

LA-UR-20-27219

Approved for public release; distribution is unlimited.

Title: Los Alamos National Laboratory Quantum Overview

Author(s): Stern, Ariana Kayla

Intended for: Report

Issued: 2020-09-15

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory Quantum Overview

Los Alamos supports the National Quantum Initiative and the Laboratory's national security mission by tackling quantum science and technology challenges. Los Alamos is a strategic partner of the Quantum Science Center hub and leads the simulations and algorithms thrusts.

Computing: Los Alamos efforts focus on quantum algorithms to provide efficient methods for advanced computation, including simulation of quantum systems and other algorithms providing computation speedups relative to classical computers. Quantum-related work at Los Alamos includes:

- Algorithms for quantum simulation with optimal error behavior
- Robust methods for combating errors on noisy quantum computers
- Quantum simulation methods for noisy quantum computers

Sensing: Los Alamos efforts in quantum sensing combine technologies for exploiting quantum behavior in ultra-cold atoms with new quantum metrology algorithms to deliver quantum-enhanced inertial force and electromagnetic field sensors. Current areas of interest include:

- High-performance rotation sensors using matter wave circuits
- Algorithms and hardware using quantum discord for sensing beyond standard quantum limits
- Electromagnetic field sensors using cold-trapped Rydberg atoms

Materials: Los Alamos's experimental research and theoretical studies of quantum materials focus on f-electron materials including synthesis, characterization, spectroscopy, cryogenic/dilfridge use, modeling, and prediction. Industry can access expertise and resources through two Los Alamos user facilities:

- The National High Magnetic Field Laboratory provides the world's largest, non-destructive pulsed magnetic fields with access to thermodynamic, transport, optical, and structural techniques.
- The Center for Integrated Nano-Technologies offers state-of-the-art electrical, ultra-fast and quantum optical characterization facilities, and two complementary deterministic quantum-defect implantation facilities.

Communications and Encryption: Los Alamos efforts focus on leveraging quantum mechanical properties to ensure the Nation's communication and critical infrastructures are reliable and secure. Recent work at Los Alamos includes:

- Quantum key distribution and random number generation
- Analysis of system resiliency
- Interoperability of quantum communications via extension of range and link/node security