

1 **Towards scalable perovskite solar modules using blade-coating and rapid thermal
2 processing**

5 Zhongliang Ouyang¹, Mengjin Yang², James B. Whitaker², Dawen Li^{1*} and Maikel F. A. M.
6 van Hest^{2*}

11 ¹Department of Electrical and Computer Engineering, Center for Materials for Information
12 Technology, The University of Alabama, Tuscaloosa, AL 35487, United States

13 ²National Renewable Energy Laboratory, CO 80401, United States

14 *E-mail: dawenl@eng.ua.edu; Maikel.van.Hest@nrel.gov

17 **Abstract**

19 Towards scalable manufacturing of perovskite solar panels, high-performance planar
20 p-i-n perovskite solar cells (PVSCs) and modules have been demonstrated with blade-coating
21 and rapid thermal processing (RTP). The PVSCs made using RTP for less than 30 seconds
22 have equivalent photovoltaic performance as devices fabricated from hot-plate annealing for 2
23 minutes. The resulting PVSCs show a best average power-conversion efficiency (PCE) over
24 18.47% from forward and reverse scans. Mini-modules with an active area over 2.7 cm²
25 exhibit a champion average PCE over 17.73% without apparent hysteresis. To the best of our
26 knowledge, these efficiencies are the highest for PVSCs processed by the combination of
27 blade-coating and RTP. Furthermore, both the blade-coating and RTP were performed in
28 ambient environment, paving the way for large-scale production of PVSCs through high-
29 speed roll-to-roll printing.

31 **Keywords:**

33 Rapid thermal processing

34 Blade-coating

35 Large area

36 Mini-modules

37 Perovskite solar cells

41 **1. Introduction**
42

43 The power conversion efficiency (PCE) of perovskite solar cells (PVSCs) has rapidly
44 increased from 3.8% to more than 25.2% in the past decade.¹⁻⁴ So far, all the PVSCs that
45 broke the world-record of efficiency have active area smaller than 0.1 cm². Small active areas
46 are commonly adopted world-wide in scientific demonstration and technology development
47 for one reason: it is much simpler to maintain the uniformity of the coated films across a small
48 area therefore much easier to achieve a better efficiency. Small active area can only be used
49 for demonstration of performance possibilities, but beyond that has no practical use. There are
50 two main factors that limit the upscaling of PVSCs. One is the coating technique and the other
51 is the annealing process. The most prevalent methods for coating and annealing are spin-
52 coating and convective thermal annealing (i.e. hot-plate), respectively. These approaches are
53 dependable but could never easily be scaled-up to module size areas. Advanced coating and
54 annealing practices should be adopted to obtain uniform and good quality films on large areas.

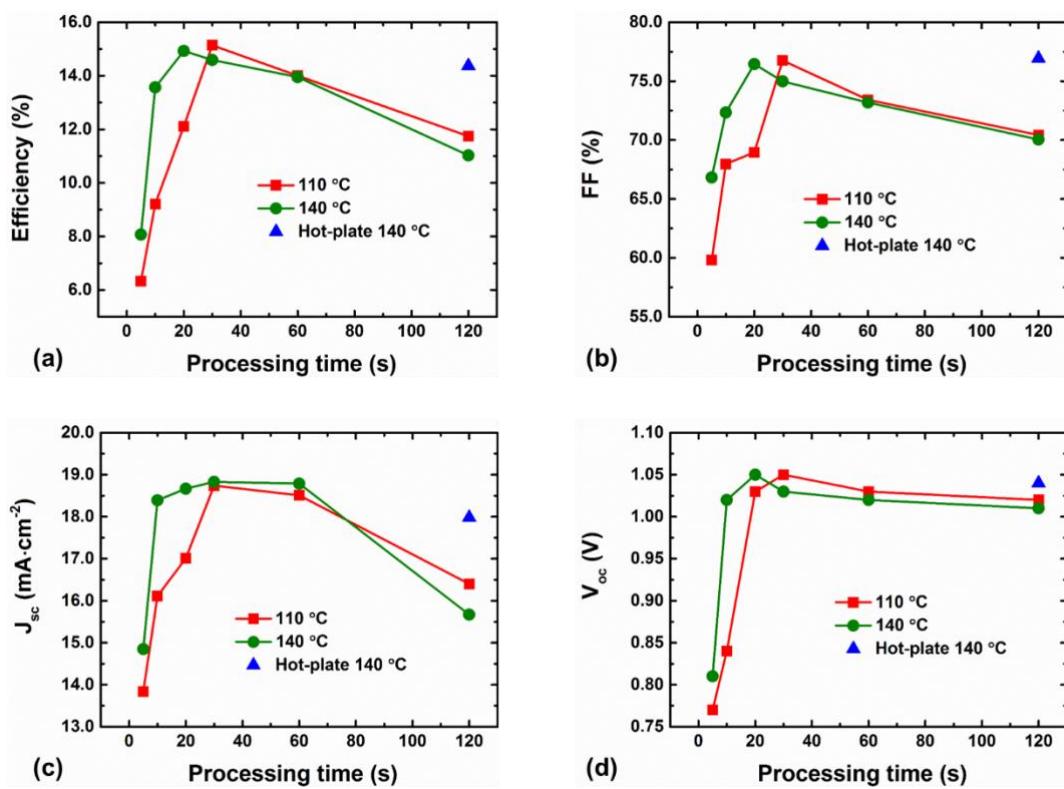
55 Among scalable printing technologies, blade-coating has been demonstrated to be
56 successful in perovskite photovoltaics.⁵⁻⁷ Blade-coating provides advantages such as
57 capability of processing a wide range of fluids with high and low viscosity.⁸ Moreover, blade-
58 coating is a great step up from spin-coating towards ultimate roll-to-roll (R2R) deposition
59 with slot-die coating.^{9, 10} In addition, blade-coating is more suitable in the lab-scale compared
60 to the slot-die coating because the former will not have to deal with the dead-volume like the
61 latter thus will consume less ink in small batches.¹¹ In order to realize large-scale
62 manufacturing of PVSCs, traditional annealing methods like hot-plate annealing should be
63 avoided since they are energy-inefficient and time-consuming (at a time scale of minutes or
64 an hour), which will impede the high-speed character of blade-coating, or any other R2R
65 printing technique.¹²⁻²² Nevertheless, annealing processes other than hot-plate annealing
66 continue to be explored. Microwave radiation was utilized to anneal mixed-halide perovskites
67 CH₃NH₃PbI_{3-x}Cl_x. Xu et al. showed an annealing time of 6 minutes resulting in devices with a

68 PCE of only 10.29%.²³ Wang et al. demonstrated post-annealing microwave treatment also on
69 $\text{CH}_3\text{NH}_3\text{PbI}_{3-x}\text{Cl}_x$ and improved the efficiency to 13.39%.²⁴ Three minutes of microwave
70 irradiation was cast on $\text{CH}_3\text{NH}_3\text{PbI}_3$ (MAPbI₃) perovskite films to fabricate PVSCs with
71 PCEs up to 14.91%.²⁵ In addition to the low efficiencies, the microwave-annealing is likely
72 not compatible with the R2R printing since it requires a closed environment to confine the
73 microwave energy. Near-infrared (NIR) laser was used to crystallize MAPbI₃ perovskite
74 films, leading to a device PCE of 11.3%.²⁶ A 450-nm laser was adopted to anneal MAPbI₃
75 perovskite films, resulting in an optimal efficiency of 17.8%.²⁷ Laser-annealing was claimed
76 to achieve faster crystallization of perovskite films than the thermal annealing, but it is
77 difficult to be scaled-up due to slow raster scan rate thereby small area coverage. Flash lamp
78 annealing was demonstrated on MAPbI₃ perovskite films with an annealing time of less than 3
79 ms by using a high energy xenon light. In terms of X-ray diffraction (XRD) results, this flash
80 xenon light produced films with better crystallinity than the conventional thermal annealing,
81 but no device was made.²⁸ Also with a xenon lamp, Troughton et al. demonstrated a PCE of
82 11.3% by flash-annealing $\text{CH}_3\text{NH}_3\text{PbI}_{3-x}\text{Cl}_x$ perovskite films in 1 milliseconds (ms).²⁹ Lavery
83 et al. pulse-annealed MAPbI₃ thin films within 2 ms via intense light irradiated from a xenon
84 lamp. The consequential devices exhibited PCEs up to 12.3%, which is similar to those of
85 their thermally-annealed samples.³⁰ With the help of intense pulsed xenon light and
86 diiodomethane additive, Ankireddy et al. were able to fabricate MAPbI₃-based PVSCs with a
87 device efficiency of 16.5%.³¹ Compared with the above-mentioned photonic annealing
88 methods, rapid thermal processing (RTP, also known as rapid thermal annealing, RTA) is a
89 widely used technique in industry for processing semiconductors.³² Sanchez et al. applied
90 RTP annealing to inorganic mixed-halide $\text{CsPbI}_{x}\text{Br}_{3-x}$ perovskite films, achieving PCE over
91 10%.³³ With 40 s of RTP, Pool et al. attained PCE of 14.15% on inorgainc formamidinium
92 lead iodide (FAPbI₃) perovskite films, comparable to the efficiency of 13.80% from hot-plate
93 annealing.³⁴ Park et al. annealed mixed-cation (MAPbI₃)_{0.85}(FAPbI₃)_{0.15} perovskite layer by

94 RTP at 120 °C for 10 minutes under N₂ atmosphere. Their device PCE surpassed 17% but
95 accompanied by a low fill factor (FF) of 68%.³⁵ With 3 min of RTP in nitrogen, Dou et al.
96 managed to make MAPbI₃-based PVSCs with PCE of 18.0%.³⁶ All the aforementioned
97 researches employed small device area (0.1 cm² or smaller), it was not until recently that
98 larger device area has been implemented with radiative annealing. RTP annealing has been
99 shown to work on both the MAPbI₃ and triple-cation mixed-halide (MAFACsPbIBr)
100 perovskite layers, producing PVSCs with active area of 1.4 cm². The corresponding PCEs
101 have been reported to reach 14.6 % with FF of 69.8% and ~ 15.0% with FF of ~ 61%,
102 respectively.^{37, 38} Compared with their small devices, both the efficiency and FF dropped
103 considerably. Although RTP appeared functioning on perovskite films, none of the aforesaid
104 investigations went beyond spin-coating for deposition of perovskite active layer. So far, only
105 Breuning et al. combined the blade-coating with RTP to manufacture PVSCs in helium. Their
106 champion device displayed a PCE of 16.8% with an active area of 0.1 cm².³⁹

107 In this study, blade-coating and RTP have been used to fabricate planar p-i-n PVSCs
108 and modules. The PVSCs made from RTP for less than 30 seconds have equivalent
109 photovoltaic performance as devices fabricated from hot-plate annealing for 2 minutes. The
110 RTP method successfully decreases the annealing time of blade-coated MAPbI₃ films by
111 more than four-fold as compared to the conventional thermal annealing. The resulting small
112 devices with an active area of 0.105 cm² show a best average PCE over 18.47% from forward
113 and reverse scans. Mini-modules with an active area over 2.7 cm² exhibit a champion average
114 PCE over 17.73% from forward and reverse scans. To the best of our knowledge, these
115 efficiencies are the highest for PVSCs processed by the combination of blade-coating and
116 RTP. Furthermore, high fill factors have been achieved, with average values of 79.90% and
117 74.77% for the small device and mini-module, respectively. In addition, both the blade-
118 coating and RTP were performed in ambient environment. These results justify the feasibility
119 of RTP for the upscaling fabrication of PVSCs. Although blade coating has been proven to be

120 effective in the lab scale, more advanced deposition methods such as slot-die coating is
121 required to team up with RTP in order to realize R2R printing and large-scale production of
122 PVSCs.

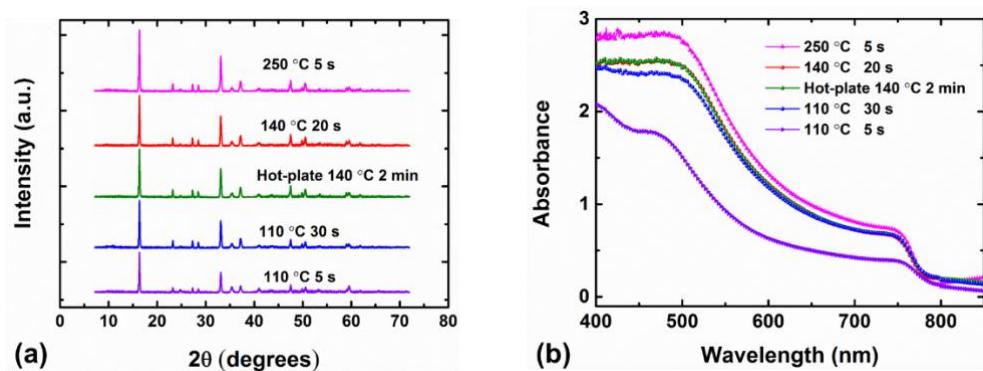

123

124 **2. Results**

125 **2.1 Thermal budget of RTP on the perovskite layer.**

126 The annealing effect of RTP on the PCE of PVSCs was investigated methodically. In
127 order to explore the thermal budget of RTP, planar p-i-n PVSCs with a structure of
128 ITO/PTAA/PFN/MAPbI₃/C₆₀/BCP/Ag were fabricated. **Figure 1** shows the trends of
129 photovoltaic parameters of PVSCs based on both hot-plate-annealed MAPbI₃ films and RTP-
130 annealed MAPbI₃ films with different RTP temperatures and time. The photovoltaic
131 parameters have been extracted directly from J-V characteristics, including PCE, fill factor
132 (FF), short-circuit current density (J_{sc}) and open-circuit voltage (V_{oc}). The detailed
133 photovoltaic values have been summarized in **Table S1**. The reference PVSC contains the
134 MAPbI₃ layer hot-plate-annealed at 140 °C for 2 minutes (120 s). In contrast, the trends of
135 RTP at 110 °C and 140 °C are included in **Figure 1** for side-by-side comparison with the hot-
136 plate annealing. It can be seen that regardless of temperature, there are PCE peaks for RTP as
137 function of the annealing time. For RTP at 110 °C the highest PCE occurs at 30 s of annealing
138 time, with a value of 15.14%. On the other hand, 20 s of annealing appears the best for RTP
139 at 140 °C, with a PCE of 14.93%. The FFs , J_{sc} and V_{oc} all follow the same trend as that of
140 PCEs for both RTP temperatures, drastically change in the range between 5 s and 120 s. With
141 a fixed RTP temperature, variation of RTP time is equal to changing of energy supply to
142 crystallization and formation of perovskite films. Time scale of 120 s might not be
143 overwhelming for hot-plate annealing but is certainly too long in the case of RTP. Thus, it is
144 not hard to understand the observed substantial effects of RTP temperatures and time on the
145 photovoltaic performance. Unlike the PCE and FF , both J_{sc} and V_{oc} see trends with obvious

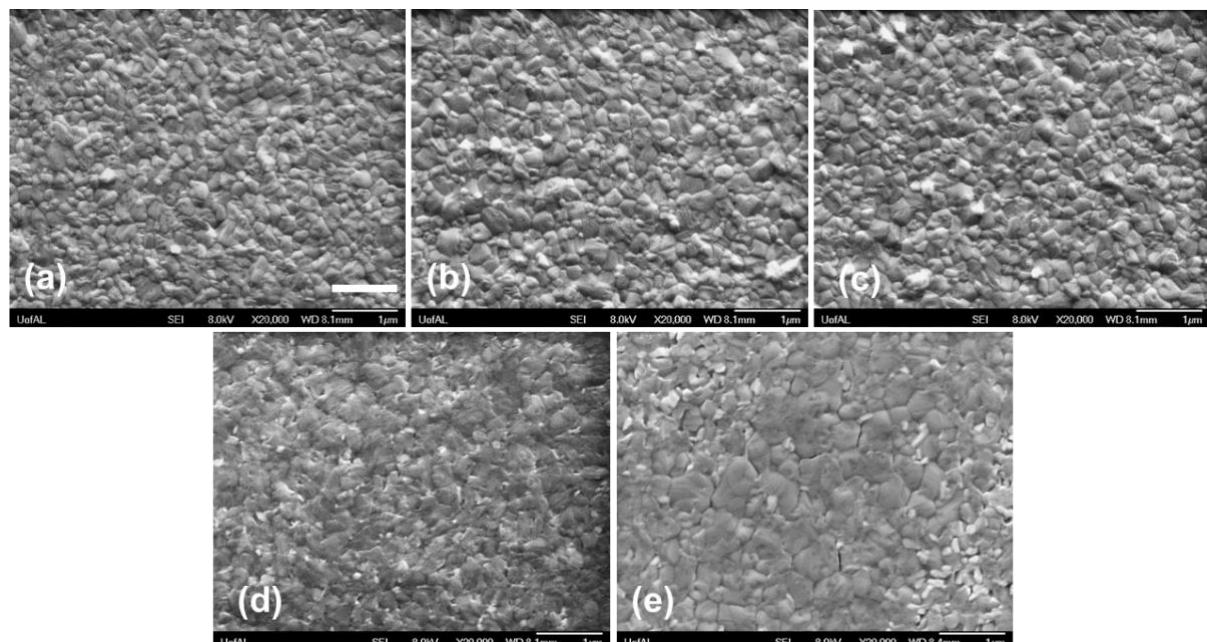
146 plateaus, especially with V_{oc} , between 30 s and 120 s. A PVSC is first a diode, once the diode
147 is formed, the voltage response is not expected to change radically. For both RTP
148 temperatures in **Figure 1**, annealing time of 5 s or 10 s are not sufficient to form high-quality
149 perovskite films that are good enough for devices. On contrary, annealing time over 60 s is
150 apparent more than the perovskite films can handle, resulting in considerable degradation on
151 the device performance. More trends have been plotted in **Figure S1** using the data from
152 **Table S1**, with fixed RTP time (5 s, 10 s and 20 s) but varying RTP temperature. With
153 decreasing RTP time, it is clear that elevated temperatures are needed for the peak PCEs, from
154 140 °C at 20 s to 200 °C at 5 s. These results are solid evidence that it is the annealing energy
155 rather than RTP temperature or RTP time alone that determines the annealing process. Energy
156 amount less than necessary is not able to completely anneal perovskite films. An excessive
157 amount of energy will degrade perovskite films and energy overdose will eventually create
158 films that have poor quality and show inferior performance. Although the product of
159 temperature and time has no corresponding physical term, it is a good indication of total
160 energy provided. A better way is to use the energy flux and time to calculate the energy
161 supplied.⁴⁰ Energy if not well controlled can degrade the perovskite film, which is why there
162 are optimized temperatures and associated heating time for different perovskite layers in
163 different publications. The highlighted (dashed line) section in **Table S1** outlines those RTP
164 conditions that can over anneal MAPbI_3 films, i.e. turn film color to yellow, indicating
165 decomposing of MAPbI_3 into PbI_2 . The hot-plate control PVSC shows PCE of 14.37% *FF* of
166 76.93%, *J_{sc}* of 17.98 mA cm⁻² and *V_{oc}* of 1.04 V. The RTP-treated samples achieved similar
167 PCE, *FF*, *J_{sc}*, and *V_{oc}* at two specific conditions: 110 °C for 30 s and 140 °C for 20 s. It is
168 worth noting that these temperatures of RTP are set point temperatures, the actual temperature
169 might not be the same, especially the perovskite films. The entire annealing process happens
170 within tens of seconds, it is impossible to measure the actual temperature of the perovskite
171 films in the current experimental set-up (more details in the experiment section).



174 **Figure 1.** Trends of a) efficiency, b) FF, c) J_{sc} and d) V_{oc} at different RTP temperatures for
175 different time. Active area = 0.105 cm².

177 **Figure 2** shows X-ray diffraction (XRD) spectra and UV-Visible (UV-Vis)
178 absorbance of samples from selected annealing conditions. XRD and UV-Vis results are very
179 close for three conditions: RTP at 110 °C for 30 s, RTP at 140 °C for 20 s and hot-plate
180 annealing at 140 °C for 2 minutes. This is in good agreement with the similar photovoltaic
181 performance shared by these three annealing conditions. Sample annealed by RTP at 110 °C
182 for 5s has sharp but weakest peak intensity. It means that the MAPbI₃ has formed but not
183 reached a good quality yet, supported by its much weaker UV-Vis absorbance than those from
184 other annealing conditions. **Figure 3** compares scanning electron microscopy (SEM) top-view
185 morphologies of MAPbI₃ films from selected annealing conditions. Similar densely-packed
186 films with defined grains have been observed for the same three conditions: RTP at 110 °C

187 for 30 s, RTP at 140 °C for 20 s and hot-plate annealing at 140 °C for 2 minutes. The SEM
188 image of a disordered morphology verifies that RTP at 110 °C for 5 s provides insufficient
189 energy for annealing the perovskite film. In contrast, RTP at 250 °C for 5 s supplies an
190 overdose of energy to the perovskite film, leading to larger grain sizes, which might explain
191 the higher UV-Vis absorbance and XRD peak intensity, but also damaging the film and
192 creating cracks and other defects in it.

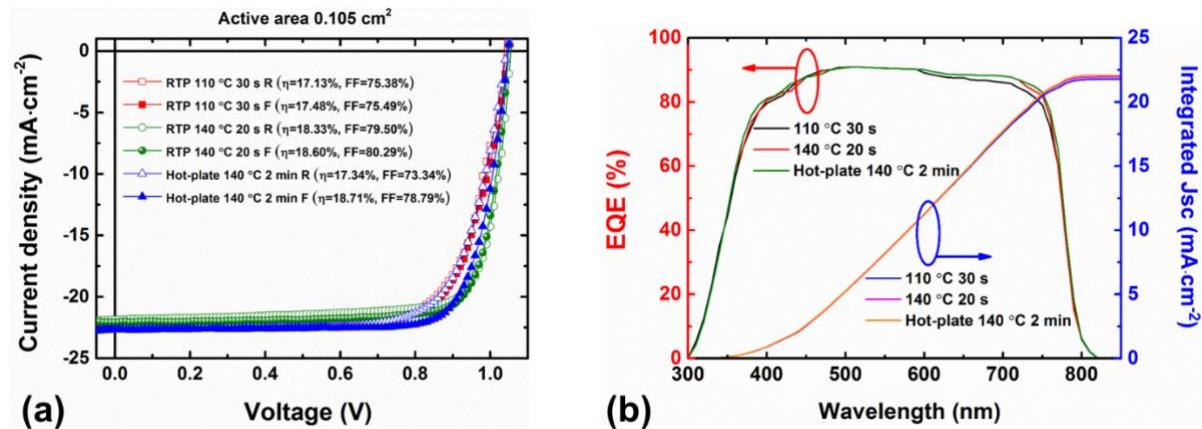

193

194

195 **Figure 2.** a) XRD and b) UV-Vis results of selected annealing conditions.

196

197


198 **Figure 3.** Top-view SEM images of RTP films at a) 110 °C for 30 s, b) 140 °C for 20 s, c)
199 hot-plate annealed at 140 °C for 2 minutes, d) 110 °C 5 s, and e) 250 °C 5 s. The scale bar is 1
200 μm .

201

202 More devices have been made on the best RTP conditions as well as the hot-plate
203 control condition. **Figure 4a** shows comparison between our best hot-plate reference device
204 and top RTP devices. The device from hot-plate annealing demonstrates PCEs of 17.34% and
205 18.71% from forward and reverse scans, respectively. PVSCs with RTP at 140 °C for 20 s
206 yield a slightly overall better photovoltaic performance, with PCEs of 18.33% and 18.60%
207 from forward and reverse scans, respectively. In contrast, RTP at 110 °C for 30 s leads to
208 PCEs slightly less than 17.5%. **Figure 4b** exhibits the external quantum efficiency (EQE) and
209 the corresponding integrated J_{SC} of the devices with the same annealing conditions as shown
210 in **Figure 4a**. RTP at 140 °C for 20 s and hot-plate annealing at 140 °C for 2 minutes have
211 almost identical EQE curve, marginally better than that of RTP at 110 °C for 30 s. In spite of
212 annealing methods, the integrated J_{SCs} calculated from the EQEs are very close to the values
213 acquired from J-V measurements (**Figure 4a**). The good match between J-V and EQE
214 measurements confirms the validity of obtained photovoltaic parameters. The similarities of
215 photovoltaic performance from RTP at 140 °C for 20 s and hot-plate annealing at 140 °C for 2
216 minutes also agree with the findings from XRD, UV-Vis and SEM results. Nevertheless, the
217 demonstrated RTP devices showed comparable photovoltaic performance to their hot-plate-
218 annealed counterparts, underlining the success of such a radiative treatment for building high-
219 performance PVSCs. More importantly, the annealing time of RTP is significantly shorter
220 than that of the traditional thermal annealing (20 s versus 2 minutes). As a result, RTP has
221 much better compatibility with large-scale manufacturing methods such as the R2R
222 processing. Assuming a R2R printing speed of 10 cm per second,⁴¹ the RTP equipment will

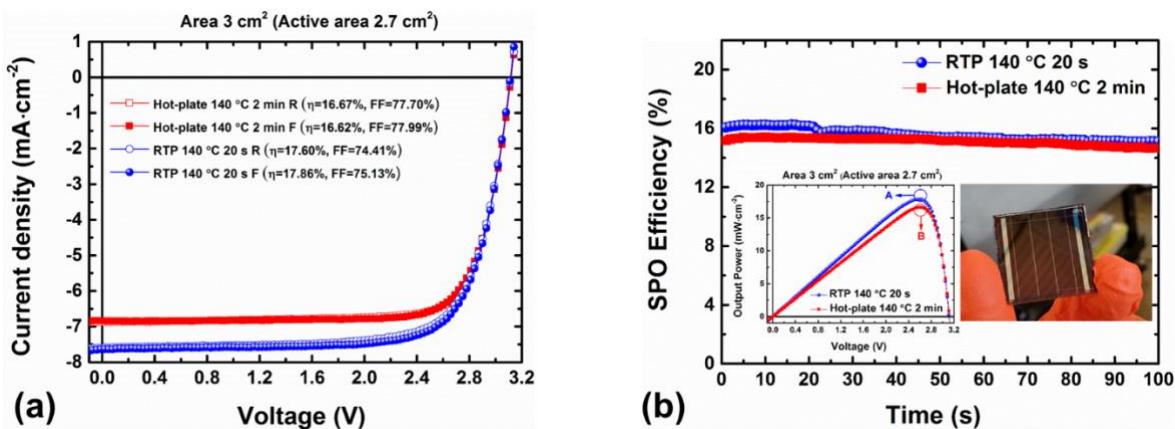
223 only need 2 m length (10 cm/s times 20 s) as compared to a 12 m long (10 cm/s times 2 min)
224 oven if the traditional thermal annealing is used.

225

226

227 **Figure 4.** a) J-V curves of RTP devices at 110 °C for 30 s & 140 °C for 20 s, and hot-plate
228 annealed at 140 °C for 2 minutes. b) EQEs of the corresponding devices.

229


230 2.2 Upscaling of PVSCs.

231 Mini-modules of PVSCs have been made adopting the optimal RTP condition i.e.
232 140 °C for 20 s and the hot-plate condition 140 °C for 2 minutes. The detailed structure of
233 mini-modules can be found in previous works.⁴² Each mini-module comprises three sub-cells
234 monolithically interconnected in series. The designated area of a mini-module is 3 cm²
235 (including dead area from interconnections) with a geometric fill factor of 0.9, giving an
236 active device area of 2.7 cm². **Figure 5** shows comparison between the champion RTP mini-
237 module and the best hot-plate-annealed mini-module. In **Figure 5a**, J-V curves of RTP mini-
238 module exhibit active-area PCE over 17.73%, which is comparable to the active-area PCE
239 over 16.65% from the hot-plate-annealed mini-module. The difference on PCEs is mainly
240 from different *J_{SC}* and *FF*. The RTP and hot-plate mini-modules have an almost identical *V_{oc}*
241 = 3.12 V, which is equivalent to an average of 1.04 V for each individual sub-cell for these
242 three-cell mini-modules. The photovoltaic performance of the RTP mini-module is very

similar to that of the small-area device as shown in **Figure 4a**. This not only confirms that the RTP/blade-coated perovskite film has high quality over the large area, but also proves that the combination of RTP & blade-coating is suitable for upscaling the manufacture of PVSCs.

Figure 5b provides quasi-SPO (stabilized power output) of the RTP and hot-plate mini-modules. The quasi-SPO has been measured with an approximating method by sweeping voltage in a very small range near the maximal power point (MPP) for some time. The left inset of **Figure 5b** marks the respective MPPs (point A and B) for the RTP and hot-plate mini-modules in their power-voltage (P-V) curves. The right inset of **Figure 5b** is a photo of the mini-module. The statistics of the J-V measurements are displayed in **Figure S2**. The data for the box charts were extracted from over 30 J-V measurements for RTP and hot-plate mini-modules each. It is worth noting that all the measurements, J-V and quasi-SPO, were carried out in ambient environment without any thermal or humidity control. In addition, the quasi-SPOs were measured after all the J-V data had been collected, meaning that the mini-modules had already been exposed to air and experienced thermal stress for quite some time before SPO measurements. This explains why the efficiencies extracted from quasi-SPOs are not as high as those from the J-V measurements.

259

260

261 **Figure 5.** a) J-V curves of mini-modules made from RTP at 140 °C for 20 s and hot-plate
262 annealed at 140 °C for 2 minutes. b) quasi-SPOs of the corresponding mini-modules. Active
263 area = 2.7 cm². Inset left: P-V curves of mini-modules; Inset right: photo of a mini-module.

264

265 **3. Conclusions**

266 In summary, we demonstrate successful blade-coating and RTP for fabrication of
267 planar p-i-n PVSCs in ambient environment. Both small devices and mini-modules have been
268 made, with active areas of 0.105 cm² and 2.7 cm², respectively. The best small device shows
269 an average PCE over 18.47% from forward and reverse scans, while the champion mini-
270 module exhibits an average PCE over 17.73% from scans of different directions. In addition,
271 these efficiencies are accompanied by high fill factors, with average values of 79.90% and
272 74.77% for the best small device and mini-module, respectively. The efficiency of our top
273 mini-module is the highest so far for cm²-scale PVSCs annealed by RTP. Furthermore, RTP
274 method reduces the annealing time of blade-coated MAPbI₃ films from 2 minutes for hot plate
275 to less than 30 seconds. This four-fold decrease of annealing time will facilitate the road
276 towards high-speed coating of perovskite layers. These results validate the practicability of
277 using RTP method for upscaling the manufacturing of PVSCs. Likely blade-coating will be
278 replaced by slot-die coating to realize R2R printing and large-scale manufacturing of PVSCs.

279

280 **4. Materials and Methods**

281 **4.1 Chemicals.**

282 Poly(triary amine) (PTAA) were purchased from Sigma-Aldrich. Lead iodide (PbI₂,
283 99.9985%) and methylammonium iodide (MAI) was acquired from Alfa Aesar and Greatcell
284 Solar respectively. Methylammonium chloride (MACl, >98.0%) and Bathocuproine (BCP,
285 >99.0%, sublimed) were obtained from TCI. Poly [(9,9 - bis(3' - (N,N -

286 dimethylamino)propyl) - 2,7 - fluorene) - alt - 2,7 - (9,9 - dioctylfluorene)] dibromide
287 (PFN-Br) was ordered from 1-Material. Fullerene C60 (>99.5%) was purchased from
288 Lumtech. All solvents, such as toluene, methanol, N,N-Dimethylformamide (DMF), Dimethyl
289 sulfoxide (DMSO), N-Methyl-2-pyrrolidone (NMP), were purchased from Sigma-Aldrich in
290 anhydrous grade.

291

292 **4.2 Device fabrication.**

293 The ITO-glass were cut into slides of 1-inch in width and 5-inch in length, which were
294 ultrasonically brushed with Liquinox detergent solution (Liquinox : DI water = 1 : 20), then
295 rinsed with DI water thoroughly. After N₂-blow drying, the cleaned ITO-glass slides
296 substrates were treated by the UV-Ozone for 15min and then used immediately for sequential
297 coating of different layers. All the blade-coating, hot-plate annealing and RTP were
298 performed in ambient environment. Regardless of solution type, 20 μ L of solution were
299 applied for a substrate with dimension of 1 inch x 5 inches. PTAAs was dissolved in toluene to
300 form a 10mg/ml solution. PTAAs layer was blade-coated with a gap height \sim 100 μ m at a
301 coating speed of 10 mm/s and then annealed at 100 °C for 10 minutes. After PTAAs layer,
302 PFN in methanol (0.4mg/ml) was employed to modify the hydrophobicity of PTAAs.⁴³ PFN
303 was blade-coated with the same coating parameters but no annealing. On top of PFN layer,
304 the perovskite layer was blade-coated with a gap height \sim 150 μ m at a coating speed of 7.5
305 mm/s. Perovskite precursor solution was composed of 1.2M MAI, 1.2M PbI₂, and 0.06M
306 MACl in a mixed solvent (DMF:DMSO:NMP = 0.91:0.07:0.02 volume ratio). No anti-solvent
307 was used. Instead, an air-knife was employed to pre-dry the blade-coated perovskite films
308 before annealing of any kind. The gas quenching was utilized before both the hot-plate
309 annealing and RTP annealing. The gas quenching is used to extract solvent and dry the wet
310 films, aiming at promoting nucleation⁴⁴ and formation of a supersaturated intermediate

311 state.^{45, 46} The as-deposited films were transparent before the quenching, after which they
312 turned into specular brownish color. The ITO-glass slides were further cut into 1x1 inch²
313 substrates. For the control sets, perovskite films were annealed at 140 °C for 2 minutes on a
314 hot plate. For the RTP samples, different RTP conditions were utilized as outlined in **Table**
315 **S1**. The RTP instrument was a commercial Ulvac MILA-3000 minilamp Annealer. The
316 thermocouple inside the RTP instrument is attached to a piece of silicon. Samples were
317 floating above the silicon piece without any physical contact, meaning that the measured
318 temperature was not necessarily the same as the actual temperature of the sample. After
319 annealing, the 1x1 inch² substrates were loaded into a thermal evaporator for consecutive
320 deposition of C₆₀, BCP and silver, with thicknesses of 30 nm, 6 nm and 100 nm, respectively.
321

322 **4.3 Characterization.**

323 The X-ray diffraction (XRD) data were measured by a Bruker D8 Discover X-ray
324 diffractometer. UV-Vis spectrophotometer (Cary 6000-i) was used to collect the absorption
325 spectra. The top-view SEM images were recorded using a JEOL 7000 field-emission scanning
326 electron microscope (SEM). The *J-V* curves were measured by a Class AAA solar simulator
327 with a Xe-arc lamp and AM1.5G filter from PV measurement, and illumination intensity was
328 calibrated with a NREL certified Si reference cell. Monochromator (Newport 74100) and
329 optical power meter (Newport 70310) were utilized to measure the external quantum
330 efficiency (EQE) with a xenon lamp (Newport 66902) and a Si detector (Newport 71640).
331

332 **Acknowledgement**

333 This work is partially supported by the National Science Foundation (NSF) (No. 1753822).
334 D.L. acknowledges graduate student scholarship for Z.O from the Center for Materials for
335 Information Technology (MINT) at the University of Alabama. This work was supported by
336 the Alliance for Sustainable Energy, LLC, the manager and operator of the National
337 Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No.

338 DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the
339 views of the DOE or the U.S. Government. The U.S. Government retains and the publisher,
340 by accepting the article for publication, acknowledges that the U.S. Government retains a
341 nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
342 form of this work, or allow others to do so, for U.S. Government purposes.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366 **References**

367

368 1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as
369 Visible-Light Sensitizers for Photovoltaic Cells. *J. Am. Chem. Soc.* **2009**, *131* (17), 6050-
370 6051.

371 2. Yang, Y.; You, J., Make perovskite solar cells stable. *Nature* **2017**, *544* (7649), 155-
372 156.

373 3. Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.;
374 Sargent, E. H.; Han, H., Challenges for commercializing perovskite solar cells. *Science* **2018**,
375 *361* (6408), eaat8235.

376 4. Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.;
377 Yang, Y.; Gao, X., Thermodynamically stabilized β -CsPbI₃-based perovskite solar cells with
378 efficiencies > 18%. *Science* **2019**, *365* (6453), 591-595.

379 5. Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan,
380 Y.; Berry, J. J.; van Hest, M. F., Perovskite ink with wide processing window for scalable
381 high-efficiency solar cells. *Nat. Energy* **2017**, *2* (5), 17038.

382 6. Zhong, Y.; Munir, R.; Li, J.; Tang, M.-C.; Niazi, M. R.; Smilgies, D.-M.; Zhao, K.;
383 Amassian, A., Blade-coated hybrid perovskite solar cells with efficiency > 17%: an in situ
384 investigation. *ACS Energy Lett.* **2018**, *3* (5), 1078-1085.

385 7. Li, C.; Yin, J.; Chen, R.; Lv, X.; Feng, X.; Wu, Y.; Cao, J., Monoammonium
386 Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with > 18% Efficiency.
387 *J. Am. Chem. Soc.* **2019**, *141* (15), 6345-6351.

388 8. Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F.; Zhu, K.,
389 Scalable fabrication of perovskite solar cells. *Nature Reviews Materials* **2018**, *3* (4), 18017.

390 9. Cheng, P.; Bai, H.; Zawacka, N. K.; Andersen, T. R.; Liu, W.; Bundgaard, E.;

391 Jørgensen, M.; Chen, H.; Krebs, F. C.; Zhan, X., Roll - Coated Fabrication of Fullerene -

392 Free Organic Solar Cells with Improved Stability. *Adv. Sci.* **2015**, 2 (6).

393 10. Schmidt, T. M.; Larsen-Olsen, T. T.; Carle, J. E.; Angmo, D.; Krebs, F. C., Upscaling

394 of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells

395 with Printed Back Electrodes. *Adv. Energy Mater.* **2015**, 5 (15).

396 11. Kim, D. H.; Whitaker, J. B.; Li, Z.; van Hest, M. F.; Zhu, K., Outlook and challenges

397 of perovskite solar cells toward terawatt-scale photovoltaic module technology. *Joule* **2018**, 2

398 (8), 1437-1451.

399 12. Im, J.-H.; Jang, I.-H.; Pellet, N.; Graetzel, M.; Park, N.-G., Growth of CH₃NH₃PbI₃

400 cuboids with controlled size for high-efficiency perovskite solar cells. *Nat. Nanotechnol.*

401 **2014**, 9 (11), 927-932.

402 13. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly

403 reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of

404 19.7% fabricated via Lewis base adduct of lead (II) iodide. *J. Am. Chem. Soc.* **2015**, 137 (27),

405 8696-8699.

406 14. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J., Non-wetting surface-driven

407 high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. *Nat.*

408 *Commun.* **2015**, 6, 7747.

409 15. You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y. M.; Chang, W.-H.; Hong, Z.;

410 Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y., Improved air stability of

411 perovskite solar cells via solution-processed metal oxide transport layers. *Nat. Nanotechnol.*

412 **2016**, 11 (1), 75-81.

413 16. Chiang, C.-H.; Wu, C.-G., Bulk heterojunction perovskite–PCBM solar cells with high

414 fill factor. *Nat. Photon.* **2016**, 10 (3), 196-200.

415 17. Koushik, D.; Verhees, W. J.; Kuang, Y.; Veenstra, S.; Zhang, D.; Verheijen, M. A.;
416 Creatore, M.; Schropp, R. E., High-efficiency humidity-stable planar perovskite solar cells
417 based on atomic layer architecture. *Energy Environ. Sci.* **2017**, *10* (1), 91-100.

418 18. Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-
419 Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y., Efficient and stable solution-processed planar
420 perovskite solar cells via contact passivation. *Science* **2017**, *355* (6326), 722-726.

421 19. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.;
422 Seo, J.; Kim, E. K.; Noh, J. H., Iodide management in formamidinium-lead-halide-based
423 perovskite layers for efficient solar cells. *Science* **2017**, *356* (6345), 1376-1379.

424 20. Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.;
425 Grätzel, M., Perovskite solar cells with CuSCN hole extraction layers yield stabilized
426 efficiencies greater than 20%. *Science* **2017**, *358*, 768-771.

427 21. Turren-Cruz, S.-H.; Saliba, M.; Mayer, M. T.; Juárez-Santiesteban, H.; Mathew, X.;
428 Nienhaus, L.; Tress, W.; Erodici, M. P.; Sher, M.-J.; Bawendi, M. G., Enhanced charge
429 carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite
430 solar cells. *Energy Environ. Sci.* **2018**, *11* (1), 78-86.

431 22. Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade,
432 G. F.; Watts, J. F.; Xu, Z., Enhanced photovoltage for inverted planar heterojunction
433 perovskite solar cells. *Science* **2018**, *360* (6396), 1442-1446.

434 23. Xu, J.; Hu, Z.; Jia, X.; Huang, L.; Huang, X.; Wang, L.; Wang, P.; Zhang, H.; Zhang,
435 J.; Zhang, J., A rapid annealing technique for efficient perovskite solar cells fabricated in air
436 condition under high humidity. *Org. Electron.* **2016**, *34*, 84-90.

437 24. Wang, K.-L.; Zhang, C.-C.; Jiang, Y.-R.; Liu, H.-R.; Li, X.-M.; Jain, S. M.; Ma, H.,
438 High-quality perovskite films via post-annealing microwave treatment. *New Journal of
439 Chemistry* **2019**.

440 25. Cao, Q.; Yang, S.; Gao, Q.; Lei, L.; Yu, Y.; Shao, J.; Liu, Y., Fast and controllable
441 crystallization of perovskite films by microwave irradiation process. *ACS Appl. Mater.*
442 *Interfaces* **2016**, 8 (12), 7854-7861.

443 26. Jeon, T.; Jin, H. M.; Lee, S. H.; Lee, J. M.; Park, H. I.; Kim, M. K.; Lee, K. J.; Shin,
444 B.; Kim, S. O., Laser crystallization of organic–inorganic hybrid perovskite solar cells. *ACS*
445 *nano* **2016**, 10 (8), 7907-7914.

446 27. Li, F.; Zhu, W.; Bao, C.; Yu, T.; Wang, Y.; Zhou, X.; Zou, Z., Laser-assisted
447 crystallization of CH₃NH₃PbI₃ films for efficient perovskite solar cells with a high open-
448 circuit voltage. *Chem. Comm.* **2016**, 52 (31), 5394-5397.

449 28. Muydinov, R.; Seeger, S.; Kumar, S. H. B. V.; Klimm, C.; Kraehnert, R.; Wagner, M.
450 R.; Szyszka, B., Crystallisation behaviour of CH₃NH₃PbI₃ films: The benefits of sub-second
451 flash lamp annealing. *Thin Solid Films* **2018**, 653, 204-214.

452 29. Troughton, J.; Carnie, M. J.; Davies, M. L.; Charbonneau, C.; Jewell, E. H.; Worsley,
453 D. A.; Watson, T. M., Photonic flash-annealing of lead halide perovskite solar cells in 1 ms. *J.*
454 *Mater. Chem. A* **2016**, 4 (9), 3471-3476.

455 30. Lavery, B. W.; Kumari, S.; Konermann, H.; Draper, G. L.; Spurgeon, J.; Druffel, T.,
456 Intense Pulsed Light Sintering of CH₃NH₃PbI₃ Solar Cells. *ACS Appl. Mater. Interfaces*
457 **2016**, 8 (13), 8419-8426.

458 31. Ankireddy, K.; Ghahremani, A. H.; Martin, B.; Gupta, G.; Druffel, T., Rapid thermal
459 annealing of CH₃NH₃PbI₃ perovskite thin films by intense pulsed light with aid of
460 diiodomethane additive. *J. Mater. Chem. A* **2018**, 6 (20), 9378-9383.

461 32. Ahmad, M. I.; Van Campen, D. G.; Fields, J. D.; Yu, J.; Pool, V. L.; Parilla, P. A.;
462 Ginley, D. S.; Van Hest, M. F.; Toney, M. F., Rapid thermal processing chamber for in-situ x-
463 ray diffraction. *Review of Scientific Instruments* **2015**, 86 (1), 013902.

464 33. Sanchez, S.; Christoph, N.; Grobety, B.; Phung, N.; Steiner, U.; Saliba, M.; Abate, A.,
465 Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared
466 annealing. *Adv. Energy Mater.* **2018**, *8* (30), 1802060.

467 34. Pool, V. L.; Dou, B.; Van Campen, D. G.; Klein-Stockert, T. R.; Barnes, F. S.;
468 Shaheen, S. E.; Ahmad, M. I.; Van Hest, M. F.; Toney, M. F., Thermal engineering of FAPbI
469 3 perovskite material via radiative thermal annealing and in situ XRD. *Nat. Commun.* **2017**, *8*,
470 14075.

471 35. Park, J.; Choi, J. W.; Kim, W.; Lee, R.; Woo, H. C.; Shin, J.; Kim, H.; Son, Y. J.; Jo,
472 J. Y.; Lee, H., Improvement of perovskite crystallinity by omnidirectional heat transfer via
473 radiative thermal annealing. *RSC Adv.* **2019**, *9* (26), 14868-14875.

474 36. Dou, B.; Pool, V. L.; Toney, M. F.; van Hest, M. F., Radiative thermal annealing/in
475 situ x-ray diffraction study of methylammonium lead triiodide: effect of antisolvent, humidity,
476 annealing temperature profile, and film substrates. *Chem. Mater.* **2017**, *29* (14), 5931-5941.

477 37. Sanchez, S.; Hua, X.; Phung, N.; Steiner, U.; Abate, A., Flash Infrared Annealing for
478 Antisolvent - Free Highly Efficient Perovskite Solar Cells. *Adv. Energy Mater.* **2018**, *8* (12),
479 1702915.

480 38. Sánchez, S.; Vallés-Pelarda, M.; Alberola-Borràs, J.-A.; Vidal, R.; Jerónimo-Rendón,
481 J. J.; Saliba, M.; Boix, P. P.; Mora-Seró, I., Flash infrared annealing as a cost-effective and
482 low environmental impact processing method for planar perovskite solar cells. *Materials*
483 *Today* **2019**.

484 39. Bruening, K.; Dou, B.; Simonaitis, J.; Lin, Y.-Y.; van Hest, M. F.; Tassone, C. J.,
485 Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets. *Joule* **2018**, *2* (11),
486 2464-2476.

487 40. Ouyang, Z.; Abrams, H.; Bergstone, R.; Li, Q.; Zhu, F.; Li, D., Rapid Layer-Specific
488 Annealing Enabled by Ultraviolet LED with Estimation of Crystallization Energy for High-
489 Performance Perovskite Solar Cells. *Adv. Energy Mater.* **2019**, 1902898.

490 41. Deng, Y.; Van Brackle, C. H.; Dai, X.; Zhao, J.; Chen, B.; Huang, J., Tailoring solvent
491 coordination for high-speed, room-temperature blading of perovskite photovoltaic films.
492 *Science Advances* **2019**, 5 (12), eaax7537.

493 42. Yang, M.; Kim, D. H.; Klein, T. R.; Li, Z.; Reese, M. O.; Tremolet de Villers, B. J.;
494 Berry, J. J.; van Hest, M. F.; Zhu, K., Highly efficient perovskite solar modules by scalable
495 fabrication and interconnection optimization. *ACS Energy Lett.* **2018**, 3 (2), 322-328.

496 43. Lee, J.; Kang, H.; Kim, G.; Back, H.; Kim, J.; Hong, S.; Park, B.; Lee, E.; Lee, K.,
497 Achieving large - area planar perovskite solar cells by introducing an interfacial
498 compatibilizer. *Adv. Mater.* **2017**, 29 (22), 1606363.

499 44. Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J., From scalable solution fabrication
500 of perovskite films towards commercialization of solar cells. *Energy Environ. Sci.* **2019**, 12
501 (2), 518-549.

502 45. Babayigit, A.; D'Haen, J.; Boyen, H.-G.; Conings, B., Gas quenching for perovskite
503 thin film deposition. *Joule* **2018**, 2 (7), 1205-1209.

504 46. Brinkmann, K. O.; He, J.; Schubert, F.; Malerczyk, J.; Kreusel, C.; van gen Hassend,
505 F.; Weber, S.; Song, J.; Qu, J.; Riedl, T., Extremely Robust Gas-Quenching Deposition of
506 Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p–i–n)
507 Solar Cells by Targeting the Precursor Wetting Issue. *ACS Appl. Mater. Interfaces* **2019**, 11
508 (43), 40172-40179.

509

510

511

512

513

514

515