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Research Challenge 3:
Competing Radiative and Non-Radiative Processes
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processes that limit the efficiency of light-emitting materials
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Motivation of this Research Challenge
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High-level Goal: Fundamental understanding of the competition between carrier

recombination processes that limit the efficiency of light-emitting materials
Emphasis on = InGaN heterostructures
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Proposed Mechanisms for Efficiency Droop
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EFRC Focus and Distinct Contributions

\/ Power-
\‘/ conversion

efficiency
FIX
Radiative Auger
Defect

* Focus on competing recombination processes, not a single process (e.g., Auger)

/ Internal quantum \
Injection efficiency (g,o¢)
efficiency
BN*
= € Joule 1€inj 2 3
AN + BN +CN” +...

K Defects

Radiative Auger +... /

Advancement beyond ABC model: bandstructure, momentum-resolved carrier

ext

distributions, direct calculation of radiative recombination, non-equilibrium phenomena

Extensive experimental and modeling studies on the role of carrier transport

droop, considering distinct defect properties of InGaN materials

Future work: exploration of direct dynamical measurement of Auger processes
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Technical Presentations

I. Research Highlights

e Development and application of a microscopic model to study efficiency
limitations of InGaN LEDs (Crawford)

e Analysis of carrier transport contributions to efficiency droop ( Schubert)

ll. Future Work (Crawford)
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Limitations of the ABC Model

/ LED rate-equation model Radiative and Non-radiative Processeh
dN J
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emission “W| ¥
Internal quantum BN?2 A

efficlency = AN + BN2 + CN3 ﬂ
Radiative Auger

\ “ABC model”—no carrier injection Defect /

Model Shortcomings:

a) True density dependence not simple N™ Goal:

b) Carrier injection/capture ignored Develop improved model to
gain insight into mechanisms
that limit LED efficiency
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c) Non-equilibrium effects ignored

d) Large number of fitting parameters
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Application of a Microscopic Model to Study

Efficiency Limitations of InGaN LEDs

W. Chow, SNL

BN*
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Key Advances:

—~>Replace total “N” with momentum-resolved

- enables more accurate carrier distribution
vs. current and temperature

—> Calculate radiative contribution directly from
bandstructure & carrier distributions
- B(n,T), avoids constant B parameter

~

distributions of electrons and holes (QW & barrier)
- implement bandstructure directly into model

—>Add carrier-carrier and carrier—phonon interactions

/
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W _J_av_sv-onvt | SUmmary of new model and equations
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Contributions to LED Efficiency Dependence on Wavelength

IQE of Commercial Violet and Green InGaN LEDs

Contributions to lower green LED efficiency
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Model insights:

- ~1/3 of difference between violet & green LED efficiency due to intrinsic contributions

- enhanced heat loss (phonons), reduced effective B coefficient, for green LED
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Contributions to LED Efficiency Dependence on Temperature
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Assumptions: In ;,Ga, N QW LED (violet) J =100 A/cm? T=
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e Model quantifies plasma heating at high current densities (100 A/cm?2)

¢ |dentifies contributions to lower efficiency at elevated temperatures:

—> carrier leakage out of QWs, reduced B
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Additional Modeling Efforts and Intra-EFRC Synergies

Excitation-dependent Bandstructure Influences on IQE and Efficiency droop

N~2x108cm? ) N ~7 x 10'3cm? =====) Flat-band limit
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Research Challenge 4: Multi-level Defect Contributions to Efficiency Droop
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Research Challenge 3:
Competing Radiative and Non-Radiative Processes

Analysis of Carrier Transport Contributions
to Efficiency Droop of InGaN LEDs

GalnN/GaN LED
E. Fred Schubert, David Meyaard, Guan-Bo Lin,
)‘I\/ /@l\ Di Zhu, Qi Dai, and Jaehee Cho
NJ/ Rensselaer Polytechnic Institute
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Outline

Current research:
» Transport in the active region of MQW structure
= Confirmation of experimental results by Genetic Algorithm

Current and future research:
= Analytic model for efficiency droop
* Implementation of parameters suggested by model
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Transport of carriers in the MQW active region

= Known problem with GalnN LEDs
* Injection efficiency has been estimated in the range of 50% — 95%

= Doping of the quantum barriers (QBs)

-
ﬁ ESLS

 Carrier capture hindered by small QW widths
» Carrier escape possible due to polarization fields

GalnN/GaN LED
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Series of GalnN LED samples and results

= Light output is strong function of
QB doping

* |rrespective of the mechanism
causing the efficiency droop

= | ower carrier concentration in the
QWs are beneficial

= [eakage: The fewer carriers
are in the last-grown QW, the
less leakage

= Delocalization, Auger. The
more uniform the carrier
distribution, the lower the
droop
“ﬁ“*ssu.s
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Series of GalnN LED samples and results

= Verification of carrier distribution by employment of blue and violet

MQW structure
T T T T L I .
L 5-QW dual-wavelength LEDs — J=500 A/erm? |-
';f' 600 —J= 200 Afcm2 1
5 — J=100 A/em?
E -
o
:."_ 400 QB-undoped
T
i
@ 200
m
]
=
0

550

Wavelength, A (nm)

= Violet-to-blue ratio is a measure of the carrier distribution among the
QWs
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Genetic Algorithm for LEDs

= Crossover
= Mutation

a
Parent LEDs H H
= Evolution of fithess
MQw
Optimum
LED
c Ensemble creation Crossover
Random layer 403
~0.2
J t - AlyGaln,N '
, ks - - 0.1
/ Fy : $e.0n AlyGalny,
Layer Doping Alloy
thickness concentration composition
Mutation
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Genetic Algorithm

= Genetic Algorithm approach
* Free parameter: Doping of QBs

= Result

* Doping in QBs affects
Carrier distribution
 Light-output power at high

currents
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Droop is general problem in LEDs: GalnN and AlGalnP

InGaN LED:
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Results are remarkable:
Different from InGaN,
AlGalnP has:

No indium composition
fluctuations

No dislocations
No polarization fields

No narrow active region
(38 QWs =>» low carrier
concentration)

=» Droop in LEDs is a more
general problem than
initially thought
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Analytic Model for Efficiency Droop

Conventional high-injection condition (Shockley, 1950):

An,(0) << pyg Onset of high injection: An,(0) = 0.1 x p,,

In the presence of a large mobility difference, the high-injection condition
needs to be generalized

An(0) << pyo (Mp! Hn)

Electron leakage in low-injection regime
e D, An,(0)

JDiffiusion [
p-GaN

Electron leakage driven by electric field in high-injection regime

e J

C e e p
= Droop is significant when  Jpix = JIpitrusion
o kT P
JTotaI‘Droop - P = p0 Hp KT
Lp-GaN e Lp-GaN
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The droop C and D coefficient

= Condition for Onset of droop:
0.1x Pp0 Hp kT

Lp-GaN

J Onset-of -droop ~ 0.Ix.J Total‘Droop =

» Consistent with T dependence of onset of droop in GalnN and AlGalnP LEDs

» Recombination can be described by
« R=An+ Bn?+ Cn3 +{(n)

= Analysis shows

* f(n) oc ngp® near efficiency peak
* f(n) c ngu* beyond efficiency peak where droop is significant
2
ol o
C = —xB D = Hn x B where o = An (0) / ngy,
Ppo Hp Pp0 Mp

Note: Cocp,y! and Docpy
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P-type doping

= Improvement of p-type doping (p,,) from 5 x 10" to 2 x 10" cm= ...
» ... would reduce C by factor of 4
* ... would reduce D by factor of 16

= Needed: Improvement of p-type doping

* InGaN layers
* Preliminary results show excellent improvement in p-type doping properties

« ZnO injection layers
* Preliminary results show excellent performance of green LEDs
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Conclusions

We demonstrated:
= Transport in the active region affects the efficiency droop

We developed:
= Analytic model for efficiency droop
= Model allows clear predictions

Based on model, proposed future directions are
» Enhancement of p-type doping by use of GalnN
= Alternative materials, such as ZnQO, for enhanced p-type doping

5
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RPI-led studies on carrier transport and modeling

* Impact of barrier doping on

carrier distribution D. Zhu et al.
4- QB doped
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* Genetic algorithms for innovative,
High-efficiency LED designs D. Zhu et al.
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/ 10 Invited Presentations & 2 Plenary Presentations \

» SPIE Photonics West,

Materials Research Society Meeting,

American Physical Society Meeting,

Conference on Lasers and Electro-Optics (CLEOQO),
Nano-Energy Workshop,

Renewable Energy and the Environment Conference (OSA),
American Vacuum Society
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Future Work: investigation of alternative p-type materials for
improved carrier transport and efficiency trends

Prediction of Analytic Model (RPI)

= Improvement of p-type doping (p,,) from 5 x 10" to 2 x 10'® cm™ ...
e ... would reduce C by factor of 4

e ...would reduce D by factor of 16

/
Increasing Mg activation energy Electrical Performance of p-type
with bandgap for I1I-N alloys - In,Ga, N films ( x= 0.07-0.08)
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Future Work: Advancement of microscopic recombination model

~

/ InGaN QW IQE via optlcal pumpmg
l._Model validation: IQE vs. temperature T T
0.9 ~ o000 @ TR
. . | .4/0' b \t.\.\‘\ LTS
* Fit experimental IQE trends vs. temperature g;‘ 175K * . o
Bosd | Laapsttitiiana,
g 05 iz A5 S 2A0MAARAS 2SI
Il. Extend model to compute emission spectra  3,,i .+ et
> i /4/‘4/<
* Determine carrier distributions (carrier density and E o] ‘ PRl
plasma temperature) in experiments o jerk
o
* Challenge: incorporate many-body Coulomb effects 02
1 393K 4
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Pump Power (mW)

!

a - plane m - plane

Ill. Compare polar versus

non-polar LEDs

(1010)
semi- polar planes

=

with arbitrary crystal orientations

Challenge: Extend model to account for
increased bandstructure asymmetries

[a] Polar GaN LEDs
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New Direction: Efficiency studies of nanowires and
other lower dimensional structures®

* Collaboration with Nanowire and Defect-Carrier Interactions Research Challenges

S

o
o

| oo ] Recent publications

] suggest little or no
efficiency droop in

nanowire LED structures

o
)

bt
)

Nguyen et al. Nanolett. 2011
McGill University

Internal Quantum Efficiency
o
',

lllllllllllll

. . 0 50 100 150 200 250 300
25.85 73.79 12174  169.68  217.62 Current Density (A/lecm?2)

o
o

no extended defects

polar or nonpolar QW orientations

improved hole injection with InGaN barriers (strain accommodation)
Auger recombination?

Nanowire features:

Experimental exploration of these features will include:

- IQE studies via optical and electrical excitation (including time-resolved PL)
- Cathodoluminescence for spatial luminescence studies,
- Defect spectroscopy studies of point defects in NWs and NW LED structures
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New Direction: Direct, Dynamical Measurement of Auger
Recombination Processes in InGaN*

Challenges to direct observation of Auger:

* Involvement of very high energy states in wide bandgap materials
e Ultrafast relaxation of carriers from excited states

Novel Approach: *Collaboration with Prof. Xiaoyang Zhu, UT Austin ( EFRC:CST)

* Time-resolved photoemission studies of excited state populations (Auger electrons)

Femtosecond two-photon photoemission spectroscopy Band-edge Relative to Vacuum Level for In,Ga, ,N
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/ Band Edge (eV, relative to vacuum Ievelx

Tracking evolution of excited state populations
with sub-picosecond time resolution
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Summary:

|. Research Highlights
e Development of a microscopic model to study efficiency limitations of InGaN LEDs
= Revealed intrinsic contributions to efficiency vs. wavelength trends ( e.g., green-yellow gap)
= Revealed dominant contributions to LED efficiency vs. temperature trends
= Excitation dependence bandstructure influences on LED efficiency (POSTER)
» Multi-level defect contributions to efficiency droop (POSTER)

e Analysis of carrier transport contributions to efficiency droop
= Insights into the role of barrier doping on carrier distributions and efficiency droop
= Genetic algorithm for design of high-efficiency LEDs
= Analytic model for efficiency droop, quantifying the benefit of improved p-type doping
= Numerous additional modeling and experimental studies of carrier transport effects

Il. Future Work

= Enhanced p-type materials for transport asymmetry studies
= Recombination model validation and extension to arbitrary crystal orientations

= New Directions: nanowire efficiency studies and Auger recombination studies via
photoemission spectroscopy ( UT Austin)
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