0 | 17.2925 | 18.018 |
| 748 | 1/28/2011 | 11:19:27 | 0 | 17.2886 | 18.018 |
| 749 | 1/28/2011 | 11:19:28 | 0 | 17.2855 | 18.018 |
| 750 | 1/28/2011 | 11:19:29 | 0 | 17.2842 | 18.018 |
| 751 | 1/28/2011 | 11:19:30 | 0 | 17.2857 | 18.018 |
| 752 | 1/28/2011 | 11:19:31 | 0 | 17.2803 | 18.018 |
| 753 | 1/28/2011 | 11:19:32 | 0 | 17.2776 | 18.018 |
| 754 | 1/28/2011 | 11:19:33 | 0 | 17.2802 | 18.017 |
| 755 | 1/28/2011 | 11:19:34 | 0 | 17.2762 | 18.018 |
| 756 | 1/28/2011 | 11:19:35 | 0 | 17.2762 | 18.018 |
| 757 | 1/28/2011 | 11:19:36 | 0 | 17.2742 | 18.017 |
| 758 | 1/28/2011 | 11:19:37 | 0 | 17.2717 | 18.018 |
| 759 | 1/28/2011 | 11:19:38 | 0 | 17.2711 | 18.018 |
| 760 | 1/28/2011 | 11:19:39 | 0 | 17.2674 | 18.018 |
| 761 | 1/28/2011 | 11:19:40 | 0 | 17.2677 | 18.018 |
| 762 | 1/28/2011 | 11:19:41 | 0 | 17.262  | 18.017 |
| 763 | 1/28/2011 | 11:19:42 | 0 | 17.2632 | 18.018 |
| 764 | 1/28/2011 | 11:19:43 | 0 | 17.2607 | 18.018 |
| 765 | 1/28/2011 | 11:19:44 | 0 | 17.2608 | 18.018 |
| 766 | 1/28/2011 | 11:19:45 | 0 | 17.2556 | 18.018 |
| 767 | 1/28/2011 | 11:19:46 | 0 | 17.2552 | 18.018 |
| 768 | 1/28/2011 | 11:19:47 | 0 | 17.2566 | 18.018 |
| 769 | 1/28/2011 | 11:19:48 | 0 | 17.2512 | 18.018 |
| 770 | 1/28/2011 | 11:19:49 | 0 | 17.2511 | 18.018 |
| 771 | 1/28/2011 | 11:19:50 | 0 | 17.2479 | 18.018 |
| 772 | 1/28/2011 | 11:19:51 | 0 | 17.2455 | 18.018 |
| 773 | 1/28/2011 | 11:19:52 | 0 | 17.2459 | 18.018 |
| 774 | 1/28/2011 | 11:19:53 | 0 | 17.2444 | 18.018 |
| 775 | 1/28/2011 | 11:19:54 | 0 | 17.2415 | 18.017 |
| 776 | 1/28/2011 | 11:19:55 | 0 | 17.24   | 18.017 |
| 777 | 1/28/2011 | 11:19:56 | 0 | 17.2397 | 18.018 |
| 778 | 1/28/2011 | 11:19:57 | 0 | 17.2366 | 18.018 |
| 779 | 1/28/2011 | 11:19:58 | 0 | 17.2348 | 18.018 |
| 780 | 1/28/2011 | 11:19:59 | 0 | 17.2337 | 18.019 |
| 781 | 1/28/2011 | 11:20:00 | 0 | 17.2323 | 18.018 |
| 782 | 1/28/2011 | 11:20:05 | 0 | 17.2202 | 17.996 |
| 783 | 1/28/2011 | 11:20:10 | 0 | 17.2147 | 17.99  |
| 784 | 1/28/2011 | 11:20:15 | 0 | 17.2105 | 17.984 |
| 785 | 1/28/2011 | 11:20:20 | 0 | 17.1975 | 17.981 |
| 786 | 1/28/2011 | 11:20:25 | 0 | 17.1904 | 17.978 |
| 787 | 1/28/2011 | 11:20:30 | 0 | 17.1817 | 17.975 |
| 788 | 1/28/2011 | 11:20:35 | 0 | 17.175  | 17.972 |
| 789 | 1/28/2011 | 11:20:40 | 0 | 17.1691 | 17.969 |
| 790 | 1/28/2011 | 11:20:45 | 0 | 17.1574 | 17.968 |
| 791 | 1/28/2011 | 11:20:50 | 0 | 17.1528 | 17.966 |
| 792 | 1/28/2011 | 11:20:55 | 0 | 17.1457 | 17.965 |
| 793 | 1/28/2011 | 11:21:00 | 0 | 17.1353 | 17.963 |
| 794 | 1/28/2011 | 11:21:05 | 0 | 17.1305 | 17.962 |
| 795 | 1/28/2011 | 11:21:10 | 0 | 17.121  | 17.961 |
| 796 | 1/28/2011 | 11:21:15 | 0 | 17.1124 | 17.959 |
| 797 | 1/28/2011 | 11:21:20 | 0 | 17.1076 | 17.958 |
| 798 | 1/28/2011 | 11:21:25 | 0 | 17.0986 | 17.958 |
| 799 | 1/28/2011 | 11:21:30 | 0 | 17.0898 | 17.956 |
| 800 | 1/28/2011 | 11:21:35 | 0 | 17.0861 | 17.956 |
| 801 | 1/28/2011 | 11:21:40 | 0 | 17.0756 | 17.955 |
| 802 | 1/28/2011 | 11:21:45 | 0 | 17.0682 | 17.954 |
| 803 | 1/28/2011 | 11:21:50 | 0 | 17.0613 | 17.954 |
| 804 | 1/28/2011 | 11:21:55 | 0 | 17.0549 | 17.954 |
| 805 | 1/28/2011 | 11:22:00 | 0 | 17.0448 | 17.953 |
| 806 | 1/28/2011 | 11:22:05 | 0 | 17.0399 | 17.953 |
| 807 | 1/28/2011 | 11:22:10 | 0 | 17.0349 | 17.952 |
| 808 | 1/28/2011 | 11:22:15 | 0 | 17.042  | 17.952 |
| 809 | 1/28/2011 | 11:22:20 | 0 | 17.0218 | 17.951 |
| 810 | 1/28/2011 | 11:22:25 | 0 | 17.0132 | 17.951 |
| 811 | 1/28/2011 | 11:22:30 | 0 | 17.0109 | 17.954 |
| 812 | 1/28/2011 | 11:22:35 | 0 | 17.0026 | 17.952 |
| 813 | 1/28/2011 | 11:22:40 | 0 | 16.9944 | 17.952 |
| 814 | 1/28/2011 | 11:22:45 | 0 | 16.9915 | 17.951 |
| 815 | 1/28/2011 | 11:22:50 | 0 | 16.9835 | 17.951 |
| 816 | 1/28/2011 | 11:22:55 | 0 | 16.9736 | 17.967 |
| 817 | 1/28/2011 | 11:23:00 | 0 | 16.9706 | 17.953 |
| 818 | 1/28/2011 | 11:23:05 | 0 | 16.9627 | 17.952 |
| 819 | 1/28/2011 | 11:23:10 | 0 | 16.9551 | 17.952 |
| 820 | 1/28/2011 | 11:23:15 | 0 | 16.9487 | 17.951 |
| 821 | 1/28/2011 | 11:23:20 | 0 | 16.9423 | 17.951 |
| 822 | 1/28/2011 | 11:23:25 | 0 | 16.9373 | 17.951 |
| 823 | 1/28/2011 | 11:23:30 | 0 | 16.9292 | 17.951 |

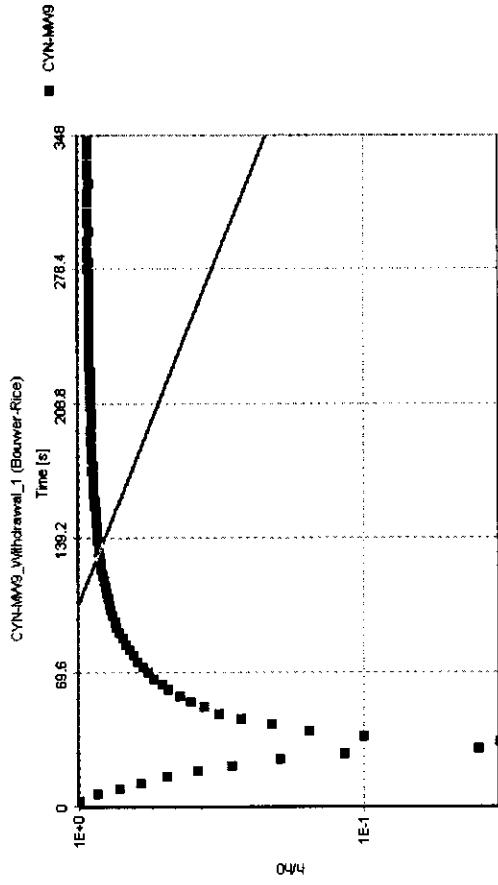
|     |           |          |   |         |        |
|-----|-----------|----------|---|---------|--------|
| 824 | 1/28/2011 | 11:23:36 | 0 | 16.9264 | 17.95  |
| 825 | 1/28/2011 | 11:23:40 | 0 | 16.9173 | 17.95  |
| 826 | 1/28/2011 | 11:23:45 | 0 | 16.916  | 17.95  |
| 827 | 1/28/2011 | 11:23:50 | 0 | 16.9066 | 17.949 |
| 828 | 1/28/2011 | 11:23:55 | 0 | 16.902  | 17.949 |
| 829 | 1/28/2011 | 11:24:00 | 0 | 16.8936 | 17.948 |
| 830 | 1/28/2011 | 11:24:05 | 0 | 16.8884 | 17.948 |
| 831 | 1/28/2011 | 11:24:10 | 0 | 16.8833 | 17.948 |
| 832 | 1/28/2011 | 11:24:15 | 0 | 16.8795 | 17.948 |
| 833 | 1/28/2011 | 11:24:20 | 0 | 16.8699 | 17.947 |
| 834 | 1/28/2011 | 11:24:25 | 0 | 16.8655 | 17.947 |
| 835 | 1/28/2011 | 11:24:30 | 0 | 16.8612 | 17.947 |
| 836 | 1/28/2011 | 11:24:35 | 0 | 16.8563 | 17.947 |
| 837 | 1/28/2011 | 11:24:40 | 0 | 16.8507 | 17.947 |
| 838 | 1/28/2011 | 11:24:45 | 0 | 16.8448 | 17.946 |
| 839 | 1/28/2011 | 11:24:50 | 0 | 16.8384 | 17.946 |
| 840 | 1/28/2011 | 11:24:55 | 0 | 16.8322 | 17.946 |
| 841 | 1/28/2011 | 11:25:00 | 0 | 16.8291 | 17.946 |
| 842 | 1/28/2011 | 11:25:05 | 0 | 16.824  | 17.946 |
| 843 | 1/28/2011 | 11:25:10 | 0 | 16.8199 | 17.946 |
| 844 | 1/28/2011 | 11:25:15 | 0 | 16.8124 | 17.949 |
| 845 | 1/28/2011 | 11:25:20 | 0 | 16.8077 | 17.947 |
| 846 | 1/28/2011 | 11:25:25 | 0 | 16.8    | 17.946 |
| 847 | 1/28/2011 | 11:25:30 | 0 | 16.7963 | 17.946 |
| 848 | 1/28/2011 | 11:25:35 | 0 | 16.793  | 17.947 |
| 849 | 1/28/2011 | 11:25:40 | 0 | 16.7858 | 17.946 |
| 850 | 1/28/2011 | 11:25:45 | 0 | 16.7808 | 17.946 |
| 851 | 1/28/2011 | 11:25:50 | 0 | 16.7773 | 17.946 |
| 852 | 1/28/2011 | 11:25:55 | 0 | 16.773  | 17.945 |
| 853 | 1/28/2011 | 11:26:00 | 0 | 16.7694 | 17.946 |
| 854 | 1/28/2011 | 11:26:05 | 0 | 16.7615 | 17.946 |
| 855 | 1/28/2011 | 11:26:10 | 0 | 16.7576 | 17.946 |
| 856 | 1/28/2011 | 11:26:15 | 0 | 16.7526 | 17.946 |
| 857 | 1/28/2011 | 11:26:20 | 0 | 16.7489 | 17.945 |
| 858 | 1/28/2011 | 11:26:25 | 0 | 16.7458 | 17.96  |
| 859 | 1/28/2011 | 11:26:30 | 0 | 16.7385 | 17.947 |
| 860 | 1/28/2011 | 11:26:35 | 0 | 16.7322 | 17.946 |
| 861 | 1/28/2011 | 11:26:40 | 0 | 16.7271 | 17.946 |
| 862 | 1/28/2011 | 11:26:45 | 0 | 16.7236 | 17.946 |
| 863 | 1/28/2011 | 11:26:50 | 0 | 16.7195 | 17.946 |
| 864 | 1/28/2011 | 11:26:55 | 0 | 16.7183 | 17.946 |
| 865 | 1/28/2011 | 11:27:00 | 0 | 16.7123 | 17.946 |
| 866 | 1/28/2011 | 11:27:05 | 0 | 16.7087 | 17.946 |
| 867 | 1/28/2011 | 11:27:10 | 0 | 16.7033 | 17.946 |
| 868 | 1/28/2011 | 11:27:15 | 0 | 16.6979 | 17.946 |
| 869 | 1/28/2011 | 11:27:20 | 0 | 16.6956 | 17.946 |
| 870 | 1/28/2011 | 11:27:25 | 0 | 16.6909 | 17.946 |
| 871 | 1/28/2011 | 11:27:30 | 0 | 16.6885 | 17.949 |
| 872 | 1/28/2011 | 11:27:35 | 0 | 16.6806 | 17.948 |
| 873 | 1/28/2011 | 11:27:40 | 0 | 16.6776 | 17.948 |
| 874 | 1/28/2011 | 11:27:45 | 0 | 16.6752 | 17.948 |
| 875 | 1/28/2011 | 11:27:50 | 0 | 16.6649 | 17.948 |
| 876 | 1/28/2011 | 11:27:55 | 0 | 16.6634 | 17.949 |
| 877 | 1/28/2011 | 11:28:00 | 0 | 16.6622 | 17.948 |
| 878 | 1/28/2011 | 11:28:05 | 0 | 16.6565 | 17.948 |
| 879 | 1/28/2011 | 11:28:10 | 0 | 16.6527 | 17.949 |
| 880 | 1/28/2011 | 11:28:15 | 0 | 16.6504 | 17.949 |
| 881 | 1/28/2011 | 11:28:20 | 0 | 16.6492 | 17.949 |
| 882 | 1/28/2011 | 11:28:25 | 0 | 16.6399 | 17.949 |
| 883 | 1/28/2011 | 11:28:30 | 0 | 16.6372 | 17.949 |
| 884 | 1/28/2011 | 11:28:35 | 0 | 16.6353 | 17.95  |
| 885 | 1/28/2011 | 11:28:40 | 0 | 16.6318 | 17.949 |
| 886 | 1/28/2011 | 11:28:45 | 0 | 16.6241 | 17.949 |
| 887 | 1/28/2011 | 11:28:50 | 0 | 16.6197 | 17.952 |
| 888 | 1/28/2011 | 11:28:55 | 0 | 16.6197 | 17.952 |
| 889 | 1/28/2011 | 11:29:00 | 0 | 16.6158 | 17.951 |
| 890 | 1/28/2011 | 11:29:05 | 0 | 16.6099 | 17.951 |
| 891 | 1/28/2011 | 11:29:10 | 0 | 16.6068 | 17.951 |
| 892 | 1/28/2011 | 11:29:15 | 0 | 16.6036 | 17.951 |
| 893 | 1/28/2011 | 11:29:20 | 0 | 16.6    | 17.951 |
| 894 | 1/28/2011 | 11:29:25 | 0 | 16.5963 | 17.952 |
| 895 | 1/28/2011 | 11:29:30 | 0 | 16.5936 | 17.952 |
| 896 | 1/28/2011 | 11:29:35 | 0 | 16.5907 | 17.952 |
| 897 | 1/28/2011 | 11:29:40 | 0 | 16.5892 | 17.952 |
| 898 | 1/28/2011 | 11:29:45 | 0 | 16.5831 | 17.953 |
| 899 | 1/28/2011 | 11:29:50 | 0 | 16.5788 | 17.953 |
| 900 | 1/28/2011 | 11:29:55 | 0 | 16.5745 | 17.953 |
| 901 | 1/28/2011 | 11:30:00 | 0 | 16.5724 | 17.953 |
| 902 | 1/28/2011 | 11:30:05 | 0 | 16.5668 | 17.953 |
| 903 | 1/28/2011 | 11:30:10 | 0 | 16.5641 | 17.953 |
| 904 | 1/28/2011 | 11:30:15 | 0 | 16.5613 | 17.957 |
| 905 | 1/28/2011 | 11:30:20 | 0 | 16.5583 | 17.955 |
| 906 | 1/28/2011 | 11:30:25 | 0 | 16.555  | 17.955 |
| 907 | 1/28/2011 | 11:30:30 | 0 | 16.5515 | 17.955 |
| 908 | 1/28/2011 | 11:30:35 | 0 | 16.5483 | 17.955 |
| 909 | 1/28/2011 | 11:30:40 | 0 | 16.5446 | 17.956 |
| 910 | 1/28/2011 | 11:30:45 | 0 | 16.5438 | 17.956 |
| 911 | 1/28/2011 | 11:30:50 | 0 | 16.5403 | 17.956 |
| 912 | 1/28/2011 | 11:30:55 | 0 | 16.5369 | 17.957 |
| 913 | 1/28/2011 | 11:31:00 | 0 | 16.533  | 17.956 |
| 914 | 1/28/2011 | 11:31:05 | 0 | 16.5327 | 17.956 |
| 915 | 1/28/2011 | 11:31:10 | 0 | 16.5232 | 17.956 |
| 916 | 1/28/2011 | 11:31:15 | 0 | 16.5246 | 17.957 |
| 917 | 1/28/2011 | 11:31:20 | 0 | 16.5223 | 17.956 |
| 918 | 1/28/2011 | 11:31:25 | 0 | 16.5194 | 17.957 |
| 919 | 1/28/2011 | 11:31:30 | 0 | 16.5166 | 17.957 |
| 920 | 1/28/2011 | 11:31:35 | 0 | 16.5119 | 17.963 |
| 921 | 1/28/2011 | 11:31:40 | 0 | 16.513  | 17.958 |
| 922 | 1/28/2011 | 11:31:45 | 0 | 16.5084 | 17.956 |
| 923 | 1/28/2011 | 11:31:50 | 0 | 16.5047 | 17.958 |
| 924 | 1/28/2011 | 11:31:55 | 0 | 16.5    | 17.958 |
| 925 | 1/28/2011 | 11:32:00 | 0 | 16.4963 | 17.957 |
| 926 | 1/28/2011 | 11:32:05 | 0 | 16.4958 | 17.958 |
| 927 | 1/28/2011 | 11:32:10 | 0 | 16.4937 | 17.958 |
| 928 | 1/28/2011 | 11:32:15 | 0 | 16.4899 | 17.961 |

|      |           |          |   |         |        |
|------|-----------|----------|---|---------|--------|
| 929  | 1/28/2011 | 11:32:20 | 0 | 16.4884 | 17.959 |
| 930  | 1/28/2011 | 11:32:25 | 0 | 16.4878 | 17.958 |
| 931  | 1/28/2011 | 11:32:30 | 0 | 16.4845 | 17.958 |
| 932  | 1/28/2011 | 11:32:35 | 0 | 16.4789 | 17.958 |
| 933  | 1/28/2011 | 11:32:40 | 0 | 16.4744 | 17.958 |
| 934  | 1/28/2011 | 11:32:45 | 0 | 16.4722 | 17.958 |
| 935  | 1/28/2011 | 11:32:50 | 0 | 16.4714 | 17.958 |
| 936  | 1/28/2011 | 11:32:55 | 0 | 16.4658 | 17.958 |
| 937  | 1/28/2011 | 11:33:00 | 0 | 16.4671 | 17.958 |
| 938  | 1/28/2011 | 11:33:05 | 0 | 16.4648 | 17.958 |
| 939  | 1/28/2011 | 11:33:10 | 0 | 16.4607 | 17.963 |
| 940  | 1/28/2011 | 11:33:15 | 0 | 16.4593 | 17.96  |
| 941  | 1/28/2011 | 11:33:20 | 0 | 16.4561 | 17.959 |
| 942  | 1/28/2011 | 11:33:25 | 0 | 16.4565 | 17.958 |
| 943  | 1/28/2011 | 11:33:30 | 0 | 16.4517 | 17.958 |
| 944  | 1/28/2011 | 11:33:35 | 0 | 16.451  | 17.958 |
| 945  | 1/28/2011 | 11:33:40 | 0 | 16.4442 | 17.958 |
| 946  | 1/28/2011 | 11:33:45 | 0 | 16.4443 | 17.958 |
| 947  | 1/28/2011 | 11:33:50 | 0 | 16.4416 | 17.963 |
| 948  | 1/28/2011 | 11:33:55 | 0 | 16.4384 | 17.959 |
| 949  | 1/28/2011 | 11:34:00 | 0 | 16.4385 | 17.959 |
| 950  | 1/28/2011 | 11:34:05 | 0 | 16.4356 | 17.958 |
| 951  | 1/28/2011 | 11:34:10 | 0 | 16.4314 | 17.958 |
| 952  | 1/28/2011 | 11:34:15 | 0 | 16.4264 | 17.958 |
| 953  | 1/28/2011 | 11:34:20 | 0 | 16.4269 | 17.962 |
| 954  | 1/28/2011 | 11:34:25 | 0 | 16.4287 | 17.959 |
| 955  | 1/28/2011 | 11:34:30 | 0 | 16.421  | 17.959 |
| 956  | 1/28/2011 | 11:34:35 | 0 | 16.4225 | 17.959 |
| 957  | 1/28/2011 | 11:34:40 | 0 | 16.4189 | 17.971 |
| 958  | 1/28/2011 | 11:34:45 | 0 | 16.4196 | 17.991 |
| 959  | 1/28/2011 | 11:34:50 | 0 | 16.4183 | 18.001 |
| 960  | 1/28/2011 | 11:34:55 | 0 | 16.4149 | 18.008 |
| 961  | 1/28/2011 | 11:35:00 | 0 | 16.4132 | 18.015 |
| 962  | 1/28/2011 | 11:35:01 | 0 | 16.4135 | 18.025 |
| 963  | 1/28/2011 | 11:35:02 | 0 | 16.4106 | 18.031 |
| 964  | 1/28/2011 | 11:35:03 | 0 | 16.4107 | 18.037 |
| 965  | 1/28/2011 | 11:35:04 | 0 | 16.4136 | 18.04  |
| 966  | 1/28/2011 | 11:35:05 | 0 | 16.411  | 18.043 |
| 967  | 1/28/2011 | 11:35:06 | 0 | 16.4105 | 18.047 |
| 968  | 1/28/2011 | 11:35:07 | 0 | 16.2111 | 18.047 |
| 969  | 1/28/2011 | 11:35:08 | 0 | 16.561  | 18.05  |
| 970  | 1/28/2011 | 11:35:09 | 0 | 16.1843 | 18.053 |
| 971  | 1/28/2011 | 11:35:10 | 0 | 16.5586 | 18.055 |
| 972  | 1/28/2011 | 11:35:11 | 0 | 16.284  | 18.055 |
| 973  | 1/28/2011 | 11:35:12 | 0 | 16.4065 | 18.055 |
| 974  | 1/28/2011 | 11:35:13 | 0 | 16.3803 | 18.059 |
| 975  | 1/28/2011 | 11:35:14 | 0 | 15.761  | 18.059 |
| 976  | 1/28/2011 | 11:35:15 | 0 | 15.172  | 18.064 |
| 977  | 1/28/2011 | 11:35:16 | 0 | 14.5738 | 18.064 |
| 978  | 1/28/2011 | 11:35:17 | 0 | 14.3266 | 18.05  |
| 979  | 1/28/2011 | 11:35:18 | 0 | 14.3313 | 18.042 |
| 980  | 1/28/2011 | 11:35:19 | 0 | 14.3338 | 18.061 |
| 981  | 1/28/2011 | 11:35:20 | 0 | 14.3449 | 18.057 |
| 982  | 1/28/2011 | 11:35:21 | 0 | 14.3474 | 18.056 |
| 983  | 1/28/2011 | 11:35:22 | 0 | 14.3464 | 18.058 |
| 984  | 1/28/2011 | 11:35:23 | 0 | 14.3543 | 18.058 |
| 985  | 1/28/2011 | 11:35:24 | 0 | 14.3609 | 18.06  |
| 986  | 1/28/2011 | 11:35:25 | 0 | 14.3625 | 18.061 |
| 987  | 1/28/2011 | 11:35:26 | 0 | 14.3727 | 18.062 |
| 988  | 1/28/2011 | 11:35:27 | 0 | 14.3755 | 18.063 |
| 989  | 1/28/2011 | 11:35:28 | 0 | 14.3788 | 18.064 |
| 990  | 1/28/2011 | 11:35:29 | 0 | 14.3786 | 18.065 |
| 991  | 1/28/2011 | 11:35:30 | 0 | 14.3837 | 18.066 |
| 992  | 1/28/2011 | 11:35:31 | 0 | 14.3855 | 18.068 |
| 993  | 1/28/2011 | 11:35:32 | 0 | 14.3913 | 18.069 |
| 994  | 1/28/2011 | 11:35:33 | 0 | 14.3958 | 18.07  |
| 995  | 1/28/2011 | 11:35:34 | 0 | 14.399  | 18.071 |
| 996  | 1/28/2011 | 11:35:35 | 0 | 14.3996 | 18.073 |
| 997  | 1/28/2011 | 11:35:36 | 0 | 14.4063 | 18.073 |
| 998  | 1/28/2011 | 11:35:37 | 0 | 14.4069 | 18.075 |
| 999  | 1/28/2011 | 11:35:38 | 0 | 14.4108 | 18.076 |
| 1000 | 1/28/2011 | 11:35:39 | 0 | 14.4139 | 18.077 |
| 1001 | 1/28/2011 | 11:35:40 | 0 | 14.4163 | 18.077 |
| 1002 | 1/28/2011 | 11:35:41 | 0 | 14.4198 | 18.079 |
| 1003 | 1/28/2011 | 11:35:42 | 0 | 14.4245 | 18.081 |
| 1004 | 1/28/2011 | 11:35:43 | 0 | 14.428  | 18.08  |
| 1005 | 1/28/2011 | 11:35:44 | 0 | 14.4306 | 18.082 |
| 1006 | 1/28/2011 | 11:35:45 | 0 | 14.4335 | 18.083 |
| 1007 | 1/28/2011 | 11:35:46 | 0 | 14.4389 | 18.083 |
| 1008 | 1/28/2011 | 11:35:47 | 0 | 14.441  | 18.085 |
| 1009 | 1/28/2011 | 11:35:48 | 0 | 14.4427 | 18.086 |
| 1010 | 1/28/2011 | 11:35:49 | 0 | 14.4464 | 18.086 |
| 1011 | 1/28/2011 | 11:35:50 | 0 | 14.4473 | 18.088 |
| 1012 | 1/28/2011 | 11:35:51 | 0 | 14.4509 | 18.089 |
| 1013 | 1/28/2011 | 11:35:52 | 0 | 14.4579 | 18.09  |
| 1014 | 1/28/2011 | 11:35:53 | 0 | 14.4572 | 18.09  |
| 1015 | 1/28/2011 | 11:35:54 | 0 | 14.4635 | 18.091 |
| 1016 | 1/28/2011 | 11:35:55 | 0 | 14.4618 | 18.092 |
| 1017 | 1/28/2011 | 11:35:56 | 0 | 14.4668 | 18.093 |
| 1018 | 1/28/2011 | 11:35:57 | 0 | 14.4692 | 18.094 |
| 1019 | 1/28/2011 | 11:35:56 | 0 | 14.4725 | 18.094 |
| 1020 | 1/28/2011 | 11:35:59 | 0 | 14.4729 | 18.096 |
| 1021 | 1/28/2011 | 11:36:00 | 0 | 14.4777 | 18.096 |
| 1022 | 1/28/2011 | 11:36:01 | 0 | 14.484  | 18.097 |
| 1023 | 1/28/2011 | 11:36:02 | 0 | 14.4831 | 18.098 |
| 1024 | 1/28/2011 | 11:36:03 | 0 | 14.487  | 18.1   |
| 1025 | 1/28/2011 | 11:36:04 | 0 | 14.4871 | 18.1   |
| 1026 | 1/28/2011 | 11:36:05 | 0 | 14.4894 | 18.101 |
| 1027 | 1/28/2011 | 11:36:06 | 0 | 14.4977 | 18.102 |
| 1028 | 1/28/2011 | 11:36:07 | 0 | 14.4982 | 18.102 |
| 1029 | 1/28/2011 | 11:36:08 | 0 | 14.4995 | 18.104 |
| 1030 | 1/28/2011 | 11:36:09 | 0 | 14.5014 | 18.104 |
| 1031 | 1/28/2011 | 11:36:10 | 0 | 14.5017 | 18.105 |
| 1032 | 1/28/2011 | 11:36:11 | 0 | 14.5102 | 18.106 |
| 1033 | 1/28/2011 | 11:36:12 | 0 | 14.5116 | 18.107 |

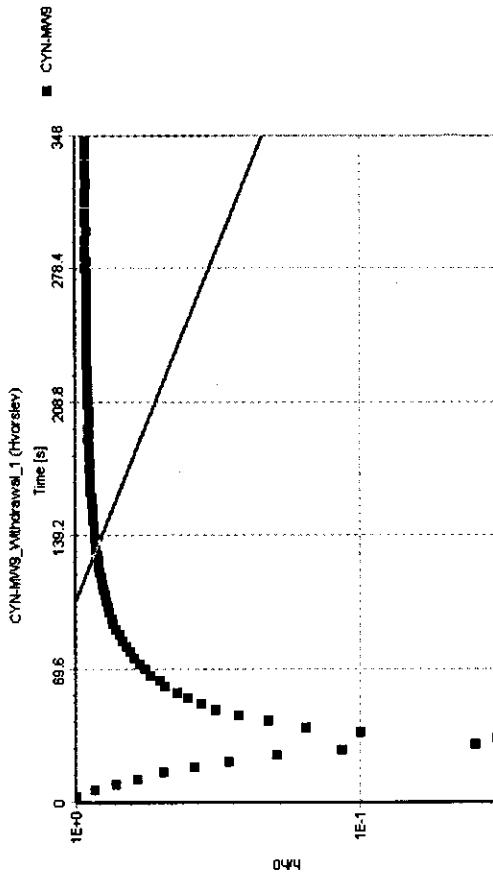
|      |           |          |   |         |        |
|------|-----------|----------|---|---------|--------|
| 1034 | 1/28/2011 | 11:36:13 | 0 | 14.5156 | 18.108 |
| 1035 | 1/28/2011 | 11:36:14 | 0 | 14.5171 | 18.108 |
| 1036 | 1/28/2011 | 11:36:15 | 0 | 14.5198 | 18.109 |
| 1037 | 1/28/2011 | 11:36:16 | 0 | 14.524  | 18.11  |
| 1038 | 1/28/2011 | 11:36:17 | 0 | 14.5272 | 18.088 |
| 1039 | 1/28/2011 | 11:36:18 | 0 | 14.528  | 18.088 |
| 1040 | 1/28/2011 | 11:36:19 | 0 | 14.5346 | 18.112 |
| 1041 | 1/28/2011 | 11:36:20 | 0 | 14.5359 | 18.105 |
| 1042 | 1/28/2011 | 11:36:21 | 0 | 14.5394 | 18.104 |
| 1043 | 1/28/2011 | 11:36:22 | 0 | 14.5427 | 18.103 |
| 1044 | 1/28/2011 | 11:38:23 | 0 | 14.5433 | 18.104 |
| 1045 | 1/28/2011 | 11:36:24 | 0 | 14.5461 | 18.104 |
| 1046 | 1/28/2011 | 11:36:25 | 0 | 14.5492 | 18.104 |
| 1047 | 1/28/2011 | 11:36:26 | 0 | 14.5524 | 18.105 |
| 1048 | 1/28/2011 | 11:36:27 | 0 | 14.5538 | 18.105 |
| 1049 | 1/28/2011 | 11:36:28 | 0 | 14.5557 | 18.105 |
| 1050 | 1/28/2011 | 11:36:29 | 0 | 14.5625 | 18.106 |
| 1051 | 1/28/2011 | 11:36:30 | 0 | 14.5606 | 18.107 |
| 1052 | 1/28/2011 | 11:36:31 | 0 | 14.5668 | 18.108 |
| 1053 | 1/28/2011 | 11:36:32 | 0 | 14.5716 | 18.108 |
| 1054 | 1/28/2011 | 11:36:33 | 0 | 14.5674 | 18.109 |
| 1055 | 1/28/2011 | 11:36:34 | 0 | 14.5754 | 18.109 |
| 1056 | 1/28/2011 | 11:36:35 | 0 | 14.5711 | 18.11  |
| 1057 | 1/28/2011 | 11:36:36 | 0 | 14.5786 | 18.111 |
| 1058 | 1/28/2011 | 11:36:37 | 0 | 14.5796 | 18.111 |
| 1059 | 1/28/2011 | 11:36:38 | 0 | 14.5803 | 18.112 |
| 1060 | 1/28/2011 | 11:36:39 | 0 | 14.5866 | 18.112 |
| 1061 | 1/28/2011 | 11:36:40 | 0 | 14.5861 | 18.113 |
| 1062 | 1/28/2011 | 11:36:41 | 0 | 14.5873 | 18.113 |
| 1063 | 1/28/2011 | 11:36:42 | 0 | 14.5937 | 18.114 |
| 1064 | 1/28/2011 | 11:36:43 | 0 | 14.5938 | 18.115 |
| 1065 | 1/28/2011 | 11:36:44 | 0 | 14.5967 | 18.115 |
| 1066 | 1/28/2011 | 11:36:45 | 0 | 14.5966 | 18.115 |
| 1067 | 1/28/2011 | 11:36:46 | 0 | 14.6051 | 18.117 |
| 1068 | 1/28/2011 | 11:36:47 | 0 | 14.6041 | 18.117 |
| 1069 | 1/28/2011 | 11:36:48 | 0 | 14.6083 | 18.118 |
| 1070 | 1/28/2011 | 11:36:49 | 0 | 14.6128 | 18.118 |
| 1071 | 1/28/2011 | 11:36:50 | 0 | 14.6095 | 18.119 |
| 1072 | 1/28/2011 | 11:36:51 | 0 | 14.6168 | 18.121 |
| 1073 | 1/28/2011 | 11:36:52 | 0 | 14.619  | 18.097 |
| 1074 | 1/28/2011 | 11:36:53 | 0 | 14.6197 | 18.11  |
| 1075 | 1/28/2011 | 11:36:54 | 0 | 14.6198 | 18.109 |
| 1076 | 1/28/2011 | 11:36:55 | 0 | 14.6279 | 18.109 |
| 1077 | 1/28/2011 | 11:36:56 | 0 | 14.6289 | 18.11  |
| 1078 | 1/28/2011 | 11:36:57 | 0 | 14.6302 | 18.11  |
| 1079 | 1/28/2011 | 11:36:58 | 0 | 14.6328 | 18.111 |
| 1080 | 1/28/2011 | 11:36:59 | 0 | 14.6392 | 18.111 |
| 1081 | 1/28/2011 | 11:37:00 | 0 | 14.6369 | 18.112 |
| 1082 | 1/28/2011 | 11:37:01 | 0 | 14.6406 | 18.112 |
| 1083 | 1/28/2011 | 11:37:02 | 0 | 14.6416 | 18.112 |
| 1084 | 1/28/2011 | 11:37:03 | 0 | 14.6474 | 18.113 |
| 1085 | 1/28/2011 | 11:37:04 | 0 | 14.6454 | 18.113 |
| 1086 | 1/28/2011 | 11:37:05 | 0 | 14.6499 | 18.113 |
| 1087 | 1/28/2011 | 11:37:06 | 0 | 14.6551 | 18.115 |
| 1088 | 1/28/2011 | 11:37:07 | 0 | 14.6549 | 18.115 |
| 1089 | 1/28/2011 | 11:37:08 | 0 | 14.6589 | 18.115 |
| 1090 | 1/28/2011 | 11:37:09 | 0 | 14.6611 | 18.116 |
| 1091 | 1/28/2011 | 11:37:10 | 0 | 14.6628 | 18.116 |
| 1092 | 1/28/2011 | 11:37:11 | 0 | 14.6675 | 18.117 |
| 1093 | 1/28/2011 | 11:37:12 | 0 | 14.6692 | 18.117 |
| 1094 | 1/28/2011 | 11:37:13 | 0 | 14.6719 | 18.117 |
| 1095 | 1/28/2011 | 11:37:14 | 0 | 14.6746 | 18.118 |
| 1096 | 1/28/2011 | 11:37:15 | 0 | 14.6727 | 18.119 |
| 1097 | 1/28/2011 | 11:37:16 | 0 | 14.6786 | 18.12  |
| 1098 | 1/28/2011 | 11:37:17 | 0 | 14.6808 | 18.119 |
| 1099 | 1/28/2011 | 11:37:18 | 0 | 14.6832 | 18.12  |
| 1100 | 1/28/2011 | 11:37:19 | 0 | 14.6857 | 18.121 |
| 1101 | 1/28/2011 | 11:37:20 | 0 | 14.6879 | 18.121 |
| 1102 | 1/28/2011 | 11:37:21 | 0 | 14.6911 | 18.121 |
| 1103 | 1/28/2011 | 11:37:22 | 0 | 14.6914 | 18.122 |
| 1104 | 1/28/2011 | 11:37:23 | 0 | 14.697  | 18.123 |
| 1105 | 1/28/2011 | 11:37:24 | 0 | 14.6969 | 18.123 |
| 1106 | 1/28/2011 | 11:37:25 | 0 | 14.6973 | 18.123 |
| 1107 | 1/28/2011 | 11:37:26 | 0 | 14.7004 | 18.124 |
| 1108 | 1/28/2011 | 11:37:27 | 0 | 14.7081 | 18.125 |
| 1109 | 1/28/2011 | 11:37:28 | 0 | 14.7067 | 18.102 |
| 1110 | 1/28/2011 | 11:37:29 | 0 | 14.7085 | 18.102 |
| 1111 | 1/28/2011 | 11:37:30 | 0 | 14.7116 | 18.124 |
| 1112 | 1/28/2011 | 11:37:31 | 0 | 14.7124 | 18.119 |
| 1113 | 1/28/2011 | 11:37:32 | 0 | 14.7157 | 18.117 |
| 1114 | 1/28/2011 | 11:37:33 | 0 | 14.7173 | 18.116 |
| 1115 | 1/28/2011 | 11:37:34 | 0 | 14.7206 | 18.116 |
| 1116 | 1/28/2011 | 11:37:35 | 0 | 14.7238 | 18.116 |
| 1117 | 1/28/2011 | 11:37:36 | 0 | 14.7266 | 18.117 |
| 1118 | 1/28/2011 | 11:37:37 | 0 | 14.7298 | 18.117 |
| 1119 | 1/28/2011 | 11:37:38 | 0 | 14.7286 | 18.118 |
| 1120 | 1/28/2011 | 11:37:39 | 0 | 14.7315 | 18.118 |
| 1121 | 1/28/2011 | 11:37:40 | 0 | 14.7343 | 18.118 |
| 1122 | 1/28/2011 | 11:37:41 | 0 | 14.7324 | 18.118 |
| 1123 | 1/28/2011 | 11:37:42 | 0 | 14.7394 | 18.119 |
| 1124 | 1/28/2011 | 11:37:43 | 0 | 14.739  | 18.119 |
| 1125 | 1/28/2011 | 11:37:44 | 0 | 14.744  | 18.12  |
| 1126 | 1/28/2011 | 11:37:45 | 0 | 14.7467 | 18.12  |
| 1127 | 1/28/2011 | 11:37:46 | 0 | 14.7468 | 18.121 |
| 1128 | 1/28/2011 | 11:37:47 | 0 | 14.7487 | 18.121 |
| 1129 | 1/28/2011 | 11:37:48 | 0 | 14.7501 | 18.121 |
| 1130 | 1/28/2011 | 11:37:49 | 0 | 14.7556 | 18.122 |
| 1131 | 1/28/2011 | 11:37:50 | 0 | 14.7576 | 18.122 |
| 1132 | 1/28/2011 | 11:37:51 | 0 | 14.759  | 18.122 |
| 1133 | 1/28/2011 | 11:37:52 | 0 | 14.7598 | 18.123 |
| 1134 | 1/28/2011 | 11:37:53 | 0 | 14.7625 | 18.123 |
| 1135 | 1/28/2011 | 11:37:54 | 0 | 14.7646 | 18.123 |
| 1136 | 1/28/2011 | 11:37:55 | 0 | 14.7679 | 18.124 |
| 1137 | 1/28/2011 | 11:37:56 | 0 | 14.7711 | 18.125 |
| 1138 | 1/28/2011 | 11:37:57 | 0 | 14.7739 | 18.125 |

|      |           |          |   |         |        |
|------|-----------|----------|---|---------|--------|
| 1139 | 1/28/2011 | 11:37:58 | 0 | 14.7743 | 18.126 |
| 1140 | 1/28/2011 | 11:37:59 | 0 | 14.7767 | 18.126 |
| 1141 | 1/28/2011 | 11:38:00 | 0 | 14.7775 | 18.127 |
| 1142 | 1/28/2011 | 11:38:01 | 0 | 14.7807 | 18.128 |
| 1143 | 1/28/2011 | 11:38:02 | 0 | 14.782  | 18.128 |
| 1144 | 1/28/2011 | 11:38:03 | 0 | 14.7876 | 18.129 |
| 1145 | 1/28/2011 | 11:38:04 | 0 | 14.7884 | 18.13  |
| 1146 | 1/28/2011 | 11:38:05 | 0 | 14.7904 | 18.13  |
| 1147 | 1/28/2011 | 11:38:06 | 0 | 14.7943 | 18.13  |
| 1148 | 1/28/2011 | 11:38:07 | 0 | 14.7953 | 18.131 |
| 1149 | 1/28/2011 | 11:38:08 | 0 | 14.7964 | 18.128 |
| 1150 | 1/28/2011 | 11:38:09 | 0 | 14.7968 | 18.129 |
| 1151 | 1/28/2011 | 11:38:10 | 0 | 14.8027 | 18.13  |
| 1152 | 1/28/2011 | 11:38:11 | 0 | 14.8036 | 18.133 |
| 1153 | 1/28/2011 | 11:38:12 | 0 | 14.8062 | 18.129 |
| 1154 | 1/28/2011 | 11:38:13 | 0 | 14.8065 | 18.127 |
| 1155 | 1/28/2011 | 11:38:14 | 0 | 14.8087 | 18.128 |
| 1156 | 1/28/2011 | 11:38:15 | 0 | 14.8112 | 18.13  |
| 1157 | 1/28/2011 | 11:38:16 | 0 | 14.8141 | 18.13  |
| 1158 | 1/28/2011 | 11:38:17 | 0 | 14.8159 | 18.116 |
| 1159 | 1/28/2011 | 11:38:18 | 0 | 14.817  | 18.115 |
| 1160 | 1/28/2011 | 11:38:19 | 0 | 14.819  | 18.115 |
| 1161 | 1/28/2011 | 11:38:20 | 0 | 14.8189 | 18.115 |
| 1162 | 1/28/2011 | 11:38:21 | 0 | 14.8222 | 18.115 |
| 1163 | 1/28/2011 | 11:38:22 | 0 | 14.8249 | 18.115 |
| 1164 | 1/28/2011 | 11:38:23 | 0 | 14.8288 | 18.115 |
| 1165 | 1/28/2011 | 11:38:24 | 0 | 14.8302 | 18.115 |
| 1166 | 1/28/2011 | 11:38:25 | 0 | 14.8321 | 18.106 |
| 1167 | 1/28/2011 | 11:38:26 | 0 | 14.8349 | 18.126 |
| 1168 | 1/28/2011 | 11:38:27 | 0 | 14.8375 | 18.12  |
| 1169 | 1/28/2011 | 11:38:28 | 0 | 14.8395 | 18.118 |
| 1170 | 1/28/2011 | 11:38:29 | 0 | 14.8401 | 18.117 |
| 1171 | 1/28/2011 | 11:38:30 | 0 | 14.8404 | 18.117 |
| 1172 | 1/28/2011 | 11:38:31 | 0 | 14.8429 | 18.117 |
| 1173 | 1/28/2011 | 11:38:32 | 0 | 14.8474 | 18.117 |
| 1174 | 1/28/2011 | 11:38:33 | 0 | 14.8486 | 18.118 |
| 1175 | 1/28/2011 | 11:38:34 | 0 | 14.8488 | 18.118 |
| 1176 | 1/28/2011 | 11:38:35 | 0 | 14.8531 | 18.118 |
| 1177 | 1/28/2011 | 11:38:36 | 0 | 14.8559 | 18.118 |
| 1178 | 1/28/2011 | 11:38:37 | 0 | 14.8575 | 18.118 |
| 1179 | 1/28/2011 | 11:38:38 | 0 | 14.8588 | 18.118 |
| 1180 | 1/28/2011 | 11:38:39 | 0 | 14.8635 | 18.119 |
| 1181 | 1/28/2011 | 11:38:40 | 0 | 14.8629 | 18.119 |
| 1182 | 1/28/2011 | 11:38:41 | 0 | 14.8665 | 18.119 |
| 1183 | 1/28/2011 | 11:38:42 | 0 | 14.8638 | 18.119 |
| 1184 | 1/28/2011 | 11:38:43 | 0 | 14.8705 | 18.12  |
| 1185 | 1/28/2011 | 11:38:44 | 0 | 14.8691 | 18.12  |
| 1186 | 1/28/2011 | 11:38:45 | 0 | 14.8709 | 18.12  |
| 1187 | 1/28/2011 | 11:38:46 | 0 | 14.874  | 18.121 |
| 1188 | 1/28/2011 | 11:38:47 | 0 | 14.8785 | 18.121 |
| 1189 | 1/28/2011 | 11:38:48 | 0 | 14.8757 | 18.121 |
| 1190 | 1/28/2011 | 11:38:49 | 0 | 14.8809 | 18.122 |
| 1191 | 1/28/2011 | 11:38:50 | 0 | 14.8844 | 18.122 |
| 1192 | 1/28/2011 | 11:38:51 | 0 | 14.8837 | 18.122 |
| 1193 | 1/28/2011 | 11:38:52 | 0 | 14.8864 | 18.123 |
| 1194 | 1/28/2011 | 11:38:53 | 0 | 14.8898 | 18.123 |
| 1195 | 1/28/2011 | 11:38:54 | 0 | 14.8913 | 18.123 |
| 1196 | 1/28/2011 | 11:38:55 | 0 | 14.8921 | 18.123 |
| 1197 | 1/28/2011 | 11:38:56 | 0 | 14.8965 | 18.124 |
| 1198 | 1/28/2011 | 11:38:57 | 0 | 14.8973 | 18.124 |
| 1199 | 1/28/2011 | 11:38:58 | 0 | 14.9009 | 18.124 |
| 1200 | 1/28/2011 | 11:38:59 | 0 | 14.9018 | 18.125 |
| 1201 | 1/28/2011 | 11:39:00 | 0 | 14.9033 | 18.125 |
| 1202 | 1/28/2011 | 11:39:01 | 0 | 14.9049 | 18.125 |
| 1203 | 1/28/2011 | 11:39:02 | 0 | 14.9062 | 18.126 |
| 1204 | 1/28/2011 | 11:39:03 | 0 | 14.9104 | 18.126 |
| 1205 | 1/28/2011 | 11:39:04 | 0 | 14.9102 | 18.126 |
| 1206 | 1/28/2011 | 11:39:05 | 0 | 14.9133 | 18.127 |
| 1207 | 1/28/2011 | 11:39:06 | 0 | 14.9149 | 18.127 |
| 1208 | 1/28/2011 | 11:39:07 | 0 | 14.9148 | 18.128 |
| 1209 | 1/28/2011 | 11:39:08 | 0 | 14.9165 | 18.128 |
| 1210 | 1/28/2011 | 11:39:09 | 0 | 14.9177 | 18.129 |
| 1211 | 1/28/2011 | 11:39:10 | 0 | 14.924  | 18.129 |
| 1212 | 1/28/2011 | 11:39:11 | 0 | 14.9278 | 18.13  |
| 1213 | 1/28/2011 | 11:39:12 | 0 | 14.9277 | 18.131 |
| 1214 | 1/28/2011 | 11:39:13 | 0 | 14.9274 | 18.13  |
| 1215 | 1/28/2011 | 11:39:14 | 0 | 14.9308 | 18.131 |
| 1216 | 1/28/2011 | 11:39:15 | 0 | 14.9307 | 18.132 |
| 1217 | 1/28/2011 | 11:39:16 | 0 | 14.9363 | 18.132 |
| 1218 | 1/28/2011 | 11:39:17 | 0 | 14.9352 | 18.133 |
| 1219 | 1/28/2011 | 11:39:18 | 0 | 14.9374 | 18.13  |
| 1220 | 1/28/2011 | 11:39:19 | 0 | 14.9407 | 18.13  |
| 1221 | 1/28/2011 | 11:39:20 | 0 | 14.9434 | 18.134 |
| 1222 | 1/28/2011 | 11:39:21 | 0 | 14.9431 | 18.134 |
| 1223 | 1/28/2011 | 11:39:22 | 0 | 14.9455 | 18.133 |
| 1224 | 1/28/2011 | 11:39:23 | 0 | 14.9464 | 18.131 |
| 1225 | 1/28/2011 | 11:39:24 | 0 | 14.9492 | 18.132 |
| 1226 | 1/28/2011 | 11:39:25 | 0 | 14.9507 | 18.132 |
| 1227 | 1/28/2011 | 11:39:26 | 0 | 14.9533 | 18.132 |
| 1228 | 1/28/2011 | 11:39:27 | 0 | 14.953  | 18.131 |
| 1229 | 1/28/2011 | 11:39:28 | 0 | 14.9598 | 18.135 |
| 1230 | 1/28/2011 | 11:39:29 | 0 | 14.9599 | 18.117 |
| 1231 | 1/28/2011 | 11:39:30 | 0 | 14.96   | 18.117 |
| 1232 | 1/28/2011 | 11:39:31 | 0 | 14.9621 | 18.117 |
| 1233 | 1/28/2011 | 11:39:32 | 0 | 14.9635 | 18.118 |
| 1234 | 1/28/2011 | 11:39:33 | 0 | 14.9666 | 18.117 |
| 1235 | 1/28/2011 | 11:39:34 | 0 | 14.9674 | 18.118 |
| 1236 | 1/28/2011 | 11:39:35 | 0 | 14.97   | 18.117 |
| 1237 | 1/28/2011 | 11:39:36 | 0 | 14.9728 | 18.118 |
| 1238 | 1/28/2011 | 11:39:37 | 0 | 14.9714 | 18.117 |
| 1239 | 1/28/2011 | 11:39:38 | 0 | 14.9774 | 18.118 |
| 1240 | 1/28/2011 | 11:39:39 | 0 | 14.9796 | 18.118 |
| 1241 | 1/28/2011 | 11:39:40 | 0 | 14.9788 | 18.118 |
| 1242 | 1/28/2011 | 11:39:41 | 0 | 14.9823 | 18.118 |
| 1243 | 1/28/2011 | 11:39:42 | 0 | 14.9842 | 18.118 |

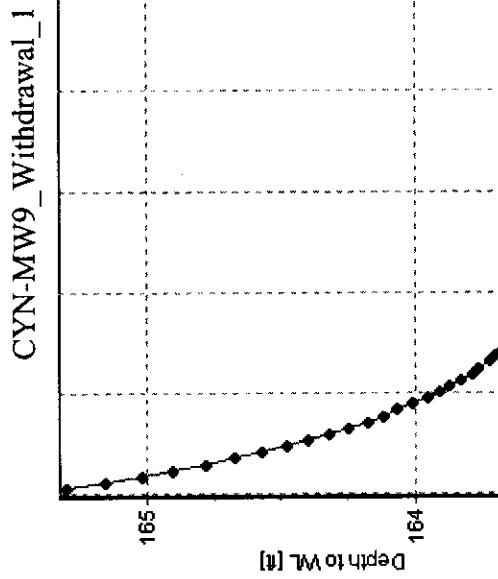




|      |           |          |   |         |        |
|------|-----------|----------|---|---------|--------|
| 1244 | 1/28/2011 | 11:39:43 | 0 | 14.985  | 18.118 |
| 1245 | 1/28/2011 | 11:39:44 | 0 | 14.9846 | 18.119 |
| 1246 | 1/28/2011 | 11:39:45 | 0 | 14.9873 | 18.119 |
| 1247 | 1/28/2011 | 11:39:46 | 0 | 14.9909 | 18.119 |
| 1248 | 1/28/2011 | 11:39:47 | 0 | 14.9921 | 18.119 |
| 1249 | 1/28/2011 | 11:39:48 | 0 | 14.9933 | 18.109 |
| 1250 | 1/28/2011 | 11:39:49 | 0 | 14.9933 | 18.103 |
| 1251 | 1/28/2011 | 11:39:50 | 0 | 14.9952 | 18.099 |
| 1252 | 1/28/2011 | 11:39:51 | 0 | 14.9976 | 18.095 |
| 1253 | 1/28/2011 | 11:39:52 | 0 | 14.9991 | 18.093 |
| 1254 | 1/28/2011 | 11:39:53 | 0 | 15.0044 | 18.091 |
| 1255 | 1/28/2011 | 11:39:54 | 0 | 15.0028 | 18.088 |
| 1256 | 1/28/2011 | 11:39:55 | 0 | 15.0064 | 18.088 |
| 1257 | 1/28/2011 | 11:39:56 | 0 | 15.0057 | 18.086 |
| 1258 | 1/28/2011 | 11:39:57 | 0 | 15.0087 | 18.085 |
| 1259 | 1/28/2011 | 11:39:58 | 0 | 15.0096 | 18.083 |
| 1260 | 1/28/2011 | 11:39:59 | 0 | 15.0119 | 18.081 |
| 1261 | 1/28/2011 | 11:40:00 | 0 | 15.0157 | 18.081 |
| 1262 | 1/28/2011 | 11:40:05 | 0 | 15.0213 | 18.054 |
| 1263 | 1/28/2011 | 11:40:10 | 0 | 15.0301 | 18.043 |
| 1264 | 1/28/2011 | 11:40:15 | 0 | 15.0394 | 18.035 |
| 1265 | 1/28/2011 | 11:40:20 | 0 | 15.0493 | 18.027 |
| 1266 | 1/28/2011 | 11:40:25 | 0 | 15.0558 | 18.021 |
| 1267 | 1/28/2011 | 11:40:30 | 0 | 15.0613 | 18.015 |
| 1268 | 1/28/2011 | 11:40:35 | 0 | 15.0767 | 18.009 |
| 1269 | 1/28/2011 | 11:40:40 | 0 | 15.0845 | 18.004 |
| 1270 | 1/28/2011 | 11:40:45 | 0 | 15.0916 | 18     |
| 1271 | 1/28/2011 | 11:40:50 | 0 | 15.0981 | 18.012 |
| 1272 | 1/28/2011 | 11:40:55 | 0 | 15.1054 | 17.995 |
| 1273 | 1/28/2011 | 11:41:00 | 0 | 15.1119 | 17.99  |
| 1274 | 1/28/2011 | 11:41:05 | 0 | 15.1222 | 17.987 |
| 1275 | 1/28/2011 | 11:41:10 | 0 | 15.1296 | 17.984 |
| 1276 | 1/28/2011 | 11:41:15 | 0 | 15.1378 | 17.982 |
| 1277 | 1/28/2011 | 11:41:20 | 0 | 15.1459 | 17.985 |
| 1278 | 1/28/2011 | 11:41:25 | 0 | 15.1513 | 17.98  |
| 1279 | 1/28/2011 | 11:41:30 | 0 | 15.1596 | 17.977 |
| 1280 | 1/28/2011 | 11:41:35 | 0 | 15.1683 | 17.975 |
| 1281 | 1/28/2011 | 11:41:40 | 0 | 15.1771 | 17.973 |
| 1282 | 1/28/2011 | 11:41:45 | 0 | 15.1826 | 17.971 |
| 1283 | 1/28/2011 | 11:41:50 | 0 | 15.191  | 17.97  |
| 1284 | 1/28/2011 | 11:41:55 | 0 | 15.1961 | 17.969 |
| 1285 | 1/28/2011 | 11:42:00 | 0 | 15.2058 | 17.967 |
| 1286 | 1/28/2011 | 11:42:05 | 0 | 15.2108 | 17.966 |
| 1287 | 1/28/2011 | 11:42:10 | 0 | 15.218  | 17.965 |
| 1288 | 1/28/2011 | 11:42:15 | 0 | 15.2265 | 17.964 |
| 1289 | 1/28/2011 | 11:42:20 | 0 | 15.2337 | 17.983 |
| 1290 | 1/28/2011 | 11:42:25 | 0 | 15.2388 | 17.965 |
| 1291 | 1/28/2011 | 11:42:30 | 0 | 15.2455 | 17.962 |
| 1292 | 1/28/2011 | 11:42:35 | 0 | 15.256  | 17.961 |
| 1293 | 1/28/2011 | 11:42:40 | 0 | 15.2629 | 17.961 |
| 1294 | 1/28/2011 | 11:42:45 | 0 | 15.2679 | 17.96  |
| 1295 | 1/28/2011 | 11:42:50 | 0 | 15.2756 | 17.959 |
| 1296 | 1/28/2011 | 11:42:55 | 0 | 15.2796 | 17.958 |
| 1297 | 1/28/2011 | 11:43:00 | 0 | 15.288  | 17.958 |
| 1298 | 1/28/2011 | 11:43:05 | 0 | 15.2924 | 17.957 |
| 1299 | 1/28/2011 | 11:43:10 | 0 | 15.3009 | 17.955 |
| 1300 | 1/28/2011 | 11:43:15 | 0 | 15.3074 | 17.958 |
| 1301 | 1/28/2011 | 11:43:20 | 0 | 15.3151 | 17.956 |
| 1302 | 1/28/2011 | 11:43:25 | 0 | 15.3204 | 17.956 |
| 1303 | 1/28/2011 | 11:43:30 | 0 | 15.3262 | 17.956 |
| 1304 | 1/28/2011 | 11:43:35 | 0 | 15.331  | 17.955 |
| 1305 | 1/28/2011 | 11:43:40 | 0 | 15.3374 | 17.955 |
| 1306 | 1/28/2011 | 11:43:45 | 0 | 15.3454 | 17.955 |
| 1307 | 1/28/2011 | 11:43:50 | 0 | 15.3535 | 17.954 |
| 1308 | 1/28/2011 | 11:43:55 | 0 | 15.3593 | 17.953 |
| 1309 | 1/28/2011 | 11:44:00 | 0 | 15.3631 | 17.954 |
| 1310 | 1/28/2011 | 11:44:05 | 0 | 15.3685 | 17.953 |
| 1311 | 1/28/2011 | 11:44:10 | 0 | 15.3746 | 17.953 |
| 1312 | 1/28/2011 | 11:44:15 | 0 | 15.3788 | 17.955 |
| 1313 | 1/28/2011 | 11:44:20 | 0 | 15.3833 | 17.954 |
| 1314 | 1/28/2011 | 11:44:25 | 0 | 15.3941 | 17.953 |
| 1315 | 1/28/2011 | 11:44:30 | 0 | 15.3988 | 17.953 |
| 1316 | 1/28/2011 | 11:44:35 | 0 | 15.4039 | 17.953 |
| 1317 | 1/28/2011 | 11:44:40 | 0 | 15.4108 | 17.953 |
| 1318 | 1/28/2011 | 11:44:45 | 0 | 15.4126 | 17.953 |
| 1319 | 1/28/2011 | 11:44:50 | 0 | 15.4194 | 17.952 |
| 1320 | 1/28/2011 | 11:44:55 | 0 | 15.4257 | 17.953 |
| 1321 | 1/28/2011 | 11:45:00 | 0 | 15.4315 | 17.952 |
| 1322 | 1/28/2011 | 11:45:05 | 0 | 15.4351 | 17.952 |
| 1323 | 1/28/2011 | 11:45:10 | 0 | 15.4427 | 17.952 |
| 1324 | 1/28/2011 | 11:45:15 | 0 | 15.4489 | 17.957 |
| 1325 | 1/28/2011 | 11:45:20 | 0 | 15.4515 | 17.954 |
| 1326 | 1/28/2011 | 11:45:25 | 0 | 15.4575 | 17.953 |
| 1327 | 1/28/2011 | 11:45:30 | 0 | 15.4632 | 17.952 |
| 1328 | 1/28/2011 | 11:45:35 | 0 | 15.4689 | 17.953 |
| 1329 | 1/28/2011 | 11:45:40 | 0 | 15.4775 | 17.952 |
| 1330 | 1/28/2011 | 11:45:45 | 0 | 15.4794 | 17.952 |
| 1331 | 1/28/2011 | 11:45:50 | 0 | 15.4825 | 17.952 |
| 1332 | 1/28/2011 | 11:45:55 | 0 | 15.4884 | 17.952 |
| 1333 | 1/28/2011 | 11:46:00 | 0 | 15.4932 | 17.952 |
| 1334 | 1/28/2011 | 11:46:05 | 0 | 15.501  | 17.952 |
| 1335 | 1/28/2011 | 11:46:10 | 0 | 15.5053 | 17.952 |
| 1336 | 1/28/2011 | 11:46:15 | 0 | 15.5092 | 17.952 |
| 1337 | 1/28/2011 | 11:46:20 | 0 | 15.5133 | 17.951 |
| 1338 | 1/28/2011 | 11:46:25 | 0 | 15.5189 | 17.954 |
| 1339 | 1/28/2011 | 11:46:30 | 0 | 15.5257 | 17.953 |
| 1340 | 1/28/2011 | 11:46:35 | 0 | 15.5284 | 17.953 |
| 1341 | 1/28/2011 | 11:46:40 | 0 | 15.5333 | 17.953 |
| 1342 | 1/28/2011 | 11:46:45 | 0 | 15.5391 | 17.952 |
| 1343 | 1/28/2011 | 11:46:50 | 0 | 15.5413 | 17.952 |
| 1344 | 1/28/2011 | 11:46:55 | 0 | 15.5482 | 17.951 |
| 1345 | 1/28/2011 | 11:47:00 | 0 | 15.5505 | 17.952 |
| 1346 | 1/28/2011 | 11:47:05 | 0 | 15.5599 | 17.952 |
| 1347 | 1/28/2011 | 11:47:10 | 0 | 15.5583 | 17.952 |
| 1348 | 1/28/2011 | 11:47:15 | 0 | 15.5634 | 17.952 |

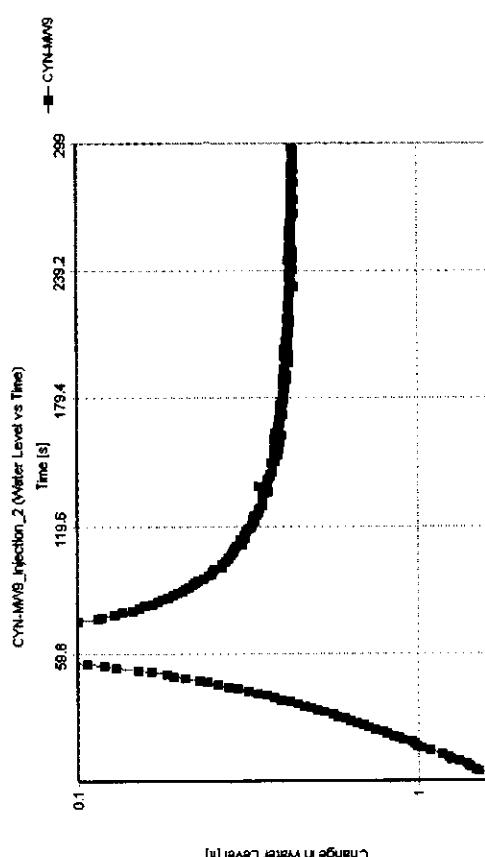
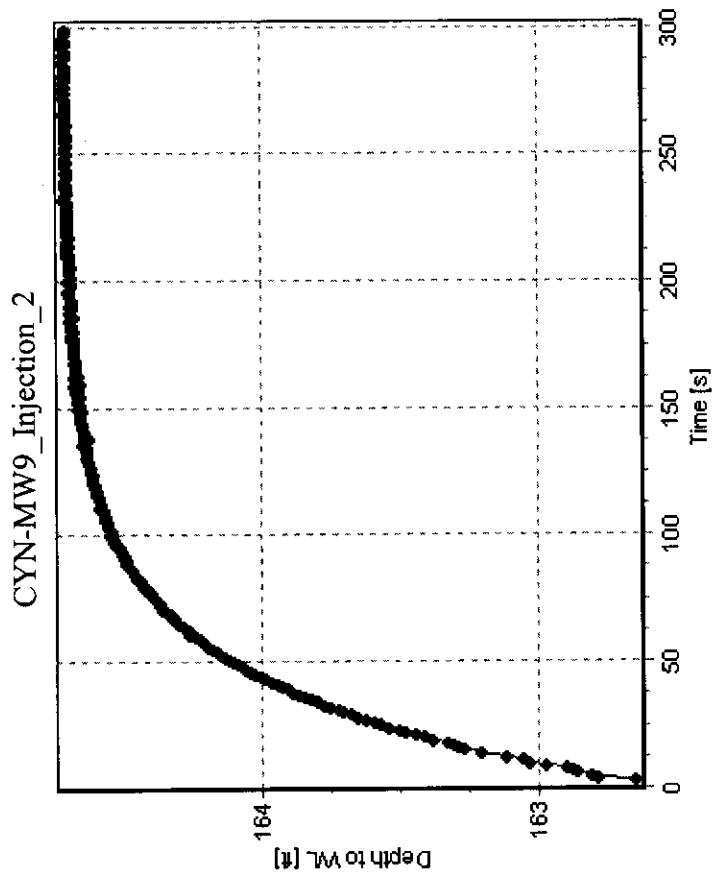
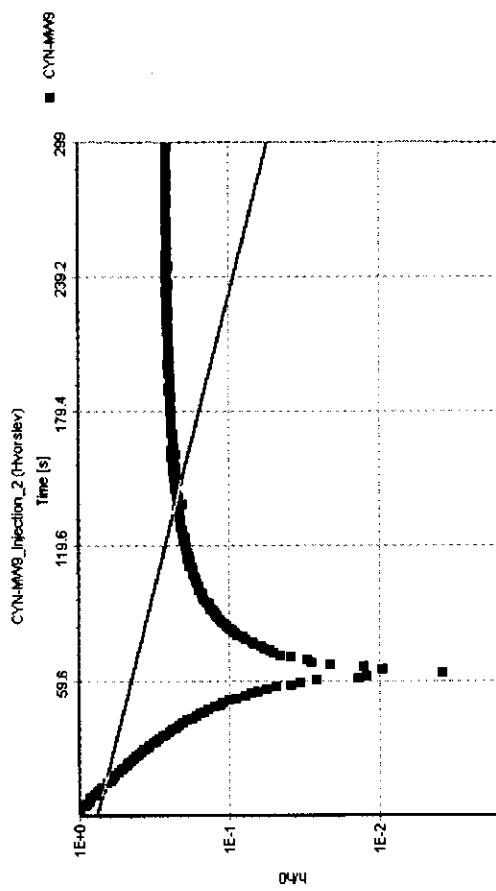
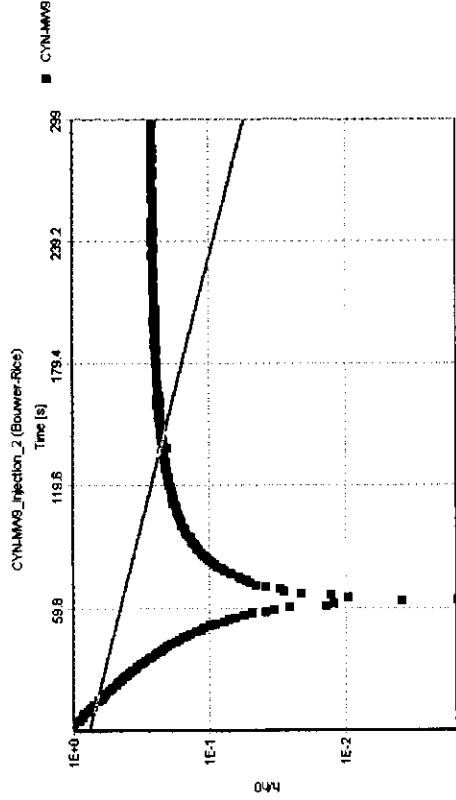

|      |           |          |   |         |        |
|------|-----------|----------|---|---------|--------|
| 1349 | 1/28/2011 | 11:47:20 | 0 | 15.5693 | 17.956 |
| 1350 | 1/28/2011 | 11:47:25 | 0 | 15.5742 | 17.953 |
| 1351 | 1/28/2011 | 11:47:30 | 0 | 15.5783 | 17.953 |
| 1352 | 1/28/2011 | 11:47:35 | 0 | 15.5814 | 17.952 |
| 1353 | 1/28/2011 | 11:47:40 | 0 | 15.5861 | 17.953 |
| 1354 | 1/28/2011 | 11:47:45 | 0 | 15.5899 | 17.953 |
| 1355 | 1/28/2011 | 11:47:50 | 0 | 15.5924 | 17.952 |
| 1356 | 1/28/2011 | 11:47:55 | 0 | 15.5989 | 17.952 |
| 1357 | 1/28/2011 | 11:48:00 | 0 | 15.6016 | 17.952 |
| 1358 | 1/28/2011 | 11:48:05 | 0 | 15.6062 | 17.952 |
| 1359 | 1/28/2011 | 11:48:10 | 0 | 15.6122 | 17.952 |
| 1360 | 1/28/2011 | 11:48:15 | 0 | 15.6155 | 17.951 |
| 1361 | 1/28/2011 | 11:48:20 | 0 | 15.617  | 17.952 |
| 1362 | 1/28/2011 | 11:48:25 | 0 | 15.6222 | 17.951 |
| 1363 | 1/28/2011 | 11:48:30 | 0 | 15.6255 | 17.955 |
| 1364 | 1/28/2011 | 11:48:35 | 0 | 15.6335 | 17.953 |
| 1365 | 1/28/2011 | 11:48:40 | 0 | 15.6327 | 17.952 |
| 1366 | 1/28/2011 | 11:48:45 | 0 | 15.6406 | 17.953 |
| 1367 | 1/28/2011 | 11:48:50 | 0 | 15.6438 | 17.953 |
| 1368 | 1/28/2011 | 11:48:55 | 0 | 15.6463 | 17.952 |
| 1369 | 1/28/2011 | 11:49:00 | 0 | 15.6488 | 17.956 |
| 1370 | 1/28/2011 | 11:49:05 | 0 | 15.6539 | 17.954 |
| 1371 | 1/28/2011 | 11:49:10 | 0 | 15.6583 | 17.954 |
| 1372 | 1/28/2011 | 11:49:15 | 0 | 15.662  | 17.96  |
| 1373 | 1/28/2011 | 11:49:20 | 0 | 15.663  | 17.955 |
| 1374 | 1/28/2011 | 11:49:25 | 0 | 15.6688 | 17.955 |
| 1375 | 1/28/2011 | 11:49:30 | 0 | 15.6747 | 17.961 |
| 1376 | 1/28/2011 | 11:49:35 | 0 | 15.6758 | 17.956 |
| 1377 | 1/28/2011 | 11:49:40 | 0 | 15.6793 | 17.956 |
| 1378 | 1/28/2011 | 11:49:45 | 0 | 15.6827 | 17.955 |
| 1379 | 1/28/2011 | 11:49:50 | 0 | 15.6838 | 17.955 |
| 1380 | 1/28/2011 | 11:49:55 | 0 | 15.6911 | 17.955 |
| 1381 | 1/28/2011 | 11:50:00 | 0 | 15.6928 | 17.954 |
| 1382 | 1/28/2011 | 11:50:05 | 0 | 15.6994 | 17.954 |
| 1383 | 1/28/2011 | 11:50:10 | 0 | 15.7014 | 17.953 |
| 1384 | 1/28/2011 | 11:50:15 | 0 | 15.7063 | 17.953 |
| 1385 | 1/28/2011 | 11:50:20 | 0 | 15.7056 | 17.953 |
| 1386 | 1/28/2011 | 11:50:25 | 0 | 15.7094 | 17.953 |
| 1387 | 1/28/2011 | 11:50:30 | 0 | 15.713  | 17.953 |
| 1388 | 1/28/2011 | 11:50:35 | 0 | 15.7177 | 17.953 |
| 1389 | 1/28/2011 | 11:50:40 | 0 | 15.7209 | 17.953 |
| 1390 | 1/28/2011 | 11:50:45 | 0 | 15.7227 | 17.953 |
| 1391 | 1/28/2011 | 11:50:50 | 0 | 15.7257 | 17.954 |
| 1392 | 1/28/2011 | 11:50:55 | 0 | 15.7317 | 17.953 |
| 1393 | 1/28/2011 | 11:51:00 | 0 | 15.7321 | 17.953 |
| 1394 | 1/28/2011 | 11:51:05 | 0 | 15.7356 | 17.953 |
| 1395 | 1/28/2011 | 11:51:10 | 0 | 15.7389 | 17.953 |
| 1396 | 1/28/2011 | 11:51:15 | 0 | 15.7413 | 17.954 |
| 1397 | 1/28/2011 | 11:51:20 | 0 | 15.7445 | 17.958 |
| 1398 | 1/28/2011 | 11:51:25 | 0 | 15.7506 | 17.956 |
| 1399 | 1/28/2011 | 11:51:30 | 0 | 15.7518 | 17.956 |
| 1400 | 1/28/2011 | 11:51:35 | 0 | 15.7535 | 17.956 |
| 1401 | 1/28/2011 | 11:51:40 | 0 | 15.7567 | 17.956 |
| 1402 | 1/28/2011 | 11:51:45 | 0 | 15.7611 | 17.956 |
| 1403 | 1/28/2011 | 11:51:50 | 0 | 15.7645 | 17.955 |
| 1404 | 1/28/2011 | 11:51:55 | 0 | 15.767  | 17.954 |
| 1405 | 1/28/2011 | 11:52:00 | 0 | 15.7689 | 17.954 |
| 1406 | 1/28/2011 | 11:52:05 | 0 | 15.7749 | 17.954 |
| 1407 | 1/28/2011 | 11:52:10 | 0 | 15.7773 | 17.953 |
| 1408 | 1/28/2011 | 11:52:15 | 0 | 15.7753 | 17.952 |
| 1409 | 1/28/2011 | 11:52:20 | 0 | 15.7808 | 17.952 |
| 1410 | 1/28/2011 | 11:52:25 | 0 | 15.7834 | 17.952 |
| 1411 | 1/28/2011 | 11:52:30 | 0 | 15.7855 | 17.951 |
| 1412 | 1/28/2011 | 11:52:35 | 0 | 15.7901 | 17.951 |
| 1413 | 1/28/2011 | 11:52:40 | 0 | 15.7924 | 17.95  |
| 1414 | 1/28/2011 | 11:52:45 | 0 | 15.7933 | 17.95  |
| 1415 | 1/28/2011 | 11:52:50 | 0 | 15.797  | 17.949 |
| 1416 | 1/28/2011 | 11:52:55 | 0 | 15.799  | 17.949 |
| 1417 | 1/28/2011 | 11:53:00 | 0 | 15.8019 | 17.948 |
| 1418 | 1/28/2011 | 11:53:05 | 0 | 15.8074 | 17.949 |
| 1419 | 1/28/2011 | 11:53:10 | 0 | 15.8071 | 17.948 |
| 1420 | 1/28/2011 | 11:53:15 | 0 | 15.8092 | 17.948 |
| 1421 | 1/28/2011 | 11:53:20 | 0 | 15.8117 | 17.948 |
| 1422 | 1/28/2011 | 11:53:25 | 0 | 15.8166 | 17.947 |
| 1423 | 1/28/2011 | 11:53:30 | 0 | 15.8203 | 17.946 |
| 1424 | 1/28/2011 | 11:53:35 | 0 | 15.8219 | 17.947 |
| 1425 | 1/28/2011 | 11:53:40 | 0 | 15.8208 | 17.947 |
| 1426 | 1/28/2011 | 11:53:45 | 0 | 15.8258 | 17.947 |
| 1427 | 1/28/2011 | 11:53:50 | 0 | 15.8277 | 17.946 |
| 1428 | 1/28/2011 | 11:53:55 | 0 | 15.8321 | 17.946 |
| 1429 | 1/28/2011 | 11:54:00 | 0 | 15.8318 | 17.946 |
| 1430 | 1/28/2011 | 11:54:05 | 0 | 15.8342 | 17.946 |
| 1431 | 1/28/2011 | 11:54:10 | 0 | 15.836  | 17.945 |
| 1432 | 1/28/2011 | 11:54:15 | 0 | 15.8434 | 17.945 |
| 1433 | 1/28/2011 | 11:54:20 | 0 | 15.8407 | 17.945 |
| 1434 | 1/28/2011 | 11:54:25 | 0 | 15.8438 | 17.945 |
| 1435 | 1/28/2011 | 11:54:30 | 0 | 15.8477 | 17.946 |
| 1436 | 1/28/2011 | 11:54:35 | 0 | 15.8491 | 17.945 |
| 1437 | 1/28/2011 | 11:54:40 | 0 | 15.8514 | 17.945 |
| 1438 | 1/28/2011 | 11:54:45 | 0 | 15.8533 | 17.944 |
| 1439 | 1/28/2011 | 11:54:50 | 0 | 15.8561 | 17.945 |
| 1440 | 1/28/2011 | 11:54:55 | 0 | 15.8593 | 17.945 |
| 1441 | 1/28/2011 | 11:55:00 | 0 | 15.8631 | 17.944 |

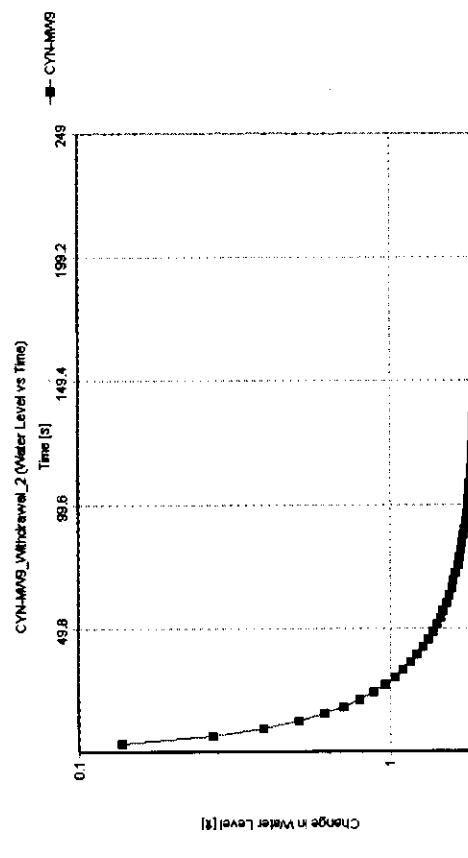
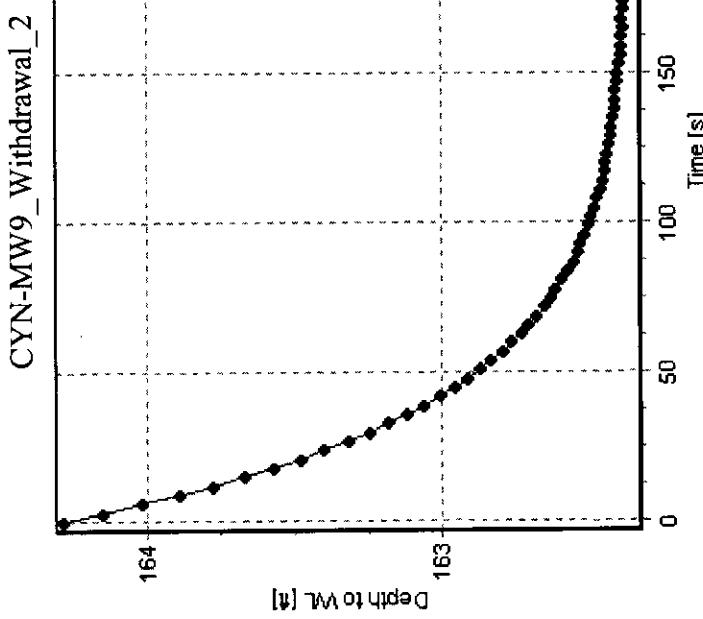
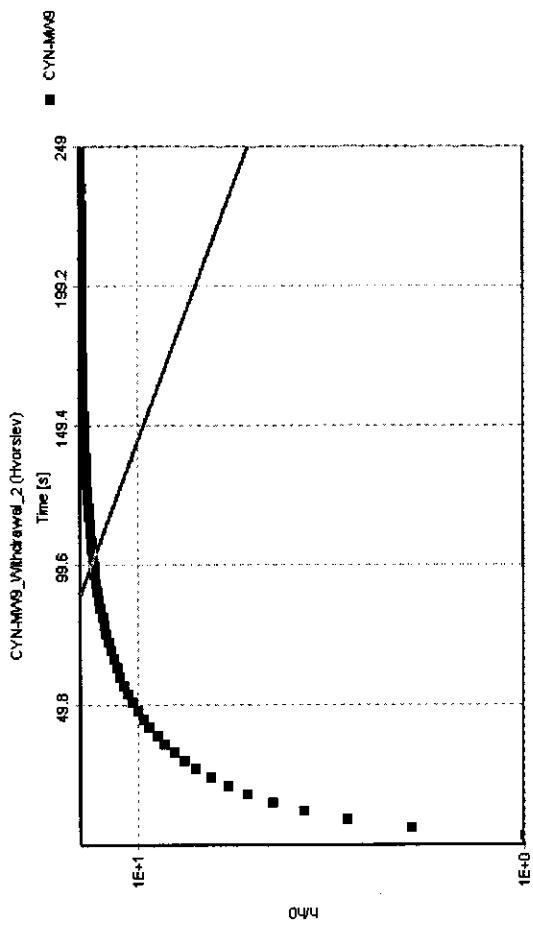
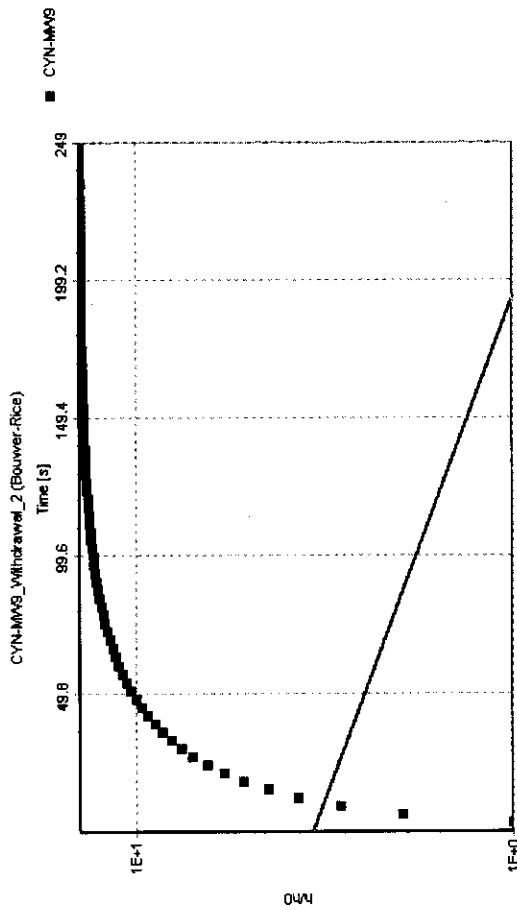
**Technical Memorandum—Field Report  
Slug Tests at Burn Site Groundwater Study Area  
Groundwater Monitoring Wells**

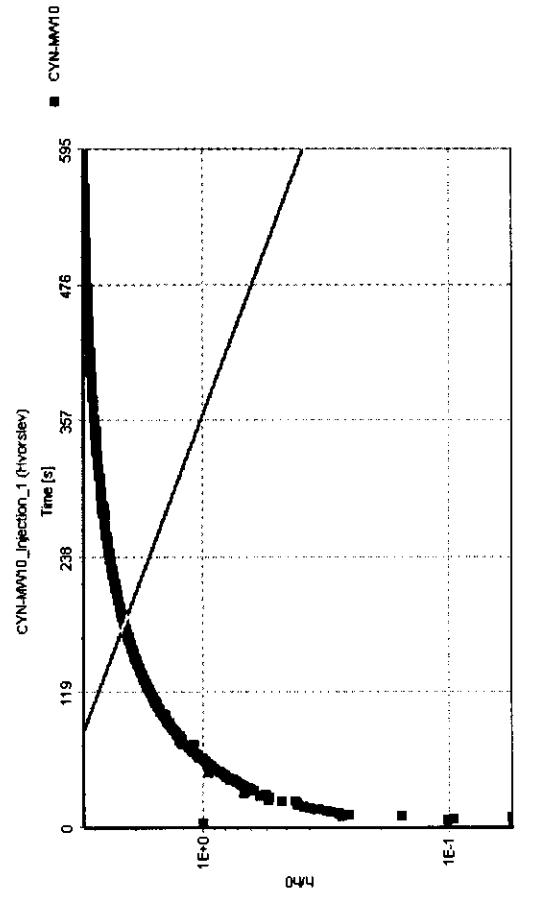
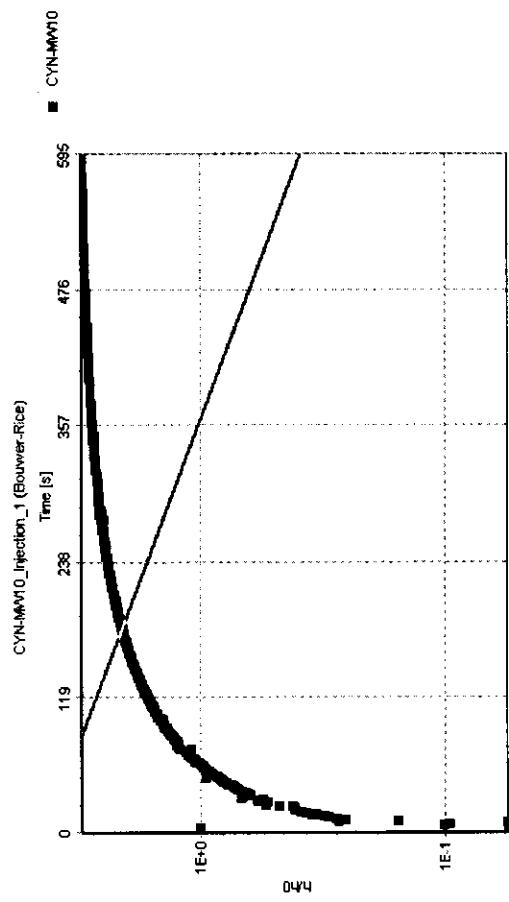

**Attachment B  
AquiferTest™ Water Level versus Time Plots and  
Analytical Solutions  
for  
CYN-MW9  
CYN-MW10  
CYN-MW11  
CYN-MW12**



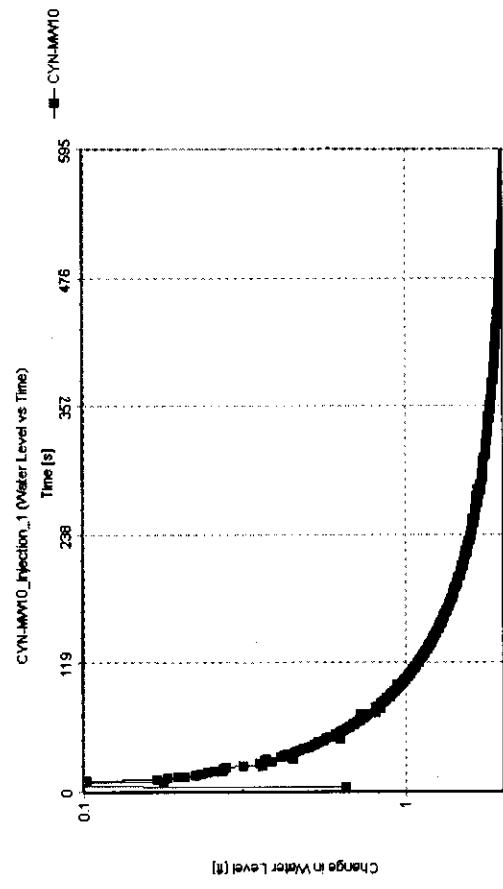
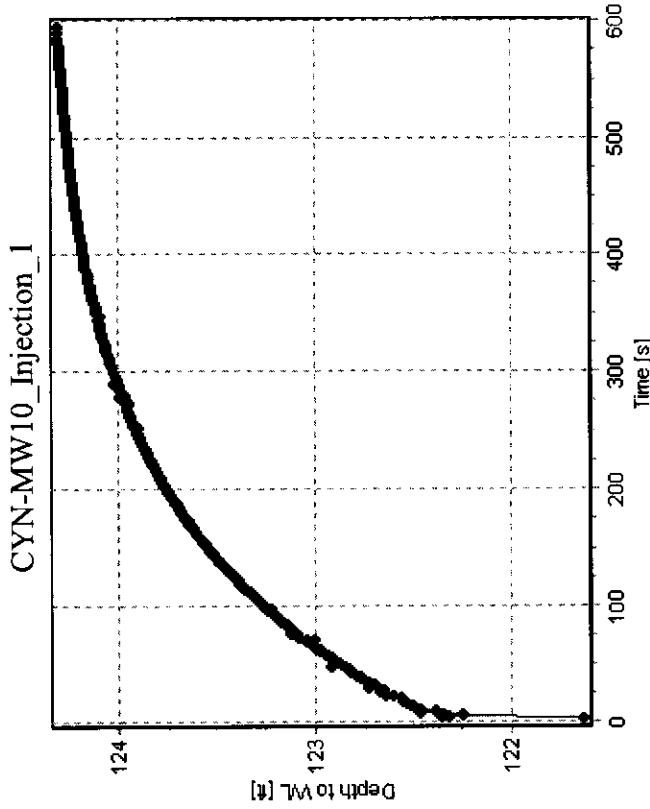



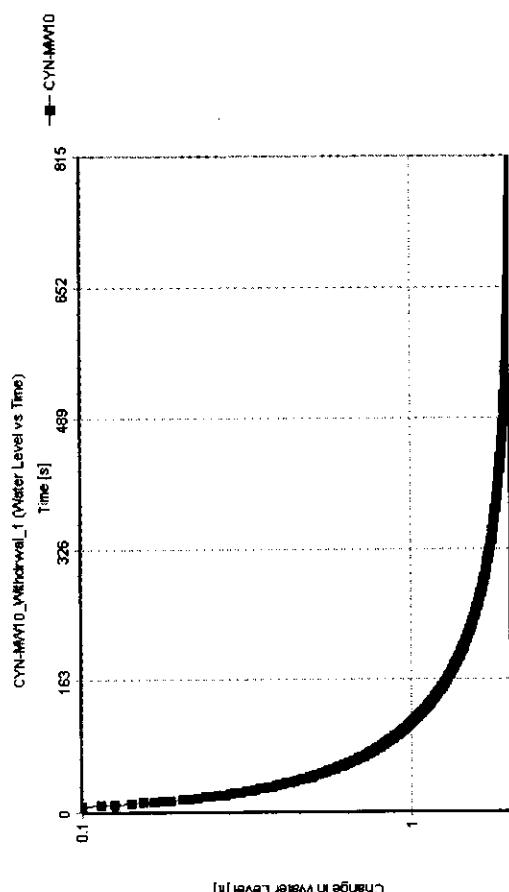
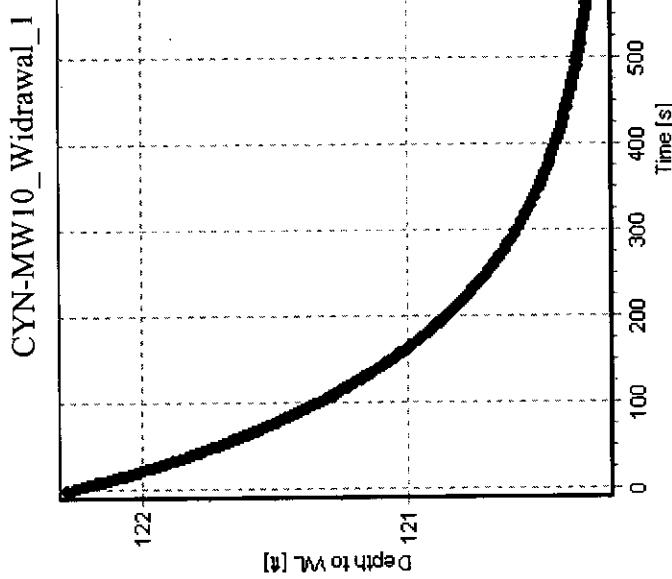
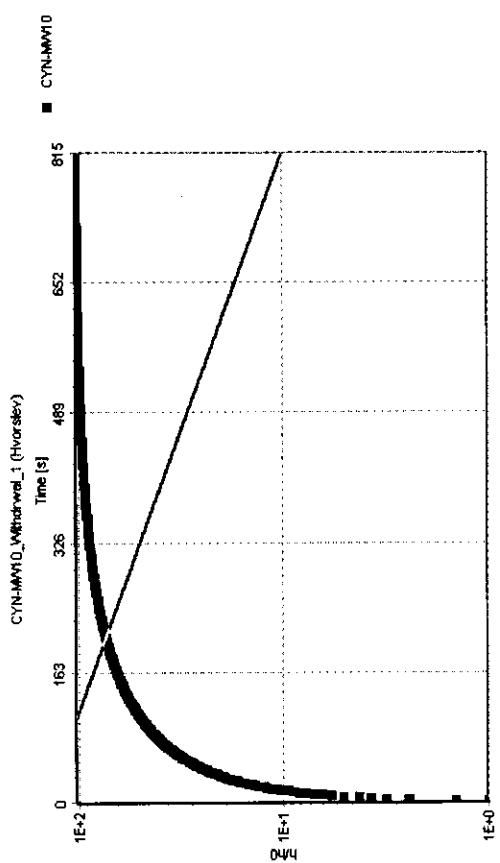
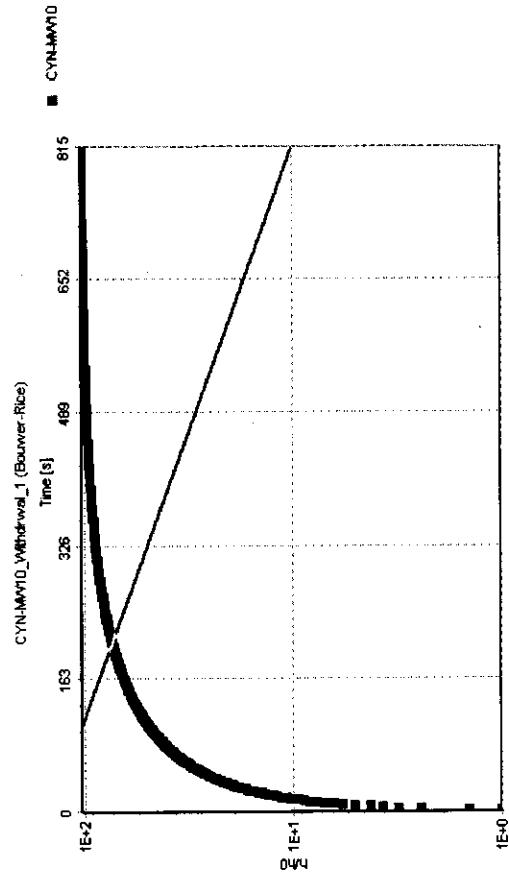





Conductivity: 1.77E+0 ft/d

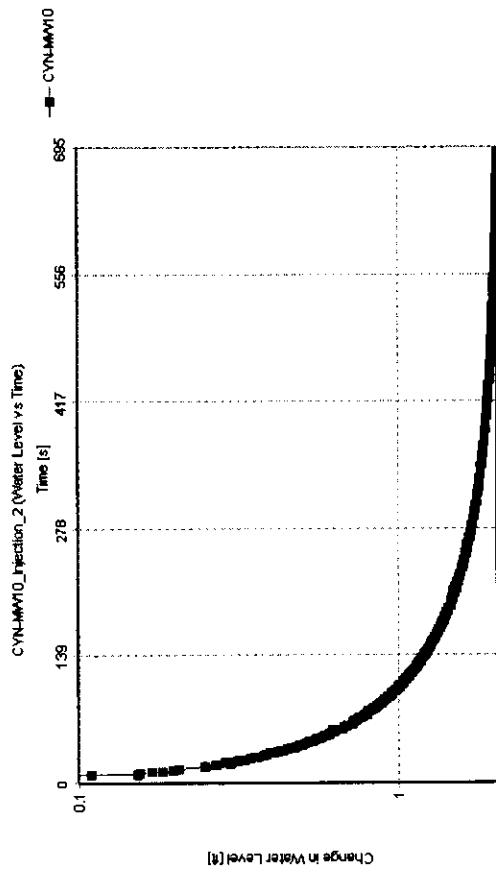
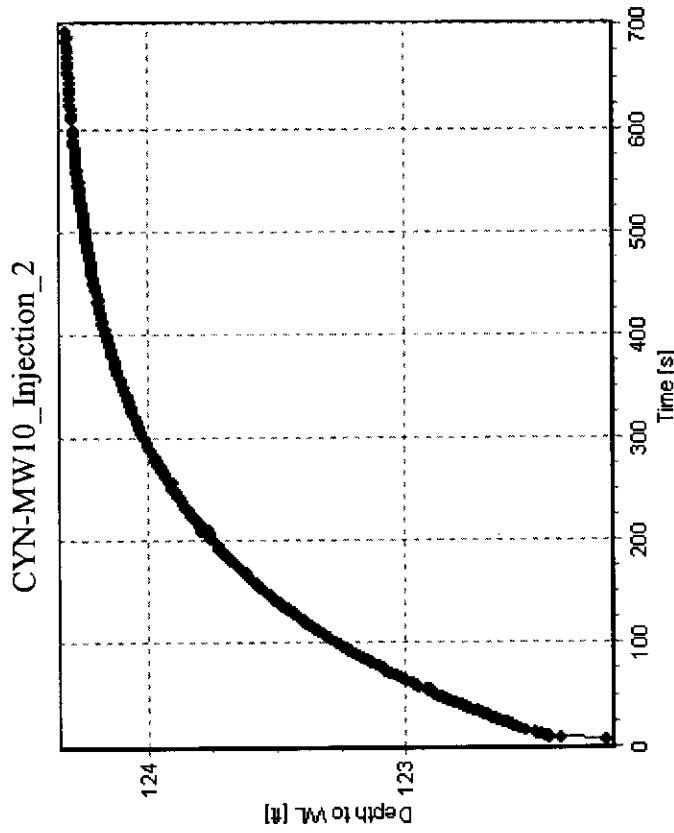
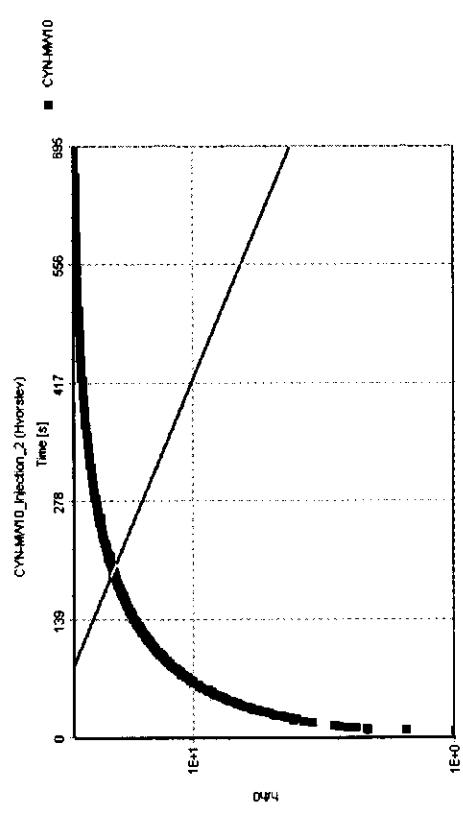
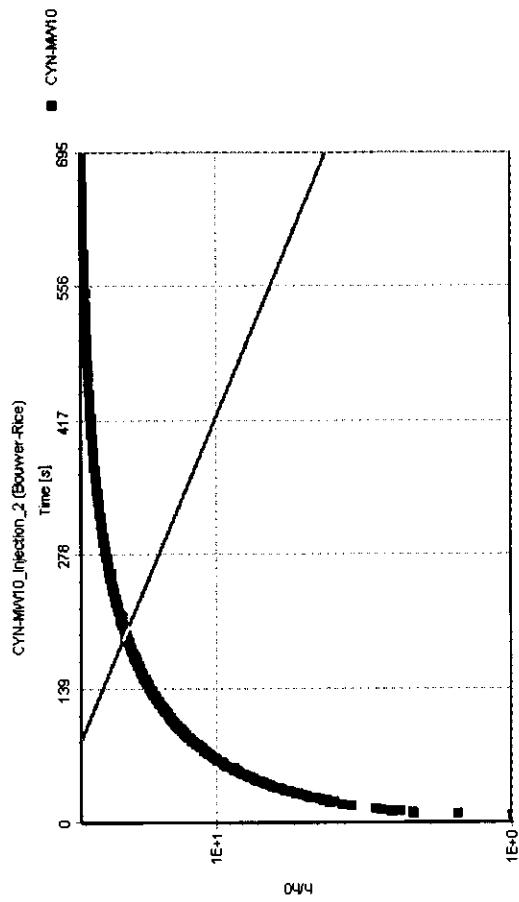



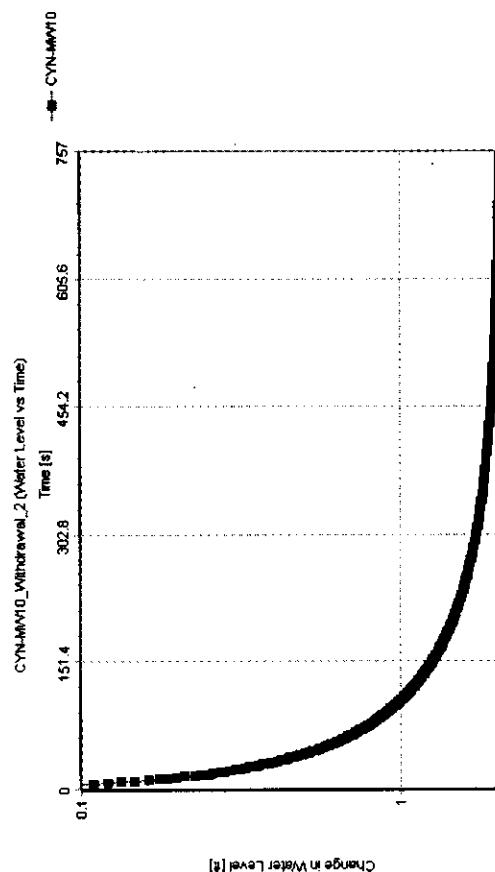
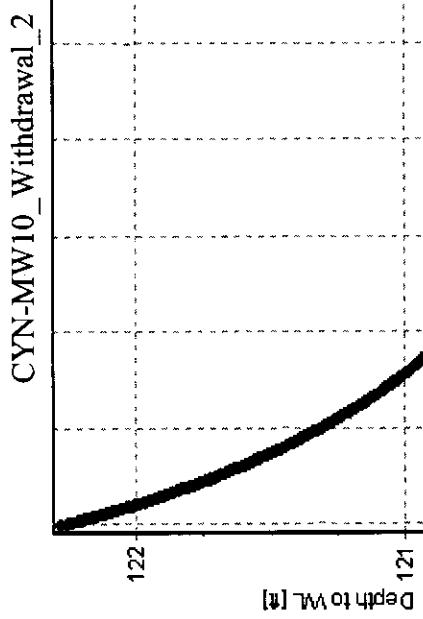
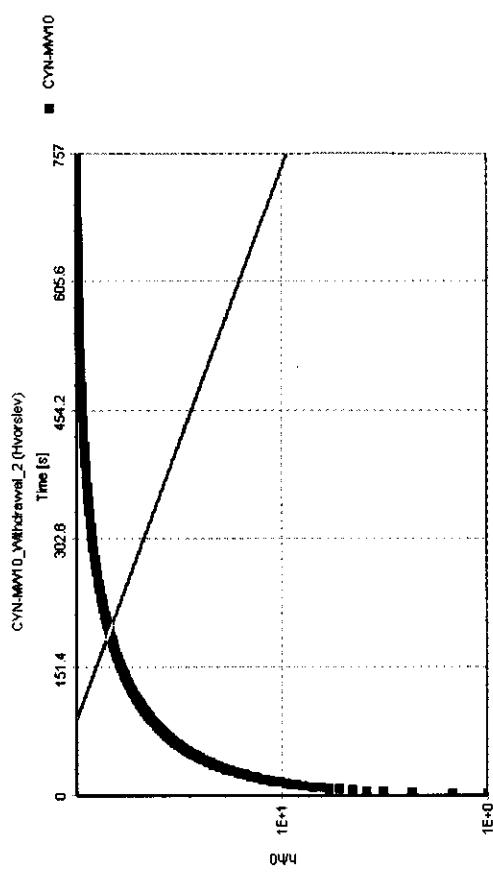
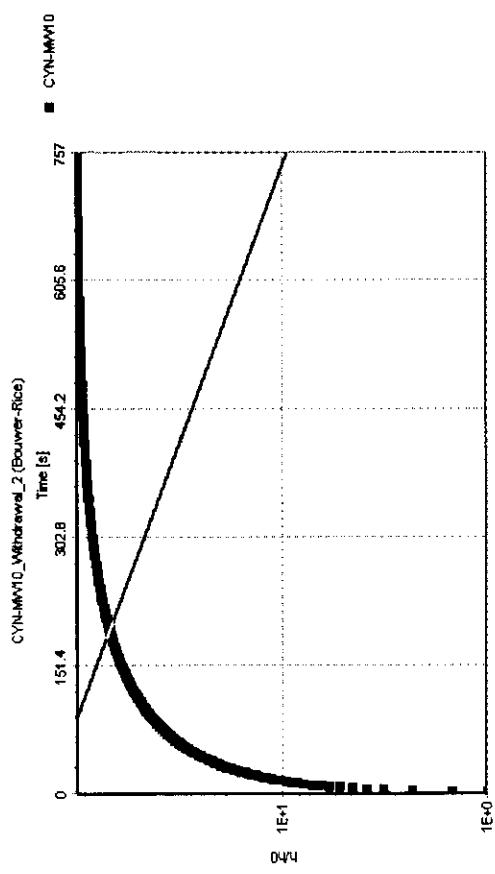

Conductivity: 2.08E+0 ft/d

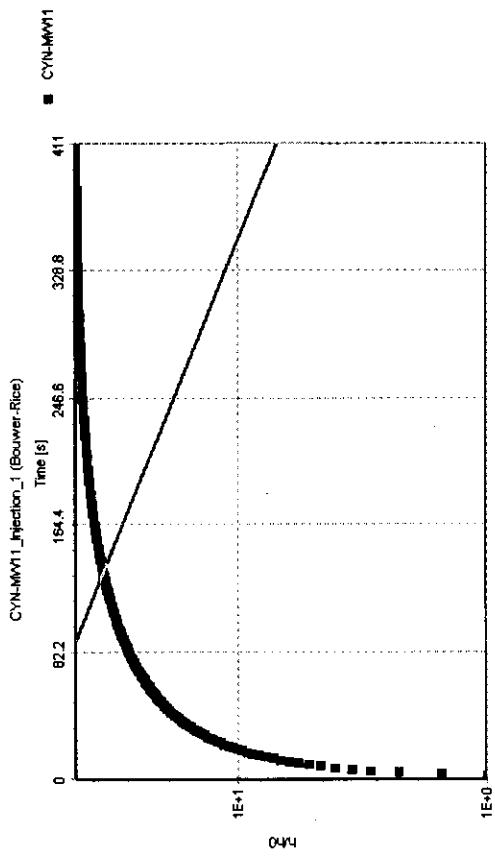





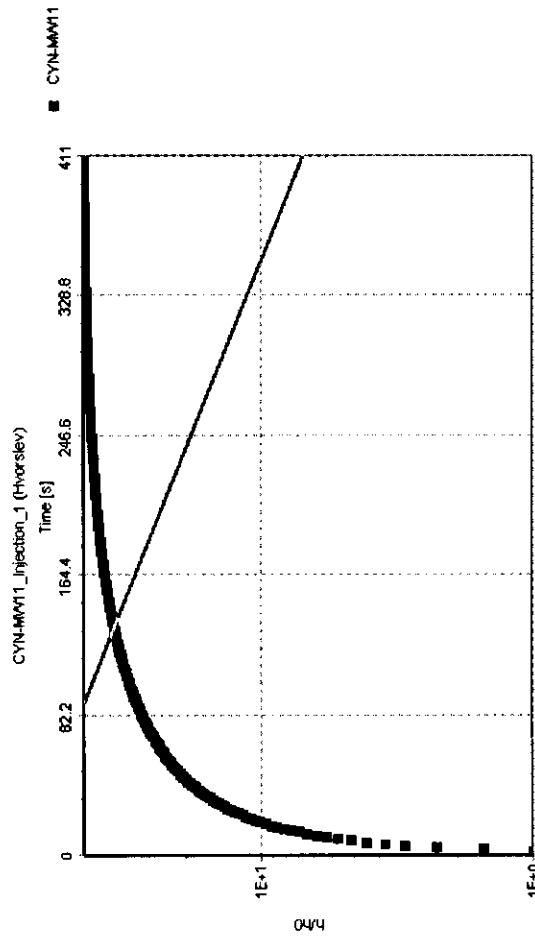






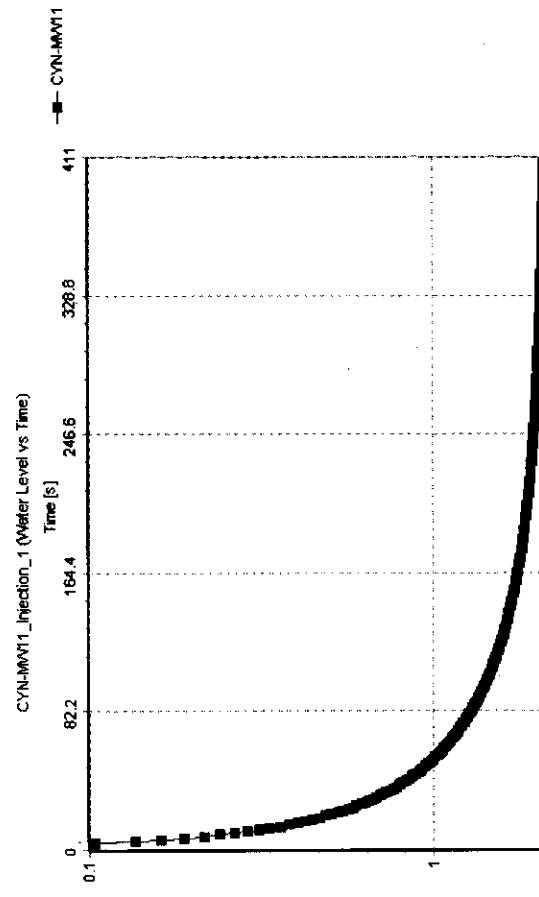
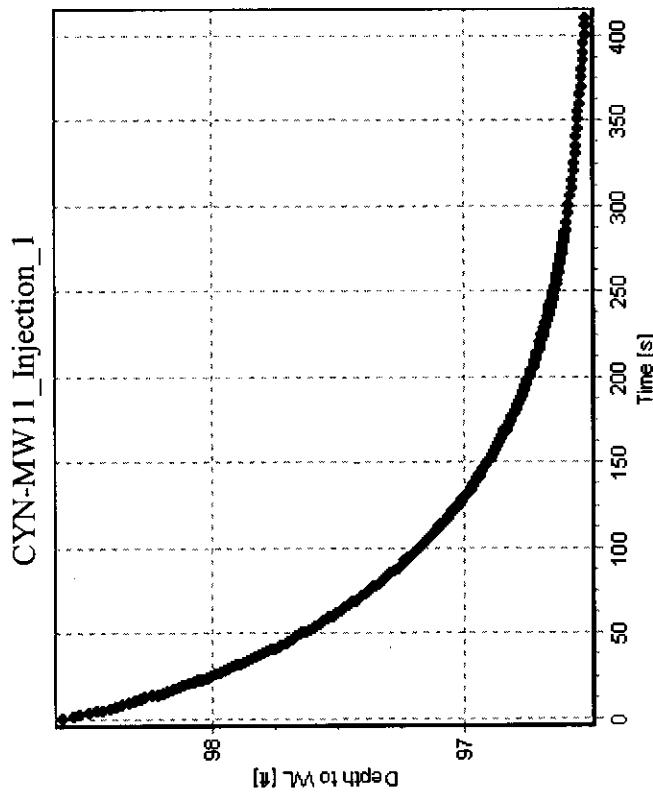





Conductivity: 1.23E+0 f/d



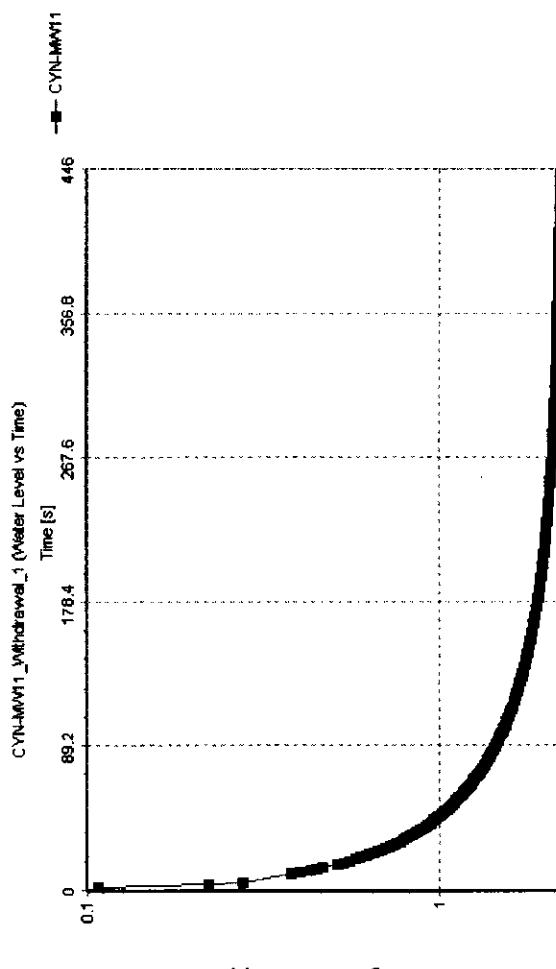
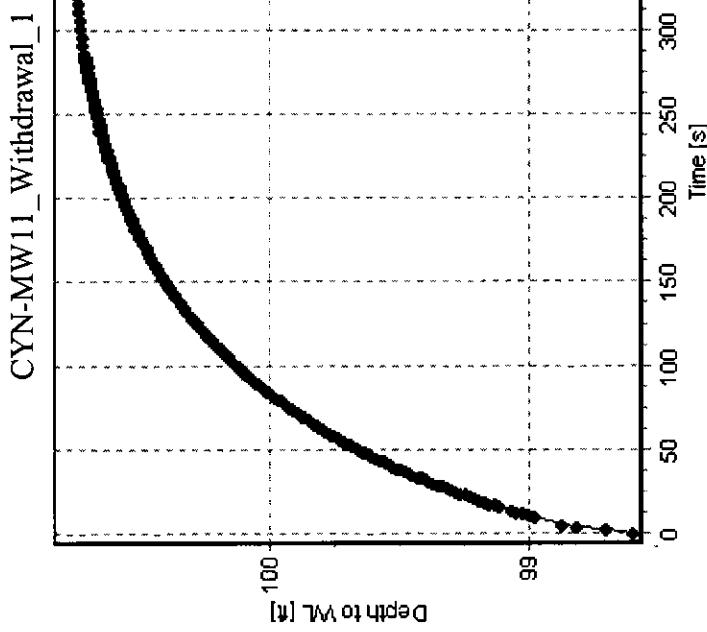
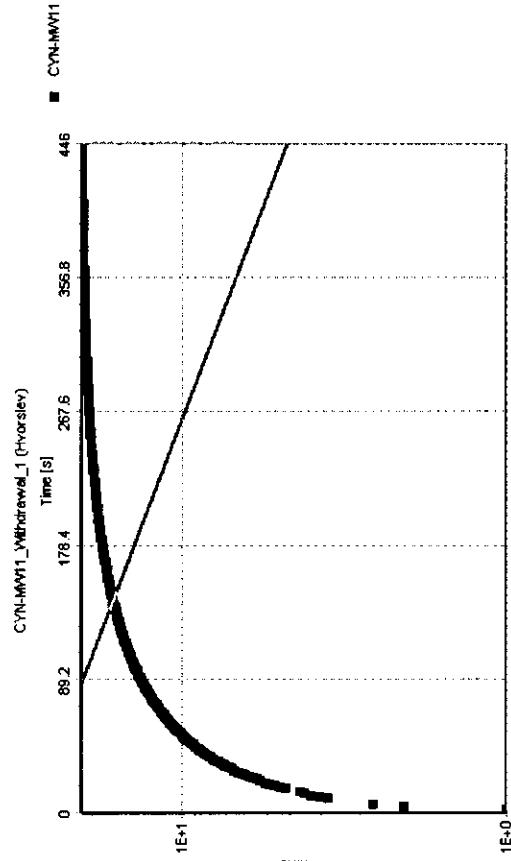
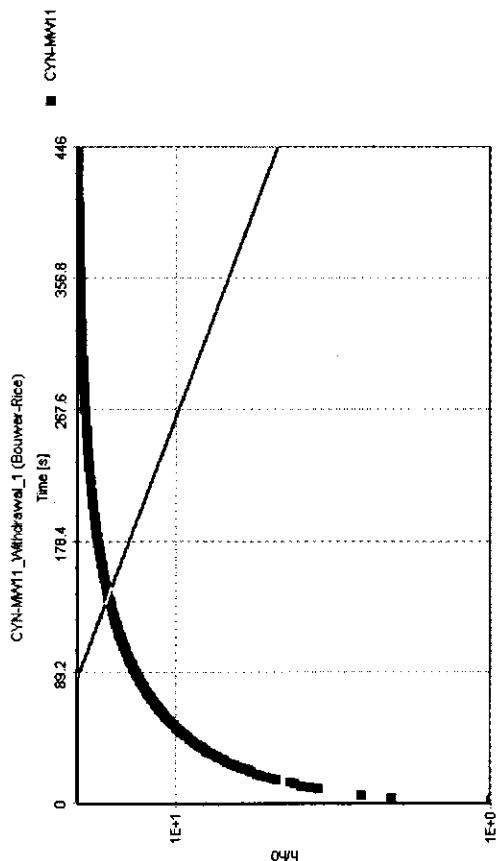

Change in Water Level [ft]

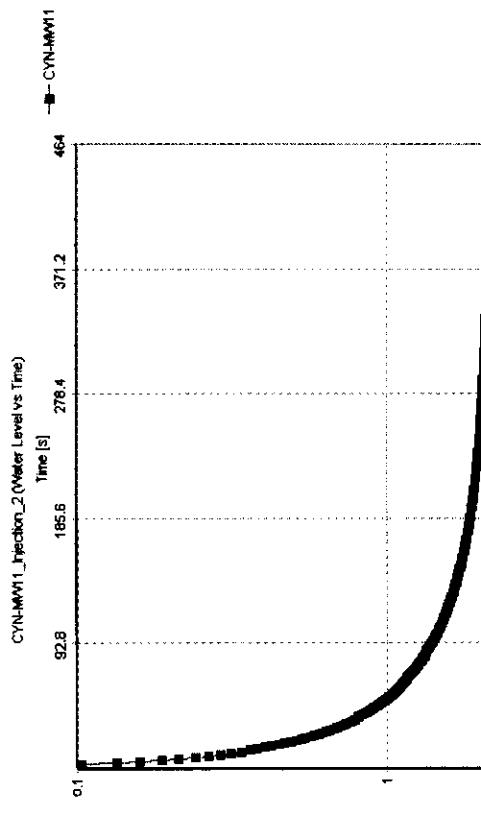
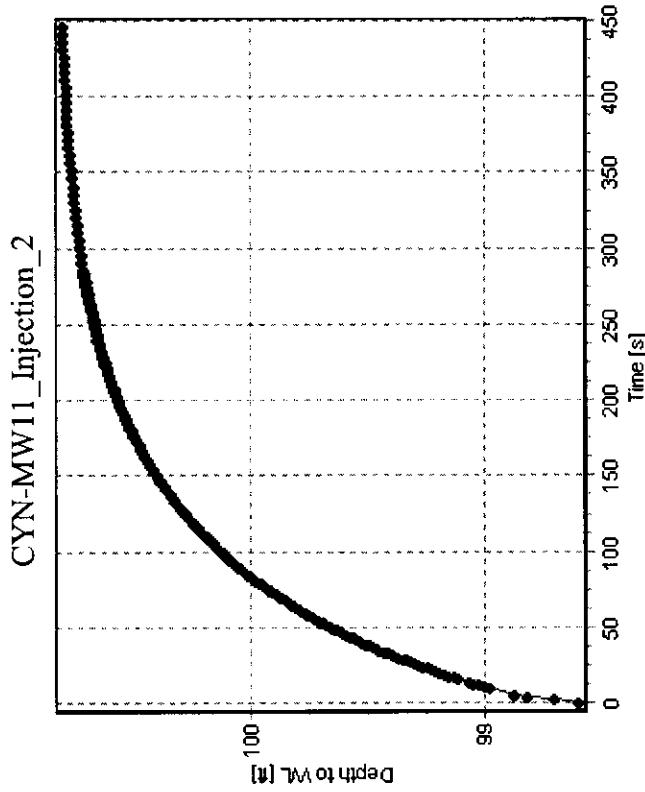
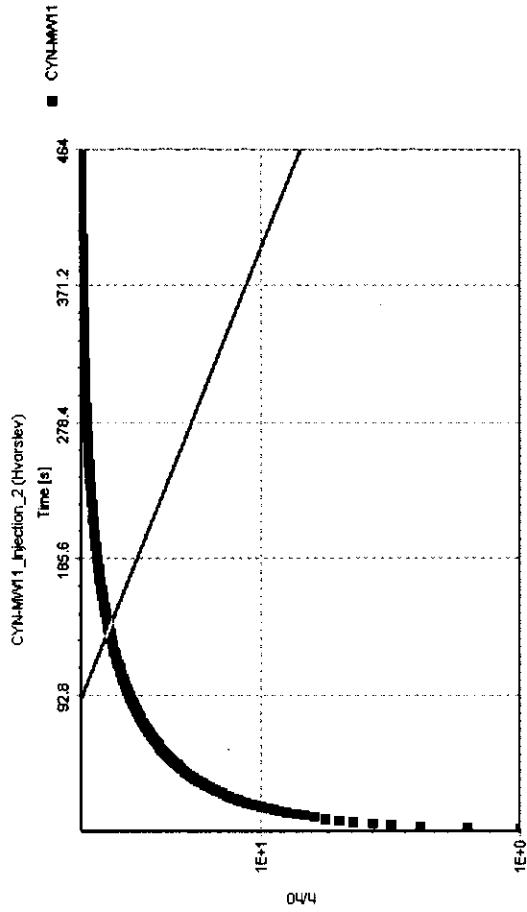
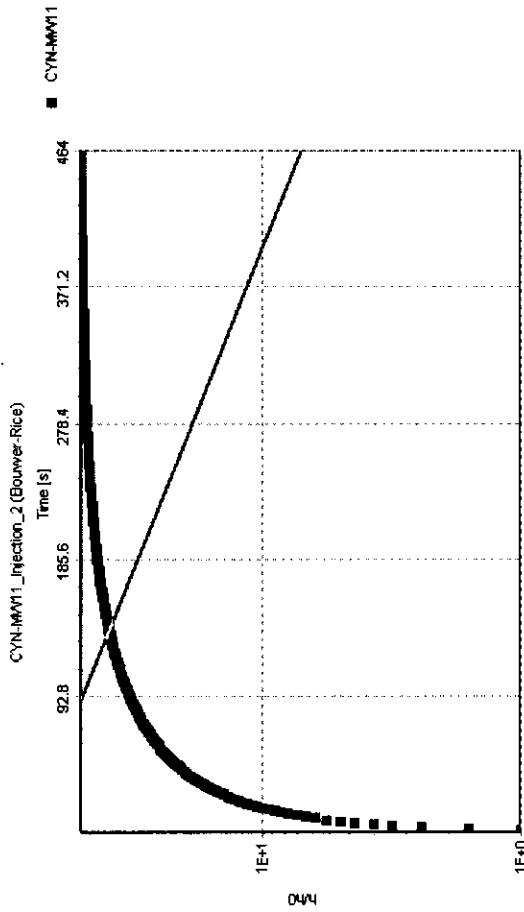


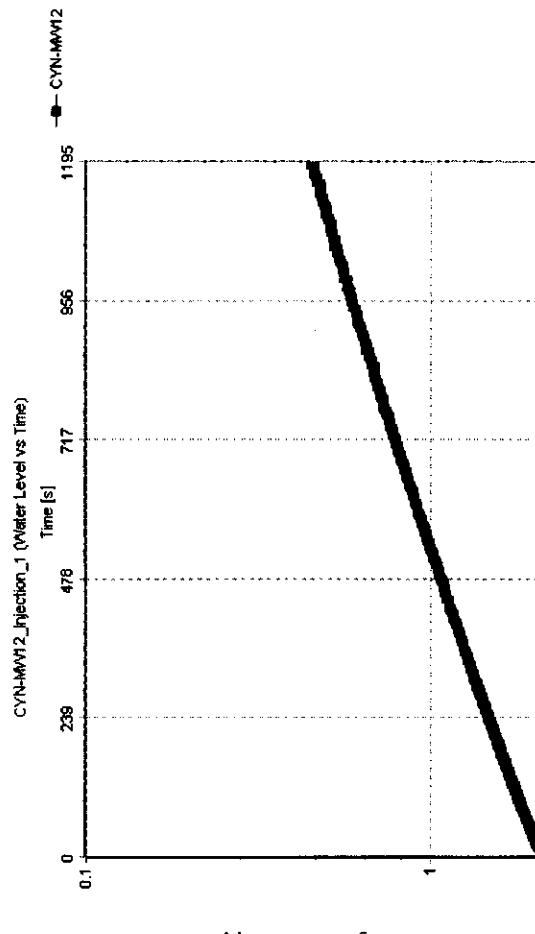
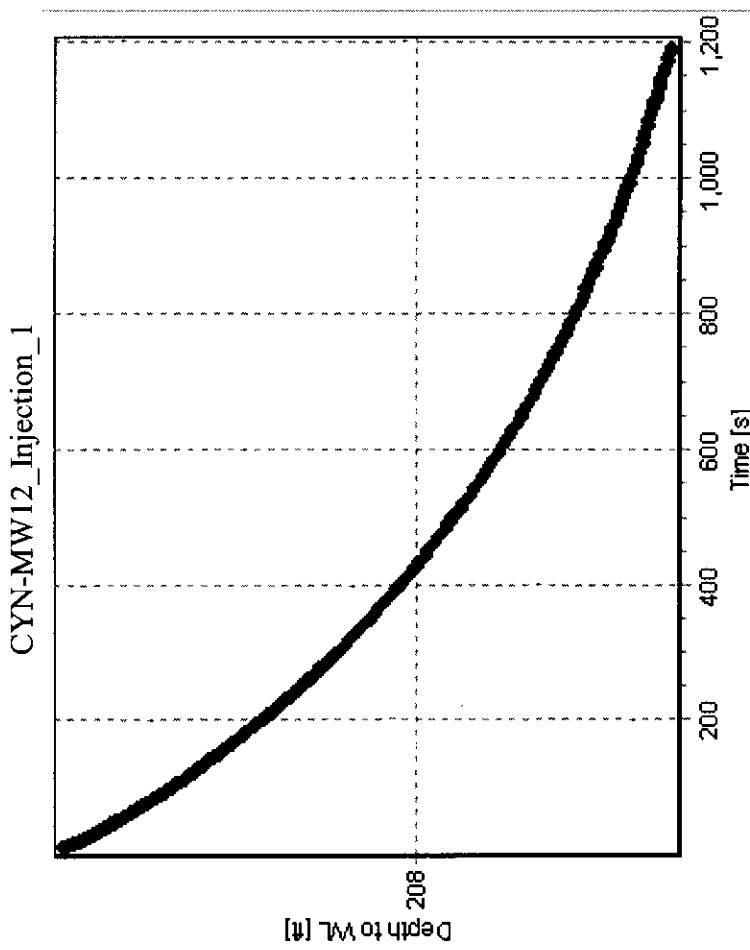
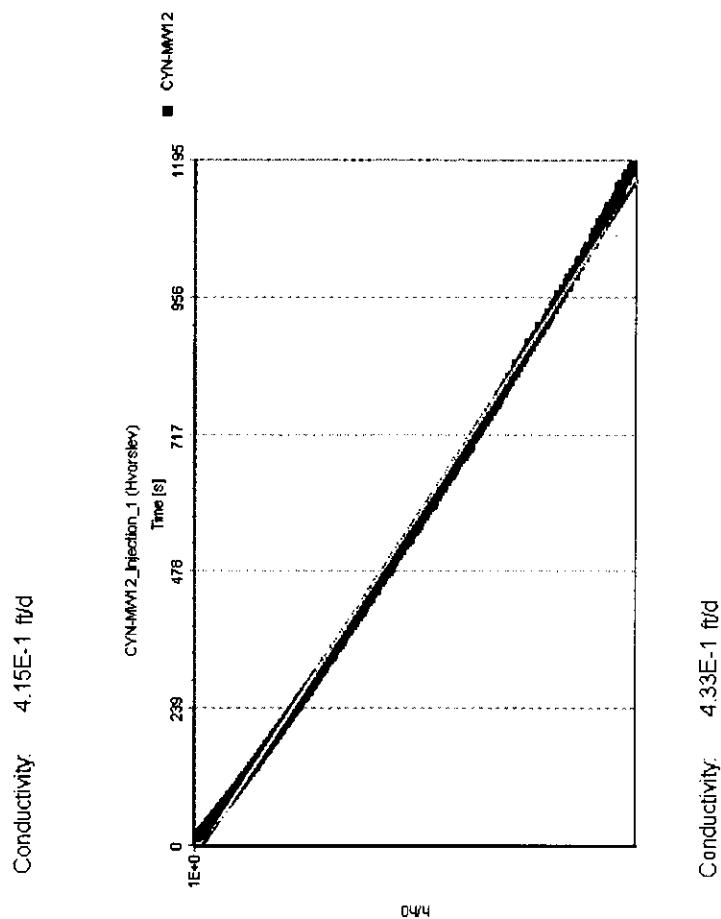
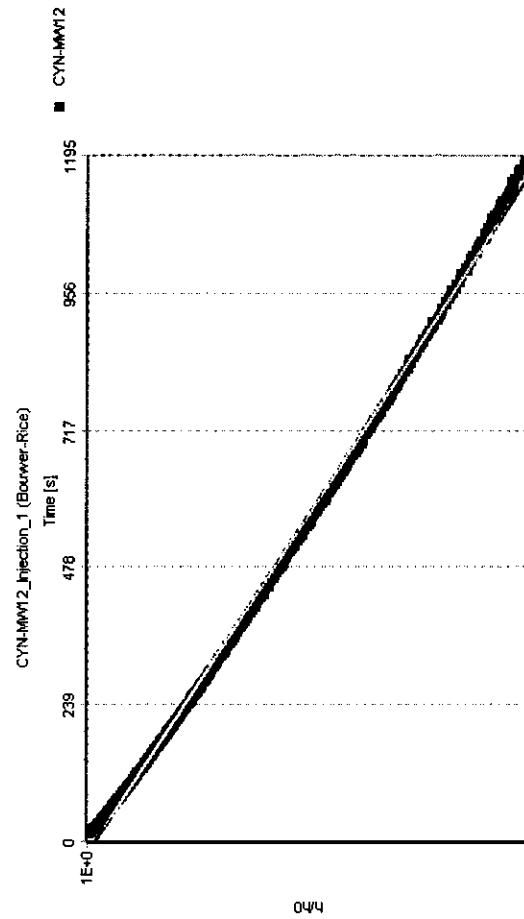


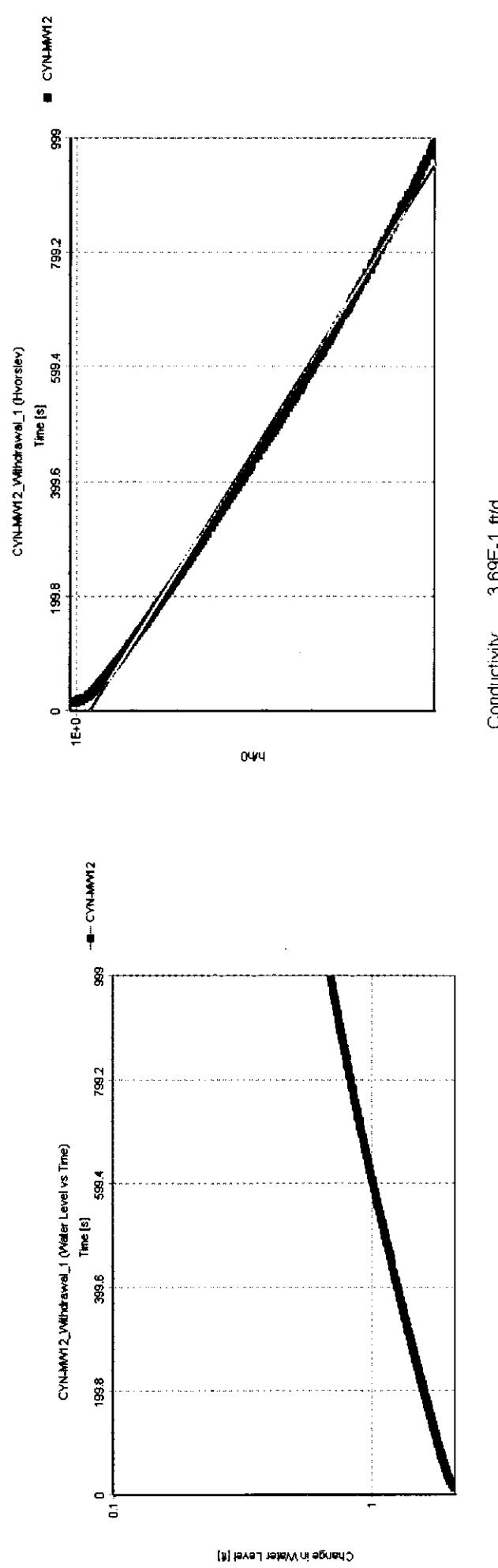
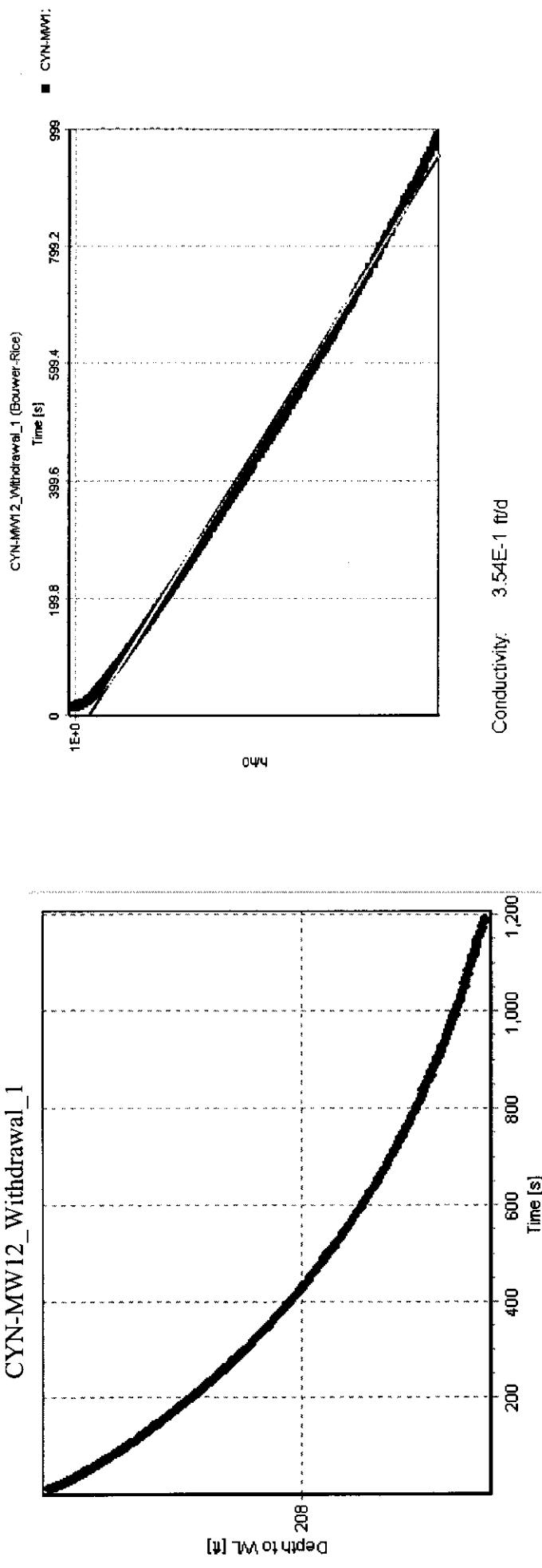




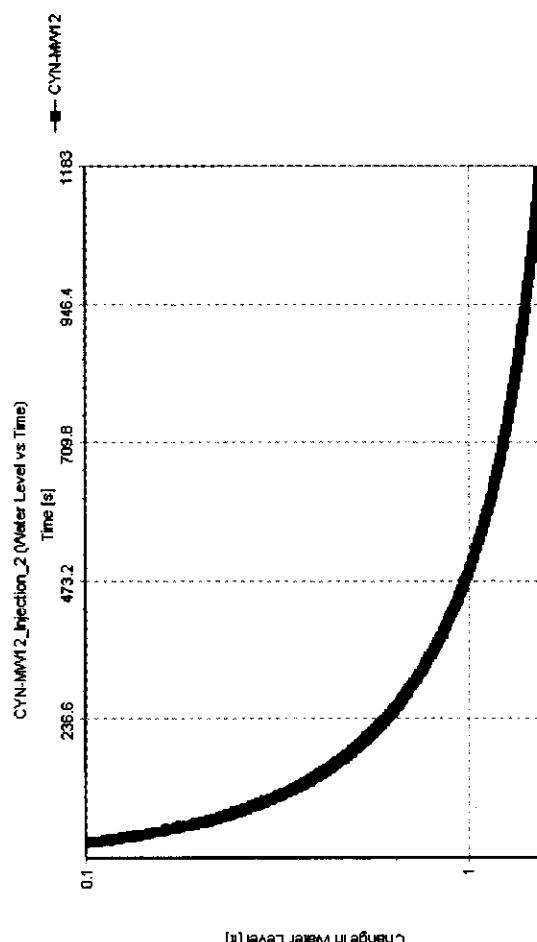
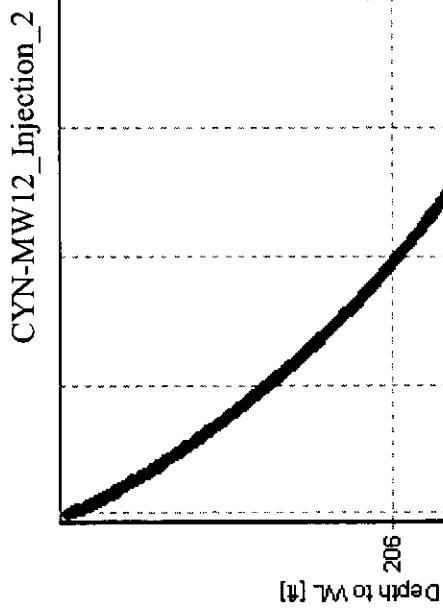
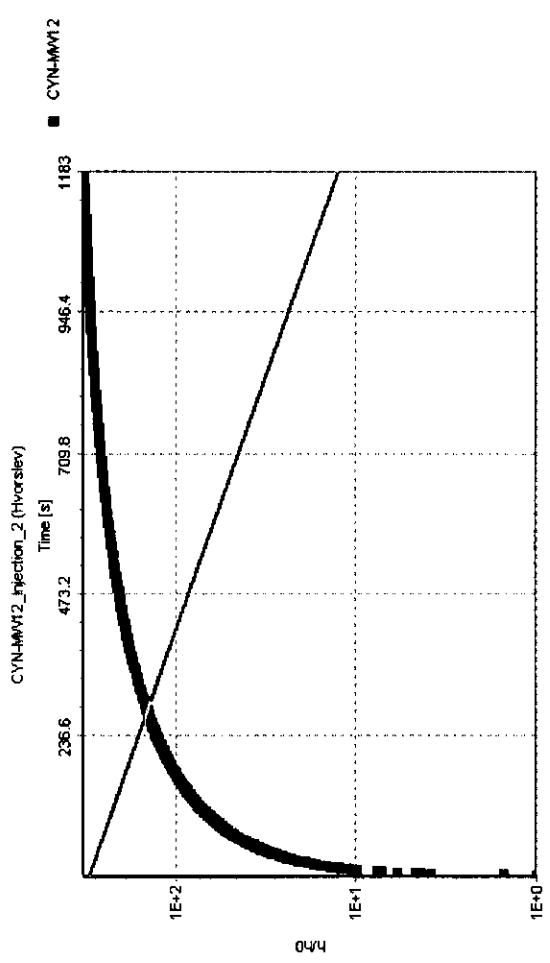
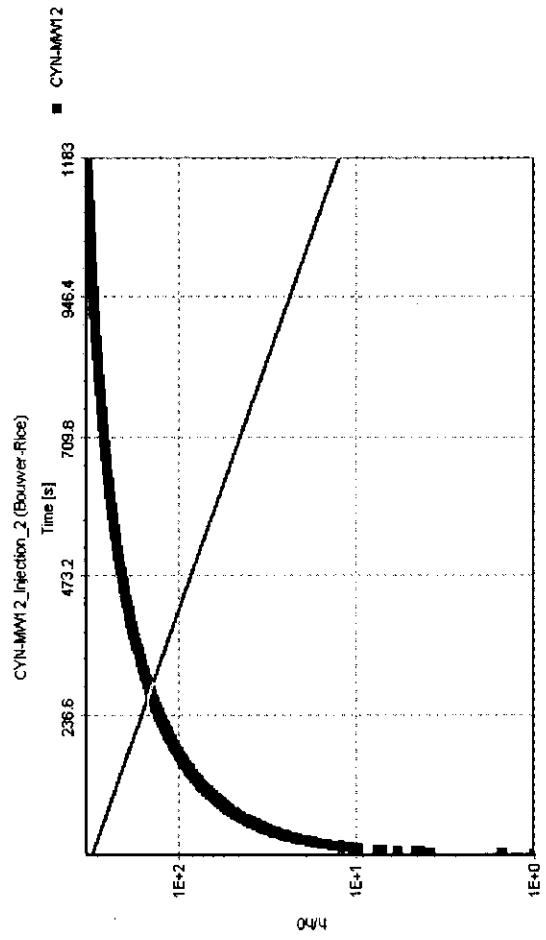







Conductivity: 2.09E+0 ft/d






Conductivity: 1.94E+0 ft/d






Change in Water Level (ft)











**APPENDIX G**  
**Groundwater Analytical Results for Samples Collected During**  
**Fourth Quarter of Fiscal Year 2010**



Table G-1  
 Summary of Detected Volatile Organic, Semivolatile Organic, and High Explosive Compounds  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte          | Result <sup>a</sup><br>( $\mu\text{g}/\text{L}$ ) | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | PQL <sup>c</sup><br>( $\mu\text{g}/\text{L}$ ) | MCL <sup>d</sup><br>( $\mu\text{g}/\text{L}$ ) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW1D<br>21-Sep-10 | Carbon Disulfide | 1.58                                              | 1.25                                           | 5.00                                           | NE                                             | J                                 |                                   | 089661-001 | SW846-8260B                    |

Refer to footnotes on page G-29.

**Table G-2**  
**Method Detection Limits for Volatile Organic and Semivolatile Organic Compounds**  
**Burn Site Groundwater Monitoring**

Fiscal Year 2010, Fourth Quarter

| Analyte                   | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | Analytical Method <sup>g</sup> | Analyte                     | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | Analytical Method <sup>g</sup> | Analyte                    | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | Analytical Method <sup>g</sup> |
|---------------------------|------------------------------------------------|--------------------------------|-----------------------------|------------------------------------------------|--------------------------------|----------------------------|------------------------------------------------|--------------------------------|
| 1,1,1-Trichloroethane     | 0.325                                          | 8260B                          | 1,2,4-Trichlorobenzene      | 2.00–2.41                                      | 8270C                          | Di-n-butyl phthalate       | 2.00–2.41                                      | 8270C                          |
| 1,1,2,2-Tetrachloroethane | 0.250                                          | 8260B                          | 1,2-Dichlorobenzene         | 2.00–2.41                                      | 8270C                          | Di-n-octyl phthalate       | 3.00–3.61                                      | 8270C                          |
| 1,1,2-Trichloroethane     | 0.250                                          | 8260B                          | 1,3-Dichlorobenzene         | 2.00–2.41                                      | 8270C                          | Dibenz[a,h]anthracene      | 0.200–0.241                                    | 8270C                          |
| 1,1-Dichloroethane        | 0.300                                          | 8260B                          | 1,4-Dichlorobenzene         | 2.00–2.41                                      | 8270C                          | Dibenzofuran               | 2.00–2.41                                      | 8270C                          |
| 1,1-Dichloroethene        | 0.300                                          | 8260B                          | 2,4,5-Trichlorophenol       | 2.00–2.41                                      | 8270C                          | Diethylphthalate           | 2.00–2.41                                      | 8270C                          |
| 1,2-Dichloroethane        | 0.250                                          | 8260B                          | 2,4,6-Trichlorophenol       | 2.00–2.41                                      | 8270C                          | Dimethylphthalate          | 2.00–2.41                                      | 8270C                          |
| 1,2-Dichloropropane       | 0.250                                          | 8260B                          | 2,4-Dichlorophenol          | 2.00–2.41                                      | 8270C                          | Dinitro-o-cresol           | 3.00–3.61                                      | 8270C                          |
| 2-Butanone                | 1.25                                           | 8260B                          | 2,4-Dimethylphenol          | 2.00–2.41                                      | 8270C                          | Diphenyl amine             | 3.00–3.61                                      | 8270C                          |
| 2-Hexanone                | 1.25                                           | 8260B                          | 2,4-Dinitrophenol           | 5.00–6.02                                      | 8270C                          | Fluoranthene               | 0.200–0.241                                    | 8270C                          |
| 4-methyl-, 2-Pentanone    | 1.25                                           | 8260B                          | 2,4-Dinitrotoluene          | 2.00–2.41                                      | 8270C                          | Fluorene                   | 0.200–0.241                                    | 8270C                          |
| Acetone                   | 3.50                                           | 8260B                          | 2,6-Dinitrotoluene          | 2.00–2.41                                      | 8270C                          | Hexachlorobenzene          | 2.00–2.41                                      | 8270C                          |
| Benzene                   | 0.300                                          | 8260B                          | 2-Chloronaphthalene         | 0.300–0.361                                    | 8270C                          | Hexachlorobutadiene        | 2.00–2.41                                      | 8270C                          |
| Bromodichloromethane      | 0.250                                          | 8260B                          | 2-Chlorophenol              | 2.00–2.41                                      | 8270C                          | Hexachlorocyclopentadiene  | 3.00–3.61                                      | 8270C                          |
| Bromoform                 | 0.250                                          | 8260B                          | 2-Methylnaphthalene         | 0.300–0.361                                    | 8270C                          | Hexachloroethane           | 2.00–2.41                                      | 8270C                          |
| Bromomethane              | 0.300                                          | 8260B                          | 2-Nitroaniline              | 2.00–2.41                                      | 8270C                          | Indeno(1,2,3-c,d)pyrene    | 0.200–0.241                                    | 8270C                          |
| Carbon disulfide          | 1.25                                           | 8260B                          | 2-Nitrophenol               | 2.00–2.41                                      | 8270C                          | Isophorone                 | 3.00–3.61                                      | 8270C                          |
| Carbon tetrachloride      | 0.300                                          | 8260B                          | 3,3'-Dichlorobenzidine      | 2.00–2.41                                      | 8270C                          | Naphthalene                | 0.300–0.361                                    | 8270C                          |
| Chlorobenzene             | 0.250                                          | 8260B                          | 3-Nitroaniline              | 2.00–2.41                                      | 8270C                          | Nitro-benzene              | 3.00–3.61                                      | 8270C                          |
| Chloroethane              | 0.300                                          | 8260B                          | 4-Bromophenyl phenyl ether  | 2.00–2.41                                      | 8270C                          | Pentachlorophenol          | 2.00–2.41                                      | 8270C                          |
| Chloroform                | 0.250                                          | 8260B                          | 4-Chloro-3-methylphenol     | 2.00–2.41                                      | 8270C                          | Phenanthrene               | 0.200–0.241                                    | 8270C                          |
| Chloromethane             | 0.300                                          | 8260B                          | 4-Chlorobenzylamine         | 2.00–2.41                                      | 8270C                          | Phenol                     | 1.00–1.20                                      | 8270C                          |
| Dibromochloromethane      | 0.300                                          | 8260B                          | 4-Chlorophenyl phenyl ether | 2.00–2.41                                      | 8270C                          | Pyrene                     | 0.300–0.361                                    | 8270C                          |
| Ethyl benzene             | 0.250                                          | 8260B                          | 4-Nitroaniline              | 3.00–3.61                                      | 8270C                          | bis(2-Chloroethoxy)methane | 3.00–3.61                                      | 8270C                          |
| Methylene chloride        | 3.00                                           | 8260B                          | 4-Nitrophenol               | 2.00–2.41                                      | 8270C                          | bis(2-Chloroethyl)ether    | 2.00–2.41                                      | 8270C                          |
| Styrene                   | 0.250                                          | 8260B                          | Acenaphthene                | 0.310–0.373                                    | 8270C                          | bis(2-Ethylhexyl)phthalate | 2.00–2.41                                      | 8270C                          |
| Tetrachloroethene         | 0.300                                          | 8260B                          | Acenaphthylene              | 0.200–0.241                                    | 8270C                          | bis-Chloroisopropyl ether  | 2.00–2.41                                      | 8270C                          |
| Toluene                   | 0.250                                          | 8260B                          | Anthracene                  | 0.200–0.241                                    | 8270C                          | m,p-Cresol                 | 3.00–3.61                                      | 8270C                          |
| Trichloroethene           | 0.250                                          | 8260B                          | Benzo(a)anthracene          | 0.200–0.241                                    | 8270C                          | n-Nitrosodipropylamine     | 2.00–2.41                                      | 8270C                          |
| Vinyl acetate             | 1.50                                           | 8260B                          | Benzo(a)pyrene              | 0.200–0.241                                    | 8270C                          | o-Cresol                   | 2.00–2.41                                      | 8270C                          |
| Vinyl chloride            | 0.500                                          | 8260B                          | Benzo(b)fluoranthene        | 0.200–0.241                                    | 8270C                          |                            |                                                |                                |
| Xylene                    | 0.300                                          | 8260B                          | Benzo(ghi)perylene          | 0.200–0.241                                    | 8270C                          |                            |                                                |                                |
| cis-1,2-Dichloroethene    | 0.300                                          | 8260B                          | Benzo(k)fluoranthene        | 0.200–0.241                                    | 8270C                          |                            |                                                |                                |
| cis-1,3-Dichloropropene   | 0.250                                          | 8260B                          | Butylbenzyl phthalate       | 2.00–2.41                                      | 8270C                          |                            |                                                |                                |
| trans-1,2-Dichloroethene  | 0.300                                          | 8260B                          | Carbazole                   | 0.200–0.241                                    | 8270C                          |                            |                                                |                                |
| trans-1,3-Dichloropropene | 0.250                                          | 8260B                          | Chrysene                    | 0.200–0.241                                    | 8270C                          |                            |                                                |                                |

Refer to footnotes on page G-29.

Table G-3  
Method Detection Limits for High Explosive Compounds (EPA Method<sup>g</sup> SW846-8321A)  
Burn Site Groundwater Investigation

Fiscal Year 2010, Fourth Quarter

| Analyte                      | MDL <sup>b</sup><br>( $\mu$ g/L) |
|------------------------------|----------------------------------|
| 1,3,5-Trinitrobenzene        | 0.104                            |
| 1,3-Dinitrobenzene           | 0.104                            |
| 2,4,6-Trinitrotoluene        | 0.104                            |
| 2,4-Dinitrotoluene           | 0.104                            |
| 2,6-Dinitrotoluene           | 0.0779                           |
| 2-Amino-4,6-dinitrotoluene   | 0.104                            |
| 2-Nitrotoluene               | 0.104                            |
| 3-Nitrotoluene               | 0.104                            |
| 4-Amino-2,6-dinitrotoluene   | 0.104                            |
| 4-Nitrotoluene               | 0.104                            |
| HMX                          | 0.104                            |
| Nitrobenzene                 | 0.104                            |
| Pentaerythritol tetranitrate | 0.130                            |
| RDX                          | 0.104                            |
| Tetryl                       | 0.130                            |

Refer to footnotes on page G-29.

Table G-4  
 Summary of Nitrate plus Nitrite Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                                 | Analyte                   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------------------------|---------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW1D</b><br>21-Sep-10            | Nitrate plus nitrite as N | <b>12.2</b>                   | 0.250                      | 1.25                       | 10.0                       | B                                 |                                   | 089661-018 | EPA 353.2                      |
| <b>CYN-MW3</b><br>22-Sep-10             | Nitrate plus nitrite as N | <b>12.0</b>                   | 0.250                      | 1.25                       | 10.0                       | B                                 |                                   | 089663-018 | EPA 353.2                      |
| <b>CYN-MW4</b><br>16-Sep-10             | Nitrate plus nitrite as N | 0.149                         | 0.050                      | 0.250                      | 10.0                       | J                                 |                                   | 089656-018 | EPA 353.2                      |
| <b>CYN-MW4</b> (Duplicate)<br>16-Sep-10 | Nitrate plus nitrite as N | 0.150                         | 0.050                      | 0.250                      | 10.0                       | J                                 |                                   | 089657-018 | EPA 353.2                      |
| <b>CYN-MW6</b><br>20-Sep-10             | Nitrate plus nitrite as N | <b>29.9</b>                   | 0.500                      | 2.50                       | 10.0                       | B                                 |                                   | 089659-018 | EPA 353.2                      |
| <b>CYN-MW7</b><br>15-Sep-10             | Nitrate plus nitrite as N | 2.15                          | 0.100                      | 0.500                      | 10.0                       |                                   |                                   | 089652-018 | EPA 353.2                      |
| <b>CYN-MW8</b><br>14-Sep-10             | Nitrate plus nitrite as N | 5.08                          | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089650-018 | EPA 353.2                      |
| <b>CYN-MW9</b><br>28-Sep-10             | Nitrate plus nitrite as N | <b>30.1</b>                   | 0.500                      | 2.50                       | 10.0                       |                                   |                                   | 089672-018 | EPA 353.2                      |
| <b>CYN-MW9</b> (Duplicate)<br>28-Sep-10 | Nitrate plus nitrite as N | <b>30.1</b>                   | 0.500                      | 2.50                       | 10.0                       |                                   |                                   | 089673-018 | EPA 353.2                      |
| <b>CYN-MW10</b><br>27-Sep-10            | Nitrate plus nitrite as N | <b>11.0</b>                   | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089668-018 | EPA 353.2                      |
| <b>CYN-MW11</b><br>29-Sep-10            | Nitrate plus nitrite as N | 10.0                          | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089675-018 | EPA 353.2                      |
| <b>CYN-MW12</b><br>23-Sep-10            | Nitrate plus nitrite as N | <b>12.2</b>                   | 0.250                      | 1.25                       | 10.0                       | B                                 |                                   | 089665-018 | EPA 353.2                      |

Refer to footnotes on page G-29.

**Table G-5**  
**Summary of Diesel Range Organics and Gasoline Range Organics Results**  
**Burn Site Groundwater Monitoring**

Fiscal Year 2010, Fourth Quarter

| Well ID                                            | Analyte                 | Result <sup>a</sup><br>( $\mu\text{g}/\text{L}$ ) | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | PQL <sup>c</sup><br>( $\mu\text{g}/\text{L}$ ) | MCL <sup>d</sup><br>( $\mu\text{g}/\text{L}$ ) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------------------------------------|-------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW1D</b><br>21-Sep-10                       | Diesel Range Organics   | ND                                                | 69.9                                           | 215                                            | NE                                             | U                                 |                                   | 089661-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 19.1                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089661-006 | SW846 8015B                    |
| <b>CYN-MW3</b><br>22-Sep-10                        | Diesel Range Organics   | ND                                                | 67.7                                           | 208                                            | NE                                             | U                                 |                                   | 089663-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089663-006 | SW846 8015B                    |
| <b>CYN-MW4</b><br>16-Sep-10                        | Diesel Range Organics   | ND                                                | 70.7                                           | 217                                            | NE                                             | U                                 |                                   | 089656-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 10.8                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089656-006 | SW846 8015B                    |
| <b>CYN-MW4</b> (Reanalysis)<br>16-Sep-10           | Gasoline Range Organics | 14.8                                              | 10.5                                           | 50.0                                           | NE                                             | H, J                              | 50UJ                              | 089656-R06 | SW846 8015B                    |
| <b>CYN-MW4</b> (Duplicate)<br>16-Sep-10            | Diesel Range Organics   | ND                                                | 70.7                                           | 217                                            | NE                                             | U                                 |                                   | 089657-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 11.4                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089657-006 | SW846 8015B                    |
| <b>CYN-MW4</b> (Duplicate Reanalysis)<br>16-Sep-10 | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | H, U                              | UJ                                | 089657-R06 | SW846 8015B                    |
| <b>CYN-MW6</b><br>20-Sep-10                        | Diesel Range Organics   | ND                                                | 65.0                                           | 200                                            | NE                                             | U                                 |                                   | 089659-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089659-006 | SW846 8015B                    |
| <b>CYN-MW7</b><br>15-Sep-10                        | Diesel Range Organics   | ND                                                | 69.1                                           | 213                                            | NE                                             | U                                 |                                   | 089652-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089652-006 | SW846 8015B                    |
| <b>CYN-MW7</b> (Reanalysis)<br>15-Sep-10           | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | H, U                              | UJ                                | 089652-R06 | SW846 8015B                    |
| <b>CYN-MW8</b><br>14-Sep-10                        | Diesel Range Organics   | ND                                                | 74.7                                           | 230                                            | NE                                             | U                                 |                                   | 089650-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089650-006 | SW846 8015B                    |
| <b>CYN-MW8</b> (Reanalysis)<br>14-Sep-10           | Gasoline Range Organics | 13.5                                              | 10.5                                           | 50.0                                           | NE                                             | H, J                              | 50UJ                              | 089650-R06 | SW846 8015B                    |
| <b>CYN-MW9</b><br>28-Sep-10                        | Diesel Range Organics   | ND                                                | 73.0                                           | 225                                            | NE                                             | U                                 |                                   | 089672-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 14.8                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089672-006 | SW846 8015B                    |
| <b>CYN-MW9</b> (Duplicate)<br>28-Sep-10            | Diesel Range Organics   | ND                                                | 71.4                                           | 220                                            | NE                                             | U                                 |                                   | 089673-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 13.1                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089673-006 | SW846 8015B                    |
| <b>CYN-MW10</b><br>27-Sep-10                       | Diesel Range Organics   | ND                                                | 72.2                                           | 222                                            | NE                                             | U                                 |                                   | 089668-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 13.5                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089668-006 | SW846 8015B                    |
| <b>CYN-MW11</b><br>29-Sep-10                       | Diesel Range Organics   | ND                                                | 68.4                                           | 211                                            | NE                                             | U                                 |                                   | 089675-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 12.1                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089675-006 | SW846 8015B                    |
| <b>CYN-MW12</b><br>23-Sep-10                       | Diesel Range Organics   | ND                                                | 71.4                                           | 220                                            | NE                                             | U                                 |                                   | 089665-005 | SW846 8015A/B                  |
|                                                    | Gasoline Range Organics | 14.4                                              | 10.5                                           | 50.0                                           | NE                                             | J                                 | 50U                               | 089665-006 | SW846 8015B                    |

Refer to footnotes on page G-29.

**Table G-6**  
**Summary of Anion, Cation, and Alkalinity Results**  
**Burn Site Groundwater Monitoring**

Fiscal Year 2010, Fourth Quarter

| Well ID                            | Analyte                | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|------------------------------------|------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW1D<br>21-Sep-10              | Bicarbonate Alkalinity | 72.9                          | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089661-016 | SM2320B                        |
|                                    | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089661-016 | SM2320B                        |
|                                    | Bromide                | 0.429                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089661-016 | SW846 9056                     |
|                                    | Chloride               | 27.2                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089661-016 | SW846 9056                     |
|                                    | Fluoride               | 1.81                          | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089661-016 | SW846 9056                     |
|                                    | Sulfate                | 114                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089661-016 | SW846 9056                     |
|                                    | Calcium                | 70.0                          | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089661-017 | SW846-6020                     |
|                                    | Magnesium              | 14.6                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089661-017 | SW846-6020                     |
|                                    | Potassium              | 2.62                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089661-017 | SW846-6020                     |
|                                    | Sodium                 | 34.8                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089661-017 | SW846-6020                     |
| CYN-MW3<br>22-Sep-10               | Bicarbonate Alkalinity | 239                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089663-016 | SM2320B                        |
|                                    | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089663-016 | SM2320B                        |
|                                    | Bromide                | 0.748                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089663-016 | SW846 9056                     |
|                                    | Chloride               | 120                           | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089663-016 | SW846 9056                     |
|                                    | Fluoride               | 0.639                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089663-016 | SW846 9056                     |
|                                    | Sulfate                | 365                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089663-016 | SW846 9056                     |
|                                    | Calcium                | 129                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089663-017 | SW846-6020                     |
|                                    | Magnesium              | 35.4                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089663-017 | SW846-6020                     |
|                                    | Potassium              | 2.03                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089663-017 | SW846-6020                     |
|                                    | Sodium                 | 40.7                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089663-017 | SW846-6020                     |
| CYN-MW3 (Re-analysis)<br>22-Sep-10 | Bromide                | 0.750                         | 0.066                      | 0.200                      | NE                         | H                                 | J                                 | 089663-R16 | SW846 9056                     |
|                                    | Chloride               | 55.3                          | 0.660                      | 2.00                       | NE                         | H                                 | J                                 | 089663-R16 | SW846 9056                     |
|                                    | Fluoride               | 0.675                         | 0.033                      | 0.100                      | 4.0                        | H                                 | J                                 | 089663-R16 | SW846 9056                     |
|                                    | Sulfate                | 167                           | 1.00                       | 4.00                       | NE                         | H                                 | J                                 | 089663-R16 | SW846 9056                     |
|                                    | Bicarbonate Alkalinity | 223                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089656-016 | SM2320B                        |
| CYN-MW4<br>16-Sep-10               | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089656-016 | SM2320B                        |
|                                    | Bromide                | 0.378                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089656-016 | SW846 9056                     |
|                                    | Chloride               | 24.2                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089656-016 | SW846 9056                     |
|                                    | Fluoride               | 0.780                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089656-016 | SW846 9056                     |
|                                    | Sulfate                | 130                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089656-016 | SW846 9056                     |
|                                    | Calcium                | 69.7                          | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089656-017 | SW846-6020                     |
|                                    | Magnesium              | 33.9                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089656-017 | SW846-6020                     |
|                                    | Potassium              | 6.27                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089656-017 | SW846-6020                     |
|                                    | Sodium                 | 46.6                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089656-017 | SW846-6020                     |

Refer to footnotes on page G-29.

Table G-6 (Continued)  
 Summary of Anion, Cation, and Alkalinity Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte                | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------------------|------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW4 (Duplicate)<br>16-Sep-10 | Bicarbonate Alkalinity | 223                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089657-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089657-016 | SM2320B                        |
|                                  | Bromide                | 0.396                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089657-016 | SW846 9056                     |
|                                  | Chloride               | 24.0                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089657-016 | SW846 9056                     |
|                                  | Fluoride               | 0.784                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089657-016 | SW846 9056                     |
|                                  | Sulfate                | 128                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089657-016 | SW846 9056                     |
|                                  | Calcium                | 68.4                          | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089657-017 | SW846-6020                     |
|                                  | Magnesium              | 36.3                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089657-017 | SW846-6020                     |
|                                  | Potassium              | 6.87                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089657-017 | SW846-6020                     |
|                                  | Sodium                 | 45.5                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089657-017 | SW846-6020                     |
| CYN-MW6<br>20-Sep-10             | Bicarbonate Alkalinity | 296                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089659-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089659-016 | SM2320B                        |
|                                  | Bromide                | 0.875                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089659-016 | SW846 9056                     |
|                                  | Chloride               | 61.1                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089659-016 | SW846 9056                     |
|                                  | Fluoride               | 0.624                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089659-016 | SW846 9056                     |
|                                  | Sulfate                | 132                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089659-016 | SW846 9056                     |
|                                  | Calcium                | 162                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089659-017 | SW846-6020                     |
|                                  | Magnesium              | 42.3                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089659-017 | SW846-6020                     |
|                                  | Potassium              | 2.33                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089659-017 | SW846-6020                     |
|                                  | Sodium                 | 44.4                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089659-017 | SW846-6020                     |
| CYN-MW7<br>15-Sep-10             | Bicarbonate Alkalinity | 256                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089652-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089652-016 | SM2320B                        |
|                                  | Bromide                | 0.626                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089652-016 | SW846 9056                     |
|                                  | Chloride               | 41.3                          | 0.330                      | 1.00                       | NE                         |                                   |                                   | 089652-016 | SW846 9056                     |
|                                  | Fluoride               | 1.30                          | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089652-016 | SW846 9056                     |
|                                  | Sulfate                | 82.8                          | 0.500                      | 2.00                       | NE                         |                                   |                                   | 089652-016 | SW846 9056                     |
|                                  | Calcium                | 103                           | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089652-017 | SW846-6020                     |
|                                  | Magnesium              | 20.4                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089652-017 | SW846-6020                     |
|                                  | Potassium              | 2.43                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089652-017 | SW846-6020                     |
|                                  | Sodium                 | 44.1                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089652-017 | SW846-6020                     |

Refer to footnotes on page G-29.

Table G-6 (Continued)  
 Summary of Anion, Cation, and Alkalinity Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte                | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------------------|------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW8<br>14-Sep-10             | Bicarbonate Alkalinity | 237                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089650-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089650-016 | SM2320B                        |
|                                  | Bromide                | 0.752                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089650-016 | SW846 9056                     |
|                                  | Chloride               | 56.9                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089650-016 | SW846 9056                     |
|                                  | Fluoride               | 1.40                          | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089650-016 | SW846 9056                     |
|                                  | Sulfate                | 119                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089650-016 | SW846 9056                     |
|                                  | Calcium                | 114                           | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089650-017 | SW846-6020                     |
|                                  | Magnesium              | 24.3                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089650-017 | SW846-6020                     |
|                                  | Potassium              | 2.32                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089650-017 | SW846-6020                     |
|                                  | Sodium                 | 45.9                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089650-017 | SW846-6020                     |
| CYN-MW9<br>28-Sep-10             | Bicarbonate Alkalinity | 236                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089672-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089672-016 | SM2320B                        |
|                                  | Bromide                | 1.13                          | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089672-016 | SW846 9056                     |
|                                  | Chloride               | 79.2                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089672-016 | SW846 9056                     |
|                                  | Fluoride               | 0.609                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089672-016 | SW846 9056                     |
|                                  | Sulfate                | 173                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089672-016 | SW846 9056                     |
|                                  | Calcium                | 169                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089672-017 | SW846-6020                     |
|                                  | Magnesium              | 48.6                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089672-017 | SW846-6020                     |
|                                  | Potassium              | 2.71                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089672-017 | SW846-6020                     |
|                                  | Sodium                 | 40.3                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089672-017 | SW846-6020                     |
| CYN-MW9 (Duplicate)<br>28-Sep-10 | Bicarbonate Alkalinity | 238                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089673-016 | SM2320B                        |
|                                  | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089673-016 | SM2320B                        |
|                                  | Bromide                | 1.15                          | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089673-016 | SW846 9056                     |
|                                  | Chloride               | 80.2                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089673-016 | SW846 9056                     |
|                                  | Fluoride               | 0.600                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089673-016 | SW846 9056                     |
|                                  | Sulfate                | 175                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089673-016 | SW846 9056                     |
|                                  | Calcium                | 170                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089673-017 | SW846-6020                     |
|                                  | Magnesium              | 50.6                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089673-017 | SW846-6020                     |
|                                  | Potassium              | 2.63                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089673-017 | SW846-6020                     |
|                                  | Sodium                 | 43.6                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089673-017 | SW846-6020                     |

Refer to footnotes on page G-29.

Table G-6 (Concluded)  
 Summary of Anion, Cation, and Alkalinity Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte                | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW10<br>27-Sep-10 | Bicarbonate Alkalinity | 236                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089668-016 | SM2320B                        |
|                       | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089668-016 | SM2320B                        |
|                       | Bromide                | 0.789                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089668-016 | SW846 9056                     |
|                       | Chloride               | 53.2                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089668-016 | SW846 9056                     |
|                       | Fluoride               | 0.626                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089668-016 | SW846 9056                     |
|                       | Sulfate                | 172                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089668-016 | SW846 9056                     |
|                       | Calcium                | 128                           | 0.500                      | 5.00                       | NE                         |                                   | J                                 | 089668-017 | SW846-6020                     |
|                       | Magnesium              | 36.4                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089668-017 | SW846-6020                     |
|                       | Potassium              | 1.96                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089668-017 | SW846-6020                     |
|                       | Sodium                 | 37.6                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089668-017 | SW846-6020                     |
| CYN-MW11<br>29-Sep-10 | Bicarbonate Alkalinity | 257                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089675-016 | SM2320B                        |
|                       | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089675-016 | SM2320B                        |
|                       | Bromide                | 1.00                          | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089675-016 | SW846 9056                     |
|                       | Chloride               | 73.6                          | 0.660                      | 2.00                       | NE                         |                                   |                                   | 089675-016 | SW846 9056                     |
|                       | Fluoride               | 0.660                         | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089675-016 | SW846 9056                     |
|                       | Sulfate                | 178                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089675-016 | SW846 9056                     |
|                       | Calcium                | 142                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089675-017 | SW846-6020                     |
|                       | Magnesium              | 44.0                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089675-017 | SW846-6020                     |
|                       | Potassium              | 3.33                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089675-017 | SW846-6020                     |
|                       | Sodium                 | 45.5                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089675-017 | SW846-6020                     |
| CYN-MW12<br>23-Sep-10 | Bicarbonate Alkalinity | 250                           | 0.725                      | 1.00                       | NE                         | B                                 |                                   | 089665-016 | SM2320B                        |
|                       | Carbonate Alkalinity   | ND                            | 0.725                      | 1.00                       | NE                         | U                                 |                                   | 089665-016 | SM2320B                        |
|                       | Bromide                | 0.928                         | 0.066                      | 0.200                      | NE                         |                                   |                                   | 089665-016 | SW846 9056                     |
|                       | Chloride               | 88.8                          | 0.330                      | 1.00                       | NE                         |                                   |                                   | 089665-016 | SW846 9056                     |
|                       | Fluoride               | 1.04                          | 0.033                      | 0.100                      | 4.0                        |                                   |                                   | 089665-016 | SW846 9056                     |
|                       | Sulfate                | 208                           | 1.00                       | 4.00                       | NE                         |                                   |                                   | 089665-016 | SW846 9056                     |
|                       | Calcium                | 164                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089665-017 | SW846-6020                     |
|                       | Magnesium              | 44.2                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089665-017 | SW846-6020                     |
|                       | Potassium              | 5.86                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089665-017 | SW846-6020                     |
|                       | Sodium                 | 51.4                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089665-017 | SW846-6020                     |

Refer to footnotes on page G-29.

Table G-7  
 Summary of Perchlorate Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                                 | Perchlorate Result <sup>a</sup> (mg/L) | MDL <sup>b</sup> (mg/L) | PQL <sup>c</sup> (mg/L) | MCL <sup>d</sup> (mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------------------------|----------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW6</b><br>20-Sep-10             | 0.00614                                | 0.004                   | 0.012                   | NE                      | J                                 |                                   | 089659-020 | EPA 314.0                      |
| <b>CYN-MW9</b><br>28-Sep-10             | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089672-020 | EPA 314.0                      |
| <b>CYN-MW9</b> (Duplicate)<br>28-Sep-10 | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089673-020 | EPA 314.0                      |
| <b>CYN-MW10</b><br>27-Sep-10            | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089668-020 | EPA 314.0                      |
| <b>CYN-MW11</b><br>29-Sep-10            | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089675-020 | EPA 314.0                      |
| <b>CYN-MW12</b><br>23-Sep-10            | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089665-020 | EPA 314.0                      |

Refer to footnotes on page G-29.

Table G-8  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW1D<br>21-Sep-10 | Aluminum  | 0.0245                        | 0.010                      | 0.030                      | NE                         | J                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Barium    | 0.0467                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Calcium   | 67.3                          | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Cobalt    | 0.000325                      | 0.0001                     | 0.001                      | NE                         | J                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Copper    | 0.00245                       | 0.0003                     | 0.001                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Iron      | 8.36                          | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Magnesium | 14.4                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Manganese | 0.0675                        | 0.001                      | 0.005                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089661-010 | SW846 7470                     |
|                       | Nickel    | 0.00168                       | 0.0005                     | 0.002                      | NE                         | J                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Potassium | 2.52                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Selenium  | 0.002                         | 0.001                      | 0.005                      | 0.050                      | J                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Sodium    | 33.4                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Uranium   | 0.00111                       | 0.00005                    | 0.0002                     | 0.030                      |                                   |                                   | 089661-010 | SW846 6020                     |
|                       | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089661-010 | SW846 6020                     |
|                       | Zinc      | ND                            | 0.0026                     | 0.010                      | NE                         | U                                 |                                   | 089661-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW3<br>22-Sep-10 | Aluminum  | 0.0158                        | 0.010                      | 0.030                      | NE                         | J                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Barium    | 0.0502                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Calcium   | 140                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Cobalt    | 0.000179                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089663-010 | SW846 6020                     |
|                      | Copper    | 0.00348                       | 0.0003                     | 0.001                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Iron      | 0.233                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Magnesium | 37.0                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Manganese | ND                            | 0.001                      | 0.005                      | NE                         | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089663-010 | SW846 7470                     |
|                      | Nickel    | 0.00274                       | 0.0005                     | 0.002                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Potassium | 2.13                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Selenium  | 0.00811                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Sodium    | 41.2                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Uranium   | 0.00624                       | 0.00005                    | 0.0002                     | 0.030                      |                                   |                                   | 089663-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089663-010 | SW846 6020                     |
|                      | Zinc      | 0.00283                       | 0.0026                     | 0.010                      | NE                         | J                                 |                                   | 089663-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW4<br>16-Sep-10 | Aluminum  | ND                            | 0.050                      | 0.150                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Arsenic   | 0.00185                       | 0.0015                     | 0.005                      | 0.010                      | J                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Barium    | 0.0471                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Calcium   | 69.7                          | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0125                     | 0.050                      | 0.100                      | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Cobalt    | ND                            | 0.0005                     | 0.005                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Copper    | ND                            | 0.0015                     | 0.005                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Iron      | 0.128                         | 0.050                      | 0.500                      | NE                         | J                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Magnesium | 34.6                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Manganese | ND                            | 0.005                      | 0.025                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089656-010 | SW846 7470                     |
|                      | Nickel    | ND                            | 0.0025                     | 0.010                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Potassium | 6.34                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Selenium  | 0.0148                        | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Sodium    | 45.7                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089656-010 | SW846 6020                     |
|                      | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Uranium   | 0.0126                        | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089656-010 | SW846 6020                     |
|                      | Zinc      | 0.00672                       | 0.0026                     | 0.010                      | NE                         | J                                 | 0.041U                            | 089656-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW4 (Duplicate)<br>16-Sep-10 | Aluminum  | ND                            | 0.050                      | 0.150                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Barium    | 0.0464                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Calcium   | 69.1                          | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Chromium  | ND                            | 0.0125                     | 0.050                      | 0.100                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Cobalt    | ND                            | 0.0005                     | 0.005                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Copper    | ND                            | 0.0015                     | 0.005                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Iron      | 0.127                         | 0.050                      | 0.500                      | NE                         | J                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Magnesium | 35.4                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Manganese | ND                            | 0.005                      | 0.025                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089657-010 | SW846 7470                     |
|                                  | Nickel    | ND                            | 0.0025                     | 0.010                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Potassium | 6.41                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Selenium  | 0.0146                        | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Sodium    | 46.3                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089657-010 | SW846 6020                     |
|                                  | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Uranium   | 0.0126                        | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089657-010 | SW846 6020                     |
|                                  | Zinc      | 0.00651                       | 0.0026                     | 0.010                      | NE                         | J                                 | 0.041U                            | 089657-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW6<br>20-Sep-10 | Aluminum  | 0.0138                        | 0.010                      | 0.030                      | NE                         | J                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Barium    | 0.0664                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Cadmium   | 0.000124                      | 0.00011                    | 0.001                      | 0.005                      | J                                 | J+                                | 089659-010 | SW846 6020                     |
|                      | Calcium   | 160                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Cobalt    | 0.000299                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089659-010 | SW846 6020                     |
|                      | Copper    | 0.00628                       | 0.0003                     | 0.001                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Iron      | 0.253                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Magnesium | 46.4                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Manganese | 0.00148                       | 0.001                      | 0.005                      | NE                         | J                                 | J+                                | 089659-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089659-010 | SW846 7470                     |
|                      | Nickel    | 0.00361                       | 0.0005                     | 0.002                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Potassium | 2.37                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Selenium  | 0.0101                        | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Sodium    | 45.2                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Uranium   | 0.0087                        | 0.00005                    | 0.0002                     | 0.030                      |                                   |                                   | 089659-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089659-010 | SW846 6020                     |
|                      | Zinc      | 0.0197                        | 0.0026                     | 0.010                      | NE                         |                                   |                                   | 089659-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW7<br>15-Sep-10 | Aluminum  | 0.0562                        | 0.050                      | 0.150                      | NE                         | J                                 | J+                                | 089652-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Barium    | 0.106                         | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089652-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Calcium   | 107                           | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089652-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0125                     | 0.050                      | 0.100                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Cobalt    | ND                            | 0.0005                     | 0.005                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Copper    | ND                            | 0.0015                     | 0.005                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Iron      | 0.203                         | 0.050                      | 0.500                      | NE                         | J                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Magnesium | 21.2                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089652-010 | SW846 6020                     |
|                      | Manganese | ND                            | 0.005                      | 0.025                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089652-010 | SW846 7470                     |
|                      | Nickel    | 0.00322                       | 0.0025                     | 0.010                      | NE                         | J                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Potassium | 2.52                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089652-010 | SW846 6020                     |
|                      | Selenium  | 0.00449                       | 0.001                      | 0.005                      | 0.050                      | J                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Sodium    | 39.9                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089652-010 | SW846 6020                     |
|                      | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Uranium   | 0.00682                       | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089652-010 | SW846 6020                     |
|                      | Zinc      | 0.004                         | 0.0026                     | 0.010                      | NE                         | J                                 |                                   | 089652-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW8<br>14-Sep-10 | Aluminum  | ND                            | 0.010                      | 0.030                      | NE                         | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Barium    | 0.0598                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Cadmium   | 0.000171                      | 0.00011                    | 0.001                      | 0.005                      | J                                 | J+                                | 089650-010 | SW846 6020                     |
|                      | Calcium   | 116                           | 0.200                      | 2.00                       | NE                         |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Cobalt    | 0.000309                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089650-010 | SW846 6020                     |
|                      | Copper    | 0.000956                      | 0.0003                     | 0.001                      | NE                         | B, J                              | 0.0019U                           | 089650-010 | SW846 6020                     |
|                      | Iron      | 0.188                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Magnesium | 24.4                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Manganese | 0.00305                       | 0.001                      | 0.005                      | NE                         | J                                 | J+                                | 089650-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089650-010 | SW846 7470                     |
|                      | Nickel    | 0.00324                       | 0.0005                     | 0.002                      | NE                         |                                   | J+                                | 089650-010 | SW846 6020                     |
|                      | Potassium | 2.62                          | 0.400                      | 1.50                       | NE                         |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Selenium  | 0.00708                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Sodium    | 49.2                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089650-010 | SW846 6020                     |
|                      | Thallium  | 0.000434                      | 0.0003                     | 0.001                      | 0.002                      | J                                 | 0.0023U                           | 089650-010 | SW846 6020                     |
|                      | Uranium   | 0.00797                       | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089650-010 | SW846 6020                     |
|                      | Zinc      | 0.00609                       | 0.0026                     | 0.010                      | NE                         | J                                 |                                   | 089650-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID              | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW9<br>28-Sep-10 | Aluminum  | ND                            | 0.010                      | 0.030                      | NE                         | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Barium    | 0.0738                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Calcium   | 166                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089672-010 | SW846 6020                     |
|                      | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Cobalt    | 0.000365                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089672-010 | SW846 6020                     |
|                      | Copper    | 0.0015                        | 0.0003                     | 0.001                      | NE                         |                                   | 0.0098UJ                          | 089672-010 | SW846 6020                     |
|                      | Iron      | 0.368                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Magnesium | 48.1                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Manganese | 0.0658                        | 0.001                      | 0.005                      | NE                         |                                   | J+                                | 089672-010 | SW846 6020                     |
|                      | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089672-010 | SW846 7470                     |
|                      | Nickel    | 0.00524                       | 0.0005                     | 0.002                      | NE                         |                                   | J+                                | 089672-010 | SW846 6020                     |
|                      | Potassium | 2.68                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Selenium  | 0.00822                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Sodium    | 42.0                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089672-010 | SW846 6020                     |
|                      | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Uranium   | 0.00821                       | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089672-010 | SW846 6020                     |
|                      | Zinc      | 0.0359                        | 0.0026                     | 0.010                      | NE                         |                                   | J+                                | 089672-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|----------------------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW9 (Duplicate)<br>28-Sep-10 | Aluminum  | 0.012                         | 0.010                      | 0.030                      | NE                         | J                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Barium    | 0.074                         | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Calcium   | 174                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089673-010 | SW846 6020                     |
|                                  | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Cobalt    | 0.000378                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089673-010 | SW846 6020                     |
|                                  | Copper    | 0.00152                       | 0.0003                     | 0.001                      | NE                         |                                   | 0.0098UJ                          | 089673-010 | SW846 6020                     |
|                                  | Iron      | 0.388                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Magnesium | 49.8                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Manganese | 0.068                         | 0.001                      | 0.005                      | NE                         |                                   | J+                                | 089673-010 | SW846 6020                     |
|                                  | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089673-010 | SW846 7470                     |
|                                  | Nickel    | 0.00547                       | 0.0005                     | 0.002                      | NE                         |                                   | J+                                | 089673-010 | SW846 6020                     |
|                                  | Potassium | 2.75                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Selenium  | 0.00831                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Sodium    | 40.2                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089673-010 | SW846 6020                     |
|                                  | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Uranium   | 0.00827                       | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089673-010 | SW846 6020                     |
|                                  | Zinc      | 0.0368                        | 0.0026                     | 0.010                      | NE                         |                                   | J+                                | 089673-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW10<br>27-Sep-10 | Aluminum  | ND                            | 0.010                      | 0.030                      | NE                         | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Barium    | 0.0644                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Calcium   | 133                           | 0.100                      | 1.00                       | NE                         |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Cobalt    | 0.000197                      | 0.0001                     | 0.001                      | NE                         | J                                 | J+                                | 089668-010 | SW846 6020                     |
|                       | Copper    | 0.000989                      | 0.0003                     | 0.001                      | NE                         | J                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Iron      | 0.282                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Magnesium | 35.2                          | 0.025                      | 0.075                      | NE                         |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Manganese | 0.00296                       | 0.001                      | 0.005                      | NE                         | J                                 | J+                                | 089668-010 | SW846 6020                     |
|                       | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089668-010 | SW846 7470                     |
|                       | Nickel    | 0.00399                       | 0.0005                     | 0.002                      | NE                         |                                   | J+                                | 089668-010 | SW846 6020                     |
|                       | Potassium | 1.99                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Selenium  | 0.00771                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Sodium    | 37.2                          | 0.400                      | 1.25                       | NE                         |                                   |                                   | 089668-010 | SW846 6020                     |
|                       | Thallium  | 0.000588                      | 0.0003                     | 0.001                      | 0.002                      | B, J                              | 0.0031U                           | 089668-010 | SW846 6020                     |
|                       | Uranium   | 0.0068                        | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089668-010 | SW846 6020                     |
|                       | Zinc      | 0.00305                       | 0.0026                     | 0.010                      | NE                         | J                                 | J+                                | 089668-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Continued)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW11<br>29-Sep-10 | Aluminum  | 0.0478                        | 0.010                      | 0.030                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Antimony  | 0.000617                      | 0.0005                     | 0.003                      | 0.006                      | J                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Barium    | 0.0868                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Cadmium   | ND                            | 0.00011                    | 0.001                      | 0.005                      | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Calcium   | 128                           | 0.400                      | 4.00                       | NE                         |                                   | J                                 | 089675-010 | SW846 6020                     |
|                       | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Cobalt    | 0.00127                       | 0.0001                     | 0.001                      | NE                         |                                   | J+                                | 089675-010 | SW846 6020                     |
|                       | Copper    | 0.00153                       | 0.0003                     | 0.001                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Iron      | 0.394                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Magnesium | 44.2                          | 0.050                      | 0.150                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Manganese | 0.771                         | 0.001                      | 0.005                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089675-010 | SW846 7470                     |
|                       | Nickel    | 0.00593                       | 0.0005                     | 0.002                      | NE                         |                                   | J+                                | 089675-010 | SW846 6020                     |
|                       | Potassium | 3.62                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Selenium  | 0.00548                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Sodium    | 51.8                          | 0.800                      | 2.50                       | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |
|                       | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Uranium   | 0.00771                       | 0.00005                    | 0.0002                     | 0.030                      | B                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089675-010 | SW846 6020                     |
|                       | Zinc      | 0.735                         | 0.0026                     | 0.010                      | NE                         |                                   |                                   | 089675-010 | SW846 6020                     |

Refer to footnotes on page G-29.

Table G-8 (Concluded)  
 Summary of Total Metal Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|-----------------------|-----------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| CYN-MW12<br>23-Sep-10 | Aluminum  | 0.0105                        | 0.010                      | 0.030                      | NE                         | J                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Antimony  | ND                            | 0.0005                     | 0.003                      | 0.006                      | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Arsenic   | ND                            | 0.0015                     | 0.005                      | 0.010                      | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Barium    | 0.0435                        | 0.0005                     | 0.002                      | 2.00                       |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Beryllium | ND                            | 0.0001                     | 0.0005                     | 0.004                      | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Cadmium   | 0.00029                       | 0.00011                    | 0.001                      | 0.005                      | J                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Calcium   | 157                           | 0.200                      | 2.00                       | NE                         | B                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Chromium  | ND                            | 0.0025                     | 0.010                      | 0.100                      | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Cobalt    | 0.00126                       | 0.0001                     | 0.001                      | NE                         |                                   | J+                                | 089665-010 | SW846 6020                     |
|                       | Copper    | 0.0036                        | 0.0003                     | 0.001                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Iron      | 0.280                         | 0.010                      | 0.100                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Lead      | ND                            | 0.0005                     | 0.002                      | NE                         | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Magnesium | 43.6                          | 0.005                      | 0.015                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Manganese | 0.588                         | 0.001                      | 0.005                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Mercury   | ND                            | 0.000066                   | 0.0002                     | 0.002                      | U                                 |                                   | 089665-010 | SW846 7470                     |
|                       | Nickel    | 0.00425                       | 0.0005                     | 0.002                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Potassium | 5.56                          | 0.080                      | 0.300                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Selenium  | 0.00668                       | 0.001                      | 0.005                      | 0.050                      |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Silver    | ND                            | 0.0002                     | 0.001                      | NE                         | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Sodium    | 48.2                          | 0.080                      | 0.250                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Thallium  | ND                            | 0.0003                     | 0.001                      | 0.002                      | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Uranium   | 0.00877                       | 0.00005                    | 0.0002                     | 0.030                      |                                   |                                   | 089665-010 | SW846 6020                     |
|                       | Vanadium  | ND                            | 0.003                      | 0.010                      | NE                         | U                                 |                                   | 089665-010 | SW846 6020                     |
|                       | Zinc      | 0.231                         | 0.013                      | 0.050                      | NE                         |                                   |                                   | 089665-010 | SW846 6020                     |

Refer to footnotes on page G-29.

**Table G-9**  
**Summary of Tritium, Gross Alpha, Gross Beta, Gamma Spectroscopy, and Isotopic Uranium Results**  
**Burn Site Groundwater Monitoring**

Fiscal Year 2010, Fourth Quarter

| Well ID                      | Analyte         | Activity <sup>a</sup><br>(pCi/L) | MDA <sup>b</sup><br>(pCi/L) | Critical<br>Level <sup>c</sup><br>(pCi/L) | MCL <sup>d</sup><br>(pCi/L) | Laboratory<br>Qualifier <sup>e</sup> | Validation<br>Qualifier <sup>f</sup> | Sample No. | Analytical<br>Method <sup>g</sup> |
|------------------------------|-----------------|----------------------------------|-----------------------------|-------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|------------|-----------------------------------|
| <b>CYN-MW1D</b><br>21-Sep-10 | Americium-241   | -7.19 ± 13.0                     | 21.5                        | 10.7                                      | NE                          | U                                    | BD                                   | 089661-033 | EPA 901.1                         |
|                              | Cesium-137      | 0.949 ± 2.02                     | 3.45                        | 1.73                                      | NE                          | U                                    | BD                                   | 089661-033 | EPA 901.1                         |
|                              | Cobalt-60       | 0.0907 ± 2.20                    | 3.66                        | 1.83                                      | NE                          | U                                    | BD                                   | 089661-033 | EPA 901.1                         |
|                              | Potassium-40    | 12.2 ± 46.9                      | 33.1                        | 16.5                                      | NE                          | U                                    | BD                                   | 089661-033 | EPA 901.1                         |
|                              | Gross Alpha     | 0.50                             | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089661-034 | EPA 900.0                         |
|                              | Gross Beta      | 2.53 ± 1.07                      | 1.56                        | 0.756                                     | 4 mrem/yr                   |                                      | J                                    | 089661-034 | EPA 900.0                         |
|                              | Uranium-233/234 | 2.04 ± 0.320                     | 0.0513                      | 0.0216                                    | NE                          |                                      |                                      | 089661-035 | HASL-300                          |
|                              | Uranium-235/236 | 0.0413 ± 0.0271                  | 0.0396                      | 0.0147                                    | NE                          |                                      | J                                    | 089661-035 | HASL-300                          |
|                              | Uranium-238     | 0.331 ± 0.0771                   | 0.031                       | 0.0114                                    | NE                          |                                      |                                      | 089661-035 | HASL-300                          |
|                              | Tritium         | 32.4 ± 86.6                      | 147                         | 71.6                                      | NE                          | U                                    | BD                                   | 089661-036 | EPA 906.0 M                       |
| <b>CYN-MW3</b><br>22-Sep-10  | Americium-241   | 4.37 ± 12.4                      | 18.7                        | 9.36                                      | NE                          | U                                    | BD                                   | 089663-033 | EPA 901.1                         |
|                              | Cesium-137      | 0.398 ± 1.92                     | 3.26                        | 1.63                                      | NE                          | U                                    | BD                                   | 089663-033 | EPA 901.1                         |
|                              | Cobalt-60       | 0.879 ± 1.94                     | 3.34                        | 1.67                                      | NE                          | U                                    | BD                                   | 089663-033 | EPA 901.1                         |
|                              | Potassium-40    | 21.1 ± 50.1                      | 28.4                        | 14.2                                      | NE                          | U                                    | BD                                   | 089663-033 | EPA 901.1                         |
|                              | Gross Alpha     | 2.00                             | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089663-034 | EPA 900.0                         |
|                              | Gross Beta      | 5.63 ± 1.86                      | 2.43                        | 1.17                                      | 4 mrem/yr                   |                                      | J                                    | 089663-034 | EPA 900.0                         |
|                              | Uranium-233/234 | 6.16 ± 0.899                     | 0.0559                      | 0.0235                                    | NE                          |                                      |                                      | 089663-035 | HASL-300                          |
|                              | Uranium-235/236 | 0.213 ± 0.0659                   | 0.0431                      | 0.016                                     | NE                          |                                      | J                                    | 089663-035 | HASL-300                          |
|                              | Uranium-238     | 1.93 ± 0.310                     | 0.0338                      | 0.0124                                    | NE                          |                                      |                                      | 089663-035 | HASL-300                          |
|                              | Tritium         | 56.6 ± 92.7                      | 156                         | 75.8                                      | NE                          | U                                    | BD                                   | 089663-036 | EPA 906.0 M                       |
| <b>CYN-MW4</b><br>16-Sep-10  | Americium-241   | 7.34 ± 7.95                      | 12.5                        | 6.25                                      | NE                          | U                                    | BD                                   | 089656-033 | EPA 901.1                         |
|                              | Cesium-137      | 0.416 ± 1.86                     | 3.15                        | 1.57                                      | NE                          | U                                    | BD                                   | 089656-033 | EPA 901.1                         |
|                              | Cobalt-60       | -1.53 ± 1.89                     | 2.98                        | 1.49                                      | NE                          | U                                    | BD                                   | 089656-033 | EPA 901.1                         |
|                              | Potassium-40    | -15.4 ± 38.4                     | 41.6                        | 20.8                                      | NE                          | U                                    | BD                                   | 089656-033 | EPA 901.1                         |
|                              | Gross Alpha     | 3.74                             | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089656-034 | EPA 900.0                         |
|                              | Gross Beta      | 13.3 ± 2.71                      | 1.45                        | 0.691                                     | 4 mrem/yr                   |                                      |                                      | 089656-034 | EPA 900.0                         |
|                              | Uranium-233/234 | 32.5 ± 4.76                      | 0.123                       | 0.0548                                    | NE                          |                                      |                                      | 089656-035 | HASL-300                          |
|                              | Uranium-235/236 | 0.721 ± 0.166                    | 0.0628                      | 0.0232                                    | NE                          |                                      |                                      | 089656-035 | HASL-300                          |
|                              | Uranium-238     | 4.34 ± 0.690                     | 0.0546                      | 0.0207                                    | NE                          |                                      |                                      | 089656-035 | HASL-300                          |
|                              | Tritium         | 8.74 ± 63.4                      | 114                         | 52.5                                      | NE                          | U                                    | BD                                   | 089656-036 | EPA 906.0 M                       |

Refer to footnotes on page G-29.

Table G-9 (Continued)  
 Summary of Tritium, Gross Alpha, Gross Beta, Gamma Spectroscopy, and Isotopic Uranium Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte         | Activity <sup>a</sup><br>(pCi/L) | MDA <sup>b</sup><br>(pCi/L) | Critical<br>Level <sup>c</sup><br>(pCi/L) | MCL <sup>d</sup><br>(pCi/L) | Laboratory<br>Qualifier <sup>e</sup> | Validation<br>Qualifier <sup>f</sup> | Sample No. | Analytical<br>Method <sup>g</sup> |
|----------------------------------|-----------------|----------------------------------|-----------------------------|-------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|------------|-----------------------------------|
| CYN-MW4 (Duplicate)<br>16-Sep-10 | Americium-241   | 0.182 ± 4.58                     | 7.70                        | 3.85                                      | NE                          | U                                    | BD                                   | 089657-033 | EPA 901.1                         |
|                                  | Cesium-137      | -0.564 ± 1.55                    | 2.60                        | 1.30                                      | NE                          | U                                    | BD                                   | 089657-033 | EPA 901.1                         |
|                                  | Cobalt-60       | 1.65 ± 1.59                      | 2.90                        | 1.45                                      | NE                          | U                                    | BD                                   | 089657-033 | EPA 901.1                         |
|                                  | Potassium-40    | -22.2 ± 34.1                     | 39.2                        | 19.6                                      | NE                          | U                                    | BD                                   | 089657-033 | EPA 901.1                         |
|                                  | Gross Alpha     | -5.15                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089657-034 | EPA 900.0                         |
|                                  | Gross Beta      | 4.08 ± 2.00                      | 2.79                        | 1.36                                      | 4 mrem/yr                   |                                      | J                                    | 089657-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 33.9 ± 4.93                      | 0.116                       | 0.0515                                    | NE                          |                                      |                                      | 089657-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.355 ± 0.103                    | 0.059                       | 0.0218                                    | NE                          |                                      |                                      | 089657-035 | HASL-300                          |
|                                  | Uranium-238     | 4.39 ± 0.689                     | 0.0514                      | 0.0195                                    | NE                          |                                      |                                      | 089657-035 | HASL-300                          |
|                                  | Tritium         | -5.95 ± 63.3                     | 116                         | 53.6                                      | NE                          | U                                    | BD                                   | 089657-036 | EPA 906.0 M                       |
| CYN-MW6<br>20-Sep-10             | Americium-241   | -8.49 ± 12.8                     | 21.1                        | 10.6                                      | NE                          | U                                    | BD                                   | 089659-033 | EPA 901.1                         |
|                                  | Cesium-137      | -0.25 ± 2.03                     | 3.38                        | 1.69                                      | NE                          | U                                    | BD                                   | 089659-033 | EPA 901.1                         |
|                                  | Cobalt-60       | -0.781 ± 2.21                    | 3.55                        | 1.78                                      | NE                          | U                                    | BD                                   | 089659-033 | EPA 901.1                         |
|                                  | Potassium-40    | -46.4 ± 36.7                     | 42.3                        | 21.2                                      | NE                          | U                                    | BD                                   | 089659-033 | EPA 901.1                         |
|                                  | Gross Alpha     | -1.69                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089659-034 | EPA 900.0                         |
|                                  | Gross Beta      | 4.25 ± 2.00                      | 2.95                        | 1.43                                      | 4 mrem/yr                   |                                      | J                                    | 089659-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 10.6 ± 1.55                      | 0.0889                      | 0.0373                                    | NE                          |                                      |                                      | 089659-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.247 ± 0.0895                   | 0.0685                      | 0.0255                                    | NE                          |                                      | J                                    | 089659-035 | HASL-300                          |
|                                  | Uranium-238     | 2.84 ± 0.463                     | 0.0537                      | 0.0197                                    | NE                          |                                      |                                      | 089659-035 | HASL-300                          |
|                                  | Tritium         | 83.3 ± 93.5                      | 155                         | 75.2                                      | NE                          | U                                    | BD                                   | 089659-036 | EPA 906.0 M                       |
| CYN-MW7<br>15-Sep-10             | Americium-241   | -2.87 ± 10.6                     | 17.8                        | 8.90                                      | NE                          | U                                    | BD                                   | 089652-033 | EPA 901.1                         |
|                                  | Cesium-137      | 0.889 ± 1.96                     | 3.37                        | 1.68                                      | NE                          | U                                    | BD                                   | 089652-033 | EPA 901.1                         |
|                                  | Cobalt-60       | -0.333 ± 2.09                    | 3.43                        | 1.71                                      | NE                          | U                                    | BD                                   | 089652-033 | EPA 901.1                         |
|                                  | Potassium-40    | 40.8 ± 24.8                      | 45.2                        | 22.6                                      | NE                          | U                                    | BD                                   | 089652-033 | EPA 901.1                         |
|                                  | Gross Alpha     | -1.94                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089652-034 | EPA 900.0                         |
|                                  | Gross Beta      | 4.99 ± 1.48                      | 1.60                        | 0.761                                     | 4 mrem/yr                   |                                      |                                      | 089652-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 19.3 ± 2.80                      | 0.107                       | 0.0479                                    | NE                          |                                      |                                      | 089652-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.127 ± 0.054                    | 0.0549                      | 0.0203                                    | NE                          |                                      | J                                    | 089652-035 | HASL-300                          |
|                                  | Uranium-238     | 2.41 ± 0.397                     | 0.0478                      | 0.0181                                    | NE                          |                                      |                                      | 089652-035 | HASL-300                          |
|                                  | Tritium         | 0.00 ± 63.0                      | 115                         | 52.9                                      | NE                          | U                                    | BD                                   | 089652-036 | EPA 906.0 M                       |

Refer to footnotes on page G-29.

Table G-9 (Continued)  
 Summary of Tritium, Gross Alpha, Gross Beta, Gamma Spectroscopy, and Isotopic Uranium Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID                          | Analyte         | Activity <sup>a</sup><br>(pCi/L) | MDA <sup>b</sup><br>(pCi/L) | Critical<br>Level <sup>c</sup><br>(pCi/L) | MCL <sup>d</sup><br>(pCi/L) | Laboratory<br>Qualifier <sup>e</sup> | Validation<br>Qualifier <sup>f</sup> | Sample No. | Analytical<br>Method <sup>g</sup> |
|----------------------------------|-----------------|----------------------------------|-----------------------------|-------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|------------|-----------------------------------|
| CYN-MW8<br>14-Sep-10             | Americium-241   | -2.01 ± 12.0                     | 20.4                        | 10.2                                      | NE                          | U                                    | BD                                   | 089650-033 | EPA 901.1                         |
|                                  | Cesium-137      | -5.26 ± 3.74                     | 4.14                        | 2.07                                      | NE                          | U                                    | BD                                   | 089650-033 | EPA 901.1                         |
|                                  | Cobalt-60       | -1.19 ± 1.88                     | 3.01                        | 1.50                                      | NE                          | U                                    | BD                                   | 089650-033 | EPA 901.1                         |
|                                  | Potassium-40    | 40.3 ± 26.9                      | 31.8                        | 15.9                                      | NE                          |                                      | J                                    | 089650-033 | EPA 901.1                         |
|                                  | Gross Alpha     | -5.59                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089650-034 | EPA 900.0                         |
|                                  | Gross Beta      | 5.96 ± 1.78                      | 2.08                        | 1.00                                      | 4 mrem/yr                   |                                      | J                                    | 089650-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 24.9 ± 3.62                      | 0.157                       | 0.0702                                    | NE                          |                                      |                                      | 089650-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.326 ± 0.109                    | 0.0804                      | 0.0297                                    | NE                          |                                      |                                      | 089650-035 | HASL-300                          |
|                                  | Uranium-238     | 2.96 ± 0.499                     | 0.070                       | 0.0265                                    | NE                          |                                      |                                      | 089650-035 | HASL-300                          |
|                                  | Tritium         | -48.3 ± 58.3                     | 114                         | 52.7                                      | NE                          | U                                    | BD                                   | 089650-036 | EPA 906.0 M                       |
| CYN-MW9<br>28-Sep-10             | Americium-241   | 2.16 ± 12.5                      | 18.8                        | 9.41                                      | NE                          | U                                    | BD                                   | 089672-033 | EPA 901.1                         |
|                                  | Cesium-137      | 1.92 ± 1.83                      | 3.23                        | 1.62                                      | NE                          | U                                    | BD                                   | 089672-033 | EPA 901.1                         |
|                                  | Cobalt-60       | 1.30 ± 1.92                      | 3.37                        | 1.69                                      | NE                          | U                                    | BD                                   | 089672-033 | EPA 901.1                         |
|                                  | Potassium-40    | -6.03 ± 43.5                     | 45.6                        | 22.8                                      | NE                          | U                                    | BD                                   | 089672-033 | EPA 901.1                         |
|                                  | Gross Alpha     | -0.49                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089672-034 | EPA 900.0                         |
|                                  | Gross Beta      | 3.93 ± 1.57                      | 2.18                        | 1.05                                      | 4 mrem/yr                   |                                      | J                                    | 089672-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 8.21 ± 1.18                      | 0.0533                      | 0.0224                                    | NE                          |                                      |                                      | 089672-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.218 ± 0.0646                   | 0.0411                      | 0.0153                                    | NE                          |                                      | J                                    | 089672-035 | HASL-300                          |
|                                  | Uranium-238     | 2.46 ± 0.381                     | 0.0322                      | 0.0118                                    | NE                          |                                      |                                      | 089672-035 | HASL-300                          |
|                                  | Tritium         | 58.0 ± 67.2                      | 111                         | 50.8                                      | NE                          | U                                    | BD                                   | 089672-036 | EPA 906.0 M                       |
| CYN-MW9 (Duplicate)<br>28-Sep-10 | Americium-241   | -8.95 ± 13.1                     | 21.8                        | 10.9                                      | NE                          | U                                    | BD                                   | 089673-033 | EPA 901.1                         |
|                                  | Cesium-137      | -0.77 ± 1.85                     | 3.04                        | 1.52                                      | NE                          | U                                    | BD                                   | 089673-033 | EPA 901.1                         |
|                                  | Cobalt-60       | 0.220 ± 2.04                     | 3.43                        | 1.72                                      | NE                          | U                                    | BD                                   | 089673-033 | EPA 901.1                         |
|                                  | Potassium-40    | 3.29 ± 45.0                      | 51.5                        | 25.8                                      | NE                          | U                                    | BD                                   | 089673-033 | EPA 901.1                         |
|                                  | Gross Alpha     | 3.00                             | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089673-034 | EPA 900.0                         |
|                                  | Gross Beta      | 4.19 ± 1.84                      | 2.66                        | 1.29                                      | 4 mrem/yr                   |                                      | J                                    | 089673-034 | EPA 900.0                         |
|                                  | Uranium-233/234 | 9.03 ± 1.31                      | 0.0585                      | 0.0246                                    | NE                          |                                      |                                      | 089673-035 | HASL-300                          |
|                                  | Uranium-235/236 | 0.158 ± 0.0568                   | 0.0451                      | 0.0167                                    | NE                          |                                      | J                                    | 089673-035 | HASL-300                          |
|                                  | Uranium-238     | 2.51 ± 0.395                     | 0.0354                      | 0.013                                     | NE                          |                                      |                                      | 089673-035 | HASL-300                          |
|                                  | Tritium         | 76.9 ± 68.0                      | 108                         | 49.5                                      | NE                          | U                                    | BD                                   | 089673-036 | EPA 906.0 M                       |

Refer to footnotes on page G-29.

Table G-9 (Concluded)  
 Summary of Tritium, Gross Alpha, Gross Beta, Gamma Spectroscopy, and Isotopic Uranium Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID               | Analyte         | Activity <sup>a</sup><br>(pCi/L) | MDA <sup>b</sup><br>(pCi/L) | Critical<br>Level <sup>c</sup><br>(pCi/L) | MCL <sup>d</sup><br>(pCi/L) | Laboratory<br>Qualifier <sup>e</sup> | Validation<br>Qualifier <sup>f</sup> | Sample No. | Analytical<br>Method <sup>g</sup> |
|-----------------------|-----------------|----------------------------------|-----------------------------|-------------------------------------------|-----------------------------|--------------------------------------|--------------------------------------|------------|-----------------------------------|
| CYN-MW10<br>27-Sep-10 | Americium-241   | -6.54 ± 11.8                     | 17.2                        | 8.61                                      | NE                          | U                                    | BD                                   | 089668-033 | EPA 901.1                         |
|                       | Cesium-137      | 0.0486 ± 1.92                    | 3.28                        | 1.64                                      | NE                          | U                                    | BD                                   | 089668-033 | EPA 901.1                         |
|                       | Cobalt-60       | -0.572 ± 2.04                    | 3.42                        | 1.71                                      | NE                          | U                                    | BD                                   | 089668-033 | EPA 901.1                         |
|                       | Potassium-40    | -25.4 ± 36.9                     | 45.4                        | 22.7                                      | NE                          | U                                    | BD                                   | 089668-033 | EPA 901.1                         |
|                       | Gross Alpha     | -0.99                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089668-034 | EPA 900.0                         |
|                       | Gross Beta      | 2.82 ± 1.32                      | 1.91                        | 0.921                                     | 4 mrem/yr                   |                                      | J                                    | 089668-034 | EPA 900.0                         |
|                       | Uranium-233/234 | 6.21 ± 0.916                     | 0.0601                      | 0.0253                                    | NE                          |                                      |                                      | 089668-035 | HASL-300                          |
|                       | Uranium-235/236 | 0.132 ± 0.0507                   | 0.0463                      | 0.0172                                    | NE                          |                                      | J                                    | 089668-035 | HASL-300                          |
|                       | Uranium-238     | 2.19 ± 0.352                     | 0.0363                      | 0.0134                                    | NE                          |                                      |                                      | 089668-035 | HASL-300                          |
|                       | Tritium         | 31.6 ± 62.9                      | 109                         | 49.9                                      | NE                          | U                                    | BD                                   | 089668-036 | EPA 906.0 M                       |
| CYN-MW11<br>29-Sep-10 | Americium-241   | 11.0 ± 7.72                      | 11.9                        | 5.96                                      | NE                          | U                                    | BD                                   | 089675-033 | EPA 901.1                         |
|                       | Cesium-137      | 0.980 ± 1.90                     | 3.23                        | 1.61                                      | NE                          | U                                    | BD                                   | 089675-033 | EPA 901.1                         |
|                       | Cobalt-60       | 2.25 ± 2.02                      | 3.63                        | 1.82                                      | NE                          | U                                    | BD                                   | 089675-033 | EPA 901.1                         |
|                       | Potassium-40    | 4.29 ± 40.8                      | 28.4                        | 14.2                                      | NE                          | U                                    | BD                                   | 089675-033 | EPA 901.1                         |
|                       | Gross Alpha     | 0.88                             | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089675-034 | EPA 900.0                         |
|                       | Gross Beta      | 9.26 ± 3.64                      | 5.19                        | 2.53                                      | 4 mrem/yr                   |                                      | J                                    | 089675-034 | EPA 900.0                         |
|                       | Uranium-233/234 | 6.28 ± 0.911                     | 0.053                       | 0.0223                                    | NE                          |                                      |                                      | 089675-035 | HASL-300                          |
|                       | Uranium-235/236 | 0.143 ± 0.0525                   | 0.0409                      | 0.0152                                    | NE                          |                                      | J                                    | 089675-035 | HASL-300                          |
|                       | Uranium-238     | 2.22 ± 0.348                     | 0.032                       | 0.0118                                    | NE                          |                                      |                                      | 089675-035 | HASL-300                          |
|                       | Tritium         | 34.3 ± 62.4                      | 108                         | 49.2                                      | NE                          | U                                    | BD                                   | 089675-036 | EPA 906.0 M                       |
| CYN-MW12<br>23-Sep-10 | Americium-241   | -8.69 ± 13.3                     | 22.1                        | 11.1                                      | NE                          | U                                    | BD                                   | 089665-033 | EPA 901.1                         |
|                       | Cesium-137      | 0.466 ± 1.90                     | 3.24                        | 1.62                                      | NE                          | U                                    | BD                                   | 089665-033 | EPA 901.1                         |
|                       | Cobalt-60       | -0.594 ± 2.03                    | 3.31                        | 1.65                                      | NE                          | U                                    | BD                                   | 089665-033 | EPA 901.1                         |
|                       | Potassium-40    | 13.1 ± 47.0                      | 33.7                        | 16.9                                      | NE                          | U                                    | BD                                   | 089665-033 | EPA 901.1                         |
|                       | Gross Alpha     | 0.521                            | NA                          | NA                                        | 15                          | NA                                   | None                                 | 089665-034 | EPA 900.0                         |
|                       | Gross Beta      | 7.33 ± 2.61                      | 3.59                        | 1.75                                      | 4 mrem/yr                   |                                      | J                                    | 089665-034 | EPA 900.0                         |
|                       | Uranium-233/234 | 11.1 ± 1.60                      | 0.0583                      | 0.0245                                    | NE                          |                                      |                                      | 089665-035 | HASL-300                          |
|                       | Uranium-235/236 | 0.239 ± 0.0708                   | 0.0449                      | 0.0167                                    | NE                          |                                      | J                                    | 089665-035 | HASL-300                          |
|                       | Uranium-238     | 2.84 ± 0.440                     | 0.0352                      | 0.0129                                    | NE                          |                                      |                                      | 089665-035 | HASL-300                          |
|                       | Tritium         | 61.7 ± 92.8                      | 156                         | 75.7                                      | NE                          | U                                    | BD                                   | 089665-036 | EPA 906.0 M                       |

Refer to footnotes on page G-29.

Table G-10  
 Summary of Field Water Quality Measurements<sup>h</sup>  
 Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Well ID  | Sample Date | Temperature (°C) | Specific Conductivity (µmho/cm) | Oxidation Reduction Potential (mV) | pH   | Turbidity (NTU) | Dissolved Oxygen (% Sat) | Dissolved Oxygen (mg/L) |
|----------|-------------|------------------|---------------------------------|------------------------------------|------|-----------------|--------------------------|-------------------------|
| CYN-MW1D | 21-Sep-10   | 20.31            | 495                             | -20.6                              | 7.75 | 105.0           | 9.6                      | 0.88                    |
| CYN-MW3  | 22-Sep-10   | 18.35            | 900                             | 142.5                              | 7.29 | 0.33            | 66.5                     | 6.19                    |
| CYN-MW4  | 16-Sep-10   | 20.50            | 672                             | 180.5                              | 7.29 | 0.12            | 34.8                     | 3.12                    |
| CYN-MW6  | 20-Sep-10   | 18.53            | 1059                            | 103.8                              | 7.04 | 0.37            | 20.6                     | 1.92                    |
| CYN-MW7  | 15-Sep-10   | 21.62            | 707                             | 166.1                              | 7.09 | 1.11            | 39.1                     | 3.44                    |
| CYN-MW8  | 14-Sep-10   | 21.46            | 811                             | 158.1                              | 7.13 | 0.19            | 48.1                     | 4.24                    |
| CYN-MW9  | 28-Sep-10   | 18.93            | 1089                            | 197.3                              | 7.03 | 0.45            | 48.6                     | 4.50                    |
| CYN-MW10 | 27-Sep-10   | 19.86            | 905                             | 145.5                              | 7.33 | 0.40            | 71.3                     | 6.49                    |
| CYN-MW11 | 29-Sep-10   | 21.51            | 992                             | 58.9                               | 7.27 | 3.73            | 5.5                      | 0.51                    |
| CYN-MW12 | 23-Sep-10   | 18.47            | 1045                            | 50.8                               | 7.10 | 0.90            | 5.4                      | 0.51                    |

Refer to footnotes on page G-29.

Table G-11  
Summary of Environmental and Duplicate Analyses  
Burn Site Groundwater Monitoring

Fiscal Year 2010, Fourth Quarter

| Parameter              | Environmental<br>Sample<br>(R1) | Duplicate<br>Sample<br>(R2) | RPD <sup>i</sup> |
|------------------------|---------------------------------|-----------------------------|------------------|
|                        | mg/L unless otherwise noted     |                             |                  |
| <b>CYN-MW4</b>         |                                 |                             |                  |
| Nitrate plus Nitrite   | 0.149                           | 0.150                       | 1                |
| Bicarbonate Alkalinity | 223                             | 223                         | <1               |
| Bromide (filtered)     | 0.378                           | 0.396                       | 5                |
| Chloride (filtered)    | 24.2                            | 24.0                        | 1                |
| Fluoride (filtered)    | 0.780                           | 0.784                       | 1                |
| Sulfate (filtered)     | 130                             | 128                         | 2                |
| Calcium (filtered)     | 69.7                            | 68.4                        | 2                |
| Magnesium (filtered)   | 33.9                            | 36.3                        | 7                |
| Potassium (filtered)   | 6.27                            | 6.87                        | 9                |
| Sodium (filtered)      | 46.6                            | 45.5                        | 2                |
| Arsenic                | 0.00185                         | ND                          | NC               |
| Barium                 | 0.0471                          | 0.0464                      | 1                |
| Calcium                | 69.7                            | 69.1                        | 1                |
| Iron                   | 0.128                           | 0.127                       | 1                |
| Magnesium              | 34.6                            | 35.4                        | 2                |
| Potassium              | 6.34                            | 6.41                        | 1                |
| Selenium               | 0.0148                          | 0.0146                      | 1                |
| Sodium                 | 45.7                            | 46.3                        | 1                |
| Uranium                | 0.0126                          | 0.0126                      | <1               |
| <b>CYN-MW9</b>         |                                 |                             |                  |
| Nitrate plus Nitrite   | 30.1                            | 30.1                        | <1               |
| Bicarbonate Alkalinity | 236                             | 238                         | 1                |
| Bromide (filtered)     | 1.13                            | 1.15                        | 2                |
| Chloride (filtered)    | 79.2                            | 80.2                        | 1                |
| Fluoride (filtered)    | 0.609                           | 0.600                       | 1                |
| Sulfate (filtered)     | 173                             | 175                         | 1                |
| Calcium (filtered)     | 169                             | 170                         | 1                |
| Magnesium (filtered)   | 48.6                            | 50.6                        | 4                |
| Potassium (filtered)   | 2.71                            | 2.63                        | 3                |
| Sodium (filtered)      | 40.3                            | 43.6                        | 8                |
| Aluminum               | ND                              | 0.012                       | NC               |
| Barium                 | 0.0738                          | 0.0740                      | <1               |
| Calcium                | 166.0                           | 174.0                       | 5                |
| Cobalt                 | 0.000365                        | 0.000378                    | 3                |
| Iron                   | 0.368                           | 0.388                       | 5                |
| Magnesium              | 48.1                            | 49.8                        | 3                |
| Manganese              | 0.0658                          | 0.0680                      | 3                |
| Nickel                 | 0.00524                         | 0.00547                     | 4                |
| Potassium              | 2.68                            | 2.75                        | 3                |
| Selenium               | 0.00822                         | 0.00831                     | 1                |
| Sodium                 | 42.0                            | 40.2                        | 4                |
| Uranium                | 0.00821                         | 0.00827                     | 1                |
| Zinc                   | 0.0359                          | 0.0368                      | 2                |

Refer to footnotes on page G-29.

## **Footnotes for Burn Site Groundwater Monitoring Tables**

---

### **<sup>a</sup>Result**

- Values in bold exceed the established MCL.
- ND = not detected (at method detection limit).
- Activities of zero or less are considered to be not detected.
- Gross alpha activity measurements were corrected by subtracting out the total uranium activity (40 CFR Parts 9, 141, and 142, Table I-4)
- $\mu\text{g/L}$  = Micrograms per liter.
- $\text{mg/L}$  = Milligrams per liter.
- $\text{pCi/L}$  = Picocuries per liter.

### **<sup>b</sup>MDL or MDA**

Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero; analyte is matrix-specific.

Minimum detectable activity. The minimum detectable activity or minimum measured activity in a sample required to ensure a 95% probability that the measured activity is accurately quantified above the critical level.

NA = not applicable for gross alpha activities. The MDA could not be calculated as the gross alpha activity was corrected by subtracting out the total uranium activity.

### **<sup>c</sup>PQL or Critical Level**

Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by that indicated method under routine laboratory operating conditions.

Critical level. The minimum activity that can be measured and reported with 99% confidence that the analyte is greater than zero; analyte is matrix-specific.

NA = not applicable for gross alpha activities. The critical level could not be calculated as the gross alpha activity was corrected by subtracting out the total uranium activity.

### **<sup>d</sup>MCL**

- Maximum contaminant level. Established by the U.S. Environmental Protection Agency Primary Water Regulations (40 CFR 141.11(b)), National Primary Drinking Water Standards, EPA, July 2002.
- NE = not established.
- The following are the MCLs for gross alpha particles and beta particles in community water systems:  
15  $\text{pCi/L}$  = Gross alpha particle activity, excluding total uranium (40 CFR Parts 9, 141, and 142, Table I-4).  
4 mrem/yr = any combination of beta and/or gamma emitting radionuclides (as dose rate).

### **<sup>e</sup>Laboratory Qualifier**

B = Analyte is detected in associated laboratory method blank.  
J = Amount detected is below the practical quantitation limit.  
H = Analytical holding time was exceeded.  
NA = Not applicable.  
U = Analyte is absent or below the method detection limit.

### **<sup>f</sup>Validation Qualifier**

If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.

BD = Below detection limit as used in radiochemistry to identify results that are not statistically different from zero.  
J = The associate value is an estimated quantity.  
J+ = The associated numerical value is an estimated quantity with suspected positive bias.  
None = No data validation for corrected gross alpha activity.  
U = The analyte was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.  
UJ = The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

## **Footnotes for Burn Site Groundwater Monitoring Tables (Concluded)**

---

### **<sup>g</sup>Analytical Method**

- U.S. Environmental Protection Agency, 1999 (and updates), "Perchlorate in Drinking Water Using Ion Chromatography," EPA 815/R-00-014.
- U.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3<sup>rd</sup> ed.
- U.S. Environmental Protection Agency, 1984, "Methods for Chemical Analysis of Water and wastes." EPA 600-4-79-020.
- U.S. Environmental Protection Agency, 1983, "The Determination of Inorganic Anions in Water by Ion Chromatography-Method 300.0," EPA-600/4-84-017.
- U.S. Environmental Protection Agency, 1980, "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, U.S. Environmental Protection Agency, Cincinnati, Ohio
- U.S. Environmental Protection Agency, Washington, D.C.; or Clesceri, Greenburg, and Eaton, 1998, "Standard Methods for the Examination of Water and Wastewater," 20<sup>th</sup> ed., Method 2320B.
- U.S. Department of Energy, Environmental Measurements Laboratory, 1990, "EML Procedures Manual," 27th ed., Vol. 1, Rev. 1992, HASL-300.

### **<sup>h</sup>Field Water Quality Measurements**

- Field measurements collected prior to sampling.

$^{\circ}\text{C}$  = Degrees Celsius.  
% Sat = Present saturation.  
 $\mu\text{mho}/\text{cm}$  = Micromhos per centimeter.  
 $\text{mg}/\text{L}$  = Milligrams per liter.  
 $\text{mV}$  = Millivolts.  
NTU = Nephelometric turbidity units.  
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

### **<sup>i</sup>RPD**

RPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where:

$R_1$  = Analysis result.  
 $R_2$  = Duplicate analysis result.  
NC = Not calculated.

CFR = Code of Federal Regulations.  
CYN = Canyons (Burn Site Groundwater).  
EPA = U.S. Environmental Protection Agency.  
HASL = Health and Safety Laboratory.  
HMX = Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine.  
ID = Identification number.  
mrem/yr = Millirem per year.  
MW = Monitoring well.  
NC = Not calculated.  
RDX = Hexahydro-Trinitro-Triazine.  
SW = Solid Waste.  
Tetryl = 2,4,6-Trinitrophenylmethylnitramine.

**APPENDIX H**  
**Groundwater Analytical Results for Samples Collected During**  
**First Quarter of Fiscal Year 2011**



**Table H-1**  
**Method Detection Limits for Volatile Organic and Semivolatile Organic Compounds**  
**Burn Site Groundwater Monitoring**

Fiscal Year 2011, First Quarter

| Analyte                   | MDL <sup>b</sup><br>(µg/L) | Analytical<br>Method <sup>g</sup> | Analyte                     | MDL <sup>b</sup><br>(µg/L) | Analytical<br>Method <sup>g</sup> | Analyte                    | MDL <sup>b</sup><br>(µg/L) | Analytical<br>Method <sup>g</sup> |
|---------------------------|----------------------------|-----------------------------------|-----------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------|-----------------------------------|
| 1,1,1-Trichloroethane     | 0.325                      | 8260B                             | 1,2,4-Trichlorobenzene      | 1.89–2.13                  | 8270C                             | Di-n-butyl phthalate       | 1.89–2.13                  | 8270C                             |
| 1,1,2,2-Tetrachloroethane | 0.250                      | 8260B                             | 1,2-Dichlorobenzene         | 1.89–2.13                  | 8270C                             | Di-n-octyl phthalate       | 2.83–3.19                  | 8270C                             |
| 1,1,2-Trichloroethane     | 0.250                      | 8260B                             | 1,3-Dichlorobenzene         | 1.89–2.13                  | 8270C                             | Dibenzo[a,h]anthracene     | 0.189–0.213                | 8270C                             |
| 1,1-Dichloroethane        | 0.300                      | 8260B                             | 1,4-Dichlorobenzene         | 1.89–2.13                  | 8270C                             | Dibenzofuran               | 1.89–2.13                  | 8270C                             |
| 1,1-Dichloroethene        | 0.300                      | 8260B                             | 2,4,5-Trichlorophenol       | 1.89–2.13                  | 8270C                             | Diethylphthalate           | 1.89–2.13                  | 8270C                             |
| 1,2-Dichloroethane        | 0.250                      | 8260B                             | 2,4,6-Trichlorophenol       | 1.89–2.13                  | 8270C                             | Dimethylphthalate          | 1.89–2.13                  | 8270C                             |
| 1,2-Dichloropropane       | 0.250                      | 8260B                             | 2,4-Dichlorophenol          | 1.89–2.13                  | 8270C                             | Dinitro-o-cresol           | 2.83–3.19                  | 8270C                             |
| 2-Butanone                | 1.25                       | 8260B                             | 2,4-Dimethylphenol          | 1.89–2.13                  | 8270C                             | Diphenyl amine             | 2.83–3.19                  | 8270C                             |
| 2-Hexanone                | 1.25                       | 8260B                             | 2,4-Dinitrophenol           | 4.72–5.32                  | 8270C                             | Fluoranthene               | 0.189–0.213                | 8270C                             |
| 4-methyl-, 2-Pentanone    | 1.25                       | 8260B                             | 2,4-Dinitrotoluene          | 1.89–2.13                  | 8270C                             | Fluorene                   | 0.189–0.213                | 8270C                             |
| Acetone                   | 3.50                       | 8260B                             | 2,6-Dinitrotoluene          | 1.89–2.13                  | 8270C                             | Hexachlorobenzene          | 1.89–2.13                  | 8270C                             |
| Benzene                   | 0.300                      | 8260B                             | 2-Chloronaphthalene         | 0.283–0.319                | 8270C                             | Hexachlorobutadiene        | 1.89–2.13                  | 8270C                             |
| Bromodichloromethane      | 0.250                      | 8260B                             | 2-Chlorophenol              | 1.89–2.13                  | 8270C                             | Hexachlorocyclopentadiene  | 2.83–3.19                  | 8270C                             |
| Bromoform                 | 0.250                      | 8260B                             | 2-Methylnaphthalene         | 0.283–0.319                | 8270C                             | Hexachloroethane           | 1.89–2.13                  | 8270C                             |
| Bromomethane              | 0.300                      | 8260B                             | 2-Nitroaniline              | 1.89–2.13                  | 8270C                             | Indeno(1,2,3-c,d)pyrene    | 0.189–0.213                | 8270C                             |
| Carbon disulfide          | 1.25                       | 8260B                             | 2-Nitrophenol               | 1.89–2.13                  | 8270C                             | Isophorone                 | 2.83–3.19                  | 8270C                             |
| Carbon tetrachloride      | 0.300                      | 8260B                             | 3,3'-Dichlorobenzidine      | 1.89–2.13                  | 8270C                             | Naphthalene                | 0.283–0.319                | 8270C                             |
| Chlorobenzene             | 0.250                      | 8260B                             | 3-Nitroaniline              | 1.89–2.13                  | 8270C                             | Nitro-benzene              | 2.83–3.19                  | 8270C                             |
| Chloroethane              | 0.300                      | 8260B                             | 4-Bromophenyl phenyl ether  | 1.89–2.13                  | 8270C                             | Pentachlorophenol          | 1.89–2.13                  | 8270C                             |
| Chloroform                | 0.250                      | 8260B                             | 4-Chloro-3-methylphenol     | 1.89–2.13                  | 8270C                             | Phenanthrene               | 0.189–0.213                | 8270C                             |
| Chloromethane             | 0.300                      | 8260B                             | 4-Chlorobenzenamine         | 1.89–2.13                  | 8270C                             | Phenol                     | 0.943–1.06                 | 8270C                             |
| Dibromochloromethane      | 0.300                      | 8260B                             | 4-Chlorophenyl phenyl ether | 1.89–2.13                  | 8270C                             | Pyrene                     | 0.283–0.319                | 8270C                             |
| Ethyl benzene             | 0.250                      | 8260B                             | 4-Nitroaniline              | 2.83–3.19                  | 8270C                             | bis(2-Chloroethoxy)methane | 2.83–3.19                  | 8270C                             |
| Methylene chloride        | 3.00                       | 8260B                             | 4-Nitrophenol               | 1.89–2.13                  | 8270C                             | bis(2-Chloroethyl)ether    | 1.89–2.13                  | 8270C                             |
| Styrene                   | 0.250                      | 8260B                             | Acenaphthene                | 0.292–0.33                 | 8270C                             | bis(2-Ethylhexyl)phthalate | 1.89–2.13                  | 8270C                             |
| Tetrachloroethene         | 0.300                      | 8260B                             | Acenaphthylene              | 0.189–0.213                | 8270C                             | bis-Chloroisopropyl ether  | 1.89–2.13                  | 8270C                             |
| Toluene                   | 0.250                      | 8260B                             | Anthracene                  | 0.189–0.213                | 8270C                             | m,p-Cresol                 | 2.83–3.19                  | 8270C                             |
| Trichloroethene           | 0.250                      | 8260B                             | Benzo(a)anthracene          | 0.189–0.213                | 8270C                             | n-Nitrosodipropylamine     | 1.89–2.13                  | 8270C                             |
| Vinyl acetate             | 1.50                       | 8260B                             | Benzo(a)pyrene              | 0.189–0.213                | 8270C                             | o-Cresol                   | 1.89–2.13                  | 8270C                             |
| Vinyl chloride            | 0.500                      | 8260B                             | Benzo(b)fluoranthene        | 0.189–0.213                | 8270C                             |                            |                            |                                   |
| Xylene                    | 0.300                      | 8260B                             | Benzo(ghi)perylene          | 0.189–0.213                | 8270C                             |                            |                            |                                   |
| cis-1,2-Dichloroethene    | 0.300                      | 8260B                             | Benzo(k)fluoranthene        | 0.189–0.213                | 8270C                             |                            |                            |                                   |
| cis-1,3-Dichloropropene   | 0.250                      | 8260B                             | Butylbenzyl phthalate       | 1.89–2.13                  | 8270C                             |                            |                            |                                   |
| trans-1,2-Dichloroethene  | 0.300                      | 8260B                             | Carbazole                   | 0.189–0.213                | 8270C                             |                            |                            |                                   |
| trans-1,3-Dichloropropene | 0.250                      | 8260B                             | Chrysene                    | 0.189–0.213                | 8270C                             |                            |                            |                                   |

Refer to footnotes on page H-8.

Table H-2  
Method Detection Limits for High Explosive Compounds (EPA Method<sup>g</sup> SW846-8321A)  
Burn Site Groundwater Investigation

Fiscal Year 2011, First Quarter

| Analyte                      | MDL <sup>b</sup><br>( $\mu$ g/L) |
|------------------------------|----------------------------------|
| 1,3,5-Trinitrobenzene        | 0.104                            |
| 1,3-Dinitrobenzene           | 0.104                            |
| 2,4,6-Trinitrotoluene        | 0.104                            |
| 2,4-Dinitrotoluene           | 0.104                            |
| 2,6-Dinitrotoluene           | 0.0779                           |
| 2-Amino-4,6-dinitrotoluene   | 0.104                            |
| 2-Nitrotoluene               | 0.104                            |
| 3-Nitrotoluene               | 0.104                            |
| 4-Amino-2,6-dinitrotoluene   | 0.104                            |
| 4-Nitrotoluene               | 0.104                            |
| HMX                          | 0.104                            |
| Nitrobenzene                 | 0.104                            |
| Pentaerythritol tetranitrate | 0.130                            |
| RDX                          | 0.104                            |
| Tetryl                       | 0.130                            |

Refer to footnotes on page H-8.

Table H-3  
 Summary of Nitrate plus Nitrite Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2011, First Quarter

| Well ID                                  | Analyte                   | Result <sup>a</sup><br>(mg/L) | MDL <sup>b</sup><br>(mg/L) | PQL <sup>c</sup><br>(mg/L) | MCL <sup>d</sup><br>(mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|------------------------------------------|---------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW9</b><br>27-Oct-10              | Nitrate plus nitrite as N | <b>36.6</b>                   | 5.00                       | 25.0                       | 10.0                       |                                   |                                   | 089759-018 | EPA 353.2                      |
| <b>CYN-MW10</b><br>02-Nov-10             | Nitrate plus nitrite as N | <b>11.4</b>                   | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089773-018 | EPA 353.2                      |
| <b>CYN-MW10 (Duplicate)</b><br>02-Nov-10 | Nitrate plus nitrite as N | <b>11.4</b>                   | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089774-018 | EPA 353.2                      |
| <b>CYN-MW11</b><br>01-Nov-10             | Nitrate plus nitrite as N | <b>10.6</b>                   | 0.250                      | 1.25                       | 10.0                       |                                   |                                   | 089765-018 | EPA 353.2                      |
| <b>CYN-MW12</b><br>28-Oct-10             | Nitrate plus nitrite as N | <b>14.4</b>                   | 0.500                      | 2.50                       | 10.0                       |                                   |                                   | 089762-018 | EPA 353.2                      |

Refer to footnotes on page H-8.

Table H-4  
 Summary of Diesel Range and Gasoline Range Organics Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2011, First Quarter

| Well ID                                  | Analyte                 | Result <sup>a</sup><br>( $\mu\text{g}/\text{L}$ ) | MDL <sup>b</sup><br>( $\mu\text{g}/\text{L}$ ) | PQL <sup>c</sup><br>( $\mu\text{g}/\text{L}$ ) | MCL <sup>d</sup><br>( $\mu\text{g}/\text{L}$ ) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|------------------------------------------|-------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW9</b><br>27-Oct-10              | Diesel Range Organics   | ND                                                | 65.0                                           | 200                                            | NE                                             | U                                 |                                   | 089759-005 | SW846 8015A/B                  |
|                                          | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089759-006 | SW846 8015B                    |
| <b>CYN-MW10</b><br>02-Nov-10             | Diesel Range Organics   | ND                                                | 65.7                                           | 202                                            | NE                                             | U                                 |                                   | 089773-005 | SW846 8015A/B                  |
|                                          | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089773-006 | SW846 8015B                    |
| <b>CYN-MW10</b> (Duplicate)<br>02-Nov-10 | Diesel Range Organics   | ND                                                | 66.3                                           | 204                                            | NE                                             | U                                 |                                   | 089774-005 | SW846 8015A/B                  |
|                                          | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089774-006 | SW846 8015B                    |
| <b>CYN-MW11</b><br>01-Nov-10             | Diesel Range Organics   | ND                                                | 64.4                                           | 198                                            | NE                                             | U                                 |                                   | 089765-005 | SW846 8015A/B                  |
|                                          | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089765-006 | SW846 8015B                    |
| <b>CYN-MW12</b><br>28-Oct-10             | Diesel Range Organics   | ND                                                | 71.4                                           | 220                                            | NE                                             | U                                 |                                   | 089762-005 | SW846 8015A/B                  |
|                                          | Gasoline Range Organics | ND                                                | 10.5                                           | 50.0                                           | NE                                             | U                                 |                                   | 089762-006 | SW846 8015B                    |

Refer to footnotes on page H-8.

Table H-5  
 Summary of Perchlorate Results  
 Burn Site Groundwater Monitoring

Fiscal Year 2011, First Quarter

| Well ID                                  | Perchlorate Result <sup>a</sup> (mg/L) | MDL <sup>b</sup> (mg/L) | PQL <sup>c</sup> (mg/L) | MCL <sup>d</sup> (mg/L) | Laboratory Qualifier <sup>e</sup> | Validation Qualifier <sup>f</sup> | Sample No. | Analytical Method <sup>g</sup> |
|------------------------------------------|----------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------|-----------------------------------|------------|--------------------------------|
| <b>CYN-MW9</b><br>27-Oct-10              | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089759-020 | EPA 314.0                      |
| <b>CYN-MW10</b><br>02-Nov-10             | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089773-020 | EPA 314.0                      |
| <b>CYN-MW10</b> (Duplicate)<br>02-Nov-10 | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089774-020 | EPA 314.0                      |
| <b>CYN-MW11</b><br>01-Nov-10             | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089765-020 | EPA 314.0                      |
| <b>CYN-MW12</b><br>28-Oct-10             | ND                                     | 0.004                   | 0.012                   | NE                      | U                                 |                                   | 089762-020 | EPA 314.0                      |

Refer to footnotes on page H-8.

Table H-6  
 Summary of Field Water Quality Measurements<sup>h</sup>  
 Burn Site Groundwater Monitoring

Fiscal Year 2011, First Quarter

| Well ID  | Sample Date | Temperature (°C) | Specific Conductivity (µmho/cm) | Oxidation Reduction Potential (mV) | pH   | Turbidity (NTU) | Dissolved Oxygen (% Sat) | Dissolved Oxygen (mg/L) |
|----------|-------------|------------------|---------------------------------|------------------------------------|------|-----------------|--------------------------|-------------------------|
| CYN-MW9  | 27-Oct-10   | 16.07            | 1081                            | 210.7                              | 7.08 | 0.28            | 48.5                     | 475                     |
| CYN-MW10 | 02-Nov-10   | 16.40            | 899                             | 259.3                              | 7.37 | 0.39            | 66.8                     | 6.52                    |
| CYN-MW11 | 01-Nov-10   | 16.98            | 975                             | 81.3                               | 7.34 | 0.57            | 5.4                      | 0.55                    |
| CYN-MW12 | 28-Oct-10   | 17.59            | 1035                            | 173.4                              | 7.16 | 0.26            | 6.6                      | 0.63                    |

Refer to footnotes on page H-8.

Table H-7  
Summary of Environmental and Duplicate Analyses  
Burn Site Groundwater Monitoring

Fiscal Year 2011, First Quarter

| Parameter            | Environmental Sample<br>(R1) | Duplicate Sample<br>(R2) | RPD <sup>i</sup> |
|----------------------|------------------------------|--------------------------|------------------|
|                      | mg/L unless otherwise noted  |                          |                  |
| <b>CYN-MW10</b>      |                              |                          |                  |
| Nitrate plus Nitrite | 11.4                         | 11.4                     | < 1              |

Refer to footnotes on page H-8.

## **Footnotes for Burn Site Groundwater Monitoring Tables**

---

### **<sup>a</sup>Result**

- Values in bold exceed the established MCL.
- ND = not detected (at method detection limit).
- $\mu\text{g/L}$  = Micrograms per liter.
- mg/L = Milligrams per liter.

### **<sup>b</sup>MDL**

Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix specific.

### **<sup>c</sup>PQL**

Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by that indicated method under routine laboratory operating conditions.

### **<sup>d</sup>MCL**

- Maximum contaminant level. Established by the U.S. Environmental Protection Agency Primary Water Regulations (40 CFR 141.11[b]), National Primary Drinking Water Standards, EPA, July 2002.
- NE = not established.

### **<sup>e</sup>Laboratory Qualifier**

U = Analyte is absent or below the method detection limit.

### **<sup>f</sup>Validation Qualifier**

If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.

### **<sup>g</sup>Analytical Method**

- U.S. Environmental Protection Agency, 1999 (and updates), "Perchlorate in Drinking Water Using Ion Chromatography," EPA 815/R-00-014.
- U.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3<sup>rd</sup> ed.
- U.S. Environmental Protection Agency, 1984, "Methods for Chemical Analysis of Water and Wastes." EPA 600-4-79-020.

### **<sup>h</sup>Field Water Quality Measurements**

- Field measurements collected prior to sampling.

$^{\circ}\text{C}$  = Degrees Celsius.  
% Sat = Present saturation.  
 $\mu\text{mho}/\text{cm}$  = Micromhos per centimeter.  
mg/L = Milligrams per liter.  
mV = Millivolts.  
NTU = Nephelometric turbidity units.  
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

### **<sup>i</sup>RPD**

RPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where:

$R_1$  = analysis result  
 $R_2$  = duplicate analysis result

### ***Footnotes for Burn Site Groundwater Monitoring Tables (Concluded)***

---

|        |                                                     |
|--------|-----------------------------------------------------|
| CFR    | = Code of Federal Regulations.                      |
| CYN    | = Canyons (Burn Site Groundwater).                  |
| EPA    | = U.S. Environmental Protection Agency.             |
| HMX    | = Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine. |
| ID     | = Identification number.                            |
| MW     | = Monitoring well.                                  |
| RDX    | = Hexahydro-Trinitro-Triazine.                      |
| SW     | = Solid Waste.                                      |
| Tetryl | = 2,4,6-Trinitrophenylmethyinitramine               |

**This page intentionally left blank.**