

Exceptional service in the national interest

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

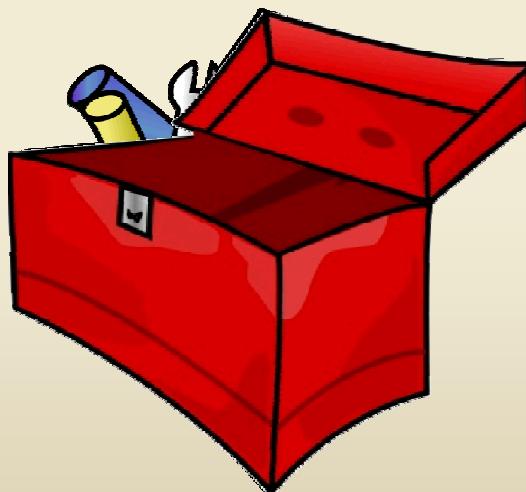
Process Update for the Soil Treatability Study

ETEC STIG; April 5, 2012

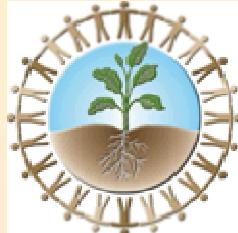
Christi D. Leigh, PhD
Repository Performance Department, 6212

SAND2012-XXXX

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

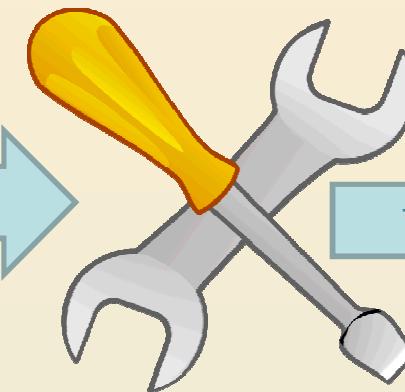
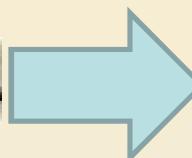

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy


How will we select viable technologies for the ETEC site?

Soil Treatability Study

Soils Remedial Action Implementation Plan

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

How do we put that toolbox together?

Testing

Many Technologies are Available

Many Criteria Must be Considered

Technology Groupings will Emerge

Phase I
*Literature Search
Stakeholder Input
Expert Opinion Poll*

Phase II
Down Select Based on Criteria

Phase III
Choose Technologies for Bench or Pilot Scale Testing

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Study Boundaries

The DOE sets
the study
boundaries

These are set in
part based on
consideration of
the AOC

- The goal of the chosen remediation alternatives will be to meet the established cleanup levels or reduce the contaminant concentrations/volume of soil to be excavated
- There will be no "leave in place" or on site burial/landfilling of contaminated soils
- Remediation alternatives will be initiated by 2017
- Incineration (burning that forms an ash) will not be used as a remediation alternative
- Remediation alternatives will not exacerbate existing contamination issues or create new contamination problems
- Treatability studies being conducted for groundwater and unweathered bedrock are ongoing and will not be duplicated

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Objectives

The objectives are consistent with the AOC and are a reflection of the expressed concerns of the public through this working group

- Dig and haul/excavation will be minimized as much as possible
- Remediation alternatives will be designed to consider the wild fires, native vegetation, and natural environment as much as possible
- Land and site disturbance will be minimized as much as possible
- Green and innovative/cutting edge technologies will be assessed as much as possible

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Study Boundaries

- The goal of the chosen remediation alternatives will be to meet the established cleanup levels or reduce the concentrations or volume of soil to be excavated
- There will be no "leave in place" or on site burial/landfilling of contaminated soils
- Remediation alternatives will be initiated by 2017
- Incineration (burning that forms an ash) will not be used as a remediation alternative
- Remediation alternatives will not exacerbate existing contamination issues or create new contamination problems
- Treatability studies being conducted for groundwater and unweathered bedrock are ongoing and will not be duplicated

Objectives

- Dig and haul/excavation will be minimized as much as possible
- Remediation alternatives will be designed to consider the wild fires, native vegetation, and natural environment as much as possible
- Land and site disturbance will be minimized as much as possible
- Green and innovative/cutting edge technologies will be assessed as much as possible

Treatment Strategies

- This is where we are.....

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Treatment Strategies

This is where Sandia comes in.
We have to think about the treatment strategies with the highest probability for success.
Success is defined as meeting the Study Boundaries completely and meeting the objectives as much as possible

Expert Opinion Poll

Active (Short-Term Strategies)

In-Situ Thermal (0°-200°C)
Ex-Situ Thermal (200°-500°C)
Bioremediation
Phytoremediation
In-Situ Nanotechnology
Ex-Situ Soil Washing

Passive (Long-Term Strategies)

Phytoremediation (*if required*)
Engineered Barrier
(*only if recontamination is possible*)

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Active Strategies

<u>In-Situ Heat (0-200°C)</u>	<u>Ex-Situ High Heat (200-500°C)</u>	<u>Bioremediation</u>	<u>Phytoremediation</u>	<u>In-Situ Nano</u>	<u>Ex-Situ Soil Washing</u>
Dioxins	Dioxins	Dioxins	Dioxins	Dioxins	Dioxins
NDMA	Hg	PAHs	Metals	NDMA	Metals
PAHs	NDMA	PCBs	NDMA	PAHs	NDMA
PCBs	PAHs	PCTs	PAHs	PCBs	PAHs
PCTs	PCBs	Perchlorate	PCBs	PCTs	PCBs
Pesticides/ Herbicides	PCTs	Pesticides/ Herbicides	PCTs	Perchlorate	PCTs
SVOCs	Perchlorate	SVOCs	Perchlorate	Pesticides/ Herbicides	Perchlorate
TPHs	Pesticides/ Herbicides	TPHs	Pesticides/ Herbicides	SVOCs	Pesticides/ Herbicides
VOCs	SVOCs	VOCs	Rads	TPHs	Rads
	TPHs		SVOCs	VOCs	SVOCs
	VOCs		TPHs		TPHs
			VOCs		VOCs

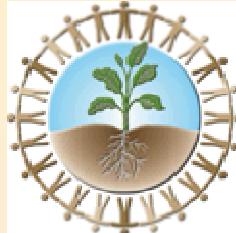
ACRONYMS -

Hg = Mercury

NDMA = *N*-Nitrosodimethylamine

PAHs = Polyaromatic hydrocarbons

PCBs = Polychlorinated biphenyls


PCTs = Polychlorinated triphenyls

Rads = Radioactive elements

SVOCs = Semivolatile organic compounds

TPH = Total petroleum hydrocarbons

VOCs = Volatile organic compounds

Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

Sandia
National
Laboratories

Active/Passive Strategies

Active	In-Situ Heat (0-200°C)	Ex-Situ High Heat (200-500°C)	Bio-remediation	Phyto-remediation	In-Situ Nano	Ex-Situ Soil Washing
Passive	Phyto-remediation Dioxins Hg PAHs PCBs PCTs Pesticides/ Herbicides SVOCs TPHs VOCs	Engineered Barrier Dioxins Metals NDMA PAHs PCBs PCTs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs	Phyto-remediation Dioxins PAHs PCBs PCTs Pesticides/ Herbicides SVOCs TPHs VOCs	Phyto-remediation Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs	Phyto/Bio-remediation End products from Active Strategy	Engineered Barrier Dioxins Metals NDMA PAHs PCBs PCTs Perchlorate Pesticides/ Herbicides Rads SVOCs TPHs VOCs

ACRONYMS -

Hg = Mercury

NDMA = *N*-Nitrosodimethylamine

PAHs = Polyaromatic hydrocarbons

PCBs = Polychlorinated biphenyls

PCTs = Polychlorinated triphenyls

Rads = Radioactive elements

SVOCs = Semivolatile organic compounds

TPH = Total petroleum hydrocarbons

VOCs = Volatile organic compounds

		Summary of Strategies						
Contaminant Types	Contaminants	In-Situ Heat (0°C-200°C) ¹	Ex-Situ Heat (200°C-500°C)	Biostimulation/ Bioaugmentation	Phytoremediation/ Phytodegradation	In-Situ Nanotechnology	Ex-Situ Soil Washing ²	
Dioxins	Dioxins	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
Metals	As					Ferns	<i>The metals could be remediated to a more stable, less hazardous, and less mobile state, but would not be removed</i>	
	Cd					Indian Mustard		
	Cr					Indian Mustard, Sunflower		
	Cu					Indian Mustard		
	Hg							
	Pb					Indian Mustard, Sunflower		
NDMA	NDMA	< 200°C	> 200°C	Dechlorinating Biota	Willows, Poplars, and Paulownia	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
PAHs	PAHs	< 200°C	> 300°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
PCBs	PCBs	Partial remediation 200°C <	> 300°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
PCTs	PCTs	Partial remediation 200°C <	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
Perchlorate	Perchlorate			Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
Pesticides/ Herbicides	Pesticides/ Herbicides	< 200°C - Type Dependent	> 200°C - Type dependent	Dechlorinating Biota - Type Dependent	Ryegrass, Fescue, Bermuda grass and Yellow Clover + Dechlorinating Biota - Type dependent	nZVI; BNPs; SOMS; SAMMSTM - Type dependent	Type dependent	
Rads	Co-60					Indian Mustard		
	Cs-137					Kochia, Sunflower and Indian Mustard		
	Sr-90					Kochia		
	U-238					Kochia		
SVOCs	SVOCs	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
TPHs	TPHs	< 200°C	> 400°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; Fenton Oxidation	Type dependent	
VOCs	PCE	< 200°C	> 200°C	Dechlorinating Biota	Ryegrass, Fescue, Bermuda Grass and Yellow Clover, plus Dechlorinating Biota	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	
	TCE	< 200°C	> 200°C	Dechlorinating Biota	Poplar or Mulberry Trees	nZVI; BNPs; SOMS; SAMMS™	Solvent Solution	

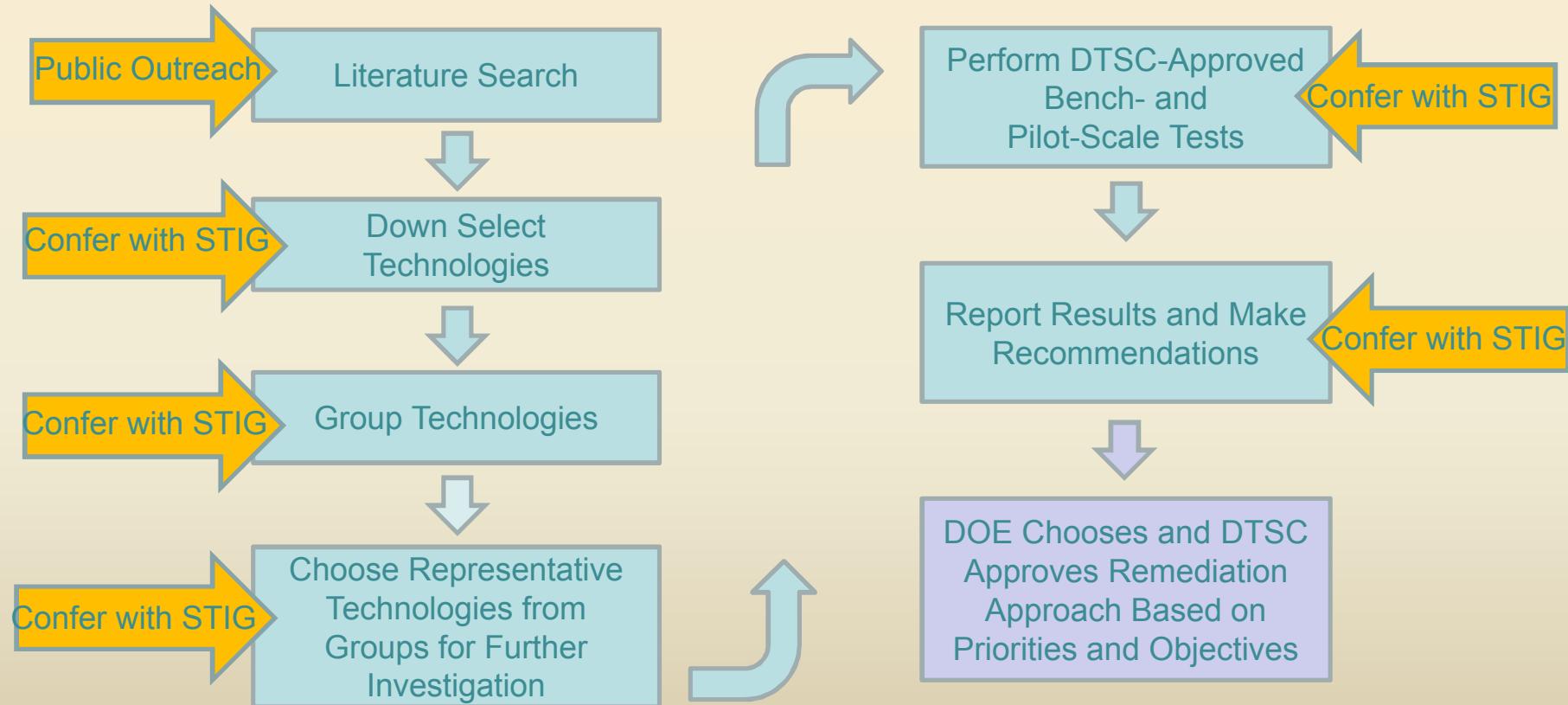
Not Applicable


¹ - Provided temperatures for In-Situ Heat are high to account for efficiency and expediency of the remediation cycle; the strategy could be applied at lower temperatures

² - Soil washing applicability is highly dependent on the soil characteristics, which have not been considered for this summary

Bench- and Pilot-Scale Testing

- Bench-Scale Testing
 - Generally conducted in a laboratory under very controlled conditions.
 - Used as a general “proof-of-principle” test.
 - Considered for technologies that have not been fielded or that are being considered for use in an application that is unproven.
- Pilot-Scale Testing
 - Will be conducted on the ETEC site.
 - Used as specific “proof-of-principle” test.
 - Considered for technologies that have been fielded in conditions similar (site characteristics and contaminants) to those at ETEC.



Soil Treatability Study

Energy Technology Engineering Center • U.S. Department of Energy

The process includes public involvement at each stage

