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Abstract：14 

Buoyancy ventilation is widely used in underground buildings, such as underground 15 

hydropower stations. Multiple solutions of buoyancy ventilation may exist in those 16 

underground structures. In this study, we developed a transient model comprising an 17 

ordinary differential equation system to describe buoyancy ventilation patterns in 18 

typical two-zone underground structures. Additionally, the accuracy of the model was 19 

validated. Nonlinear dynamical analysis was conducted to study multiple steady-state 20 

airflow. According to mathematical derivation, the configuration of one local heat 21 

source at the bottom corner introduces two stable solutions. The criterion to determine 22 

the stability and existence of solutions for more general scenarios was developed. Using 23 

this criterion, we obtained the multiple steady states of any two-zone underground 24 

buildings for different stack height ratios and the strength ratios of the heat sources. 25 
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This criterion can be adopted for the design of buoyancy ventilation or natural smoke 1 

ventilation systems. Designers can change the height ratio of the stack or the heat ratio 2 

of two zones to induce the desired ventilation patterns. Finally, a case study was 3 

conducted with field measurements to demonstrate the use of the nonlinear dynamical 4 

analysis method to investigate the multiple steady states of buoyancy ventilation. 5 

Through the case study, we validated that the proposed criterion could produce the same 6 

result as the nonlinear dynamical analysis. 7 

Keywords：Nonlinear dynamics; buoyancy ventilation; multiple steady states；8 

Underground buildings 9 

Nomenclature 10 

𝐴1 Coefficient matrix for linearized differential equation system 

𝑞1 Mass flow rate at zone 1, [kg/s] 

𝑞2 Mass flow rate at zone 2, [kg/s]

𝑇1 Air temperature at zone 1, [K] 

𝑇𝑎 Outdoor air temperature, [K] 

𝑆1 Coefficient of Mass flow impedance at zone1 

𝑆2 Coefficient of Mass flow impedance at zone2 

𝑀1 Thermal mass at zone 1, [kg] 

𝑀2 Thermal mass at zone 2, [kg] 

𝐸1 Total heat gain at zone 1 , [kW] 

𝐸2 Total heat gain at zone 2 , [kW] 

𝐶𝑝 Specific heat of air,[kJ/(kg K)]

t Time, [s] 

𝑔 Gravitational acceleration, [m/s2] 

𝐻1 Height of zone 1,[m] 

𝐻2 Height of zone 2,[m] 

𝜅 Heat ratio between two zones, 
𝐸2

𝐸1
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∆𝑇1 
Temperature difference between indoor and outdoor air at zone 1, [℃] 

∆𝑇2 Temperature difference between indoor and outdoor air at zone 2, [℃] 

𝛼 Height ratio between two zones, 
𝐻2

𝐻1
 

∆𝑇1
̅̅ ̅̅ ̅ Temperature difference between indoor and outdoor air at zone 1 in steady 

state, [℃] 

∆𝑇2
̅̅ ̅̅ ̅ Temperature difference between indoor and outdoor air at zone 1 in steady 

state, [℃] 

𝜌0 Ambient air density, [kg/m3] 

𝜆
 

Eigenvalue of coefficient matrix 

 1 

1. Introduction 2 

Owing to the wide utilization of underground spaces, the evaluation of natural 3 

ventilation in underground buildings has become significant [1-11]. Natural ventilation 4 

as a passive strategy has been adopted in many underground structures, such as 5 

underground shelters [1], warehouses [2],underground garages [3, 4], mines [5], 6 

hydropower stations [8, 9], and underground roads and railway tunnels [10]. Aspects 7 

such as air quality [3, 4], energy conservations [6, 7], computational models [5, 8, 9], 8 

fire safety [5, 10], and ventilation performance [1, 2] have been investigated. Hence, as 9 

a type of natural ventilation, buoyancy ventilation in underground structures is worth 10 

investigating.  11 

Buoyancy ventilation is the air flow driven by the air density difference caused by 12 

air temperature difference. As early as 1954, Batchelor [12] began investigating the 13 

buoyancy of airflow. Many factors, such as envelope heat transfer or internal heat 14 

source, can result in thermal ventilation. Among them, various studies have been 15 

performed regarding solar-chimney-induced thermal ventilation [13, 14], natural 16 

ventilation reinforced by double-skin facade [15-20], indoor thermal plume, and single-17 
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sided [21] or cross ventilation [22, 23] driven by the separate or combined effect of 1 

buoyancy and wind pressure. 2 

For the ventilation driven by the combined effect of buoyancy and wind pressure, 3 

multiple solutions may exist. Hunt G.R & Linden.P.F [24] first raised the issue of 4 

mutual reinforcement and confrontation of natural ventilation under wind pressure and 5 

thermal pressure. However, they primarily studied the situation with the reinforced 6 

effect of wind pressure and thermal pressure. A one-dimensional mathematical model 7 

was proposed with a visual and quantitative comparative study performed using a 8 

small-scaled brine model experiment. This study provides a theoretical basis and guide 9 

for the calculation of natural ventilation of night cooling or air purging system of gas 10 

leakage. As the first study that introduced the (concept or possibility) of multiple 11 

solutions of building ventilation and smoke exhaust, Nitta [25] demonstrated that 12 

solution multiplicity exists under specific room layouts and fan settings in the design 13 

of smoke prevention and exhaust. This study presents the importance of solution 14 

multiplicity to personnel safety and ventilation design, although its formation 15 

mechanism is not elaborated. 16 

Subsequently, the solution multiplicity of single-zone and double-opening buildings 17 

under the combined effect of wind pressure and thermal pressure has attracted wide 18 

attention. The existence of solution multiplicity was first investigated, where multiple 19 

methods were employed to reproduce this phenomenon. Heiselberg et al. [26] analyzed 20 

the multiple steady sates of the single-zone and double-opening buildings with wind 21 

pressure and buoyancy confrontation by a salt water experiment and CFD simulation. 22 

Based on this typical building configuration, Li & Delsante [27] established a complete 23 

one-dimensional mathematical model while considering the effect of heat transfer in 24 

the building envelope. Additionally, Li [28] reported that solution multiplicity could 25 

exist in both inclined tunnels and two-story aboveground buildings, although the focus 26 

of the study was wind pressure and buoyancy confrontation in a single-zone building. 27 

Subsequently, the dynamical process and impact factors of multiple steady states were 28 
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investigated. Lishman & Woods [29] studied the effect of wind pressure changes on the 1 

transition of multiple steady states in a single-zone building. Yuan & Glicksman [30-2 

32] studied the effects of different initial conditions on the formation of multiple steady 3 

states in single-zone buildings under the combined effect of wind pressure and 4 

buoyancy. The dynamic transition between different steady states was investigated 5 

considering the effects of disturbance magnitude and action time. Gladstone et al. [33] 6 

studied a single-zone building with distributed heat sources on the floor. The effects of 7 

distributed roof cold source, outdoor temperature gradient, and outdoor wind pressure 8 

on multiple steady states were discussed. In the study, they proposed a one-dimensional 9 

model and compared it with experiments. Erhan & Hifzi [34] used IEA Annex 20 as an 10 

example and discovered that different turbulence parameters may produce multiple 11 

solutions in CFD simulations. 12 

In addition, other studies focusing on the solution multiplicity of ventilation in single-13 

zone and multiopening buildings have been performed. Chenvidakarn & Woods [35] 14 

and Durrani et al. [36] analyzed the solution multiplicity of a typical aboveground 15 

building through a saltwater experiment employing one-dimensional model analyses 16 

[35] and CFD simulations [36].The building contained one zone and three openings. 17 

Two upper openings were the chimneys, while a lower large opening was the entrance 18 

door. However, these studies primarily focused on the accuracy comparison of the LES 19 

model with K-e model in CFD. The analytical model was established based on an 20 

equilibrium state without considering the effect of thermal mass and time; therefore, an 21 

in-depth analysis of the stability of multiple solutions was not performed. Chen & Li 22 

[37] studied the buoyancy ventilation of a single-zone building with three horizontal 23 

openings in different levels using theoretical analysis. For a specific geometric structure, 24 

even with the same boundary conditions and geometric settings, the height of thermal 25 

stratification might be higher or lower than the medium-level horizontal opening when 26 

the initial conditions are different. 27 

In a fire, the solution multiplicity of smoke flows is a significant topic that can guide 28 
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the design of smoke exhaust systems, thereby ensuring the safety of human evacuation. 1 

Gong J. and Li Y. [38, 39] studied the solution multiplicity of smoke spread with the 2 

effect of outdoor wind pressure in fires. The research involved both small-scaled 3 

experiments and CFD simulations, including a single heat source in a typical single-4 

zone building and a single heat source in a two-zone building. A comparative study was 5 

conducted using different forms of heat sources, such as point, line, and area heat 6 

sources. In the study, they investigated the effects of different heat source locations on 7 

solution multiplicity and presented a visualization experiment. Yang D. [40] analyzed 8 

the confrontation between outdoor wind pressure and thermal pressure caused by fire 9 

in an oblique straight tunnel. The one-dimensional model, which was based on the 10 

transient energy balance and pressure balance of a single-zone building to establish a 11 

nonlinear differential equation, was similar to that of Yuan & Glicksman [31], despite 12 

the difference in geometry. Furthermore, the application scenario of the study was 13 

different, in that it was suitable for the fire situation in the oblique straight tunnel instead 14 

of a single-zone building. Furthermore, salt water experiments were conducted to 15 

compare the entire process of formation and development of the two steady-state 16 

solutions. 17 

Additionally, studies regarding the solution multiplicity of ventilation in two-zone 18 

spaces have been performed. Yang L. [41, 42] performed a detailed analysis of multiple 19 

steady states and bifurcation of fluids in a two-zone building with four openings using 20 

theoretical analyses and CFD simulations. Li [43] et al. investigated the buoyancy 21 

ventilation in a two-story space with two heat sources and three openings. A 22 

mathematical model was established using the nonlinear ordinary differential equation. 23 

The effect of the heat source’s strength ratio on fluid bifurcation was analyzed. Yang D. 24 

[44] analyzed the smoke exhaust spread in a tunnel with three entrances in fire scenarios 25 

and concluded that six equilibrium states might exist. Subsequently, based on the energy 26 

balance and pressure balance equations of the steady states, a mathematical model was 27 

established to solve the smoke exhaust of each tunnel. CFD was also used to simulate 28 
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and reproduce some of the steady states. However, in the proposed one-dimensional 1 

model that was based on equilibrium conditions, the transient development process of 2 

smoke ventilation was not considered. Additionally, the stability of the solution was not 3 

analyzed. Liu et al. [45] numerically studied the formation process of multiple steady 4 

states in an underground building with two tunnel connecting to the outdoor 5 

environment. The tunnels were set with equal heights with only one heat source at the 6 

corner of the deep buried spaces. The authors used the two-stage CFD method to 7 

reproduce the two steady states of the buoyancy ventilation in the underground building 8 

by changing the initial conditions. This study primarily provided a method to 9 

investigate the multiple steady states.  10 

In summary, despite the abovementioned studies, gaps still exist in predicting and 11 

analyzing the multiplicity of buoyancy ventilation in underground buildings. First, 12 

current studies are still limited to scenarios with single zones or two zones driven by 13 

combined wind and buoyancy. More specifically, the building configurations and 14 

driving forces are different. For the building configurations, most studies focus on 15 

single-zone buildings with two openings, which differ from underground structures. 16 

Typically, at least two tunnels are connected with the outdoor environment. Hence, at 17 

least two zones exist for the underground structures provided that the height of the deep 18 

buried rooms are neglected. For the driven forces, the combat between thermal 19 

buoyancy and wind pressure is the main cause of solution multiplicity in previous 20 

studies. However, underground buildings are not exposed to the outdoor environment, 21 

and the wind pressure is not highly significant. By contrast, the heat transfer between 22 

the indoor air and surrounding soil can affect the thermal pressure inside the tunnel. 23 

Therefore, both zones may need to be considered as heat sources/sinks. The charge and 24 

discharge process of heat from the soil to the tunnel can contribute to the solution 25 

multiplicity of buoyancy ventilation in underground buildings. Additionally, heat is 26 

released from the indoor environment, such as from equipment and human body; 27 

therefore, the solution multiplicity of natural ventilation is driven by the combat of 28 
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thermal pressure between two tunnels. Next, the current studies are not generalizable. 1 

To study multiple steady states, the CFD method or analytical method must be repeated 2 

each time the geometry is changed. Especially for the CFD method, the initial 3 

conditions must be changed and numerous CFD simulations must be conducted to study 4 

the existence of multiple steady states for a single fixed geometry. This requires 5 

significant computational resources and manpower. For the analytical method, the 6 

strength of the buoyancy and the wind pressure are the main control parameters studied 7 

to investigate solution multiplicity. In other words, buoyancy and wind pressure were 8 

altered to investigate their effects on the performances of multiple steady states. This 9 

may be useful for aboveground buildings if the geometry is fixed. However, for a more 10 

general case, the height ratio of the tunnel may be an important control parameter.  11 

In our study, we considered both the effects of the strength ratio of heat sources and 12 

the different height ratios of tunnels simultaneously. To attain a deep understanding of 13 

the solution multiplicity of underground buoyancy ventilation, we performed a 14 

nonlinear dynamical analysis to study the formation mechanism of multiple steady 15 

states. In addition to demonstrating the use of nonlinear dynamics to analyze the 16 

buoyancy ventilation in underground buildings, our goal is to develop a criterion for 17 

evaluating the multiple steady states for different buildings and heat source 18 

configurations. This criterion is based on the strength ratio of the heat sources between 19 

two zones and the tunnel height ratio of two zones. Once these two parameters are 20 

determined, then whether a solution multiplicity exists for a typical underground 21 

structure with two tunnels connected to the outdoor environment can be determined. 22 

This is a straightforward method for the design and optimization of buoyancy 23 

ventilation and smoke ventilation in underground buildings. 24 

The organization of this paper is as follows: Section 1 presents the literature review 25 

of previous studies regarding buoyancy ventilation and solution multiplicity with an 26 

emphasis on the significance of our study; Section 2 provides the nonlinear dynamic 27 

analysis of a typical underground structure, which includes the establishment of a one-28 
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dimensional model, stability and existence analysis of underground buoyancy 1 

ventilation, model validation through result comparison with previous literature, and 2 

graphical presentation of multiple steady states through bifurcation diagram and phase 3 

portrait; Section 3 presents a case study of an underground hydropower station to 4 

demonstrate how nonlinear dynamical analysis is employed in real project applications. 5 

Furthermore, the derived criterion is compared with the analysis results; Section 4 6 

presents the conclusions, and current studies are summarized along with future studies. 7 

2. Nonlinear dynamic analysis 8 

To study the nonlinear dynamics of typical deep-buried underground buildings with two 9 

openings, we first established the transient mathematical mode. Some assumptions 10 

were made: (1) Each zone was well mixed;（2）Thermal mass was 1;（3）𝐸1 > 0; (4) 11 

The mass flow impedance coefficient of the geometry was constant. The conservation 12 

law was adopted to develop the transient model. As the driven force of the ventilation 13 

is the thermal pressure in two tunnels, as illustrated in Fig. 1, we divided the building 14 

into two zones. All heat transfer, including the envelope heat transfer and internal heat 15 

source, was considered as one heat source in each zone. For analysis convenience, we 16 

assumed the heat source in the left tunnel as positive, and the heat source of the right 17 

tunnel could be either negative or positive such that we could discuss the scenario of 18 

two opposing heat sources and the scenario of one heat sink and one heat source. As 19 

shown in Fig. 1, there would be two realizations for the building configurations. 20 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



10 

 

2.1 Description of mathematical model 1 

 2 

Fig. 1. Schematics of a typical two-zone underground structure. 3 

For realization 1, the conservation of mass is as follows: 4 

𝑞1 = 𝑞2                                                          （2-1） 5 

In realization 1, the air flow enters from zone 1 to zone 2. Hence, the thermal pressure 6 

in zone 1 will resist the airflow, while the thermal pressure in zone 2 will assist the air 7 

flow. Based on the looped method, the sum of the buoyancy pressure balances the flow-8 

element pressure losses [8, 46].The pressure balance equation is as follows:                                                9 

−
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1 +

𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2 = 𝑆1𝑞1

2 + 𝑆2𝑞2
2                           （2-2）                                            10 

The heat gain of the internal thermal mass is equal to the heat released by the heat 11 

sources minus the heat loss through airflows. The heat balance equation for zones 1 and 12 

2 can be obtained: 13 

𝑀1𝐶𝑝
𝑑𝑇1

𝑑𝑡
= −𝑞1𝐶𝑝(𝑇1−𝑇𝑎) + 𝐸1                                     （2-3） 14 

𝑀2𝐶𝑝
𝑑𝑇2

𝑑𝑡
= −𝑞2𝐶𝑝(𝑇2−𝑇1) + 𝐸2                                     （2-4） 15 

From Eqs. 2-1 and 2-2, we can obtain 16 
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𝑞1 = 𝑞2 = √
−

𝑇1−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻1+
𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
                                  （2-5） 1 

Substituting Eq. 2.5 into Eqs. 2-3 and 2-4 results in the following two-dimensional 2 

nonlinear ordinary differential equation system: 3 

𝑀1𝐶𝑝
𝑑𝑇1

𝑑𝑡
= −√

−
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1+

𝑇2−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
𝐶𝑝(𝑇1−𝑇𝑎) + 𝐸1                   （2-6） 4 

𝑀2𝐶𝑝
𝑑𝑇2

𝑑𝑡
= −√

−
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1+

𝑇2−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
𝐶𝑝(𝑇2−𝑇1) + 𝐸2                   （2-7） 5 

The prerequisite for this equation system is−
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1 +

𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2 > 0, which 6 

means that the thermal pressure in the right tunnel should be greater than that in the left 7 

tunnel. 8 

Similarly, we can obtain the mass balance equation for realization 2: 9 

 𝑞1 = 𝑞2                                                         （2-8） 10 

In realization 2, the air flow enters from zone 2 to zone 1. Hence, the thermal pressure 11 

in zone 2 will resist the airflow, while the thermal pressure in zone 1 will assist the air 12 

flow. We can obtain the pressure balance equation:                                       13 

𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1 −

𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2 = 𝑆1𝑞1

2 + 𝑆2𝑞2
2                             （2-9）                                            14 

Furthermore, the heat balance equation for realization 2 is as follows: 15 

𝑀1𝐶𝑝
𝑑𝑇1

𝑑𝑡
= −𝑞1𝐶𝑝(𝑇1−𝑇2) + 𝐸1                                    （2-10） 16 

𝑀2𝐶𝑝
𝑑𝑇2

𝑑𝑡
= −𝑞2𝐶𝑝(𝑇2−𝑇𝑎) + 𝐸2                                    （2-11） 17 

From Eqs. 2-8 and 2-9, we can obtain 18 

𝑞1 = 𝑞2 = √
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1−

𝑇2−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
                                  （2-12） 19 

Substituting Eq.2.12 into Eqs. 2-10 and 2-11 results in the following two-dimensional 20 

nonlinear ordinary differential equation system: 21 

𝑀1𝐶𝑝
𝑑𝑇1

𝑑𝑡
= −√

𝑇1−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻1−
𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
𝐶𝑝(𝑇1−𝑇2) + 𝐸1                    （2-13） 22 
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𝑀2𝐶𝑝
𝑑𝑇2

𝑑𝑡
= −√

𝑇1−𝑇𝑎
𝑇𝑎

𝜌𝑎𝑔𝐻1−
𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2

𝑆1+𝑆2
𝐶𝑝(𝑇2−𝑇𝑎)+𝐸2                    （2-14） 1 

The prerequisite for this equation system is −
𝑇1−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻1 +

𝑇2−𝑇𝑎

𝑇𝑎
𝜌𝑎𝑔𝐻2 < 0, which 2 

means that the thermal pressure in the left tunnel should be greater than that in the right 3 

tunnel. 4 

2.2 Stability and existence of the system 5 

Assuming 𝜅 =
𝐸2

𝐸1
 ,  ∆𝑇1 = 𝑇1−𝑇𝑎, ∆𝑇2 = 𝑇2−𝑇𝑎 ,  𝑛 = √

𝜌𝑎𝑔𝐻1
𝑇𝑎

𝑆1+𝑆2
 ,  𝛼 = 𝐻2/𝐻1 ,  𝐸1 >6 

0 , 𝐶𝑝 = 1, 𝑀1 = 𝑀2 = 1 , the nonlinear ordinary differential equation system can be 7 

further simplified. 8 

2.2.1 Stability analysis for scenario 1(𝜅 is fixed, 𝛼 is control parameter) 9 

2.2.1.1 Stability analysis for 𝜅 > 0 10 

First, we begin from the scenario where two heat sources are positive. For status 1, 11 

𝑓1(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇1

𝑑𝑡
= −𝑛√𝛼∆𝑇2 − ∆𝑇1 ∆𝑇1 + 𝐸1                       （2-15） 12 

 13 

𝑓2(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇2

𝑑𝑡
= −𝑛√𝛼∆𝑇2 − ∆𝑇1(∆𝑇2 − ∆𝑇1) + 𝐸2                 （2-16） 14 

For realization 2, Eqs. 2-13 and 2-14 can be simplified as follows: 15 

𝑓3(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇1

𝑑𝑡
= −𝑛√∆𝑇1 − 𝛼∆𝑇2(∆𝑇1 − ∆𝑇2) + 𝐸1                 （2-17） 16 

𝑓4(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇2

𝑑𝑡
= −𝑛√∆𝑇1 − 𝛼∆𝑇2 ∆𝑇2 + 𝐸2                       （2-18） 17 

 18 

In summary，for the scenario with two positive heat sources (𝜅 > 0), when 0 <19 

𝛼 <
1

1+𝜅
, the system has one stable fixed point in realization 2; when 

1

1+𝜅
< 𝛼 <

5

4+5𝜅
, 20 

the system has one unstable fixed point in realization 1 and a stable fixed point in 21 
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realization 2; when 
5

4+5𝜅
< 𝛼 <

5+4𝜅

5𝜅
 , the system has two stable fixed points; when 1 

5+4𝜅

5𝜅
< 𝛼 <

1+𝜅

𝜅
, the system has one stable fixed point in realization 1 and an unstable 2 

fixed point in realization 2; when 
1+𝜅

𝜅
< 𝛼, the system has one stable fixed point in 3 

realization 1 and no solution for realization 2. The detailed derivations are provided in 4 

Appendices A1 & A2. 5 

2.2.1.2 Stability analysis for 𝜅 < 0 6 

When one heat source and one heat sink exist (𝜅 < 0 ), we still can utilize the 7 

characteristic equation to evaluate the stability and existence of the nonlinear 8 

differential equation system. 9 

Assuming that no fixed point exists in realization 1, the following expression should be 10 

complied: 11 

 {
−1 + 𝛼 + 𝛼𝜅 < 0

𝜅 < 0
𝛼 > 0

                                               （2-19） 12 

Therefore, 𝜅 ≤ −1 𝑎𝑛𝑑 𝛼 > 0 𝑜𝑟 − 1 < 𝜅 < 0 𝑎𝑛𝑑 0 < 𝛼 <
1

1+𝜅
. 13 

Assuming that a stable fixed point exists in realization 1, the following expression 14 

should be complied: 15 

{

−1 + 𝛼 + 𝛼𝜅 > 0
𝜅 < 0
𝛼 > 0

−5 + 𝛼(4 + 5𝜅) > 0

                                            （2-20） 16 

Therefore, −
4

5
< 𝜅 < 0 and 𝛼 >

5

4+5𝜅
. 17 

Assuming that an unstable fixed point exists in realization 1, the following expression 18 

should be complied: 19 

{

−1 + 𝛼 + 𝛼𝜅 > 0
𝜅 < 0
𝛼 > 0

−5 + 𝛼(4 + 5𝜅) < 0

                                            （2-21） 20 

Therefore, −1 < 𝜅 < −
4

5
 and 𝛼 >

1

1+𝜅
, or −

4

5
< 𝜅 < 0 and 

1

1+𝜅
< 𝛼 <

5

4+5𝜅
. 21 
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Assuming that no fixed point exists in realization 2, the following expression should be 1 

complied: 2 

{
1 + 𝜅 − 𝛼𝜅 < 0

𝜅 < 0
𝛼 > 0

                                                 （2-22） 3 

Therefore, 𝜅 < −1 and 0 < 𝛼 <
1+𝜅

𝜅
. 4 

Assuming that a stable fixed point exists in realization 2, the following expression 5 

should be complied: 6 

{

1 + 𝜅 − 𝛼𝜅 > 0
𝜅 < 0

5 + (4 − 5𝛼)𝜅 > 0
𝛼 > 0

                                              （2-23） 7 

Therefore, 𝜅 ≤ −1 and 𝛼 >
1+𝜅

𝜅
, or −1 < 𝜅 < 0 and 𝛼 > 0. 8 

Assuming that an unstable fixed point exists in realization 2, the following expression 9 

should be complied: 10 

{

1 + 𝜅 − 𝛼𝜅 > 0
𝜅 < 0

5 + (4 − 5𝛼)𝜅 < 0
𝛼 > 0

                                              （2-24） 11 

However, this expression system is not true. 12 

In summary, for the scenario of one heat source and one heat sink (𝜅 < 0), different 13 

situations should be considered: 𝜅 < −1, −1 < 𝜅 < −
4

5
, and −

4

5
< 𝜅 < 0. Once the 14 

interval of κ is fixed, we can evaluate the stability and existence of the fixed point 15 

according to the value of α shown in Table 1. 16 

Table 1 17 

Criterion for scenario 1 18 

𝜅 𝛼 Existence and stability 

for realization 1 

Existence and stability for  

realization 2 

(0,+∞) (0,
1

1+𝜅
) No Stable 

 (
1

1+𝜅
,

5

4+5𝜅
) Unstable Stable 
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 (
5

4+5𝜅
,

5+4𝜅

5𝜅
) Stable Stable 

 (
5+4𝜅

5𝜅
,

1+𝜅

𝜅
) Stable Unstable 

 (
1+𝜅

𝜅
, +∞) Stable No 

(−
4

5
, 0) (0,

1

1+𝜅
) No Stable 

 (
1

1+𝜅
,

5

4+5𝜅
) Unstable Stable 

 (
5

4+5𝜅
, +∞) Stable Stable 

(−1, −
4

5
) (0,

1

1+𝜅
) No Stable 

 (
1

1+𝜅
, +∞) Unstable Stable 

(−∞, −1) (0,
1+𝜅

𝜅
) No No 

 (
1+𝜅

𝜅
, +∞) No Stable 

2.2.2 Stability analysis for scenario 2 (𝛼 is fixed, 𝜅 is control parameter) 1 

In this scenario, the characteristic equation is the same as that of scenario 1. 2 

Assuming no fixed point exists in realization 1, the following expression should be 3 

complied: 4 

 {
−1 + 𝛼 + 𝛼𝜅 < 0

𝛼 > 0
                                               （2-25）5 

Therefore, 𝛼 > 0 and 𝜅 <
1−𝛼

𝛼
. 6 

Assuming that a stable fixed point exists in realization 1, the following expression 7 

should be complied: 8 

{
−1 + 𝛼 + 𝛼𝜅 > 0

𝛼 > 0
−5 + 𝛼(4 + 5𝜅) > 0

                                            （2-26）9 

Therefore, 𝛼 > 0 and 𝜅 >
5−4𝛼

5𝛼
. 10 

Assuming that an unstable fixed point exists in realization 1, the following expression 11 

should be complied: 12 
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{
−1 + 𝛼 + 𝛼𝜅 > 0

𝛼 > 0
−5 + 𝛼(4 + 5𝜅) < 0

                                             （2-27） 1 

Therefore, 𝛼 > 0 and 
1−𝛼

𝛼
< 𝜅 <

5−4𝛼

5𝛼
. 2 

Assuming that no fixed point exists in realization 2, the following expression should be 3 

complied: 4 

{
1 + 𝜅 − 𝛼𝜅 < 0

𝛼 > 0
                                                 （2-28） 5 

Therefore, 0 < 𝛼 < 1 and 𝜅 <
1

−1+𝛼
 , or 𝛼 > 1 and 𝜅 >

1

−1+𝛼
. 6 

Assuming that a stable fixed point exists in realization 2, the following expression 7 

should be complied: 8 

{
1 + 𝜅 − 𝛼𝜅 > 0

5 + (4 − 5𝛼)𝜅 > 0
𝛼 > 0

                                              （2-29） 9 

Therefore, 0 < 𝛼 ≤
4

5
 𝑎𝑛𝑑 𝜅 >

1

−1+𝛼
  or 

4

5
< 𝛼 < 1 𝑎𝑛𝑑 

1

−1+𝛼
< 𝜅 <

5

−4+5𝛼
，or ≥10 

1 𝑎𝑛𝑑 𝜅 <
5

−4+5𝛼
 . 11 

Assuming that an unstable fixed point exists in realization 2, the following expression 12 

should be complied: 13 

{
1 + 𝜅 − 𝛼𝜅 > 0

5 + (4 − 5𝛼)𝜅 < 0
𝛼 > 0

                                              （2-30） 14 

Therefore, 
4

5
< 𝛼 ≤ 1 𝑎𝑛𝑑 𝜅 >

5

−4+5𝛼
, or 𝛼 > 1 𝑎𝑛𝑑 

5

−4+5𝛼
< 𝜅 <

1

−1+𝛼
. 15 

In summary, for scenario 2, different situations should be considered, i.e., 0 <16 

𝛼 ≤
4

5
 , 

4

5
< 𝛼 < 1  ,  𝛼 = 1 , and 𝛼 > 1 . Once the interval of 𝛼  is fixed, we can 17 

evaluate the stability and existence of the fixed point according to the value of 𝜅 18 

shown in Table 2. 19 

 20 

Table 2 21 

Criterion for scenario 2 22 

𝛼 𝜅 Existence and stability Existence and stability for  
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for realization 1 realization 2 

(0,
4

5
) (−∞,

1

−1+𝛼
) No No 

 (
1

−1+𝛼
,

1−𝛼

𝛼
) No Stable 

 (
1−𝛼

𝛼
,

5−4𝛼

5𝛼
) Unstable Stable 

 (
5−4𝛼

5𝛼
, +∞) Stable Stable 

(
4

5
, 1) (−∞,

1

−1+𝛼
) No No 

 (
1

−1+𝛼
,

1−𝛼

𝛼
) No Stable 

 (
1−𝛼

𝛼
,

5−4𝛼

5𝛼
) Unstable Stable 

 (
5−4𝛼

5𝛼
,

5

−4+5𝛼
) Stable Stable 

 (
5

−4+5𝛼
, +∞) Stable Unstable 

1 (−∞, 0) No Stable 

 (0,0.2) Unstable Stable 

 (0.2,5) Stable Stable 

 (5, +∞) Stable Unstable 

(1, +∞) (−∞,
1−𝛼

𝛼
) No Stable 

 (
1−𝛼

𝛼
,

5−4𝛼

5𝛼
) Unstable Stable 

 (
5−4𝛼

5𝛼
,

5

−4+5𝛼
) Stable Stable 

 (
5

−4+5𝛼
,

1

−1+𝛼
) Stable Unstable 

 (
1

−1+𝛼
, +∞) Stable No 
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2.2.3 Stability analysis for scenario 3 (one heat source at the bottom of the building) 1 

 2 

Fig. 2. Schematics of a typical two-zone underground structure with one local heat source. 3 

 4 

As illustrated in Fig. 2，for status 1, the heat at the bottom releases to the right tunnel; 5 

therefore, 6 

𝑓1(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇1

𝑑𝑡
= −𝑛√𝛼∆𝑇2 − ∆𝑇1 ∆𝑇1                            （2-31） 7 

𝑓2(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇2

𝑑𝑡
= −𝑛√𝛼∆𝑇2 − ∆𝑇1(∆𝑇2 − ∆𝑇1) + 𝐸1                 （2-32） 8 

For status 2, the heat at the bottom releases to zone 1; therefore, 9 

𝑓3(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇1

𝑑𝑡
= −𝑛√∆𝑇1 − 𝛼∆𝑇2(∆𝑇1 − ∆𝑇2) + 𝐸1                （2-33） 10 

𝑓4(∆𝑇1, ∆𝑇2) =
𝑑∆𝑇2

𝑑𝑡
= −𝑛√∆𝑇1 − 𝛼∆𝑇2 ∆𝑇2                           （2-34） 11 

In summary, for the scenario of one heat source at the bottom of the building, 12 

because the heat can enter either the left or the right tunnel, two steady states always 13 

exist for this scenario. The parameter 𝛼 will not affect the stability and existence of 14 

this building configuration; the detailed derivations are provided in Appendices B1 & 15 

B2. 16 
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2.3 Model validation 1 

To validate the model, we selected scenario 3 to compare the modeled results with 2 

results from a previous study [44] because only this building configuration (one heat 3 

source at the bottom with two adiabatic tunnels) has been reported in the literature. The 4 

outdoor temperature was 288 K, the air density 1.225 𝑘𝑔/𝑚3, C𝑝 1.0 𝑘𝐽/(𝑘𝑔 ∙ 𝐾), 5 

heat source 1 kW, 𝐻1  5.5 m, 𝐻2  5.5 m, 𝑆1+2  37.2933  𝑘𝑔−1 ∙ 𝑚−1 , and gravity 6 

acceleration g 9.81 𝑚/𝑠2 . The comparison in temperature difference between the 7 

proposed model and the validated results from [44] is illustrated in Fig. 3(a); the 8 

maximum relative error is 13.2% when the strength of the local heat source is 100 W. 9 

The maximum relative error for the flow rate is 15.9%, as indicated in Fig. 3(b), when 10 

the strength of the local heat source is 100 W. It is clear that the relative error is small 11 

for status 2 compared with status 1. For status 2, the airflow enters from the right stack 12 

and is assisted by local buoyancy at the left corner, and displacement ventilation is 13 

established. For status 1, the outdoor air enters from the left stack and combats with the 14 

local buoyancy at the left corner of the room, and mixed ventilation is established. 15 

Hence, the room height should be deducted from the stack height when the buoyancy 16 

pressure is calculated in zone 2. After this ratification, the maximum relative error of 17 

the flow rate is 12.31%, while the maximum relative error of the temperature difference 18 

is 10.39%. In general, the modeled results agree well with the validated results from 19 

the previous study. 20 

 21 
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 (a) 1 

 2 

 (b) 3 

 4 

Fig. 3. Modeled results validation: (a) Temperature comparison between the two-zone model and 5 

previous CFD results; (b) Mass flow rates comparison between the two-zone model and previous 6 

CFD results. (S1 indicates status1/realization 1, #-(1,2) indicates zone number) 7 

2.4 Graphical representation 8 

To further illustrate the nonlinear dynamical process, we used the fourth-order 9 

Runge–Kutta method to numerically solve the differential equation system for different 10 
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scenarios. Different initial zone temperatures were used to produce the different 1 

trajectories of the system in the phase portrait. We superimposed the vector field and 2 

phase portrait together such that the formation of multiple steady states could be 3 

observed more straightforwardly. The existence and stability of the nonlinear ordinary 4 

equation system can be demonstrated by the phase portrait and vector field. 5 

Furthermore, the results agree well with the analysis from the characteristic equation of 6 

the differential equation system. We selected some typical cases to demonstrate this 7 

dynamical process: Section 2.4.1 describes scenario 1, where the strength of the heat 8 

ratio is fixed, and the height ratio is the control parameter; Section 2.4.3 presents 9 

scenario 2, where the height ratio is fixed and the heat ratio is the control parameter; 10 

Section 2.4.3 investigates scenario 3, where a single heat source exists at the bottom of 11 

the building with two adiabatic tunnels. 12 

2.4.1 Same heat source strength, different stack heights (scenario 1) 13 

For scenario 1, we used 𝜅 = 1 as an example to graphically study the effect of 14 

control parameter  𝛼  on the stability of the buoyancy ventilation system. All the 15 

building configurations, including the building geometry, boundary conditions, and 16 

thermal properties, are the same as those of the validated case except the height ratio 17 

and number of heat sources. Subsequently, the bifurcation diagram, vector field, and 18 

phase portrait were determined. As shown in Fig. 4.(a), when 0 < 𝛼 < 1/2 , the 19 

ventilation system has only one stable solution for realization 2, in which the flow 20 

decreases with the increase in 𝛼. When 
1

2
< 𝛼 < 5/9, the system has two solutions; 21 

the solution for realization 1 is unstable, and that for realization 2 is stable. The flow 22 

rates for realization 1 increases with 𝛼, and the flow rates for realization 2 decreases 23 

with the increase in 𝛼. When 5/9 < 𝛼 < 9/5, the system has two stable solutions; 24 

within this interval, both equilibrium solutions may occur. Under the same conditions, 25 

the system can be transferred from one steady state to another steady state with the 26 
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appropriate disturbance. When 
9

5
< 𝛼 < 2  , realization 1 remains stable, while 1 

realization 2 changes from stable to unstable. With the increase in 𝛼, the flow rates for 2 

realization 1 increases, while that for realization 2 approaches zero gradually. When 3 

𝛼 > 2, the system has only one stable equilibrium solution for realization 1. Therefore, 4 

when 𝛼 is 1/2, 5/9, 9/5, or 2, bifurcation will occur when the stability and existence of 5 

solutions of the underground buoyancy ventilation system change at these points. 6 

   Fig. 4(b) shows a bifurcation diagram of the two-zone air temperature as a function 7 

of 𝛼. When 0 < 𝛼 < 1/2, only status 2 has a stable solution, and the fluid flows from 8 

zone 2 to zone 1. With the increase in 𝛼, the temperatures of both zones increase, which 9 

is consistent with the decrease in mass flow rate in Fig. 4(a). Because the mass flow 10 

rate decreases and the heat strength of the heat sources remains constant, the indoor 11 

temperature will increase such that the heat balance can be satisfied. When 
1

2
< 𝛼 <12 

5/9, the ventilation system has two solutions, realization 1 is an unstable solution; the 13 

temperature difference between the two zones increases with 𝛼, and the temperature in 14 

each zone decreases continuously. However, the state is not stable, while state 2 remains 15 

stable. When 5/9 < 𝛼 < 9/5, both realizations are stable. In realization 1, with the 16 

increase in 𝛼 , the temperature difference between the two zones does not change 17 

significantly, but the height of tunnel 2 increases. Therefore, the thermal pressure of the 18 

system increases, and the mass flow from zone 1 to zone 2 increases continuously, 19 

which is consistent with the change trend of the mass flow in Fig. 4(a). In realization 2, 20 

with the increase in 𝛼 , the temperature difference between the two zones does not 21 

change significantly, while the indoor air temperature increases. Because the height of 22 

tunnel 2 increases while that of tunnel 1 remains constant, the thermal pressure in tunnel 23 

2 increases faster compared with that of tunnel 1. Therefore, the overall thermal 24 

pressure in the system decreases, thereby resulting in a decrease in mass flow rate, as 25 

shown in Fig. 4(a). When 9/5 < 𝛼 < 2, status 1 remains stable, while status 2 changes 26 

from stable to unstable. With the increase in 𝛼, the temperature in the two zones for 27 

realization 1 continues to decrease, while the temperature difference between the two 28 
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zones does not change significantly. Therefore, when 𝛼 increases, the height of tunnel 1 

2 increases and the overall thermal pressure increases, thereby resulting in an increase 2 

in the overall mass flow, as illustrated in Fig. 4(a). For realization 2, as the height of 3 

tunnel 2 increases, the thermal pressure in tunnel 2 continues to increase, and the 4 

direction of thermal pressure in tunnel 2 is opposite to the direction of flow for 5 

realization 2. Therefore, the resistance of the thermal pressure ventilation system will 6 

continue to increase. The airflow of the system will decrease continuously until 𝛼 is 7 

approximately 2. At this time, the height of the tunnel 2 is twice that of tunnel 1, and 8 

the ventilation of the system is approximately zero. At this time, the temperatures of 9 

zones 1 and 2 are approximately infinite. It is impossible to achieve a near infinity 10 

temperature, which represents an unstable solution. When 𝛼 > 2, no solution exists for 11 

realization 2, while realization 1 is stable. For realization 1, the temperature difference 12 

between the two zones is not obvious, while the air temperature in both zones decreases. 13 

This is due to the increasing height of tunnel 2, which results in the increase in overall 14 

thermal pressure in the system. The increase in the overall thermal pressure will 15 

increase the overall ventilation, which is consistent with the change trend of airflow in 16 

Fig. 4(a).  17 

(a) 18 
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(b) 1 

Fig. 4. Bifurcation diagram for scenario1 (𝜅 = 1): (a). Bifurcation diagram of mass flow rates; 2 

(b). Bifurcation diagram of temperature difference. 3 

The analysis and description process above were used to analyze how 𝛼 affects 4 

the equilibrium results. In the vector field and phase portrait, we compared the 5 

formation process of the system from the initial condition to the steady state under 6 

different ranges of the control parameter 𝛼 . Based on the bifurcation diagram, five 7 

typical values of 𝛼 were selected, which were 0.4, 0.54, 1.2, 1.9, and 3. In Fig. 5(a), 8 

only a stable fixed point appeared; all different initial conditions converged to the same 9 

steady state. As shown in Fig. 5 (b), a straight line ∆𝑇2 = ∆𝑇1/𝛼  appeared, which 10 

divided the vector field into two parts. The part above represents realization 1, where 11 

the flow enters from the left tunnel and exits from the right tunnel. For the phase plane 12 

below the straight line, airflow enters from the right tunnel and exits from the left tunnel, 13 

which corresponds to realization 2. Unless the initial condition is exactly equal to the 14 

fixed point in realization 1, the trajectories will converge to the stable fixed point in 15 

realization 2. This can be realized by solving Eqs.2-15 and 2-16 or Eqs. 2-17 and 2-18 16 

through the fourth-order Runge–Kutta method. For the initial condition above the 17 

straight line (∆𝑇2 = ∆𝑇1/𝛼), the flow direction changes when the trajectories cross the 18 

straight line, as indicated in Fig. 5(b). However, for the initial condition below the 19 

straight line, the flow will remain in the same direction until it converges to the same 20 

S1 1 unstable

S1 2 unstable

S2 1 stable

S2 2 stable

S1 1 stable

S1 2 stable

S2 1 unstable

S2 2 unstable

0 1 2 3 4

0

10

20

30

40

50

60

T
C

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



25 

 

fixed point. As shown in Fig. 5(c), for 𝛼 = 1.2, two stable fixed points appear in the 1 

phase plane, where the initial conditions separated by the straight line will converge to 2 

the corresponding fixed point. No flow direction changes will occur provided that no 3 

large disturbance occurs. As shown in Fig. 5(d), two fixed points exist in the phase 4 

plane. However, the fixed point in realization 2 is not stable. All the initial conditions 5 

except the exact fixed point will follow the trajectories and converge to the fixed point 6 

in realization 1. In fact, even though a fixed point exists in realization 2, the state cannot 7 

exist in the real world because the initial condition cannot exactly the same as the fixed 8 

point. Similar to that shown in Fig. 5(b), the initial conditions below the straight line 9 

(∆𝑇2 = ∆𝑇1/𝛼 ) will experience a direction change when the trajectories cross the 10 

straight line, as illustrated in Fig. 5(d). The phase portrait indicated in Fig. 5(e) shows 11 

that only a stable fixed point exists for the entire phase plane when 𝛼 = 3. All initial 12 

conditions will eventually converge to the fixed point. 13 

 14 
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 1 

Fig. 5. Phase portrait and vector field for scenario 1: (a). Phase portrait and vector field for 𝜅 =2 

1, 𝛼 = 0.4; (b). Phase portrait and vector field for 𝜅 = 1, 𝛼 = 0.54;(c). Phase portrait and 3 

vector field for 𝜅 = 1, 𝛼 = 1.2;(d).Phase portrait and vector field for 𝜅 = 1, 𝛼 = 1.9; (e). 4 

Phase portrait and vector field for 𝜅 = 1, 𝛼 = 3 5 
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2.4.2 Same stack height (Scenario 2) 1 

For scenario 2, we used 𝛼 = 1 as an example to graphically study the effect of 2 

control parameter 𝜅 on the stability of the buoyancy ventilation system. As shown in 3 

Fig. 6(a), when𝜅 < 0, only one stable solution exists for realization 2. When 0 < 𝜅 < 4 

0.2, the ventilation system has a stable solution for realization 2 and an unstable solution 5 

for realization 1. The flow rate for realization 2 is a fixed value, while that for realization 6 

1 increases with 𝜅 . When 0.2 < 𝜅  < 5, the system has two stable solutions; both 7 

equilibrium solutions may appear depending on the initial conditions. Under the same 8 

conditions, the system can be transferred from one stable solution to another with the 9 

appropriate disturbance. When 5 < 𝜅, state 1 remains stable, while state 2 changes from 10 

stable to unstable. With the increase in 𝜅 , the flow rate for realization 1 increases. 11 

Therefore, the flow bifurcation will occur when 𝜅 is 0, 0.2, or 5. The stability of the 12 

solution changes at the corresponding points. 13 

Fig. 6(b) shows a bifurcation diagram of the two-zone air temperature as a function 14 

of 𝜅. When 𝜅 < 0, only realization 2 has a stable solution, where zone 2 contains a 15 

heat sink and zone 1 acts as a heat source. Fluid flows from zone 2 to zone 1. With the 16 

increase in the heat ratio, the air temperatures in both zones increase continuously, but 17 

the temperature difference between the two zones remains constant, which is consistent 18 

with the airflow results in Fig 6(a). When the temperature difference is constant, 19 

because the height of the shaft does not change, the thermal pressure of the system 20 

remains unchanged. Therefore, the mass flow rate remains unchanged. When 0 < 𝜅 < 21 

0.2, an unstable solution exists for realization 1, while a stable solution for realization 22 

2. For realization 1, the temperature difference between the two zones increases with 23 

the increase in heat ratio. When 0.2 < 𝜅 < 5, two stable solutions exist. For realization 24 

1, the temperature difference between the two zones continues increasing. However, 25 

the air temperature of zone 1 decreases, while the temperature of zone 2 increases. The 26 

heat released to zone 1 does not change with the increase in outdoor air flow rate; 27 
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therefore, the temperature decreases. For zone 2, although the mass flow rate increases, 1 

the heat released to zone 2 increases with 𝜅 . Therefore, the temperature of zone 2 2 

increases. When 5 < 𝜅, realization 1 remains stable, while realization 2 changes from 3 

stable to unstable. For realization 1, the temperature difference between the two zones 4 

continues to increase, which is due to the increase in mass flow rate in the interval of  5 

0.2 < 𝜅 < 5. For realization 2, because the temperatures of both zones will increase to 6 

infinite, which is not achievable, the equilibrium solution can be obtained.  7 

(a) 8 

 (b) 9 

Fig. 6. Bifurcation diagram for scenario 2(𝛼 = 1): (a). Bifurcation diagram of mass flow rates; 10 

(b). Bifurcation diagram of temperature difference. 11 

The analysis and description process above were used to study the effect of 𝜅 on 12 

the equilibrium results. In the vector field and phase portrait, the typical value of 𝜅 13 
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was selected based on the bifurcation diagram to compare the dynamical process of the 1 

system from the initial condition to the steady state. Fig. 7(a) describes that all the initial 2 

values will follow the corresponding trajectory and converge to the same stable fixed 3 

point when 𝜅 = −1. Fig. 7(b) reveals that two fixed points exist in the phase plane 4 

when 𝜅 = 0.1 . The fixed point in realization 1 is unstable, while all the initial 5 

conditions, except the fixed point for realization 1, will converge to the stable fixed 6 

point in realization 2. For the initial value above the straight line (∆𝑇2 = ∆𝑇1/𝛼), they 7 

have to cross the straight line where the flow direction is changed. Fig.7(c) shows that 8 

two stable fixed points exist at both sides of the straight line (∆𝑇2 = ∆𝑇1/𝛼). All the 9 

initial values will follow their trajectories and converge to the respective fixed points 10 

unless the disturbances are imposed. Fig. 7(d) shows that two fixed points exist when 11 

𝜅 = 6. The fixed point in realization 2 is unstable, while the fixed point in realization 12 

1 is stable. Furthermore, the initial value below the straight line (∆𝑇2 = ∆𝑇1/𝛼) must 13 

experience a change in flow direction before it reaches the stable fixed point in 14 

realization 1. 15 

 16 
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 1 

Fig. 7. Phase portrait for scenario 2: (a). Phase portrait and vector field for 𝜅 = −1, 𝛼 = 1; (b). 2 

Phase portrait and vector field for 𝜅 = 0.1, 𝛼 = 1;(c). Phase portrait and vector field for 𝜅 =3 

1, 𝛼 = 1;(d). Phase portrait and vector field for 𝜅 = 6, 𝛼 = 1. 4 

2.4.3 Single heat source at the bottom of the building (scenario 3) 5 

For scenario 3, all of the parameters are the same as those of the validated case. As 6 

proven in Section 2.2.3, no bifurcation exists in this building configuration. Hence, no 7 

bifurcation diagram is available in this scenario. However, Fig. 3 shows the changes in 8 

airflow rate and air temperature with the change in the strength of the local heat source. 9 

Furthermore, the phase portrait and vector field were determined according to the fourth 10 

Runge–Kutta method. As illustrated in Fig. 8, two stable fixed points exist in the phase 11 

plane. The vector field is divided by the straight line (∆𝑇2 = ∆𝑇1/𝛼), which represents 12 

the balance in thermal pressure between zones 1 and 2.Above the straight line, all the 13 

flow will reach the fixed point in realization 1, while the initial value below the straight 14 

line will converge to the fixed point in realization 2. If the initial value is below the 15 
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straight line, but the fixed point in realization 1 is to be reached, then disturbance has 1 

to be imposed such that the phase portrait can be changed for a period of time. When 2 

the disturbance disappeared, if the air temperature is located at the top of the straight 3 

line, then it can reach the fixed point in realization 1. The disturbance can be the wind 4 

effect or mechanical fan power. In other words, this phase portrait is drafted according 5 

to the fixed building configurations, which include the building geometry, boundary 6 

conditions, and all physical properties. The patterns of the phase portrait and vector 7 

field will change according to the building configuration. However, if the derived 8 

criterion based on the heat ratios and height ratios is adhered, the general trend will 9 

follow that of the criterion, e.g., the number of fixed points and their stability. 10 

 11 

Fig. 8. Phase portrait and vector field for scenario 3 (one local heat source at the bottom). 12 

3. Case study 13 

In this section, the natural ventilation of a hydropower station in Xinjiang is used 14 

as an example to analyze the polymorphism of buoyancy ventilation. As shown in Figs. 15 

9 (a) and 9 (b), four generators were used in the hydropower station. The main heating 16 

equipment in the plant includes generators, busbar cables, main transformers, lightings, 17 
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and control cabinets. As shown in Fig. 9(b), the transportation tunnel is on the left. 1 

Generators and other main equipment are in the main workshop. The outlet tunnel of a 2 

busbar cable and exhaust shaft is shared. The generator measures 3.6 m in diameter and 3 

1.2 m in height; the main factory measures  36 m (L) × 9 m (W) × 8 m (H) ; the 4 

transportation tunnel measures 3.1 m (L) × 4.5 m (W) in cross section, 170 m in length, 5 

and 86 m in height; the exhaust tunnel measures 140 m in height, and the diameter of 6 

the exhaust shaft is approximately 6 m. 7 

 8 

 9 

Fig. 9. Basic information of the hydropower station. 10 

Field measurements were conducted in the summer, and the censoring points and 11 

setups are shown in Fig. 9(c). Testo 480 was used to capture the air temperature and air 12 

velocity. The airflow rate was measured at the junction between the transportation 13 

tunnel and the main factory. The mean mass flow rate is 3.22  m3 /s; the outdoor 14 

temperature T0  is 23.2 °C; the temperature at the entrance of the factory T1  is 15 

14.4 °C; T1
′ 𝑎𝑛𝑑 T2  are 25.6 °C and 22.1 °C, respectively. The temperature changed 16 

significantly in both the transportation tunnel and the exhaust tunnel. However, for the 17 

nonlinear dynamical analysis, we still used the well-mixed assumption, because this 18 

assumption will not significantly affect the solution multiplicity analysis. Based on 19 

simple calculations, the heat loss through the transportation tunnel is 34.9 kW, the 20 
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overall heat gain from the factory is 44.4 kW, and the overall heat loss through the 1 

exhaust tunnel is 13.9 kW; H1is 86 m and H2 is 140 m; hence, 𝛼 is 1.628, and S is 2 

1.55 𝑘𝑔−1 ∙ 𝑚−1. The outdoor temperature is 23.2 °C, air density 1.22 kg ∙ 𝑚−3, and 3 

C𝑝 1.01 kJ/(𝑘𝑔 ∙ 𝐾). The thermal mass of the air inside the tunnel was considered 4 

without considering other building elements. The thermal masses in the transportation 5 

tunnel, factory, and exhaust tunnel are 2372, 2592, and 3956 kg, respectively. 6 

For realization 1, the airflow entered from the transportation tunnel, and the thermal 7 

mass and overall heat gain from the factory were transferred to zone 2; therefore, 𝑀1 8 

is 2372 kg, 𝑀2 is 6548 kg, 𝐸1 is -34.9 kW, and 𝐸2 is 30.1 kW. Therefore, we have 9 

𝑀1𝐶𝑝
𝑑∆𝑇1

𝑑𝑡
= −√

𝜌𝑎𝑔𝐻1

𝑇𝑎(𝑆1+𝑆2)
√−∆𝑇1 + ∆𝑇2𝛼 𝐶𝑝∆𝑇1 + 𝐸1                   （3-1） 10 

𝑀2𝐶𝑝
𝑑𝑇2

𝑑𝑡
= −√

𝜌𝑎𝑔𝐻1

𝑇𝑎(𝑆1+𝑆2)
√−∆𝑇1 + ∆𝑇2𝛼 𝐶𝑝(∆𝑇2 − ∆𝑇1) + 𝐸2              （3-2） 11 

The root of the characteristic equation of the differential equation is 𝜆1 =12 

−0.0034，𝜆2 = −0.0004321 . Both roots are real distinct negative value; hence, a 13 

stable fixed point exists for realization 1. 14 

For realization 2, the airflow entered from the exhaust tunnel, and the thermal mass 15 

and overall heat gain from the factory were transferred to zone 1; therefore, 𝑀3 is 4964 16 

kg, 𝑀4 is 3956 kg, 𝐸3 is 9.5 kW, and 𝐸3 is -13.9 kW. We have 17 

𝑀3𝐶𝑝
𝑑∆𝑇1

𝑑𝑡
= −√

𝜌𝑎𝑔𝐻1

𝑇𝑎(𝑆1+𝑆2)
√∆𝑇1 − 𝛼∆𝑇2(∆𝑇1 − ∆𝑇2) + 𝐸3                 （3-3） 18 

𝑀4𝐶𝑝
𝑑∆𝑇2

𝑑𝑡
= −√

𝜌𝑎𝑔𝐻1

𝑇𝑎(𝑆1+𝑆2)
√∆𝑇1 − 𝛼∆𝑇2 ∆𝑇2 + 𝐸4                        （3-4） 19 

The root of the characteristic equation of the differential equation is 20 

𝜆1 = −0.001765，𝜆2 = −0.0005075 . Both roots are real distinct negative values; 21 

hence, a stable fixed point exists for realization 2 as well. 22 

Based on Eqs. 3-1, 3-2, 3-3, and 3-2, we numerically solved these differential 23 

equation systems. The vector field and phase portrait are shown in Fig.10. The stability 24 

and existence of the system obtained from the numerical computation is the same as 25 

those from the nonlinear dynamical analysis. Two stable fixed points exist, and the 26 
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vector field is divided by the straight line (∆𝑇2 = ∆𝑇1/𝛼). 1 

 2 

 3 

Fig. 10. Phase portrait and vector field for the dynamic system of buoyancy ventilation in the 4 

hydropower station 5 

In fact, we can use the derived criterion in scenario 1 to evaluate the stability and 6 

existence of fixed points:  7 

When 𝜅 < −1: if 0 < 𝛼 <
1+𝜅

𝜅
, no fixed point exists for realizations 1 and 2; if α8 

>
1+𝜅

𝜅
, no fixed point exists for realization 1but a stable fixed point exists for realization 9 

2. 10 

In scenario 1, we assume that 𝐸1 is constantly positive, while in this case study, 11 

we have a negative value for 𝐸1. Hence, both realizations 1 and 2 in the case study 12 

corresponds to realization 2 in the criterion.  13 

For realization 1 in the case study, 𝐸1is negative,  𝜅 =
𝐸1

𝐸2
= −1.159468, and 𝛼 =14 

𝐻1

𝐻2
= 0.614286; 

1+𝜅

𝜅
= 0.1375358, that is α >

1+𝜅

𝜅
. Therefore, a stable fixed point 15 

exists according to the criterion. At the same time, when 𝐻2 remains unchanged, if the 16 

height of the left traffic tunnel 𝐻1 is lower than 19.26 m (α <
1+𝜅

𝜅
), this fixed point 17 

will not exist. 18 
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   For realization 2 in the case study, 𝐸4 is negative, 𝜅 =
𝐸4

𝐸3
= −1.46316， and 𝛼 =1 

𝐻2

𝐻1
= 1.627907; 

1+𝜅

𝜅
= 0.3165468，that is α >

1+𝜅

𝜅
. Therefore, a stable fixed point 2 

exists according to the criterion. At the same time, when 𝐻1 remains unchanged, if the 3 

height of the left traffic tunnel 𝐻2 is lower than 27.2 m (α <
1+𝜅

𝜅
), this fixed point will 4 

not exist. 5 

From the analysis and verification above, it can be concluded that the criterion is 6 

applicable to the evaluation of buoyancy ventilation polymorphism of two-zone 7 

underground buildings. If the specific heat source ratio, height ratio, and flow direction 8 

are known, then the existence and stability of the solution can be evaluated according 9 

to the criterion. In the design stage, according to the criterion, the natural ventilation of 10 

buildings can be optimized by selecting the appropriate height ratio of the shaft and the 11 

distribution of heat sources to avoid unfavorable solutions and induce favorable 12 

solutions. 13 

4. Conclusions 14 

In summary, nonlinear dynamical analysis was performed to study the buoyancy 15 

ventilation of a typical two-zone underground building with different building 16 

configurations. One dimensional model that described the buoyancy ventilation of the 17 

two-zone underground buildings was proposed and validated by results from previous 18 

studies. The model comprised two groups of mathematical nonlinear ordinary 19 

differential equation systems. Three different scenarios were studied based on the 20 

differential equation systems, and the corresponding criterion for the stability and 21 

existence of fixed points for the underground buoyancy ventilation was derived 22 

mathematically. The criterion was based on the heat ratio (𝜅) and height ratio (α). For 23 

scenario 1 (𝜅  was fixed, control α ) and scenario 2 (α  was fixed, control 𝜅 ), the 24 

criterion is summarized in Tables 1 and 2. For scenario 3 (one heat source at the bottom 25 
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of the building, control 𝛼), two stable fixed points appeared. 1 

Subsequently, the bifurcation diagram, phase portrait, and vector field for the three 2 

scenarios were produced based on numerical computation by applying the fourth 3 

Runge–Kutta method, which produced the similar result as the characteristic equations. 4 

Finally, a case study was conducted based on a real project with field 5 

measurements, which demonstrated the use of the nonlinear dynamical analysis method 6 

to evaluate the stability and existence of fixed points for the buoyancy ventilation in a 7 

hydropower station. This case study served as a validation case for the derived criterion, 8 

which demonstrated its capability in predicting the existence and stability of fixed 9 

points in the buoyancy ventilation of underground buildings. 10 
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16 

Appendix A1 Dynamical analysis of Eqs.2-15 and 2-16 17 

Denote the steady state solution(fixed point) of realization 1(Eqs.2-15 and 2-16) 18 

is (∆𝑇1
̅̅ ̅̅ ̅，∆𝑇2

̅̅ ̅̅ ̅)，we can obtain： 19 

𝐸1 = 𝑛√𝛼∆𝑇2
̅̅ ̅̅ ̅ − ∆𝑇1

̅̅ ̅̅ ̅ ∆𝑇1
̅̅ ̅̅ ̅，                                        （A1） 20 

𝐸2 = −𝑛√𝛼∆𝑇2
̅̅ ̅̅ ̅ − ∆𝑇1

̅̅ ̅̅ ̅ (∆𝑇1
̅̅ ̅̅ ̅ − ∆𝑇2

̅̅ ̅̅ ̅)                                   （A2） 21 

Eq.(A1)divided by Eq.(A2)： 22 

𝐸1

𝐸2
=

∆𝑇1̅̅ ̅̅ ̅

∆𝑇2
̅̅ ̅̅ ̅−∆𝑇1

̅̅ ̅̅ ̅                                                      （A3） 23 

Substituting 
𝐸2

𝐸1
= 𝜅 into Eq.(A3) and simplifying the equation, we obtain: 24 
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∆𝑇2
̅̅ ̅̅ ̅ = (1 +

𝐸2

𝐸1
)  ∆𝑇1

̅̅ ̅̅ ̅ = (1 + 𝜅) ∆𝑇1
̅̅ ̅̅ ̅                                 （A4）   1 

Substituting Eq.(A4) into Eqs.2-15 and 2-16，Let
𝑑∆𝑇1

𝑑𝑡
 and 

𝑑∆𝑇2

𝑑𝑡
 be zero，fixed point 2 

can be obtained：  3 

∆𝑇1
̅̅ ̅̅ ̅ =

𝐸1

𝑛2 3⁄ (−𝐸1+𝐸1𝛼+𝐸2𝛼)1 3⁄ =
𝐸1

𝑛2 3⁄ (−𝐸1+𝐸1𝛼+𝐸1𝛼𝜅)1 3⁄                        （A5） 4 

∆𝑇2
̅̅ ̅̅ ̅ =

(𝐸1+𝐸2)

𝐸1
(

𝐸1

𝑛2 3⁄ (−𝐸1+𝐸1𝛼+𝐸2𝛼)1 3⁄ ) =
𝐸1+𝐸1𝜅

𝑛2 3⁄ (−𝐸1+𝐸1𝛼+𝐸1𝛼𝜅)1 3⁄                （A6） 5 

To analyze the stability of the nonlinear ordinary differential equations above, we 6 

need to linearize the equations at the fixed point, and analyze their existence and 7 

stability according to the characteristic equation. Eqs.2-15 and 2-16 can be written as 8 

Taylor expansions form at the fixed point (∆𝑇1
̅̅ ̅̅ ̅, ∆𝑇2

̅̅ ̅̅ ̅)： 9 

 10 

𝑓1(∆𝑇1, ∆𝑇2) = 𝑓1(∆𝑇1
̅̅ ̅̅ ̅, ∆𝑇2

̅̅ ̅̅ ̅) +
𝜕𝑓1

𝜕∆𝑇1
|∆𝑇1=∆𝑇1̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2
̅̅ ̅̅ ̅

(∆𝑇1 − 𝑇1̅) +
𝜕𝑓1

𝜕∆𝑇2
|∆𝑇1=∆𝑇1̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2
̅̅ ̅̅ ̅

(∆𝑇2 − ∆𝑇2
̅̅ ̅̅ ̅)   11 

（A7） 12 

𝑓2(∆𝑇1, ∆𝑇2) = 𝑓2(∆𝑇1
̅̅ ̅̅ ̅, ∆𝑇2

̅̅ ̅̅ ̅) +
𝜕𝑓2

𝜕∆𝑇1
|∆𝑇1=∆𝑇1̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

(∆𝑇1 − 𝑇1̅) +
𝜕𝑓2

𝜕∆𝑇2
|∆𝑇1=∆𝑇1̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

(∆𝑇2 − ∆𝑇2
̅̅ ̅̅ ̅)         13 

（A8） 14 

For the steady state，
𝑑∆𝑇1

𝑑𝑡
 and 

𝑑∆𝑇2

𝑑𝑡
 is equal to zero. Thus 𝑓1(∆𝑇1

̅̅ ̅̅ ̅，∆𝑇2
̅̅ ̅̅ ̅) = 0，and 15 

𝑓2(∆𝑇1
̅̅ ̅̅ ̅，∆𝑇2

̅̅ ̅̅ ̅) = 0. 16 

Assuming𝛼11 =
𝜕𝑓1

𝜕∆𝑇1
|∆𝑇1=∆𝑇1

̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

 ，𝛼12 =
𝜕𝑓1

𝜕∆𝑇2
|∆𝑇1=∆𝑇1

̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

，𝛼21 =
𝜕𝑓2

𝜕∆𝑇1
|∆𝑇1=∆𝑇1

̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

，and 𝛼22 =17 

𝜕𝑓2

𝜕∆𝑇2
|∆𝑇1=∆𝑇1̅̅ ̅̅ ̅

∆𝑇2=∆𝑇2̅̅ ̅̅ ̅

, Eqs. (A7) and (A8) can be written as follows: 18 

𝑓1(𝑇1, 𝑇2) = 𝛼11(𝑇1 − 𝑇1̅) + 𝛼12(𝑇2 − 𝑇2̅)                              （A9） 19 

𝑓2(𝑇1, 𝑇2) = 𝛼21(𝑇1 − 𝑇1̅) + 𝛼22(𝑇2 − 𝑇2̅)                             （A10） 20 

Written as matrix form： 21 

[

𝑑𝑇1

𝑑𝑡
𝑑𝑇2

𝑑𝑡

] = 𝐴1 [
𝑇1

𝑇2
] + 𝐵                                               (A11) 22 

Where 𝐴1 = [
𝛼11 𝛼12

𝛼21 𝛼22
], and 𝐵 = [

−𝛼11𝑇1̅ − 𝛼12𝑇2̅

−𝛼21𝑇1̅ − 𝛼22𝑇2̅

]. To evaluate the existence and 23 

stability of the solution, we have to obtain the eigenvalue of matrix 𝐴1. 24 
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The characteristic equation of realization 1 can be easily obtained as follows: 1 

𝜆2 +
𝑛√(𝐸1(−1+𝛼+𝛼𝜅))2 3⁄

𝑛2 3⁄ (−5+𝛼(4+5𝜅))𝜆

2(−1+𝛼+𝛼𝜅)
+

3

2
𝑛4 3⁄ (𝐸1(−1 + 𝛼 + 𝛼𝜅))2 3⁄ = 0     (A12) 2 

 3 

Assuming 𝜅 =
𝐸2

𝐸1
> 0, to ensure that a real solution exists for Eqs. (A5) and (A6), 4 

we have −𝐸1 + 𝐸1𝛼 + 𝐸1𝛼𝜅 > 0. Because the heat source in zone 2 is positive as well, 5 

we have 𝜅 > 0. Therefore, 𝛼 >
1

1+𝜅
. 6 

Assuming𝛽 =
𝑛√(𝐸1(−1+𝛼+𝛼𝜅))2 3⁄

𝑛2 3⁄ (−5+𝛼(4+5𝜅))

2(−1+𝛼+𝛼𝜅)
 , 𝛾 =

3

2
𝑛4 3⁄ (𝐸1(−1 + 𝛼 + 𝛼𝜅))2 3⁄  .The 7 

root of the characteristic equation (Eq.A12) is the eigenvalue of matrix 𝐴1 . The 8 

eigenvalue is given as 𝜆1,2 = −𝛽 ± √𝛽2 − 4𝛾. Since𝐸1(−1 + 𝛼 + 𝛼𝜅) > 0, and 𝑛 >9 

0, thus 𝛾 =
3

2
𝑛4 3⁄ (𝐸1(−1 + 𝛼 + 𝛼𝜅))2 3⁄ > 0. Therefore, 𝜆1,2 are determined by the 10 

real part of 𝛽. When 𝛽 > 0，the real part of the eigenvalue is negative; otherwise，11 

the real part of the eigenvalue is positive. To ensure the solution of this differential 12 

equation is stable, the root of the characteristic equation should be less than zero. That 13 

is −𝛽 = −
𝑛√(𝐸1(−1+𝛼+𝛼𝜅))2 3⁄

𝑛2 3⁄ (−5+𝛼(4+5𝜅))

2(−1+𝛼+𝛼𝜅)
< 0. Therefore, −5 + 𝛼(4 + 5𝜅) > 0，that 14 

is 𝛼 >
5

4+5𝜅
.  15 

In summary，when 
1

1+𝜅
< 𝛼 <

5

4+5𝜅
, the real parts of two eigenvalues are positive，16 

the fixed point is unstable；when 𝛼 >
5

4+5𝜅
，the real parts of two eigenvalues are 17 

negative，the fixed point is stable；when 𝛼 <
1

1+𝜅
， no fixed point exists. 18 

Appendix A2 Dynamical analysis of Eqs.2-17 and 2-18 19 

Denote the steady state solution(fixed point) of realization 2(Eqs.2-17 and 2-18) is 20 
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(∆𝑇1
̅̅ ̅̅ ̅，∆𝑇2

̅̅ ̅̅ ̅)，we can obtain： 1 

𝐸1 = 𝑛√∆𝑇1
̅̅ ̅̅ ̅ − 𝛼∆𝑇2

̅̅ ̅̅ ̅̅ ̅ (∆𝑇1
̅̅ ̅̅ ̅ − ∆𝑇2

̅̅ ̅̅ ̅)，                                  （A13） 2 

𝐸2 = 𝑛√∆𝑇1
̅̅ ̅̅ ̅ − 𝛼∆𝑇2

̅̅ ̅̅ ̅̅ ̅ ∆𝑇2
̅̅ ̅̅ ̅                                           （A14） 3 

Eq.(A13) divided by Eq.(A14)： 4 

𝐸1

𝐸2
=

∆𝑇1
̅̅ ̅̅ ̅−∆𝑇2

̅̅ ̅̅ ̅

∆𝑇2̅̅ ̅̅ ̅                                                       （A15） 5 

Substituting 
𝐸1

𝐸2
=

1

𝜅
 into Eq.(A15)，we can obtain: 6 

∆𝑇1
̅̅ ̅̅ ̅ = (1 +

𝐸1

𝐸2
)  ∆𝑇2

̅̅ ̅̅ ̅ = (1 +
1

𝜅
)  ∆𝑇2

̅̅ ̅̅ ̅                                  （A16）   7 

Substituting Eq.(A16) into Eqs.2-17 and 2-18，Let
𝑑∆𝑇1

𝑑𝑡
 and 

𝑑∆𝑇2

𝑑𝑡
 be zero，fixed point 8 

can be obtained： 9 

∆𝑇1
̅̅ ̅̅ ̅ = (1 + 𝐸1 𝐸2⁄ )

𝐸2

𝑛2 3⁄ (𝐸1+𝐸2−𝐸2𝛼)1 3⁄ =
𝐸1(1+

1

𝜅
)𝜅

𝑛2 3⁄ (𝐸1+𝐸1𝜅−𝐸1𝛼𝜅)1 3⁄               （A17） 10 

∆𝑇2
̅̅ ̅̅ ̅ =

𝐸2

𝑛2 3⁄ (𝐸1+𝐸2−𝐸2𝛼 )1 3⁄ =
𝐸1𝜅

𝑛2 3⁄ (𝐸1+𝐸1𝜅−𝐸1𝛼𝜅)1 3⁄                          （A18） 11 

The characteristic equation of realization 2 can be easily obtained as follows: 12 

𝜆2 +
𝑛(5+(4−5𝛼)𝜅)√(𝐸1(1+𝜅−𝛼𝜅))2 3⁄

𝑛2 3⁄
𝜆

2(1+𝜅−𝛼𝜅)
+

3

2
𝑛4 3⁄ (𝐸1(1 + 𝜅 − 𝛼𝜅))2 3⁄ = 0         （A19） 13 

 14 

Given 𝜅 =
𝐸2

𝐸1
> 0, to ensure that a real solution exists for Eqs. (A17) and (A18), we 15 

have 𝐸1 + 𝐸1𝜅 − 𝐸1𝛼𝜅 > 0, and we consider heat source in zone 2 is positive as well, 16 

we have 𝜅 > 0. Therefore, 𝛼 <
1+𝜅

𝜅
. 17 

Assuming𝛽 =
𝑛(5+(4−5𝛼)𝜅)√(𝐸1(1+𝜅−𝛼𝜅))2 3⁄

𝑛2 3⁄

2(1+𝜅−𝛼𝜅)
 , and 𝛾 =

3

2
𝑛4 3⁄ (𝐸1(1 + 𝜅 − 𝛼𝜅))2 3⁄  . 18 

The root of Eq.(A19) is the eigenvalue of matrix𝐴1. The eigenvalue is given as 𝜆1,2 =19 

−𝛽 ± √𝛽2 − 4𝛾 . Since 𝐸1(1 + 𝜅 − 𝛼𝜅) > 0,  and 𝑛 > 0 , thus 𝛾 =
3

2
𝑛4 3⁄ (𝐸1(1 +20 

𝜅 − 𝛼𝜅))2 3⁄ > 0. Hence, 𝜆1,2 are determined by the real part of 𝛽. When 𝛽 > 0，21 

the real part of the eigenvalue is negative; otherwise，the real part of the eigenvalue is 22 
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positive. To ensure the solution of this differential equation is stable, the root of the 1 

characteristic equation should be less than zero. That is −𝛽 =2 

−
𝑛(5+(4−5𝛼)𝜅)√(𝐸1(1+𝜅−𝛼𝜅))

2 3⁄

𝑛2 3⁄ 𝜆

2(1+𝜅−𝛼𝜅)
< 0 .  Therefore, 5 + (4 − 5𝛼)𝜅 > 0， that is 𝛼 <3 

5+4𝜅

5𝜅
.  4 

In summary，when 
5+4𝜅

5𝜅
< 𝛼 <

1+𝜅

𝜅
，the real parts of two eigenvalues are positive，5 

the fixed point is unstable；when 𝛼 <
5+4𝜅

5𝜅
，the real parts of two eigenvalues are 6 

negative，the fixed point is stable；when 
1+𝜅

𝜅
< 𝛼，no fixed point exists. 7 

Appendix B1 Dynamical analysis of Eqs.2-31 and 2-32 8 

Denote the steady state solution(fixed point) of realization 1(Eqs.2-31 and 2-32) is 9 

(∆𝑇1
̅̅ ̅̅ ̅，∆𝑇2

̅̅ ̅̅ ̅)，we can obtain： 10 

∆𝑇1
̅̅ ̅̅ ̅ = 0                                                          （B1） 11 

∆𝑇2
̅̅ ̅̅ ̅ =

𝐸1
2 3⁄

𝑛2 3⁄ 𝛼1 3⁄                                                      （B2） 12 

After linearization of Eqs. 2-31 and 2-32 at the fixed point，the characteristic equation 13 

of realization 1 can be easily obtained as follows： 14 

𝜆2 +
5𝑛√𝛼∆𝑇2̅̅ ̅̅ ̅𝜆

2
+

3

2
𝑛2𝛼∆𝑇2

̅̅ ̅̅ ̅ = 0                                       （B3） 15 

Assuming𝛽 =
5𝑛√𝛼∆𝑇2̅̅ ̅̅ ̅

2
 , and 𝛾 =

3

2
𝑛2𝛼∆𝑇2

̅̅ ̅̅ ̅ , by solving Eq.(B3), two eigenvalue of 16 

matrix𝐴1are given as𝜆1,2 = −𝛽 ± √𝛽2 − 4𝛾.Since 𝛼∆𝑇2
̅̅ ̅̅ ̅ > 0 𝑎𝑛𝑑 𝑛 > 0, hence, 𝛾 =17 

3

2
𝑛2𝛼∆𝑇2

̅̅ ̅̅ ̅ > 0.  Therefore, 𝜆1,2  are determined by the real part of 𝛽 . Since −𝛽 =18 

−
5𝑛√𝛼∆𝑇2̅̅ ̅̅ ̅

2
< 0 always holds，two eigenvalues are always negative，and a stable fixed 19 

point always exists for realization 1. 20 
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Appendix B2 Dynamical analysis of Eqs.2-33 and 2-34 1 

Assuming the fixed point of realization 2(Eqs.2-33 and 2-34) is (∆𝑇1
̅̅ ̅̅ ̅，∆𝑇2

̅̅ ̅̅ ̅), we 2 

obtain: 3 

∆𝑇1
̅̅ ̅̅ ̅ =

𝐸1
2 3⁄

𝑛2 3⁄
                                                       （B4） 4 

∆𝑇2
̅̅ ̅̅ ̅ = 0                                                          （B5） 5 

After linearization of Eqs.2-33 and 2-34 at fixed point，the characteristic equation of 6 

realization 2 can be easily obtained as follows： 7 

𝜆2 +
5𝑛√∆𝑇1̅̅ ̅̅ ̅𝜆

2
+

3

2
𝑛2∆𝑇1

̅̅ ̅̅ ̅ = 0                                          （B6） 8 

Assuming 𝛽 =
5𝑛√∆𝑇1̅̅ ̅̅ ̅

2
 , and  𝛾 =

3

2
𝑛2∆𝑇1

̅̅ ̅̅ ̅ , by solving Eq.(B6), two eigenvalue of 9 

matrix  𝐴1 are given as  𝜆1,2 = −𝛽 ± √𝛽2 − 4𝛾 . Since ∆𝑇1
̅̅ ̅̅ ̅ =

𝐸1
2 3⁄

𝑛2 3⁄
> 0  and 𝑛 > 0 , 10 

thus 𝛾 =
3

2
𝑛2∆𝑇1

̅̅ ̅̅ ̅ > 0.  Therefore, 𝜆1,2  are determined by the real part of 𝛽 . Since 11 

−𝛽 = −
5𝑛√∆𝑇1̅̅ ̅̅ ̅

2
< 0 always holds，two eigenvalues are always negative，and a stable 12 

fixed point always exists for realization 2. 13 

 14 

Figure captions 15 

Fig. 1. Schematics of a typical two-zone underground structure. 16 

Fig. 2. Schematics of a typical two-zone underground structure with one local heat source. 17 

Fig. 3. Modeled results validation: (a) Temperature comparison between the two zone model and 18 

previous CFD results; (b) Mass flow rates comparison between the two zone model and previous 19 

CFD results.(S1 indicates status1/realization 1, #-(1,2) indicates zone number ) 20 

Fig. 4. Bifurcation diagram for scenario1 (𝜅 = 1): (a). Bifurcation diagram of mass flow rates; (b). 21 

Bifurcation diagram of temperature difference. 22 

Fig. 5. Phase portrait and vector field for scenario 1: (a).Phase portrait and vector field for 𝜅 =23 

1, 𝛼 = 0.4; (b).Phase portrait and vector field for 𝜅 = 1, 𝛼 = 0.54;(c).Phase portrait and vector field 24 
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for 𝜅 = 1, 𝛼 = 1.2 ;(d).Phase portrait and vector field for  𝜅 = 1, 𝛼 = 1.9 ; (e).Phase portrait and 1 

vector field for 𝜅 = 1, 𝛼 = 3 2 

Fig. 6. Bifurcation diagram for scenario 2(𝛼 = 1): (a). Bifurcation diagram of mass flow rates; (b). 3 

Bifurcation diagram of temperature difference. 4 

Fig. 7. Phase portrait for scenario 2: (a).Phase portrait and vector field for 𝜅 = −1, 𝛼 = 1; (b).Phase 5 

portrait and vector field for  𝜅 = 0.1, 𝛼 = 1 ;(c).Phase portrait and vector field for  𝜅 = 1, 𝛼 =6 

1;(d).Phase portrait and vector field for 𝜅 = 6, 𝛼 = 1. 7 

Fig. 8. Phase portrait and vector field for scenario 3(one local heat source at the bottom). 8 

Fig. 9. Basic information of the hydro power station. 9 

Fig. 10.Phase portrait and vector field for the dynamic system of buoyancy ventilation in the 10 

hydropower station. 11 

 12 

Table captions 13 

Table 1. Criterion for scenario 1 14 

Table 2. Criterion for scenario 2 15 
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