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e The role of fuels in today’s energy landscape

e Concentrated solar power and solar fuels

e Packed bed particle reactor for solar fuel production

e Final thoughts
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The 19t" & 20t Century US Electricity Paradigm
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US Electricity Sources: Mostly Fuels

natural gas
42%

natural gas
24%

United States 2010 United States 2010
nameplate capacity net generation
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Appliances

31% Space heating

41%

US residential energy consumption: 78% heating and cooling
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oy Needs: Mostly Heating, Cooling, and Fuels

Transportation
28%

Heating, cooling
39%

Total US energy consumption
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Why Fuels? Energy and Transport Efficienc

Energy efficiency Transport losses

Conventional thermal 35%  Oil pipeline
Combined cycle 60% || Natural gas pipeline
Cogeneration/MicroCHP  80% | Electricity T&D
Trigeneration >85%

Most efficient approach: Deliver fuel close to point of use
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Why Fuels? Storage

100 | of storage equals

Gasoline 950 kWh
Ethanol 667 kWh
Natural gas (250 bar) 250 kWh
- R L-| Battery 70 kWh
I EE— ($28000)
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So, Why Fuels?

e Good fit for energy end-use: in transportation, heating, cooling

e Fuels can be transported efficiently

e Efficient when used localy (cogeneration/trigeneration)

e Fuels are easy (and inexpensive) to store
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Concentrated Solar Power: Full Solar Sprectrum Use
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Why Solar Thermochemical Fuels?

e Potential for high efficiency:
- Use the entire solar spectrum

- Efficient conversion of solar to chemical energy
- Production of H, and CO avoids reverse water gas shift reaction

in hydrocarbon synthesis

e Majority of cycles are two-step metal oxide based

| | |
- Thermal reduction (T>1300°C): BMOX —>8M0x_5 +202

1
1M0x5 +H,0 > 5 MO _+H,

- Fuel production (T<1200°C): : :
8M0x5 +CO, > SMOX +CO

e Key elements: reactive materials and reactors
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Comparison of Solar Fuel Technologies

e Molten salt power tower with 65% electrolysis efficiency

- 11% annual average solar efficiency (solar to H,)

e Dish-Stirling with electrolysis

- 16% annual average solar efficiency (solar to H,)

e PV with electrolysis

- 10% annual average solar efficiency (solar to H,)

e Corn ethanol

- approximately 0.12% annual average solar efficiency (solar to ethanol)
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Svstem Level View: Many Energy Losses to Consider

Resource efficiency = 95% for Daggett, CA (DNI > 300W/m?)

Operational ~ 94%
Equip. Availability = 97%, Blocking&Shading = 98%, Wind Outage = 99%

Optical ~ 79%
Reflectivity = 93% (two reflections)
Dirt = 95%

Window = 95%

Tracking =99%
Intercept = 95%

Receiver ~ 82%
Radiation = 82%
Conduction/Convection =0 %

=i .. Reactor
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System Level View: Many Energy Losses to Consider

e Lots of places to lose energy

- Solar collection is mature, improvements will be small

e The is the single least efficient component

- Improve materials

- Improve reactor: key attributes

e | essons learned from CR5:

- Mechanical stability of reactive structures
- Materials kinetics as source of efficiency limits




solar concentrator heats
rotating ceramic discs

OXYGEN \

A MIRRORED DISH TRACKS THE SUN
AND FOCUSES HEAT ON REACTION
(HAMBER

AL 1500°C ceramic releases
oxygen from molecular lattice

0z

Oxygen-deficient ceramic at
1100°C grabs oxygen from
(0, molecules, leaving (O

Figure Credit
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Desirable Reactor Attributes: Efficiency Driven

Direct solar absorption by
the working material

Solar concentrator heals

Sensible energy recovery rotating ceramic discs
between T,,and T, OXVGEN g

Continuous on-sun operation

, tem pe rature Al 1500°C ceramic releases

. oxygen from molecular lattice
and product separation "
2

Lessons learned:
— Reactive structures durability

— Material kinetics limitations Oxygen-deficient ceramic at
1100°C grabs oxygen from

(0, molecules, leaving (O

Figure Credit
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e
Packed Bed Particle Reactor

Direct solar absorption by
the working material

Sensible energy recovery
between T, and T,

Continuous on-sun operation

Rotating

Pressure, temperature
elevator

and product separation

casing
* Pros:
— Small reactive particles (~100mm)
— Only particles are thermally cycled Oxif_izled Reduced
— Independent component optimization el particles

— Easy material replacement
* Cons:

— Particle conveyance

— Beam-down optics

H,O
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Solar Efficiency: An All Inclusive Metric

Collection losses
(concentrator, re-radiation)

Metal oxide heating
Metal oxide thermal reduction
Feedstock heating (steam)

Pumping
Secondary

Electrical/mechanical mirror

CeO, —» CeO, ; +E;O2

CeO, 5 +6 -H,0 - CeO, +6 -H,

Solar is the only
primary energy used Primary

concentrator(s)
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e
Packed Bed Reactor Performance Model
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e
Packed Bed Reactor Performance Model
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O2 pumping speed [m 3/s]

100000
10000
1000
100
10

1

©
—

0.01
0.001

Low Pressure Limit: Pum

| heat recovery 98552/02
\ efficiency — ———— 65%
1 0%
‘-\-~"‘-~\_\-‘ ........ ES
| Ps&=10 MW
1 10 100 1000 10000 100000
Partial O, Pressure in Reduction Zone [Pa]

25,

HBD
o o

_________

w
(3]

30 .

25— s
| ~ |
20 TrEuEEE T —— S——— - -

Solar Efficiency v [%]

1 10 100 1000 10000
Partial O, Pressure in Reduction Zone [Pa]

/ )-v'nhili\

Reduction Extent (CeO 2:5)




R RRRRRRRBRRRBRRRBRRRRRESSSBDEBESBEEEBEBEE=SSEEBSZDZDZZ
Inert Sweep Limit: Efficienc
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Thermal ¢
reductionJ '-

Identify working oxide

. . Stationary
Set T, residence time, p,, screw

Oxidized
Set 1k (size exchanger) particles
Set T, residence time

-S2F

Rotating
elevator
casing

Reduced
particles
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Thermal ‘

Identify working oxide

s

Set T, residence time, p,,

Set 1k (size exchanger)

Set T, residence time

reduction :
chamber

Particle
flow

. Decrease oxide flow to
Rotating

Stationary

maintain T,; = increases
screw

casing

Nur = M is unchanged

Oxidized

Reduced
particles

particles

Increase oxide flow to

maintain T,, = decreases

Nur = M is unchanged
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Reduction to Practice

e Demonstrating a good “paper design” is not always easy

e Technical challenges being addressed

- Reactant properties

- Material chemical durability

- Material compatibility

s2p )
ationa
SUNSHINT m Laboratories



Packed Bed Reactor: Summary and Next Steps

e The packed bed particle reactor embodies
all of the efficiency-driven attributes

It has the potential to exceed considerably
electrochemical efficiency for H, production

Lowest p,, probably limited by pumping speed, not efficiency

Efficiency through design, independent component
optimization, and operational flexibility

Conveyor/heat exchenger detailed design

Gradually increasing temperature prototypes
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The 19t" & 20t Century US Electricity Paradigm
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The 21t" Century Energy Paradigm?

Local cogeneration
and consumption

Solar fuel

- 3

+ PV, wind, hydro
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e
Hvybrid Solar Efficiency: Use Waste Heat

All mechanical work included
Excess waste heat used to produce electricity for electrolysis

CeO, cycle, Ty=1500°C, T;=1100°C
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Inert Gas Sweep Limit: Efficienc
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Using Heat for Coolin

Actual Electric Profile

Year 2006

Con Edison proposal for New York City steam cooling
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Material Compatibility: High T Makes Reactions Easy

e The reactor and reactants should not
react... With each other

- Haynes 214 alloy: 1400°C

_SiC: 1400°C Ce0,/HA214,1200 C  CeO,/HA214, 1400 C

! : 10ppm O,, 2h 10ppm O,, 2h
e Material strength is a concern ’ ’

- Creep in metals
- Shock resistance in ceramics

Ce0,/SiC Hexoloy, 1400 C
Stagnantiaibisn paint Ce0,/ALO,/SiC, 1450 C

—

CeO,/Al,0,, 1450 C stagnant air, 3h

szp stagnant air, 3h @ Sandia
National
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Desirable Reactor Attributes: Efficiency Driven

Direct solar absorption by
the working material

Sensible energy recovery

between T, and T,

Continuous on-sun operation high Ty, low py,

Pressure, temperature Mox-fii TMO
and product separation .

heat exchange

MOX_Si T MO,

fuel production: H, CO
>
”lOW" TL’ Ilhighﬂ p) AQOX

Metal oxide cycle
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Packed Bed Particle Reactor

Direct solar absorption by Concentrated
the working material

Sensible energy recovery

Thermal
between T, and T, reduction
Continuous on-sun operation

_~Rotating
Pressure, temperature | | elevator
and product separation 1 casing
* Pros: <:; ¥ ?
— Small reactive particles _ |, %j:;
— Only particles are thermally cycled . < Oxidized
R screw > icl
— Independent component optimization = e

— Easy material replacement

e Cons:

— Particle conveyance
— Beam-down optics
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