

Exceptional service in the national interest

Analytical Capabilities of Sandia's Radiological Laboratory

Sean D. Fournier
Sandia National Laboratories
Radiation Protection and Sample Diagnostics Program

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Routine radiological capabilities and sample types
- Description of radiological laboratory equipment
- Sample Preparation
- Performance Evaluation and Intercomparison Programs
- Supported Programs
- Other SNL Assets That Could Apply to Nuclear Forensics
- Questions

Routine Analytical Capabilities

- Gamma Spectroscopy
- Gas Proportional Counting
- ISOLO
- Liquid Scintillation
- Alpha Spectroscopy
- ICP-MS
- Drum Counting
- Whole Body Counting
- Portable Gamma Spec
- Falcon Gamma Spec
- Preparation Laboratories

Routine-Environmental and Emergency Sample Types

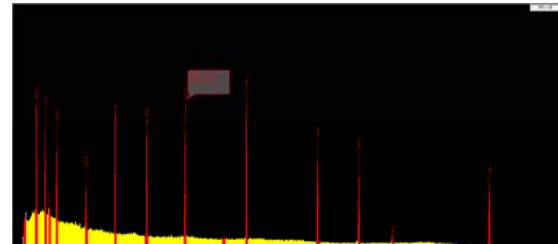
- Air
 - Paper and cartridge filters
- Water
 - Ground water
 - Drinking water
- Soil
 - Soil intended for agriculture
 - Environmental soil
- Vegetation
 - Wild plant life
- Food
 - Prepared foods (market ready)
 - Raw foods
- Feed
 - Livestock feed
 - Wild forage
- Milk
 - Milk for human consumption
- Surfaces
 - Swipes

Other Sample types

- Activated materials
 - By Neutron
 - By Intense Gamma
 - By Proton
- Waste Assay
 - Drums
 - Disposal boxes
 - Individually bagged items
- People
 - Urine screening
 - Whole-Body counting
- Decontamination
 - Various items from decontamination and remediation efforts

Radiological Laboratory Equipment

- Gamma Spectroscopy
 - Solid, Liquid, or contained gaseous samples that are thought to contain gamma or x-ray emitting nuclides
 - Basically any geometry that fits in the shield
 - Appropriate calibrations need to be made
 - Can be used for rapid screening or detailed measurements
 - Portable units can be used to measure basically anything
- Liquid Scintillation Counting (LSC)
 - Rapid screening of liquids, swipes and air filters for low energy beta, beta, and alpha radiation
 - Detailed spectroscopy can be performed after radiochemical separations
- Gas-Flow Proportional Counting
 - Rapid screening of air filter and swipe samples for alpha and beta-emitting isotopes


Radiological Laboratory Equipment

- Alpha Spectroscopy
 - Rapid screening of air filters and swipes by direct counting
 - Detailed spectroscopy of any matrix for alpha-emitting nuclides when the proper radiochemistry method is applied.
- Mass Spectrometry
 - Rapid screening of liquids for heavy metals (Uranium, Transuranic elements, etc.)
 - Detailed spectrometry of any matrix for metals when the proper radiochemistry method is applied

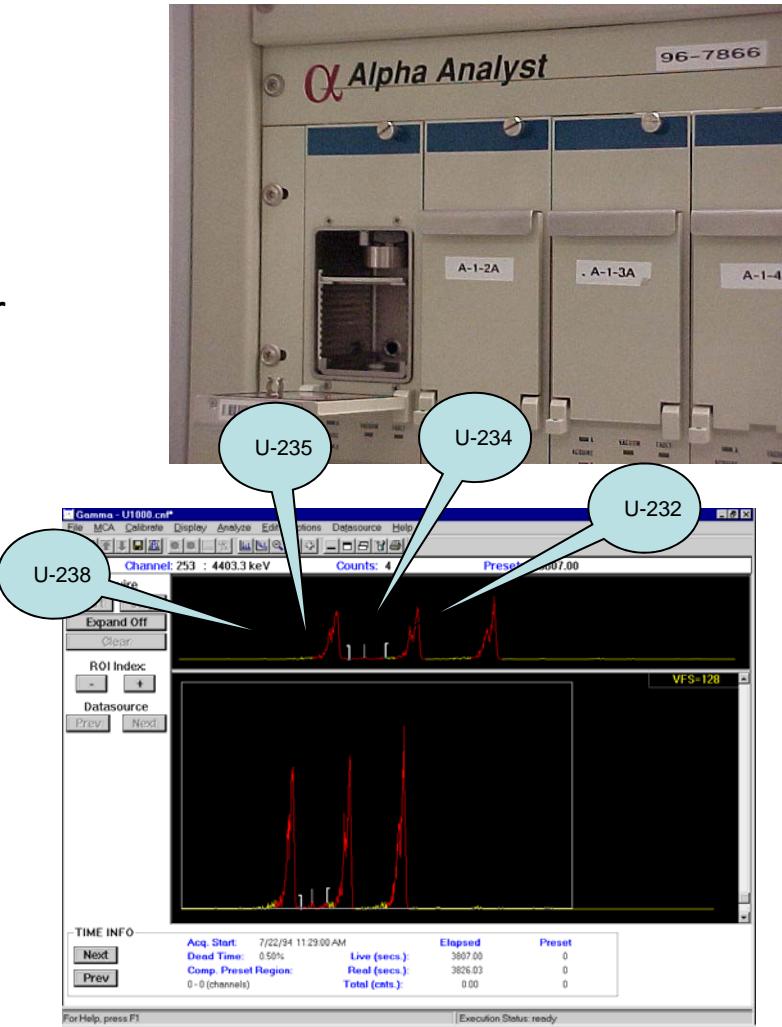
Gamma Spectroscopy

- X-ray and Gamma Energy range
 - 3 keV to 3 MeV
- Resolution
 - FWHM = 0.75 keV @ 112 keV
- Laboratory Units
 - Very low detection levels
 - LN Cooled
- Portable Units
 - Counts any number of geometries “In-Situ”
 - LN cooled or Electrically cooled

Liquid Scintillation Counting

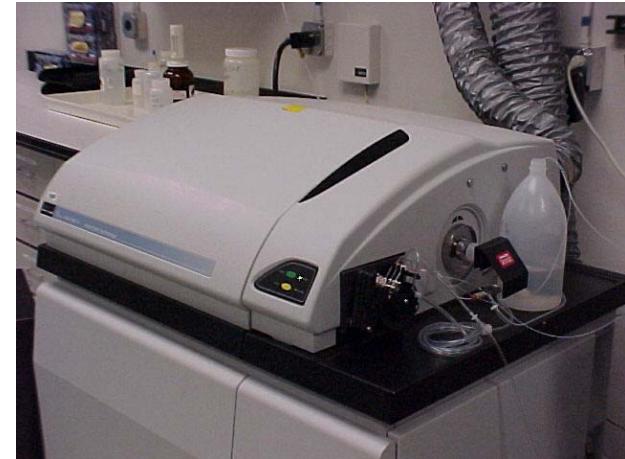
- Detection
 - Low Energy Beta (H-3, Ni-63, etc.)
 - Gross Beta / Gross Alpha
 - Spectroscopic results when combined with radiochemical separations
- Geometry
 - 20 mL vial including cocktail
 - Maximum 10mL liquid per sample
- Laboratory Units
 - Automatic sample changing
 - Anti-Coincidence background reduction
- Portable Units
 - Guard detector (background reduction)
 - Manual sample changing
 - Single Photomultiplier Tube (no Anti-Coincidence background reduction)

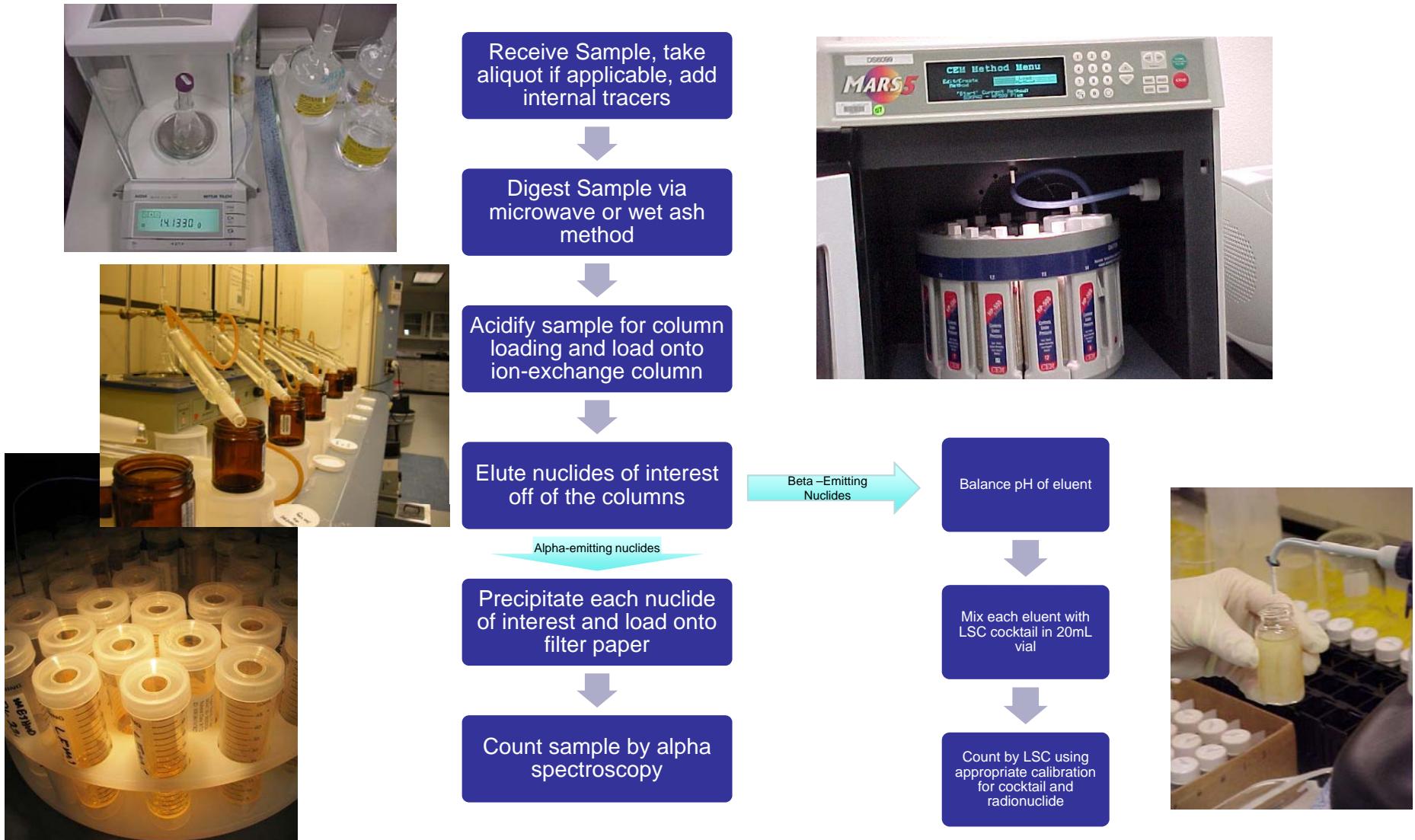
Gas-Flow Proportional Counting


(and other Gross Alpha/Beta instruments)

- Detection
 - Gross Alpha / Gross Beta
 - Radon Compensated Gross Alpha/Beta
- Geometry
 - 2" – 4" diameter swipes and air filters
 - dissolved liquids
- Laboratory Units
 - Shielding and Guard Detection
 - Automatic Sample changing
 - Rapid analysis of air filters and swipes
- Portable Units
 - No gas needed (use PIPS detector)
 - Ability to compensate for Radon/Thoron in air samples

Alpha Spectroscopy


- Detection
 - Alpha-emitters (including TRU)
- Geometry
 - 1" diameter radiochemically prepared samples
 - precipitated radionuclides on micro-filter
- Efficiency
 - > 25% at closest distance from source to detector
- Resolution
 - < 13 keV/channel
- Laboratory Units
 - Multi-detector rack-mounted units with evacuated chambers
 - Manually loaded but many samples can be counting at one time


Inductively Coupled Plasma Mass Spectrometer (ICP-MS)

- Detection
 - Metals (U, Th, Pu, etc.)
 - Other Long-Lived isotopes
- Geometry
 - Digested Sample in diluted liquid form
- Resolution
 - ~ 0.25 AMU
- Laboratory Units
 - Quadruple mass spectrometer
 - Auto-pipetter
 - High throughput
 - Detection limits of ppt for medium and heavy elements

Sample Preparation and Radiochemistry

Performance Evaluation Programs



- DOE Laboratory Accreditation Program (DOELAP)
 - Lungs
 - BOMAB
 - Thyroid
 - Synthetic Urine
- DOE Mixed Analyte Performance Evaluation Program (MAPEP)
 - Radiological constituents in soil, water, air filter and vegetation
- Oak Ridge National Laboratory (ORNL)
 - Whole Body Count

Supported Intercomparison Programs

- International Atomic Energy Agency
 - Radionuclides in Sea Water
 - Radionuclides in Vegetation (Spinach)
 - Radionuclides in Soil
- Environmental Protection Agency
 - Mixed Fission and Activation Products
- Food and Drug Administration
 - Consumer food products during an emergency response

Supported Internal Programs

- Radiation Protection Operations
- Radiation Protection Dosimetry
- Environmental Monitoring, Characterization, and Restoration
- Radioactive & Mixed Waste Management
- Reactor Facilities
- Accelerator Facilities
- Radiation Transport Studies
- Research & Investigations
- Training Programs

Supported External Programs

- Centers for Disease Control and Prevention (CDC)
- Nationwide training courses
- NNSA Federal Emergency Response Programs
- Characterization of Waste for disposal at Waste Isolation Pilot Plant (WIPP)
- Environmental Protection Agency (EPA)
- Community Project for Drinking Water
- Development of an analytical field capability

Other Sandia Analytical Capabilities**

- **Ion Beam Laboratory**
- **Rutherford back-scattering spectrometry (RBS)**
 - Compositional and depth profiling of materials
- **Elastic recoil detection of very light elements**
 - High energy, heavy ion beam enables the profiling of very light elements such as Li, B, and H.
- **Time-of-flight elastic recoil detection**
 - High depth resolution (1nm) and greater isotopic separation
- **Ion channeling**
 - Probes near-surface atomic structure
 - depth profiling of defects & strain
- **External ion-beam analysis**
 - For materials that cannot be placed in a vacuum system
- **Particle-induced x-ray emission (PIXE)**
 - Quantitative elemental analysis with detection sensitivities of $\mu\text{g/g}$ (ppm)
- **Three-dimensional elemental distribution maps**

** Some laboratories can only handle very low-level or non-radioactive samples

Other Sandia Analytical Capabilities**

- **Materials Science & Engineering Dept.**
- **Electron-optical instrumentation**
 - Transmission Electron Microscopy (TEM) & Electron Diffraction
 - Scanning Electron Microscopy (SEM)
 - Low-vacuum capabilities, image analysis, Electron MicroProbe Analysis (EMPA)
- **X-Ray Diffraction (XRD)**
 - stress, phase and texture analysis;
 - Micro x-ray diffraction
 - for crystallographic phase analysis and determination of stress on small areas
- **Vibrational and optical spectroscopies**
 - Fourier transform infrared spectroscopy (FT-IR),
 - Raman spectroscopy,
 - Photoluminescence spectroscopy.
- **Surface spectroscopy**
 - X-ray photoelectron spectroscopy (XPS),
 - Scanning Auger,
 - Time-of-flight secondary ion mass spectrometry (TOF-SIMS).
- **Nuclear Magnetic Resonance (NMR).**
- **Analytical chemistry**
 - instrumental and wet-chemistry

** Some laboratories can only handle very low-level or non-radioactive samples

Questions?

