

REVIEWS

1
2
3
4 S. P. Dunfield,* L. Bliss, F. Zhang,
5 J. M. Luther, K. Zhu, M. F. A. M. van Hest,
6 M. O. Reese,* J. J. Berry*.....1904054

7
8
9
10 From Defects to Degradation: A
11 Mechanistic Understanding of
12 Degradation in Perovskite Solar Cell
13 Devices and Modules

1
2
3
4
5
6
7
8
9 This article aims to present an in-depth
10 review of the current understanding
11 of metal halide perovskite device and
12 module stability by outlining how basic
13 material intrinsic and extrinsic degra-
14 dation mechanisms as well as additional
15 complications from the presence of other
16 layers and nonequilibrium conditions
17 impact device and module performance
18 over time.

10 Q4
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules

Sean P. Dunfield,* Lyle Bliss, Fei Zhang, Joseph M. Luther, Kai Zhu, Maikel F. A. M. van Hest, Matthew O. Reese,* and Joseph J. Berry*

Metal halide perovskite solar cells (PSCs) have risen in efficiency from just 3.81% in 2009 to over 25.2% today. While metal halide perovskites have excelled in efficiency, advances in stability are significantly more complex and have progressed more slowly. The advance of efficiency, which is readily measured, over stability, which can require literally thousands of hours to demonstrate, is to be expected given the rapid rate of innovation in the field. In the face of changing absorber composition, synthetic approaches, and device stack components there is a premium in understanding basic material properties to rationalize how to enable stability in devices. In this article the aim is to present an in-depth review of the current understanding of metal halide perovskite device and module stability by focusing on what is known regarding intrinsic and extrinsic degradation mechanisms at the material, device, and module level. Once these considerations are presented the discussion then moves to connecting different degradation mechanisms to stresses anticipated in operation and how they can impact efficiency of cells and ultimately modules over time.

1. Introduction

Perovskite solar cells (PSCs) have excelled from just 3.81% in 2009^[1] to over 25.2% today (Figure 1).^[2] When coupled with their physical properties, which create unique opportunities for

S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu,
M. F. A. M. van Hest, M. O. Reese, J. J. Berry
National Renewable Energy Laboratory

Golden, CO 80401, USA

E-mail: sean.dunfield@nrel.gov; Matthew.Reese@nrel.gov; joe.berry@nrel.gov

S. P. Dunfield, J. J. Berry
Renewable and Sustainable Energy Institute
University of Colorado Boulder

Boulder, CO 80309, USA

S. P. Dunfield
Materials Science & Engineering Program
University of Colorado Boulder

Boulder, CO 80309, USA

L. Bliss
Department of Chemical & Biological Engineering
University of Colorado Boulder

Boulder, CO 80309, USA

J. J. Berry
Department of Physics
University of Colorado Boulder

Boulder, CO 80309, USA

The ORCID identification number(s) for the author(s) of this article
can be found under <https://doi.org/10.1002/aenm.201904054>.

DOI: 10.1002/aenm.201904054

deployment, this affords them the ability to be a disruptive technology.^[3] However, while perovskites have excelled in power conversion efficiency (PCE), their advances in stability are significantly more complex and have progressed more slowly.^[4] In large, this is expected. The evolution of efficiency has always outpaced stability as rapid innovations in efficiency inherently require longer duration validation to ensure that they do not introduce new degradation pathways; this is especially true for emerging technologies. However, progress has been further hindered by the lack of standard protocols, such as the International Summit on Organic Photovoltaic Stability (ISOS) protocols established to standardize organic photovoltaic (OPV) stability measurements.^[5] This has resulted in stability being measured in a variety of ways. This variability, while

justifiable on a technical basis, makes directly comparing stability results difficult. Despite this, many trends and observations can be made. Here, we aim to present an in-depth review of the current understanding of perovskite device and module stability by discussing known intrinsic and extrinsic degradation mechanisms at the material, device, and module level, and their connection as demonstrated in state-of-the-art results.

2. Perovskite Intrinsic Stability

2.1. Structural Stability

The term perovskite refers to a broad set of materials with ABX_3 crystal structure, where A is a large monovalent cation, B is a much smaller divalent cation, and X is an anion that bonds to both the A and B cations. The ability of elements A, B, and X to form a perovskite structure can be predicted by the Goldschmidt tolerance factor, t ^[6]

$$t = \frac{R_A + R_X}{\sqrt{2}(R_X + R_B)} \quad (1)$$

where R_A is the atomic radius of the A cation, R_X is the atomic radius of the X anion, and R_B is the atomic radius of the B cation. Theoretically, tolerance factors greater than 1 produce hexagonal or tetragonal structures, between 0.9 and 1 produce cubic structures, between 0.71 and 0.9 produce orthorhombic

1 or rhombohedral structures, and less than 0.71 do not form
2 perovskites. The A and B cations then provide one and two elec-
3 trons, respectively, to charge balance three positive X anions.
4 This forms a bandgap between the unoccupied B cation's
5 p-orbital and occupied X anion's p-orbital.^[7]

6 While the tolerance factor is a good 0th order approximation,
7 it has been shown to mispredict 26% of structures tested.^[8] Due
8 to this, Bartel et al. proposed a modified tolerance factor, τ ^[8]

9

$$10 \quad \tau = \frac{R_X}{R_B} - n_A \left(n_A - \frac{R_A/R_B}{\ln(R_A/R_B)} \right) \quad (2)$$

11

12 where R_A , R_B , and R_X have the same definitions, n_A is the ox-
13 idation state of the A cation, and $\tau < 4.18$ indicates perovskite
14 formation with increasing probability. While the new modified
15 tolerance factor does not predict alternate structures, it predicts
16 perovskite structures much more accurately (8% incorrect) and
17 provides a likelihood of formation. As a result, using a combi-
18 nation of the two, a functional estimate of structural stability
19 can be made for neat compositions.

20 Given the wide variety of formulations possible, we will
21 limit our discussion to a subclass of perovskites that better
22 resemble those studied in 2009 by Kojima et al. than the clas-
23 sical "perovskite" (CaTiO_3) discovered by Lev Perovski in 1839.
24 This subclass of metal-halide perovskites has relevant photo-
25 voltaic properties such as a band gap in the visible light regime.
26 To achieve this, they utilize tin (Sn) or lead (Pb) at the B-site
27 and iodide (I), bromine (Br), and/or chlorine (Cl) at the X-site.
28 Given the B- and X-site components, appropriate A-sites such
29 as methylammonium (MA), formamidinium (FA), and cesium
30 (Cs) can then be chosen to obtain suitable tolerance factor.

31 A-sites that successfully form a perovskite structure come
32 in three flavors: too small, too large, and just right. A-sites
33 too small fail to properly separate B-site cations, leading to
34 edge sharing octahedra. On the other hand, A-sites too large
35 force the perovskite to form lower dimensional face sharing
36 octahedra structures. While these compositions may not be
37 directly photovoltaically relevant due to their wider bandgaps,
38 lower carrier mobility, and higher exciton binding energies,
39 they have recently been incorporated to aid with stability,
40 as will be discussed later. Finally, A-sites just right perfectly
41 space B-site cations, resulting in a symmetrical 3D cubic
42 lattice.

43 However, as temperature changes so do preferred phases.
44 For example, methylammonium lead halides undergo phase
45 transitions from orthorhombic to tetragonal and then to cubic
46 as temperature is increased whereas cesium lead halides
47 undergo phase transitions from orthorhombic to cubic. These
48 phase transition temperatures are highly dependent on compo-
49 sition—several examples are shown in Table 1.

50 It is noteworthy that these changes can have a drastic effect
51 on the optoelectronic properties of perovskites; many noncubic
52 phases are photovoltaically inactive, such as room temperature
53 structures for FAPbI_3 and CsPbI_3 . As such, these neat compo-
54 sitions are considered "phase unstable" using this evalua-
55 tion and would not be expected to make stable solar cells. However,
56 it has been shown that alloys can be used to improve phase
57 stability.

1 **Sean P. Dunfield** is a
2 Graduate student pursuing
3 his Ph.D. in Materials Science
4 and Engineering at University
5 of Colorado Boulder while
6 conducting research on
7 perovskites at the National
8 Renewable Energy Laboratory
9 (NREL). He received his B.S.
10 in Physics and B.A. in Applied
11 Mathematics from Syracuse
12 University in 2014. His
13

14 research interests focus on surface science, degradation
15 mechanisms, and understanding the effects processing,
16 composition, and additives have on material properties.
17 To compare the myriad of device architectures utilized at
18 NREL, he has spent significant time improving and stand-
19 ardizing stability measurement capabilities and analysis.

21 **Matthew O. Reese** is a senior
22 scientist at the National
23 Renewable Energy Laboratory.
24 He received his B.S. from
25 Caltech and Ph.D. from Yale.
26 He has expertise in the fabri-
27 cation and characterization of
28 a variety of thin-film material
29 sets including CdTe, organic
30 PV, and perovskites. His
31 interests include nano- and
32 microstructured materials

33 for energy applications, understanding interfacial roles
34 and morphology in thin-film devices, lightweight/flexible
35 packaging solutions, water vapor transmission measure-
36 ment, and reliability mechanisms that can be addressed
37 with a material and/or cell level understanding. To aid
38 these efforts, he also has a keen interest in developing new
39 measurement tools and methods.

41 **Joseph J. Berry** is a senior
42 scientist at the National
43 Renewable Energy Laboratory
44 working on halide perovskite
45 solar cells. His Ph.D. for work
46 was on spin transport and
47 physics in semiconductor
48 heterostructures from Penn
49 State University. His efforts
50 at NREL emphasize relating
51 basic interfacial properties to
52 technologically relevant device

53 level behaviors in traditional and novel semiconductor het-
54 erostructures including oxides, organics, and most recently
55 hybrid semiconducting materials. He also leads the DOE
56 SETO "De-risking Halide Perovskite Solar Cells" project
57 with Laura T. Schelhas.

58 **Q2**

59

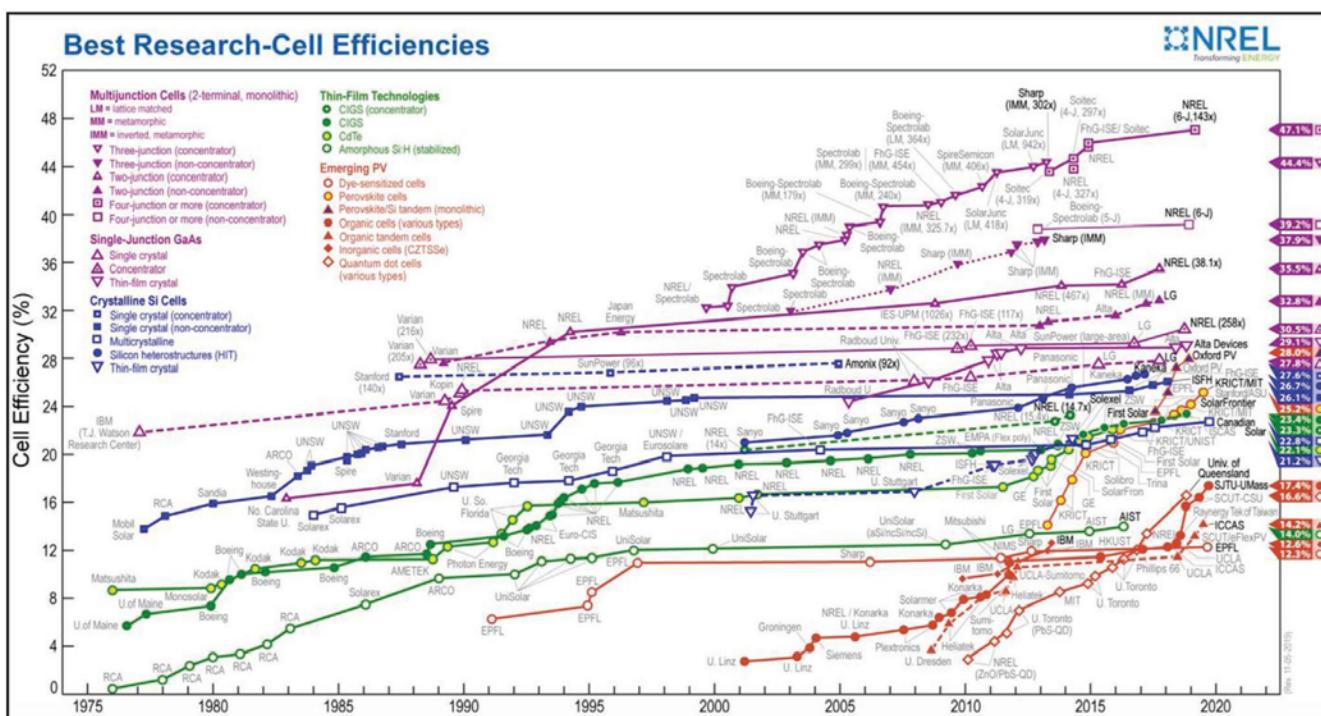


Figure 1. Record certified power conversion efficiencies (PCEs) for a range of photovoltaic technologies. This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO.^[2]

2.2. Phase Stability

An alloyed perovskite can be approximated as a linear combination of the two neat perovskites. Thus, solving structural stability has been boiled down to what one may naively consider a simple two-step process:

- Step 1. Select the correct Sn/Pb and I/Br ratios to obtain the desired bandgap.
- Step 2. Select an appropriately sized mixture of A-site cations to obtain suitable tolerance factor, as shown in Figure 2 for $\text{FA}_x\text{Cs}_{1-x}\text{PbI}_3$.

Indeed, this line of thinking has been responsible for many formulations, leading to compositions that have a highly alloyed A-site and either a mixed Sn:Pb B-site to lower the bandgap or mixed I:Br A-site to raise the bandgap.^[19,20] However, it has become clear that many of the more advanced compositions are

Table 1. Phase stability for various perovskite compositions.

Structure	Phase transition to cubic/pseudocubic phase [K]
MAPbI_3	327 ^[9-11]
FAPbI_3	350 ^[12,13]
CsPbI_3	583 ^[14,15]
MAPbBr_3	237 ^[9,11]
FAPbBr_3	275 ^[16]
MASnI_3	275 ^[17,18]
FASnI_3	250 ^[16]

prone to phase segregate due to extremely small differences in the formation energy of available phases.

At the A-site, this has shown to be governed by the Gibbs free energy of mixing (ΔG_{mix}) at constant pressure and volume^[21]

$$\Delta G_{\text{mix}} = \Delta H_{\text{mix}} - T\Delta S_{\text{mix}} \quad (3)$$

where ΔH_{mix} is the enthalpy of mixing calculated by taking the difference between the total energy of the mixed state with respect to the constituent states, and $T\Delta S_{\text{mix}}$ is the entropy of mixing. Compositions with $\Delta G_{\text{mix}} < 0$ have components which are energetically favored to mix, causing them to form a shared single phase. Compositions with $\Delta G_{\text{mix}} > 0$, on the other hand, are prone to phase segregate. Note that this applies to extremely small length scales and is temperature dependent. As such, local structural inhomogeneity can create a driving force sufficiently large to propagate phase segregation.

While calculating ΔG_{mix} for complex compositions is computationally demanding, two design rules for preventing phase segregation at the A-site were identified by Schelhas et al. in binary systems of the form $\text{A}^1\text{A}^2\text{PbI}_3$ that should persist in more complicated cases (Figure 3):

- To make films homogenous at the time of fabrication, initial components and annealing temperatures should be chosen such that the pure and end point compositions have the same structural phase (i.e., >600 K should be used to process $\text{FA}_x\text{Cs}_{1-x}\text{PbI}_3$ because FAPbI_3 takes on the cubic phase at >300 K and CsPbI_3 at >600 K).
- To make films which stay homogenous during device operation, the mixed phase must be energetically favorable

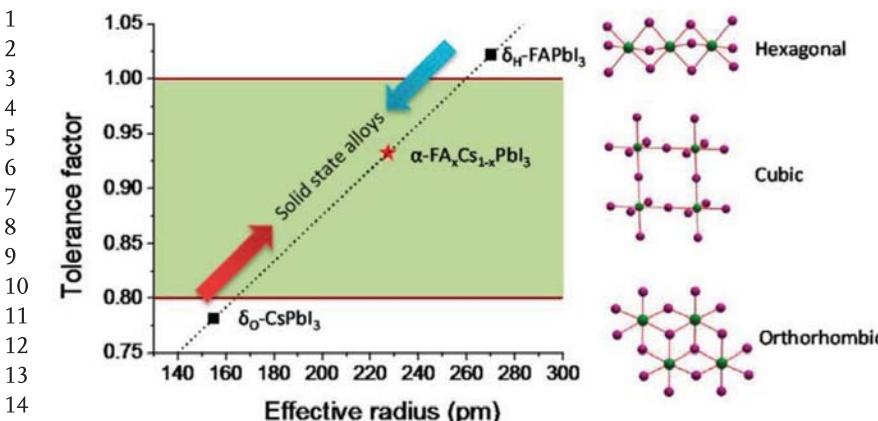
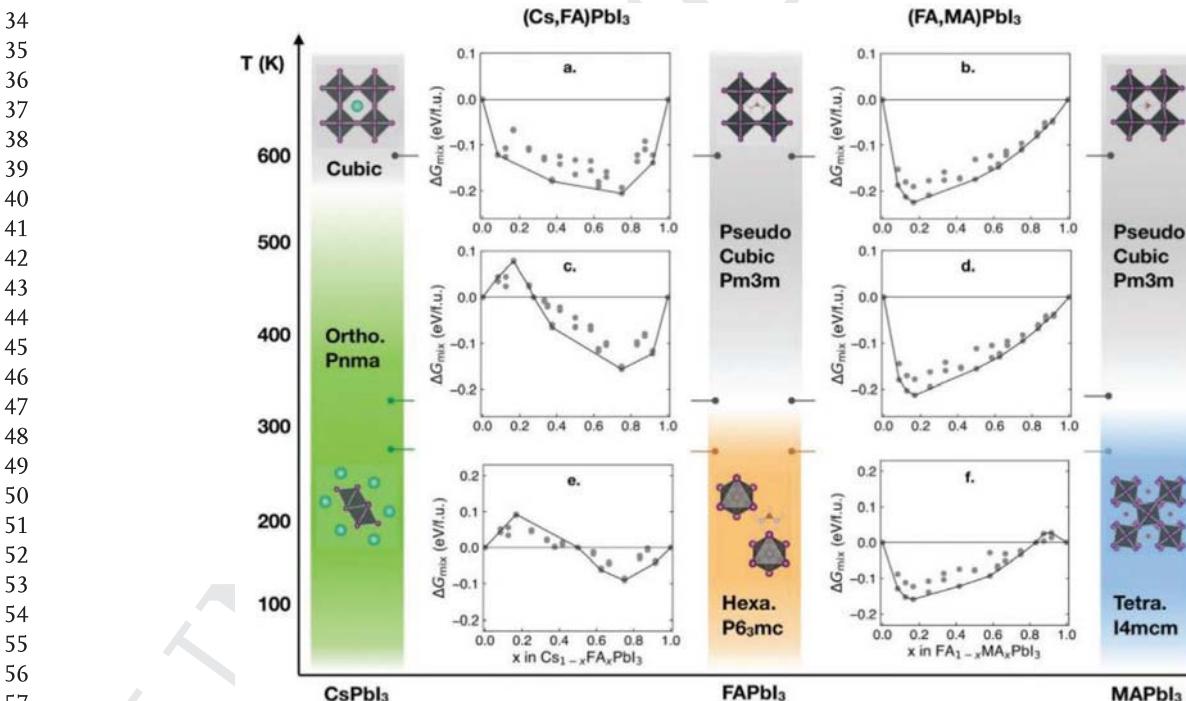
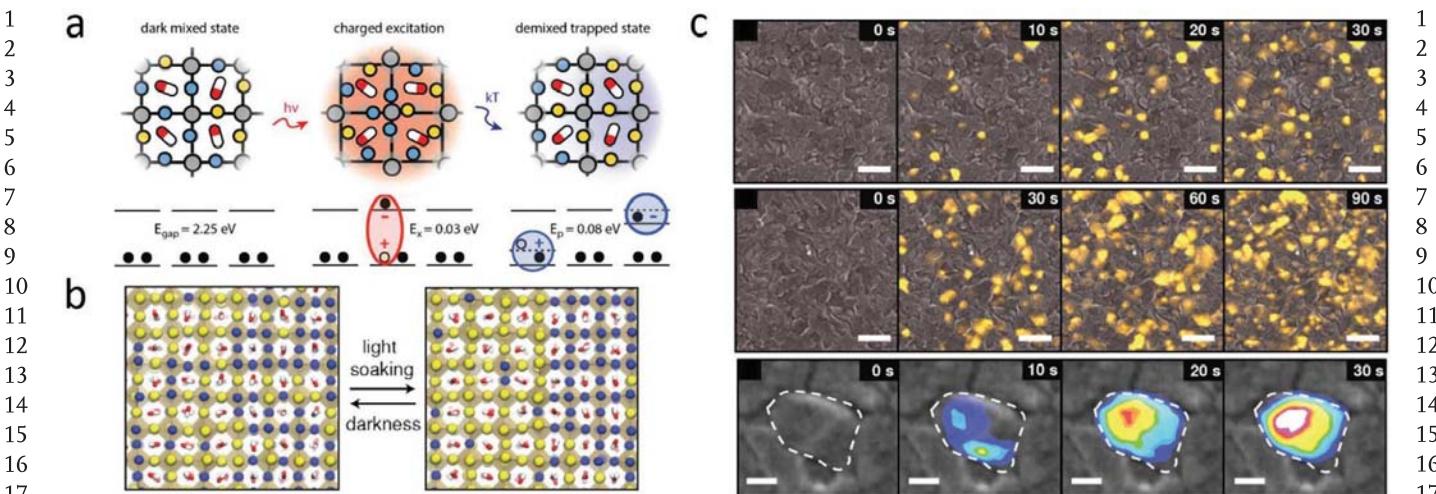


Figure 2. Correlation between tolerance factor, FA-to-Cs A-site composition, and crystal structure. Reproduced with permission.^[6] Copyright 2016, American Chemical Society.

($\Delta G_{\text{mix}} < 0$) all other phases in their low temperature structures (i.e., cubic $\text{FA}_{1-x}\text{Cs}_x\text{PbI}_3$ must be favorable to orthorhombic CsPbI_3 , cubic FAPbI_3 , and hexagonal FAPbI_3 . This is the case for $0.5 < x < 1.0$).

In addition to the A-site, phase segregation has been shown to take place at the X-site. This effect was first observed by Hoke et al.^[22] in $\text{MAPb}(\text{I}_x\text{Br}_{1-x})_3$ and later explained by Bischak et al.^[23] In short, naturally occurring variations in composition prior to illumination yield I-rich regions with reduced bandgap. When illuminated, electron–hole pairs created quickly disassociate, and carriers move to lower-gap iodine-rich regions before recombining. While there, the large concentration of carriers interacts with the highly ionic perovskite structure, deforming




Figure 3. Density functional theory (DFT) calculated Gibbs free energy of mixing for $\text{Cs}_{1-x}\text{FA}_x\text{PbI}_3$ and $\text{FA}_{1-x}\text{MA}_x\text{PbI}_3$ as a function of A-site composition and temperature. Reproduced with permission.^[21] Copyright 2019, The Royal Society of Chemistry.

the surrounding lattice through electron–phonon coupling, as shown schematically in Figure 4. This strain increases the enthalpy of mixing enough to create a second minima in the free energy versus bromine content diagram, driving the perovskite to form I-rich/Br-rich phases (Figure 4).

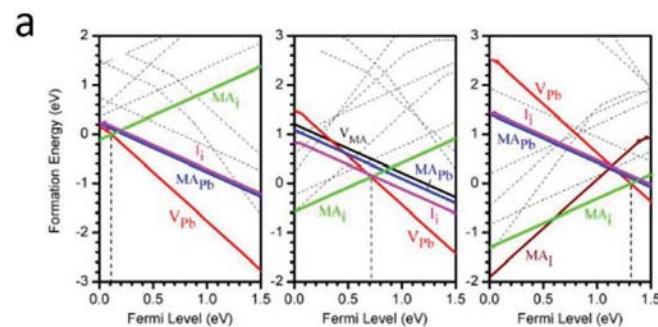
When light continues to be shined onto the perovskite, most photoexcited charges rush to iodine-rich low-gap areas of the film where they are extracted before recombining. Due to the lower gap, these carriers generate less voltage than if they had come from a stoichiometric mixed-halide region. However, when light is removed the perovskite's free energy diagram returns to its preillumination state, reestablishing a driving force for a single phase. Thus, in contrast to the A-site,

this phase segregation is normally reversible. Nonetheless, given its impact on device performance, namely the reduction of open circuit voltage (V_{oc}), it is best to avoid. Theoretical simulations suggest that this can be achieved by keeping iodine-to-bromine ratios within certain levels (<20–30% Br), reducing ionic mobility, reducing electron–phonon coupling, and/or reducing the lifetime/mobility of free carriers.^[23] While the latter can have other negative impacts on performance, the middle two have been accomplished by improving film quality and partially replacing the polar MA^+ cation with less polar cations.^[24]

It is noteworthy that so far, no phase segregation at the B-site has been documented. Thus, using the methods outlined above, one should be able to provide a good approximation

Figure 4. Photoinduced phase segregation in $\text{MAPb}(\text{I}_x\text{Br}_{1-x})_3$ films. a) Schematic of photoinduced polaron trapping and associated energy levels. Yellow and blue spheres represent I^- and Br^- , respectively. b) Schematic of macroscale phase segregation with same color key. c) Cathodoluminescence imaging showing phase segregation of iodide (yellow) under various light soaking durations. Reproduced with permission.^[23] Copyright 2017, American Chemical Society.

of structural/phase stability in inert environments. However, due to the low formation energy of these materials, the ratios of components measured in the film often deviate from solution. Moreover, when perovskites are exposed to other elements such as water, reactions can result in phase transitions. These transitions are composition/element specific, and besides those governed by humidity which will be discussed in Section 3, are poorly understood.


2.3. Defect Tolerance

The rules dictating the structural stability of perovskite materials directly couple to the primary consideration of any semiconductor, namely the electronic band structure. To cover this, we will first discuss the electronic structure of MAPbI_3 and its origins, which are fairly well understood, and then move on to cover how understanding of this system generalizes to other compositions with alternate or mixed A-, B-, and X-sites.

The bulk of MAPbI_3 is well known to be defect tolerant. While similar levels of intrinsic defects are known to destroy

the efficiencies of most other photovoltaic semiconductor materials, MAPbI_3 films riddled with vacancies can be incorporated into relatively efficient devices. The first theoretical assessment of this defect tolerance was conducted by Yin et al.^[7] In said manuscript, the formation enthalpy of MAPbI_3 and the chemical potential of each component were analyzed to determine the range of growth conditions required to synthesize single-phase cubic MAPbI_3 . Density functional theory (DFT) calculations were then performed for three representative points within this region (iodine-rich/lead-poor, neutral, and lead-rich/iodine-poor) to determine defect transition energy levels and associated formation energies. The model used considered all possible point defects: three vacancies (V_{MA} , V_{Pb} , V_{I}), three interstitials (MA_{i} , Pb_{i} , I_{i}), two cation substitutions (MAP_{pp} , Pb_{MA}), and four antisite substitutions (MA_{i} , Pb_{i} , I_{MA} , I_{Pb}). Results are shown in Figure 5.

As can be seen, altering growth conditions can drastically alter defects formation energy, and thus concentration. Under I-rich/Pb-poor conditions, defect structures are dominated by low-energy V_{Pb} acceptor defects, causing the Fermi level to reside near the valence band, as shown by the vertical

Figure 5. Defect tolerance of MAPbI_3 . a) Formation energy of intrinsic point-defects for I-rich/Pb-poor (left), neutral (middle), and Pb-rich/I-poor (right) growth conditions. b) Transition energy levels for intrinsic acceptor (left) and donor (right) point-defects. Reproduced with permission.^[7] Copyright 2014, AIP Publishing.

1 dotted line in Figure 5a. However, as the ratio of lead-to-iodide
 2 is increased, the energy required to form acceptor defects
 3 increases while the energy required to form donor defects
 4 decreases. This causes the lowest energy acceptor defect, V_{Pb} ,
 5 and donor defect, MA_i , to have similar formation energies and
 6 therefore concentrations, setting the Fermi level near midgap
 7 as shown in Figure 5b. Finally, moving to lead-rich/iodine-poor
 8 conditions (Figure 5c), the above trend continues causing two
 9 donor defects, MA_i and MA_l , to dominate the defect structure
 10 and the sample to display n-type behavior. Thus, while growth
 11 conditions must be carefully controlled to form a stoichio-
 12 metric and stable phase, they can also be tuned to control the
 13 concentration of donor and acceptor defects, allowing the mate-
 14 rial to display a range of carrier concentrations. Amazingly,
 15 despite the large difference in defects and formation energies
 16 in these three regions, detrimental defects have been found to
 17 be extremely rare for all three cases. Defects with low forma-
 18 tion energies such as I_i , MA_{Pb} , V_{MA} , V_{Pb} , MA_i , Pb_{MA} , and V_l
 19 form trap states 0.05 eV within the conduction/valence band
 20 edge whereas deeper defect states such as I_{MA} , I_{Pb} , Pb_i , and Pb_l ,
 21 have very high formation energies. These results suggest that
 22 the defects which readily form in high concentrations perturb
 23 the electronic structure by altering carrier concentrations, not
 24 forming midgap states that serve as centers for nonradiative
 25 recombination.

26 The proposed tolerance to methylammonium and iodide
 27 vacancies (V_{MA} , V_l) has been experimentally verified by Steirer
 28 et al.,^[25] who mechanistically studied the relation between the
 29 composition and electronic structure of $MAPbI_3$ using X-ray
 30 photoemission spectroscopy (XPS) on $MAPbI_3/TiO_x$ /fluorine
 31 doped tin oxide (FTO) films. As the samples were exposed to
 32 350 W X-rays, $MAPbI_3$ decomposed by an initial off-gassing
 33 of methylamine (V_{MA}), as seen in C-1s and N-1s spectra, fol-
 34 lowed quickly by a loss in iodine (V_l). By comparing the ratio
 35 of I:Pb and the location of the valence band maximum rela-
 36 tive to the Fermi level it is shown that from an I:Pb ratio of
 37 ≈ 3.0 to ≈ 2.5 the electronic structure remains relatively constant,
 38 but that once a ratio of 2.5 is reached, further reducing the ratio
 39 starts to negatively impact the electronic structure. As shown
 40 in Figure 6, this correlation between a decrease in the iodide-
 41 to-lead ratio and shift in the valence band occurs until roughly
 42 a 2:1 ratio is reached, at which point the film is predominately
 43 PbI_2 .

44 It is noteworthy that this defect tolerance is dramatically
 45 different than most other well-known semiconductor sys-
 46 tems, such as Silicon, whose photovoltaic performance can be
 47 destroyed by low defect concentrations. As a result, it is not
 48 surprising that its origins have been credited to the unique
 49 iconicity and band structure of $MAPbI_3$.^[7] Specifically, the
 50 acceptor defects at the valence band maximum (V_{Pb} and MA_{Pb})
 51 are believed to be shallow because of the Pb-5s I-5p antibond
 52 coupling afforded by the ABX_3 structure. Without this coupling
 53 the valence band maximum would be determined by the I-5p
 54 states and defect states would reside within the gap. However,
 55 this coupling creates a valence band above the energy level of
 56 the I-5p states that is decoupled from easily formed defects.
 57 This increase in the valence band level is enough to cause most
 58 acceptor defects to reside inside the band. On the other hand,
 59 the shallow donor defects at the conduction band minimum

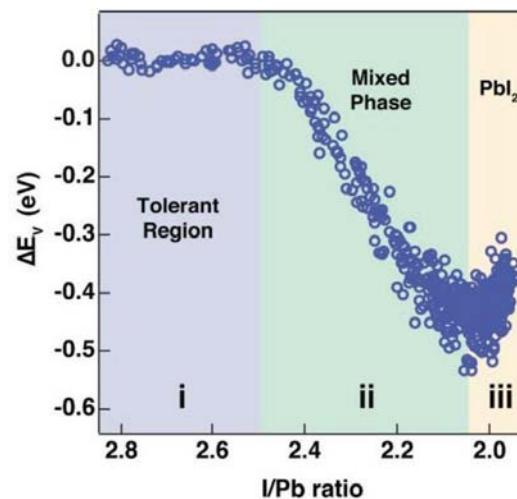
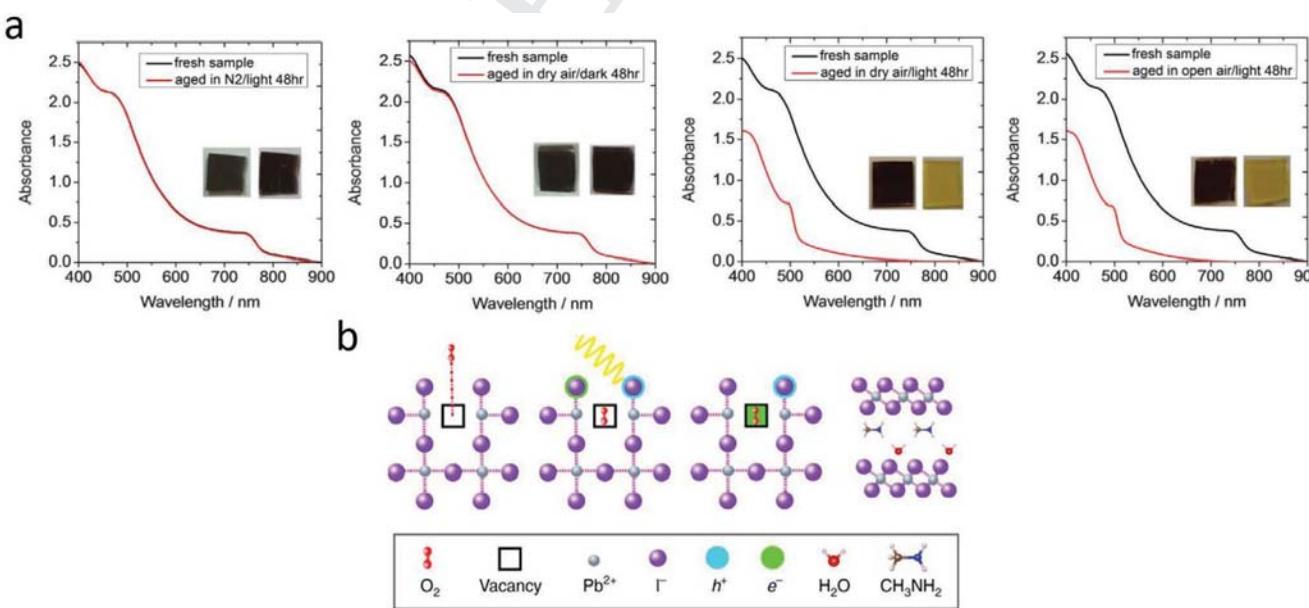


Figure 6. Correlation between valence band maximum and I/Pb ratio in $MAPbI_3$ film as measured by X-ray photoemission spectroscopy (XPS). Reproduced with permission.^[25] Copyright 2016, American Chemical Society.

(MA_i and V_l) have been attributed to the MA^+ and Pb^{2+} cations donating their electrons to three I^- anions, which causes the conduction band to form from empty Pb-6p orbitals. These orbitals couple to each other, creating an energy level lower than the p-orbital of the Pb atom, similarly pushing donor defects out of the gap.

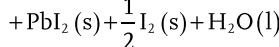
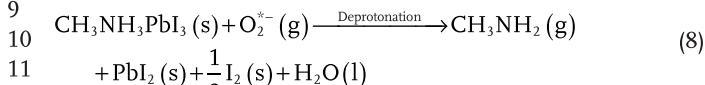
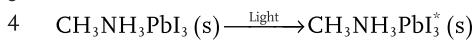
Since the discovery of $MAPbI_3$'s defect tolerance and tunability, numerous studies have explored the defect tolerance of other neat ABX_3 compositions. Each study has generated the set of chemical potentials required to generate the perovskite as well as the formation energy and transition energy level of defects for several points within the region. The results from these studies vary widely depending on composition; not all chemical compositions appear to possess the defect tolerance or carrier conductivity tunability seen in $MAPbI_3$. However, there appears to be a strong correlation between defect tolerance and structural stability, as dictated by the tolerance factor (t). Namely, compositions suggested to be defect tolerant in their lowest energy phase ($CsPbBr_3$,^[26] $CsSnI_3$,^[27] $MAPbI_3$,^[7] $CsSnBr_3$,^[28] $CsSnCl_3$,^[28] $MAPbBr_3$,^[29]) all have tolerance factors grouped from roughly 0.82–0.85, whereas compositions which were not have tolerance factors outside this range ($CsPbI_3$,^[30] $MASnI_3$,^[31] $FAPbI_3$,^[32] $FASnI_3$,^[31]). Given this observation, it appears that alloying the A-site to achieve appropriate tolerance factor should be a powerful strategy to mitigate defects. Although studies of this nature are limited due to their computationally demanding nature, this has been suggested to be the case for $FAPbI_3$. More specifically, it has been shown that the formation energy of deep-level defects (FA_i and I_{FA}) present in $FAPbI_3$ can be drastically increased by replacing roughly half of the FA cations with MA ($FA_{0.52}MA_{0.48}PbI_3$).^[32] Doing so prevents them from forming, causing the material to become defect tolerant. However, we note that doing so also reduces the tolerance factor of the composition to roughly 0.84, a value just within the golden range of tolerance factors described above.

Thus, tuning A-sites to increase structural stability simultaneously appears to increase defect tolerance. As a result, it


1 seems reasonable to assume that most chemical compositions
 2 which readily form structurally stable perovskites with high
 3 device performance should possess this intrinsic bulk defect
 4 tolerance.^[33] However, the surfaces of these materials have dras-
 5 tically different chemical potentials, and therefore defect struc-
 6 tures, than the bulk. This is because, conceptually, the surfaces
 7 of these materials are defects—points at which the repeating
 8 unit cell is broken—resulting in perturbation of the electronic
 9 structure. Due to the large surface area-to-volume ratio and
 10 bulk defect tolerance, these defects have been suggested to be
 11 critical in material and device degradation, as will be discussed
 12 later.^[34]

13

14 3. Perovskite Extrinsic Stability




15 Despite perovskites general robustness to internal defects,
 16 external factors such as light, oxygen, temperature, and
 17 humidity (water) have been shown to interact with the perov-
 18 skite material. These interactions can induce general phase
 19 changes by altering the structure's tolerance factor, as discussed
 20 earlier, or induce chemical reactions that have the potential
 21 to cause irreversible degradation, as will be discussed in this
 22 section. Although the details of these mechanisms are not
 23 well known for most formulations, they have been studied
 24 most extensively for MAPbI_3 given its prevalence in literature.
 25 Thus, MAPbI_3 serves as a logical starting point for our dis-
 26 cussion. Moreover, due to its appropriate tolerance factor and
 27 single A-, B-, and X-sites, MAPbI_3 offers a phase pure system
 28 where chemical reactions, rather than phase transitions, domi-
 29 nate material degradation. This has allowed the community to
 30 develop an unconvoluted mechanistic understanding of chem-
 31 ical degradation in MAPbI_3 that can be used to predict how and
 32 why altering a given lattice site alters degradation.

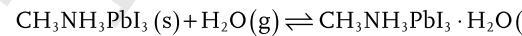
33

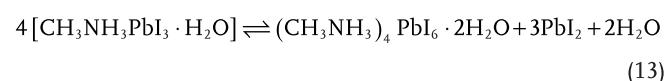
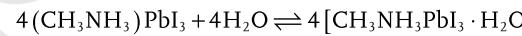
57 **Figure 7.** Oxygen induced degradation of perovskites. a) Absorbance profile and pictures of MAPbI_3 films before and after aging in stated conditions.
 58 Reproduced with permission.^[41] Copyright 2016, The Royal Society of Chemistry, under a Creative Commons 3.0 License. b) Schematic of oxygen
 59 induced degradation. Reproduced under the terms of the Creative Commons 4.0 License.^[38] Copyright 2017, Nature Publishing Group.

1 lead-iodide, and methylamine gas, as detailed below and sche-
2 matically in Figure 7

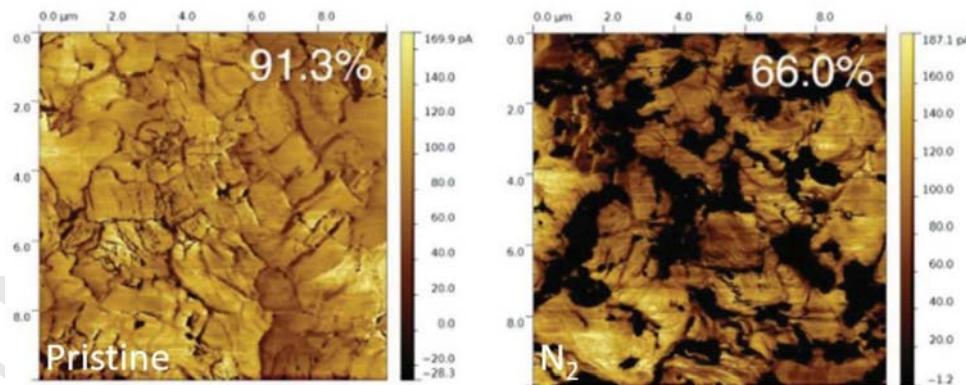
14 Although the deprotonation process is afforded by the meth-
15 yl ammonium cation, the general process of photooxidation,
16 where an excited electron in the conduction band is oxidized by
17 molecular oxygen, is common among most neat photovoltaic
18 absorbers due to the prevalence of long-lived carriers in the
19 excited state. However, when these materials are incorporated
20 into a solar cell, the density of electrons in the conduction band
21 is drastically reduced as they are quickly extracted by the elec-
22 tron transport layer (ETL). Consequently, the degree to which
23 the perovskite oxidizes is highly dependent on the relative rates
24 of oxidation and electron charge transfer to another material
25 and will be much smaller for a perovskite incorporated into a
26 device or on an ETL.^[40]

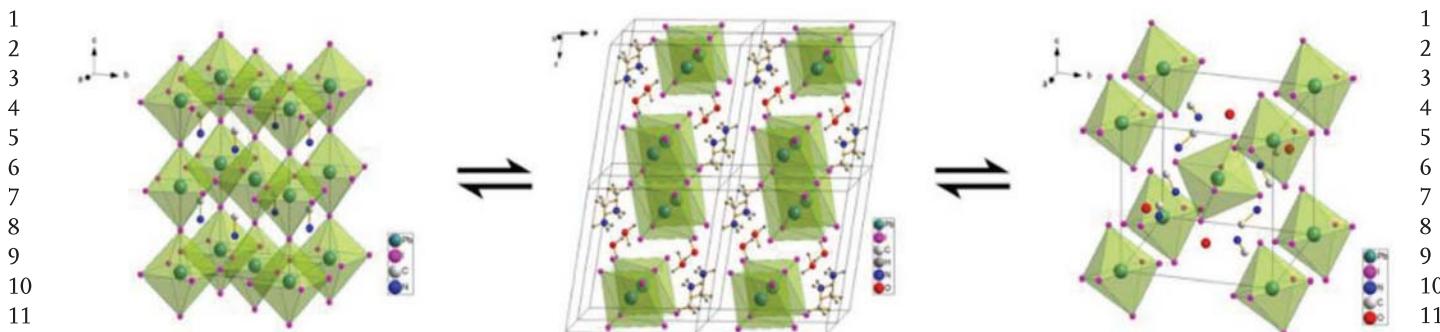
3.3. Temperature (Thermochemical Stability)


31 In addition to oxygen and light, MAPbI_3 has been shown to
32 be sensitive to temperature, degrading into PbI_2 in inert envi-
33 ronments at temperatures as low as 85 °C, as can be seen by
34 the conductive atomic force microscopy (C-AFM) images in
35 Figure 8.^[42] Studies using thermogravimetric analysis (TGA)
36 agree that this occurs through an initial sublimation of the
37 organic halide components, followed by decomposition of the
38 metal halide at much higher temperatures. However, the com-
39 munity disagrees on the required temperatures and whether
40 the products are hydroiodic acid and deprotonated methylam-
41 monium,^[43–45] ammonia and methyl iodide,^[46–48] or both^[49,50]



6 It is noteworthy that the products of the first reaction have been
7 demonstrated to form perovskite when used as precursors,^[51,52]
8 while the products in the second have been demonstrated to form
9 nonprimary ammonium salts,^[46] denoted by the reversible and
10 irreversible arrows. However, lamination studies using a combi-
11 nation of temperature and pressure show improvements in material
12 properties when temperatures sufficient for thermal degradation
13 are utilized and mass transport is prevented.^[53,54] As such, both
14 reactions are likely reversible in systems where constituents are
15 not prone to evaporate away or be consumed by other reactions.

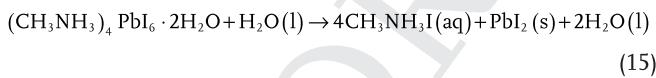
3.4. Water (Hygroscopic Stability)


Finally, water and other polar solvents/vapors have been demonstrated to affect the perovskite due to their ability to form solvated phases. Although degradation from polar solvents can be avoided by controlling processing environments and using orthogonal solvents to deposit sequential layers, completed devices will necessarily be exposed to humid environments when fielded. As such, significant effort has been made understanding interactions between water vapor and MAPbI_3 . In general, it has been shown that water molecules initially hydrate the perovskite crystal structure, forming a monohydrate phase in single crystals^[55,56]


Or both a monohydrate and dihydrate phase in thin films^[56]

In both cases, these reactions are reversible. As such, mono- and dihydrated perovskites stored in inert environments with

58 **Figure 8.** Conductive atomic force microscopy (C-AFM) images of pristine MAPbI_3 films (left) and MAPbI_3 films subjected to 85 °C for 24 h in N_2 (right).
59 Percentages represent the fraction of area that contributes to current. Reproduced with permission.^[42] Copyright 2015, Wiley-VCH.

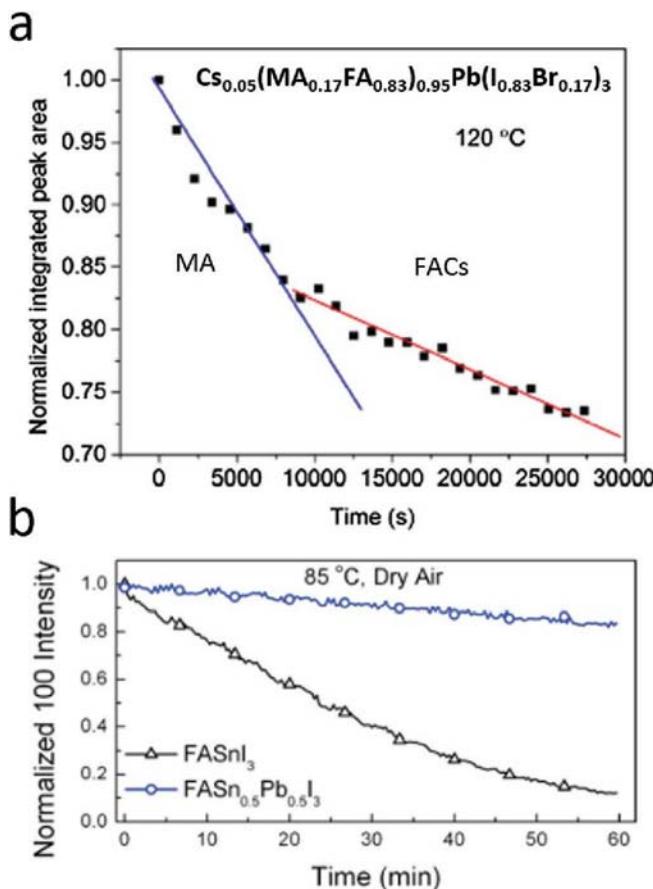

Figure 9. Structure of cubic MAPbI_3 (left), monohydrate $\text{MAPbI}_3 \cdot \text{H}_2\text{O}$ (middle), and dihydrate $(\text{MA})_4\text{PbI}_6 \cdot 2\text{H}_2\text{O}$ (right). Reproduced with permission.^[56] Copyright 2015, American Chemical Society.

no external input kinetically revert to their dehydrated phase with some minor limitations due to phase separation of the products.^[55,56] However, while incorporation of water does not initially cause permanent degradation, it does induce significant structural deformation by forcing the $[\text{PbI}_6]^{4-}$ octahedra to separate.^[55,56] This separation causes the dehydrated structure to transform from a 3D network of octahedra to a 1D chain of octahedra for the monohydrate and a 0D framework of isolated octahedra for the dihydrate (Figure 9). In addition to destroying the photovoltaic properties of the material, this structural deformation weakens the bonds between the organic cation and the $[\text{PbI}_6]^{4-}$ octahedra, allowing for easier deprotonation of the cation and/or degradation of the film through external energy inputs such as heat and/or electrical bias.

This generally reversible hydration occurs until the perovskite structure has been saturated with water, at which point the organic component of the perovskite structure starts to dissolve, irreversibly creating lead iodide and aqueous methylammonium iodide. For the single crystal, this phase is suggested to evolve directly from the monohydrate phase^[55,56]

On the other hand, for thin films it has been suggested to evolve from the dihydrate phase^[56]

We note that the discrepancies between these reactions are likely explainable by the differences between the defect structure of thin films and single crystals. Specifically, thin films have grain boundaries/a higher surface-area-to-bulk ratio and therefore possess more defects with different formation energies and transition levels than their single crystal counterparts. These defects may make the formation of the dihydrate phase energetically favorable to the irreversible dissolution of the organic component, causing it to form first.^[57]


3.5. Beyond MAPbI_3

Once exposed to the elements, the above reactions suggest the coexistence of many compounds within the film including

$\text{CH}_3\text{NH}_3\text{PbI}_3$, PbI_2 , $\text{CH}_3\text{NH}_3\text{I}$, CH_3NH_2 , HI , CH_3I , NH_3 , I , and I_2 . While the presence of small amounts of these may not be detrimental to MAPbI_3 , they may further react with other available chemical species or each other. As such, limiting their existence is of utmost importance.

Given the numerous degradation mechanisms afforded by the methylammonium cation, partially or fully replacing it with less volatile cations is one of the most widely employed paths toward greater chemical stability. Additional insight as to why can be gained by understanding the reaction mechanisms involved in each decay pathway: photooxidative degradation is enabled by an acid–base reaction between the superoxide and the MA cation, thermal decomposition is enabled by the light and organic nature of the MA cation, and hygroscopic decomposition is enabled by the solubility of the MA cation in water. As a result, going from MA to FA, a less acidic, heavier, cation with a ten times lower dipole moment, drastically improves chemical stability, and going further to the inorganic Cs forces chemical decomposition to proceed through a different route.^[58] However, TGA studies by Tan et al. have shown that $\text{Cs}_{0.05}(\text{MA}_{0.17}\text{FA}_{0.83})_{0.95}\text{Pb}(\text{I}_{0.83}\text{Br}_{0.17})_3$ perovskites thermally decay in two steps, with the first akin to that of MA-based perovskites and the second that of FAs (Figure 10).^[59] Thus, alloying at the A-site appears to only kinetically limit thermal degradation. This creates a problem for any devices employing MA both during operation and annealing, as a correct balance between driving away excess solvent and decomposing the newly formed perovskite must be found. As a result, many groups have completely moved away from MA-based perovskites. However, given its favorable tolerance factor and associated defect tolerance, film and device level strategies have been developed to control these chemical instabilities that warrant additional investigation.^[60–62]

Although FA- and Cs-based compositions have drastically improved chemical stability, they still suffer from phase stability issues when exposed to external factors: water, oxygen, and temperature can all induce phase transitions. While these phase transitions do not necessarily lead to irreversible changes, they can result in rapid loss of photovoltaic performance and therefore should be avoided. This appears to be most easily done by alloying to achieve appropriate tolerance factor, as described earlier in section 2. Thus, due to its lack of a role in determining the band structure, changes to the A-site can be made to increase the defect tolerance, chemical stability, and structural stability of the perovskite with little concern for

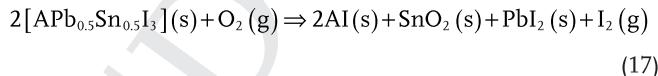
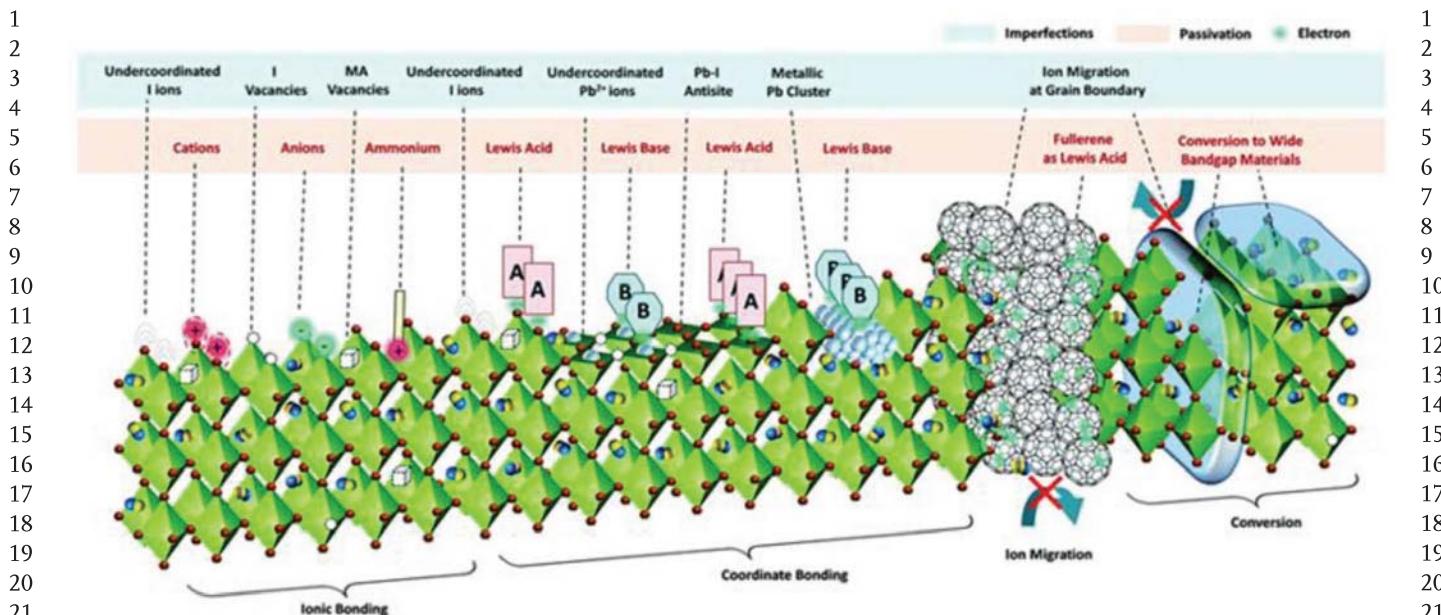


Figure 10. Effect of alloying to increase stability. a) Normalized X-ray diffraction (XRD) peak areas of $\text{Cs}_{0.5}(\text{MA}_{0.17}\text{FA}_{0.83})_{0.95}\text{Pb}(\text{I}_{0.83}\text{Br}_{0.17})_3$ films aged at 120 °C in N_2 showing two separate degradation steps—one akin to MA-based perovskites and the other to FACs. Reproduced with permission.^[59] Copyright 2018, American Chemical Society. b) Normalized XRD peak areas of FASnI_3 and $\text{FASn}_{0.5}\text{Pb}_{0.5}\text{I}_3$ films aged at 85 °C in dry air showing just one rate of degradation. Reproduced with permission.^[67] Copyright 2017, American Chemical Society.

On the other hand, alloying tin into the B-site of FAPbI_3 allows the bandgap to be decreased from 1.52 to 1.25 eV.^[66] However, partially or fully replacing lead with tin also drastically reduces the chemical stability of the resulting perovskite, as tin prefers to oxidize from the +2 to +4 state. Using TGA, Leijtens et al. showed that compositions with high tin contents quickly decay via a mechanism involving adjacent Sn^{2+} ions, forming tin (IV) oxide and tin (IV) iodide through the following reaction:^[67]

where A is any A-site cation. In this reaction, iodide ions bonded to the tin cation are transferred to an adjacent iodide-sharing tin cation, breaking just two bonds to form SnI_4 and SnO_2 . On the other hand, compositions with a Pb:Sn ratio of 1:1 or greater must react through a different mechanism as Pb^{2+} does not easily oxidize to Pb^{4+} . As a result, I_2 must be generated, causing three times as many iodide bonds to be broken, as shown below^[67]

Due to its less favorable reaction mechanics, this degradation pathway proceeds at a much slower rate, as shown in Figure 10. This is an interesting and unique result: while many studies have shown that alloying can be used to kinetically limit a degradation mode this shows that local chemistry can be used to force chemical degradation to proceed through a different mechanistic route. We note that this is akin to what has been seen when alloying to increase phase stability, but the opposite to what has been seen when alloying to increase thermal stability. Given this bifurcation, further exploration into the degradation mechanisms of perovskites with improved stability is warranted.


4. Alloying, Additives, and Adaptations

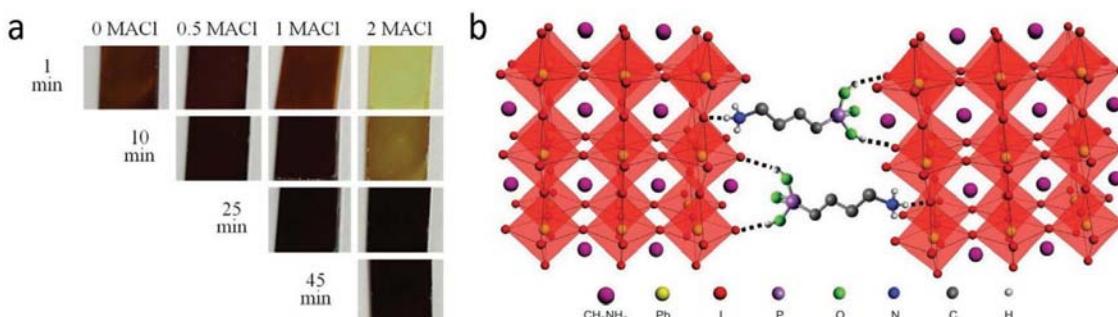
The last section covered the effect of changing chemical composition on material stability. While it is apparent that alloying is an effective means to reduce defects and increase both the structural and chemical stability of the bulk, changing the composition of the perovskite in a way that is restricted to ABX_3 compositions is unlikely to significantly improve the defect chemistry of the surface; regardless of what elements are chosen, the surface allows for the low-energy formation of deep-level trap states, such as undercoordinated halide or lead species, lead clusters, and $\text{Pb}-\text{I}$ antisite defects (PbI_3^-), as well as the usual shallow-level traps such as iodide or methylammonium vacancies. As mentioned earlier, these surfaces/defects have been demonstrated to dominate material degradation: Aristidou et al. demonstrated that photooxidation starts at the surface and proceeds into the bulk through iodide vacancies;^[38] Yun et al. demonstrated that hygroscopic decomposition initiates phase transitions at the grain boundaries that proceed toward the interior;^[68] and Fan et al. demonstrated that the lowest thermal decomposition temperatures witnessed in

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

harming its electronic properties. In contrast, changes to the B- and X-site significantly perturb electronic structure. As a result, these sites are normally altered to obtain desirable bandgap, not improve stability. Nonetheless, these changes result in variations to chemical stability and therefore warrant a discussion.

Changes at the X-site are primarily employed to increase the bandgap of the perovskite; alloying bromine into MAPbI_3 allows tuning of the bandgap from 1.6 to 2.3 eV.^[63] In addition to bromine, chlorine can be used, although incorporation directly into the lattice in ambient conditions is challenging and it is more often used as an agent to control crystallization.^[64] In relation to iodide, these halides are smaller and more electronegative. As a result, assuming the structure remains unchanged, they form stronger bonds with the A-site cations. This simultaneously 1) increases the stability of the perovskite structure by increasing the strength of A-to-BX bonds^[65] and 2) increases the chance that the halide will deprotonate the A-site cation.^[49] However, due to the different ionic radii of these elements, this effect can be secondary to those resulting from the change in lattice spacing.

Figure 11. Common surface defects for perovskites and the effect of various additives. Reproduced with permission.^[72] Copyright 2019, Royal Society of Chemistry.


MAPbI₃ are the result of a layer-by-layer decomposition process that initiates at the surface.^[69] Thus, achieving the targeted 20+ year device lifespans desired for terrestrial grid scale deployment will require more than just material alloying. Specifically, these surface defects must be controlled in some way.

So far, this has been done by incorporating additives into the precursor solution, antisolvent, or post-treatment that form coordinate or ionic bonds with the charged defects of the perovskite. These passivating agents neutralize the charge of the defect site, reducing its ability to electronically perturb the ionic crystalline lattice and thus its effect on the band structure of the perovskite. Additives of this nature can be divided into a few categories: ammonium salts, Lewis acids, Lewis bases, lower dimensional perovskites, and ionic liquids. A schematic describing common defects at the surface and the effect of additives is shown in **Figure 11**. It is noteworthy that in addition to passivating surface defects, additives which are incorporated into the precursor solution or antisolvent can have a drastic impact on film formation, which can in turn alter the bulk defect concentration and terminating surfaces of the perovskite. In the section that follows, we will briefly touch on the effect of commonly used additives, but note that more in-depth articles have been recently written on the effect of additives by Zhang et al.^[70] and the role of surfaces by Schulz et al.,^[34] and highly recommend them and the most recent state of the art work by Yang et al.^[62] and Min et al.^[71] as further reads.

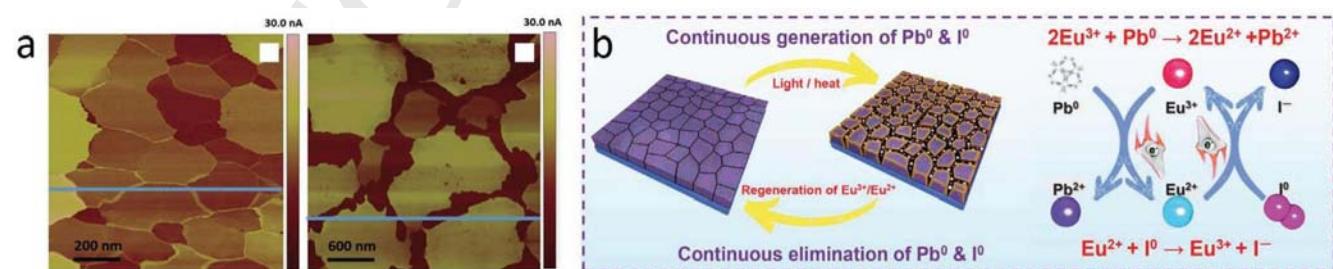
4.1. Ammonium Salts

As discussed above, most detrimental defects that must be passivated in perovskites exist at grain boundaries and surfaces. Due to the polycrystalline nature of the perovskite, these surfaces are predominately comprised of excess materials added to the precursor solution that do not incorporate into the bulk of

the crystallite. As a result, it may be possible to tune the composition of the precursor solution to produce self-passivated surfaces. For example, Son et al. found that adding a small excess of MAI into the precursor solution of MAPbI₃ results in the accumulation of MAI at grain boundaries that suppresses non-radiative recombination.^[73] Similarly, Yang et al. demonstrated that adding excess MAI and annealing at higher temperatures produces films with larger and more uniform grains.^[74] In addition to MAI, a range of other ammonium salt derivative-based additives have proven to have similar effects, including organic halides (e.g., methylammonium chloride (MACl),^[75–82] methylammonium bromide (MABr),^[83] and ammonium chloride (NH4Cl)),^[84–87] organic pseudohalides (e.g., methylammonium thiocyanate (MASCN),^[88] guanidine thiocyanate (GuaSCN),^[89,90] ammonium thiocyanate (NH4SCN)^[91,92]), and organic nonhalides (e.g., methylammonium acetate (MAOAc)^[93–95]). In fact, moving away from the prototypical MAI has generally demonstrated better results. For example, replacing iodide with chlorine has been shown to provide many of the same positive effects as MAI while simultaneously retarding crystallization due to chlorine incorporation, as shown by the pictures of films in **Figure 12**.^[75] Similarly, further replacing MA⁺ with NH₄⁺ has been demonstrated to result in films with improved morphology and crystallinity to those with MACl^[84] due to its ability to easily be removed in crystallization through the deprotonation of NH₄⁺ by water, resulting in the formation of NH₃ and HI/HCl.^[85] In addition to these more traditional molecules that mimic components of the perovskite, others have proven success with more complex molecules that do not. For example, Zhang et al. demonstrated that addition of quaternary ammonium halides (e.g., choline chloride—(CH₃)₃NCH₂CH₂OH) results in films with improved passivation, enabling devices with higher efficiency and stability against humidity and light.^[96] Similarly, Li et al. have shown adding butyl phosphonic acid 4-ammonium chloride (4-ABPACl) into the MAPbI₃

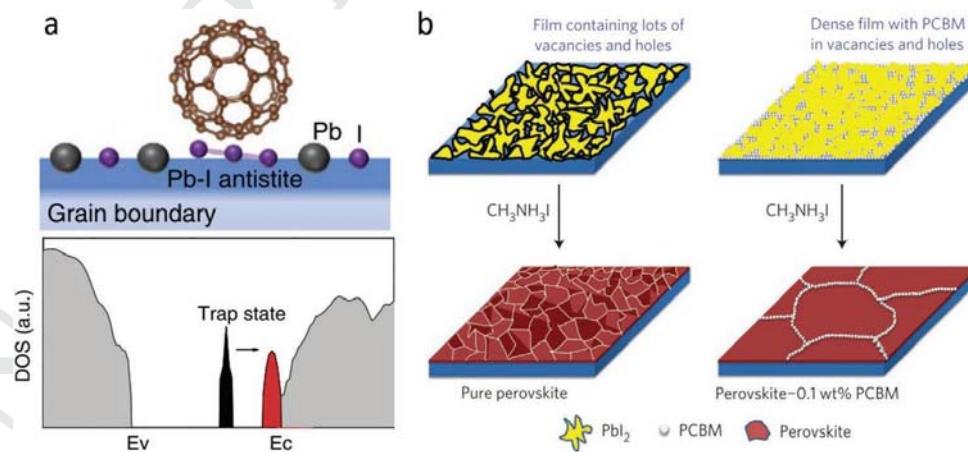
Figure 12. a) Images of MAPbI_3 films prepared with the stated amount of MACl annealed at $100\text{ }^\circ\text{C}$ for stated duration. Reproduced with permission.^[75] Copyright 2014, American Chemical Society. b) Schematic of cross-linked grains due to hydrogen-bonding interactions between the iodide of perovskite and $\text{PO}(\text{OH})_2$ and $-\text{NH}_3^+$ terminating groups of 4-ABPACl. Reproduced with permission.^[97] Copyright 2015, Nature Publishing Group.

precursor solution results in an almost a two-fold increase in PCE and stronger resistance to moisture due its $-\text{PO}(\text{OH})_2$ and $-\text{NH}_3^+$ terminating groups ability to form strong hydrogen bonds with the perovskite surface and cross link adjacent grains. A schematic of this interaction is shown in Figure 12.^[97]


4.2. Lewis Acids

The second class of additives, Lewis acids, are any material that has the capability of accepting a pair of nonbonding electrons. In perovskites, these materials form Lewis adducts with under-coordinated halides (I^-) and antisite defects (PbI_3^-), neutralizing the charge of the defect. While a broad range of materials are classifiable as Lewis acids, those that have proven to be successful fall into two main categories: metal cations (e.g., Pb^{2+}) and fullerene derivatives (e.g., PC_{61}BM).

Positively charged metal cations can impact the electronic structure of the perovskite in the vicinity of the band edges through ionic bonding and other electrostatic/dynamic interactions with negatively charged defects. Thus, as adding excess MAI can passivate defects, adding excess PbI_2 can as well. For example, Chen et al. and Kim et al. demonstrated that a small excess of PbI_2 in MAPbI_3 precursor solutions results in higher performing devices due to the PbI_2 -based passivation of surface defects at interfaces and grain boundaries that limit charge carrier recombination.^[98,99] Following this strategy, Ke et al. incorporated lead thiocyanate ($\text{Pb}(\text{SCN})_2$) in the perovskite precursor, showing that it could serve a similar role due to the ability of the SCN^- anion to react with a MA^+ cation of MAPbI_3 ,


forming HSCN and methylamine gasses that promote grain growth and leave PbI_2 at grain boundaries, as shown by the C-AFM in Figure 13.^[100] However, while the addition of metal cations native to the perovskite film passivates defects, the use of other positively charged metal cations have been demonstrated to have improved passivation capabilities. For example, Abdi-Jalebi et al. have shown that addition of potassium iodide (KI) to a $\text{Cs}_{0.06}\text{FA}_{0.79}\text{MA}_{0.15}\text{Pb}(\text{I}_{0.85}\text{Br}_{0.15})_3$ precursor solution results in large boosts in PCE due to the accumulation of K^+ at interfaces that fills I^- -vacancies and bonds to uncoordinated halides, passivating nonradiative trap sites and reducing ionic mobility.^[101] Similarly, Wang et al. demonstrated that addition of europium acetylacetone to both MA- and MAFACs-based perovskite precursor solutions results in significantly more stable devices due to the formation of europium ion pairs ($\text{Eu}^{3+}-\text{Eu}^{2+}$) that serve as a “redox shuttle” to selectively oxidize metallic Pb (Pb^0) and reduce iodine (I^0) defects, as shown schematically in Figure 13.^[102] In addition to these studies, a large range of other metal cations, including Li^{1+} ,^[103] Na^{1+} ,^[104-106] Ag^{1+} ,^[104,106] Rb^{1+} ,^[20,107,108] Cu^{1+} ,^[104,106,109] Cu^{2+} ,^[110,111] Zn^{2+} ,^[112,113] Mg^{2+} ,^[114] Ca^{2+} ,^[115,116] Ni^{2+} ,^[117] Sr^{2+} ,^[118] Ba^{2+} ,^[119,120] Fe^{2+} ,^[102,121] and Bi^{3+} ,^[122,123] have been shown to interact with the negatively charged defects of the perovskite.^[124] However, there is a clear need for additional work to detail the mechanisms and associated opportunities for these other metals to improve stability while maintaining high PCE.

The second class of Lewis acids, fullerene derivatives, can passivate defects at the grain boundaries in much the same way as metal cations. However, while most metal cations must be stabilized with a corresponding anion to provide charge

Figure 13. a) C-AFM images of perovskites prepared with (left) and without (right) 5% $\text{Pb}(\text{SCN})_2$. Reproduced with permission.^[100] Copyright 2016, Wiley-VCH. b) Schematic of $\text{Eu}^{2+}-\text{Eu}^{3+}$ ion pairs ability to eliminate Pb^0 and I^0 defects. Reproduced with permission.^[102] Copyright 2019, American Association for the Advancement of Science (AAAS).

1 neutrality, fullerenes are charge neutral and stabilize excess
 2 electronic charge resonantly. As a result, they are stable with
 3 and without interacting with defects on the perovskite surface.
 4 Due to their high electron affinity, small reorganization energy,
 5 and high electron mobility, this made them ideal as the ETL in
 6 devices. However, after noticing their effect on voltage, various
 7 groups began incorporating them into the perovskite where
 8 they coat surfaces and grain boundaries, creating an OPV like
 9 perovskite-fullerene bulk heterojunction that improves charge
 10 extraction and blocks intergrain ionic transport. For example,
 11 Liu et al. demonstrated that a C_{60} -MAPb_{0.75}Sn_{0.25}I₃ heterojunction
 12 improves device performance, hysteresis, and stability
 13 due to an improvement in bulk and surface recombination
 14 lifetimes afforded by a reduced number of trap states.^[125]
 15 However, in addition to fullerenes, various fullerene-derivatives
 16 have been shown to provide similar defect passivation;
 17 for example, Xu et al. and Chiang et al. reported that phenyl-
 18 C₆₁-butyric acid methyl ester (PC₆₁BM) results in improvements
 19 to hysteresis and device performance of both n-i-p^[126]
 20 and p-i-n^[127] devices due to enhanced crystallization and the
 21 passivation of Pb-I antisite defects at interfaces (Figure 14).
 22 Moreover, the functional group of these derivatives can be
 23 modified to provide other benefits. For example, Zhang et al.
 24 demonstrated that isomer—pure bis(1-[3-(methoxycarbonyl)
 25 propyl]-1-phenyl)-[6.6]C₆₂ (α -bis-PCBM) can be mixed into
 26 the antisolvent to simultaneously prevent moisture-induced
 27 erosion, passivate voids and pinholes, enhance crystallization,
 28 and improve electron extraction, resulting in devices
 29 with improved performance and stability under heat and light
 30 soaking.^[128] Similarly, Fu et al. have shown that fullerene end-
 31 capped polyethylene glycol (C₆₀-PEG) can be introduced into
 32 the antisolvent to enlarge grain size, passivate defects, improve
 33 carrier extraction, and provide hydrophobic coating to grains,
 34 once again resulting in devices with improved performance
 35 and stability.^[129] Thus, tailoring fullerene derivatives with spe-
 36 cific features to address the particular degradation modes asso-
 37 ciated with moisture, residual solvent complexes, or thermal
 38 degradation is a promising strategy to assist with stability
 39 while maintaining high PCE.

57 **Figure 14.** a) Schematic of PCBM-based passivation of Pb-I antisite defects and DFT calculations showing its ability to move the Pb-I antisite deep-
 58 level defect (black) to much shallower states (red). Reproduced with permission.^[126] Copyright 2015, Nature Publishing Group, under a Creative
 59 Commons 4.0 License. b) Schematic of PCBM-enhanced grain growth. Reproduced with permission.^[127] Copyright 2016, Nature Publishing Group.

4.3. Lewis Bases

1 The third class of additives, Lewis bases, are the opposite of
 2 Lewis acids—namely, any material that has the capability of
 3 donating a pair of nonbonding electrons. In perovskites, these
 4 materials form Lewis adducts with undercoordinated metal
 5 sites (Pb²⁺), neutralizing the charge of the defect. A good Lewis
 6 base for a given perovskite composition should have three
 7 properties: 1) an affinity for hydrogen bonds, 2) an accessible
 8 electron-donating atom, and 3) similar hardness to the Lewis
 9 acid.^[130] While a broad set of materials are classifiable as Lewis
 10 bases, those that have proven to be successful in modulating
 11 perovskite defects fall into three categories: O-donors, S-donors,
 12 and N-donors.

13 O-donor Lewis bases have a lone pair of electrons on an
 14 oxygen molecule and, much like our previous additives, have
 15 been used in PSCs for a long time; most successful solvents
 16 for processing perovskites, including *N,N*-dimethylformamide
 17 (DMF), *N,N*-dimethyl sulfoxide (DMSO), and *N*-methyl-
 18 2-pyrrolidone (NMP), fall into this category. These solvent
 19 molecules aid crystallization by interacting with perovskite
 20 precursors in solution to form stable intermediate phases (e.g.,
 21 MAPbI₃·DMF, MAI·PbI₂·DMSO) that can be rapidly super-
 22 saturated by an antisolvent to form uniform and dense films,
 23 as shown in Figure 15.^[131] While the effect of creating interme-
 24 diate phases and supersaturating them through standard sol-
 25 vent systems is well known to community, recent research is
 26 starting to show that it can be heavily modified by other oxygen
 27 donating Lewis bases. For example, Bi et al. reported that
 28 poly(methyl methacrylate) (PMMA) can be added to the antisol-
 29 vent to form an intermediate adduct with PbI₂ that slows down
 30 perovskite crystallization kinetics and allows for heterogenous
 31 nucleation.^[132] In doing so, the randomly formed nuclei have
 32 time to adjust their orientation to minimize the total Gibbs
 33 free energy of the system and grow in their thermodynamically
 34 preferred orientation. This results in the formation of a dense,
 35 compact, and homogeneous films with fewer defects and larger
 36 grains that, when incorporated into a device, achieves improved
 37 PCE. Similarly, Wang et al. have shown that small molecules,
 38

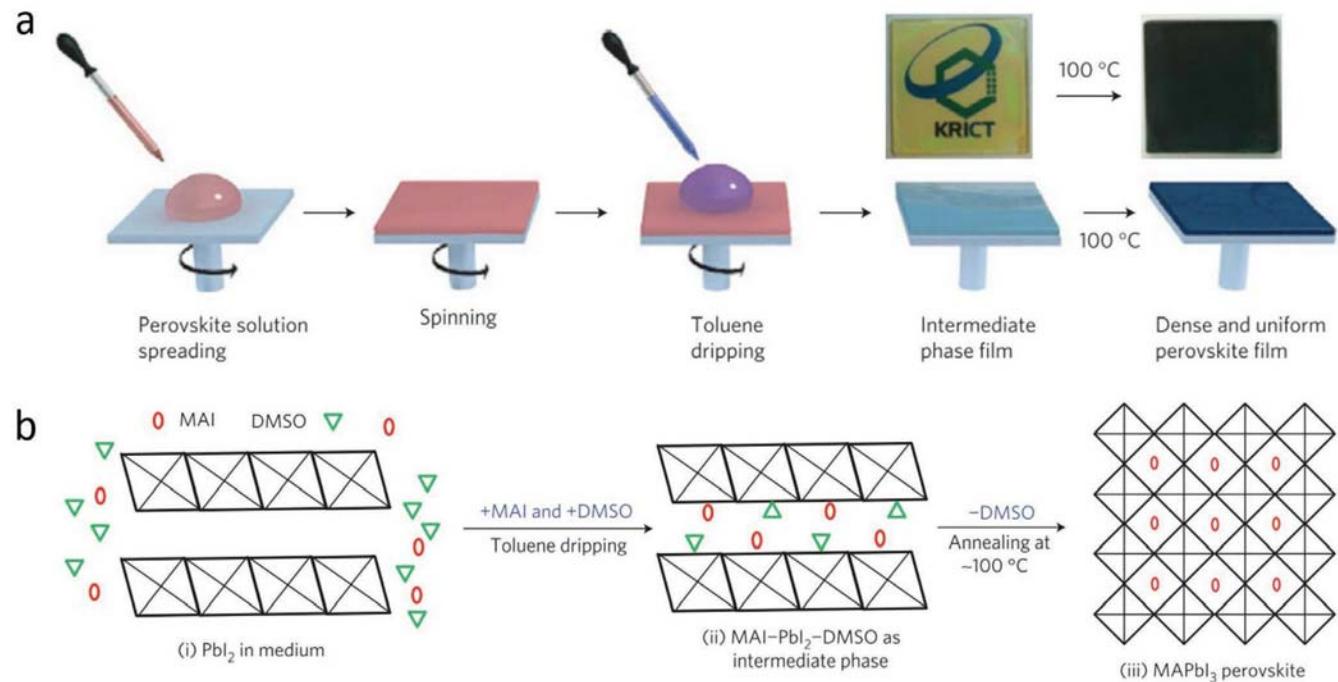


Figure 15. a) Schematic of supersaturating perovskite solution with antisolvent. b) The effect of rapid supersaturation and the resulting MAI-PbI_2 -DMSO intermediary phase on film formation. Reproduced with permission.^[131] Copyright 2014, Nature Publishing Group.

such as 1,3,7-trimethylxanthine (also known as caffeine), can be added to the precursor solution of a MA-based perovskite to control crystallization.^[133] With its carboxyl groups, caffeine serves a similar role, complexing with Pb^{2+} to slow grain growth and allow orientation of the perovskite grains, resulting in higher PCE as well as improved thermal stability.

In addition to tailoring O-donors, S-donors—namely, Lewis bases with a lone pair of electrons on a sulfur molecule—can be used for a stronger effect.^[134] The ability of these molecules to interact with undercoordinated Pb^{2+} atoms to passivate defects on the perovskite surface was first demonstrated for thiophene by Noel et al. (Figure 16).^[135] However, since then, similar effects have been noted for a broad range of thiophene derivatives including 3-alkylthiophene,^[136] polythiophene,^[137] and poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)] (PTQ10).^[138] Moreover, Fei et al. have shown that thiourea can be used to serve an analogous role while also incorporating two amino groups.^[139] It has been theorized that this allows for multiple defects to be passivated simultaneously,

as the amino acid groups can form hydrogen bonds with iodide while the sulfur-donor group can form Lewis acid–base adducts with undercoordinated Pb^{2+} sites or hydrogen bonds with NH_2 groups.^[140,141] Like thiophene, several derivatives of thiourea have proven to be successful as well. For example, Wu et al. demonstrated that three organic D- π -A molecules with various phenyl units as the donor, a thiophene π -spacer, and a cyanoacetic acid acceptor can be used to passivate Pb^{2+} defects within MAPbI_3 due to large electron density on the carboxylate end group formed as a result of the strong electron-donating *N,N*-dibutylaminophenyl unit.^[142] Additionally, Qin et al. found that the small molecule Th(3,9-bis(2-methylene-3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC-Th) can be used to stabilize the perovskite precursor solution, suppressing the formation of the δ -phase in FAPbI_3 films as shown in Figure 16.^[143]

Finally, a third class of Lewis bases with a nitrogen-bearing lone pair of electrons, dubbed N-donors, have recently started

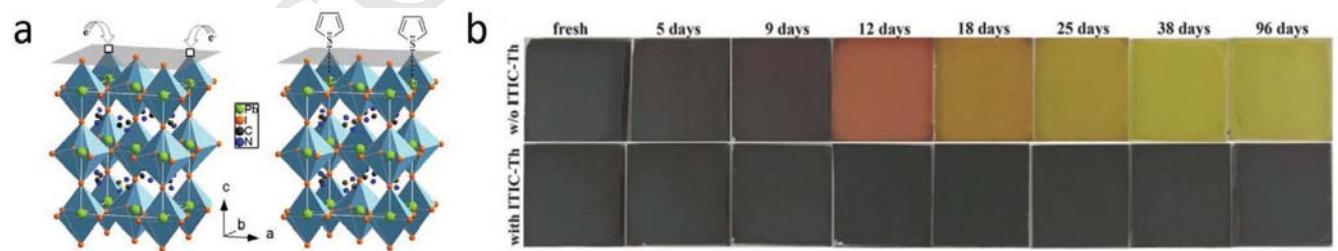
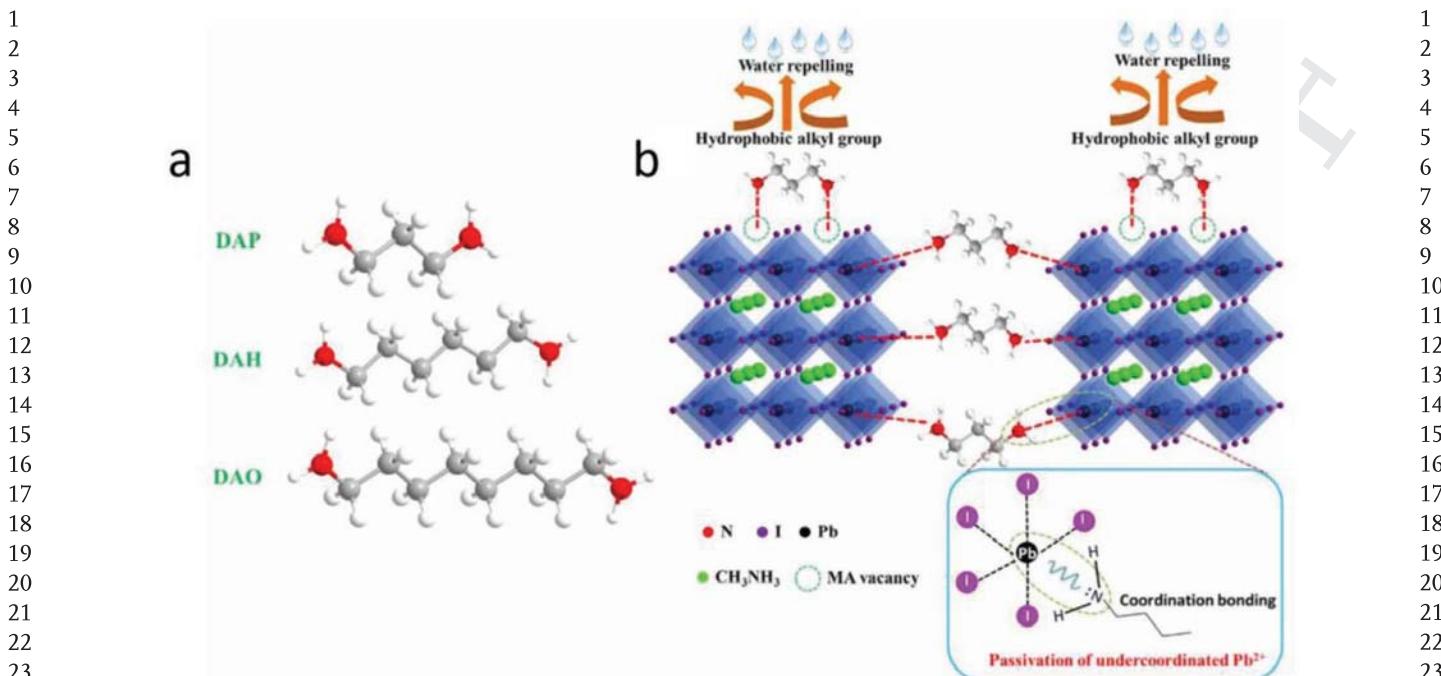
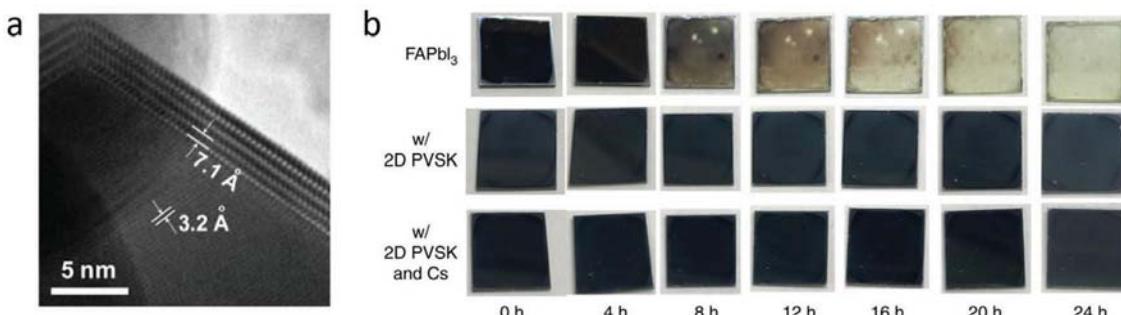


Figure 16. a) Schematic of thiophene-based passivation of undercoordinated Pb atoms at the perovskite surface. Reproduced with permission.^[135] Copyright 2014, American Chemical Society. b) Photographs of films fabricated from FAPbI_3 precursor solutions with and without the ITIC-Th additive aged for the stated number of days. Reproduced with permission.^[143] Copyright 2018, Wiley-VCH.




Figure 17. a) Various bilateral alkylamine additives. b) Their ability to passivate defects and repel water. Reproduced with permission.^[146] Copyright 2017, American Association for the Advancement of Science (AAAS).

being used intentionally to achieve similar passivation. However, like many other additives, this class of donors have been used for a long time, as 4-*tert*-butylpyridine, a N-donor Lewis base, has been commonly used to dope the top transport layer (i.e., Spiro-OMeTAD). Noticing its effect on device performance, Wu et al. tried introducing it into the antisolvent for a MAPbI_3 film.^[144] In said study, they noted that enhancements in efficiency and stability could be achieved due to its ability to form an intermediary phase that suppressed nucleation, leading to high quality films. Following this discovery, several other groups have demonstrated that additional N-donating Lewis bases, primarily consisting of pyridine ($\text{C}_5\text{H}_5\text{N}$) and aza-nide (NH_2) derivatives, could be used to reap similar benefits. For example, Liu et al. reported that pyridine can be added to a precursor solution in small volumes to produce large-grain, pinhole free, compact perovskite films.^[145] Similarly, Wu et al. demonstrated that addition of a small amount of bilateral alkylamine (BAA) (e.g., 1,3-diaminopropane (DAP), 1,6-diaminohexane (DAH), and 1,8-diaminoctane (DAO)) into the precursor solution results in passivated surfaces, improved film formation, and enhanced stability.^[146] They attributed this improvement in material properties to the ability of the $-\text{NH}_2$ tails of the BAA atoms to coordinate with undercoordinated Pb^{2+} ions and fill A-site vacancies as well as the resulting orientation of the hydrophobic carbon chain normal to the surface. These molecules and their effect are shown in Figure 17.

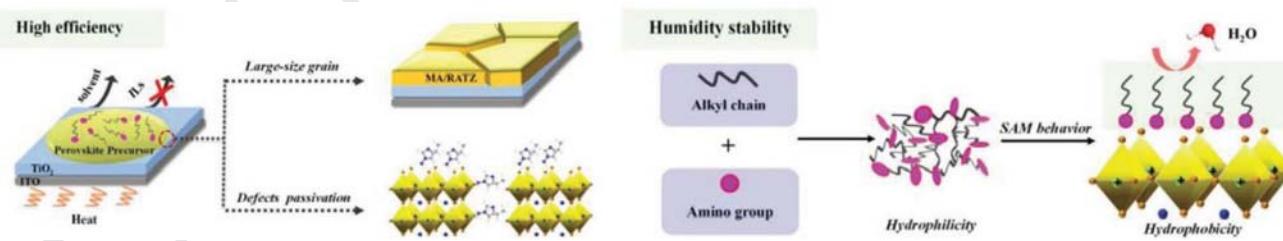
4.4. Lower Dimensional Perovskites

The fourth class of additives, lower dimensional perovskites, have a perovskite like metal halide sublattice coupled with larger

bulky cations that preclude the continuous 3D structure of canonical ABX_3 metal halide systems. While these types of low dimensional systems can make reasonable solar cells, they tend to be inferior to their 3D counterparts due to their larger band-gaps and anisotropic transport. However, it has been shown that when incorporated in the correct ratio and fashion, lower dimensional halide perovskites of the form $\text{A}'_2(\text{A})_{n-1}\text{BX}_{3n+1}$ can orient themselves to the exterior of 3D grains where they replace the defect-ridden terminating groups of the 3D perovskite with their own that appear to be less detrimental, possibly due to their lower dimensionality, while serving multiple other functions afforded by their unique properties. First, due to their hydrophobic nature and anisotropic transport, incorporation of these materials can enhance chemical stability. One example of this type of strategy was employed by Tong et al. in which guanidinium thiocyanate (GuaSCN) was mixed into a Sn-Pb mixed metal halide precursor to produce low-bandgap (≈ 1.25 eV) perovskite thin films.^[89] In this study, Tong et al. noted optoelectronic improvements when the GuaSCN additive was employed in a volume fraction that permitted formation of a 2D structure on surfaces and grain boundaries. The formation of such a 2D structure shelled the grains of the 3D perovskite, as shown in Figure 18, inhibiting its oxidation by simultaneously retarding reactions with oxygen at the grain boundaries and tin diffusion out the grains. In addition to improving the chemical stability of the perovskite absorber, these lower dimensional perovskites unique position within the film can induce strain into the 3D bulk, allowing them to control competing room temperature structural phases. For example Lee et al. demonstrated that the addition of small amounts (1.67 mol%) of 2D PEA_2PbI_4 into the precursor can suppress the yellow phase FAPbI_3 to produce an apparently phase-pure FA perovskite, as evidenced by the color

Figure 18. a) High resolution transmission electron microscopy images of the 2D Gua-based shell around the grain boundary of Sn-Pb-based perovskite obtained by adding 7% GuaSCN. Reproduced with permission.^[89] Copyright 2019, American Association for the Advancement of Science (AAAS). b) Pictures of FAPbI₃, FAPbI₃ with 2D PEA additive, and FAPbI₃ with 2D PEA additive and Cs additive exposed to 80% RH/20 °C for stated time. Reproduced under the terms of the Creative Commons 4.0 License.^[147] Copyright 2018, American Association for the Advancement of Science (AAAS).

of resulting films (Figure 18), an order-of-magnitude enhancement in photoluminescence lifetime, and resulting device with improved PCE and operational stability.^[147] Finally, due to wide-bandgap nature of these lower dimensional perovskites, they can create heterostructures at critical operational interfaces and grain boundaries that form electronic barriers, modulating charge transfer.^[148] If properly controlled in thickness, these barriers can limit interfacial recombination while avoiding the losses in current that would result from over inhibition of carrier transport/extraction from the active layer. Thus, if used correctly, these additives provide a self-organized system that can passivate defects at the grain boundaries as well as modulate charge transfer, strain, and ionic transport.


4.5. Ionic Liquids

The final class of additives, Ionic liquids (ILs), are ionic salts comprised of large organic cations coupled with organic or inorganic anion counterparts. They have extremely low vapor pressure, low melting points (<100 °C), high ionic conductivity, and are capable of dissolving most organic and inorganic compounds—including perovskites. This allows them to simultaneously modify perovskite formation, passivate defects by ionically bonding to them and neutralizing their charge, and provide a hydrophobic coating to grain boundaries, resulting in similar effects to the previously described additives. For example, Shahiduzzaman et al. have shown that 1 wt% 1-hexyl-3-methylimidazolium chloride (HMImCl) could be added to a MAPbI₃/DMF solution to retard crystal formation and facilitate uniform nucleation to obtain high quality films and

improved device performance.^[149] Moreover, in a following publication, they demonstrated that the organic cation could be altered to reduce the viscosity of the IL to further improve morphology, crystallinity, and device performance.^[150] On the other hand, Salado et al. demonstrated that by using 0.5 wt% of a hydrophobic IL additive, namely 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl) imidazolium iodide (FIM), the stability and performance of both MAFA- and MAFAC-based PSCs could be improved.^[151,152] Similarly, Wang et al. have shown that triazolium ILs with an amino group and an varying alkyl side chains could be added into the precursor solution to achieve devices with improved performance and stability under humid conditions.^[153] They contributed these improvements to the unique configuration of the IL, which allowed the lone pair of electrons on the amino group to interact with Pb²⁺ defects, passivating defects, retarding crystallization, and forming a self-assembled monolayer on the surface of the grains that kept the hydrophobic alkyl chains of the IL vertical to protect the perovskite (Figure 19). Finally, Bai et al. have shown that 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF₄) could be mixed into MAFAC-based perovskites to enlarge grains, improve energetic alignment, and suppress ion migration, resulting in higher efficiency devices with remarkably enhanced stability.^[154]

4.6. Future Approaches

Thus, each category of additive passivates defects by ionic or coordinate bonding with defects of the opposite charge, neutralizing their perturbation on the perovskite lattice and electronic structure. As a result, combining multiple approaches will likely

Figure 19. Schematic of triazoliums ability to enhance performance (left) and repel water (right). Reproduced with permission.^[153] Copyright 2019, Wiley-VCH.

1 be required to passivate the variety of charged defects at perov-
2 skite surfaces. Some research has already been done on this
3 front. For example, 2-pyridylthiourea has been shown to serve
4 as both a N- and S-donor,^[155] a combination of commercial bis-
5 PCBM isomers in the antisolvent and *N*-(4-bromophenyl)thio-
6 urea (BrPh-ThR) in the perovskite precursor have been shown
7 to serve as both a N-donor and ammonia group,^[156] NaF has been
8 shown to simultaneously passivate both anion and cation vacan-
9 cies,^[157] and two thiadiazole derivatives (1,3,4-thiadiazolidine-
10 2-thione and 1,3,4-thiadiazolidine- 2,5-dithione, TDZDT) have
11 been shown to act as both S- and N-donors.^[158] However, more
12 work must be done on this front. To establish a directed guide
13 to designing such additive combinations, additional charac-
14 terization of not only the resulting films but also the details of
15 materials formation will be critical. Moreover, additional work
16 must be done in characterizing how these defect approaches
17 interact with processing at scale.

5. Perovskite Device Stability

22 In the preceding sections, we have attempted to outline the
23 field's current mechanistic understanding of perovskite mate-
24 rial stability. In doing so, we stressed the role of film formation,
25 composition, and additives in controlling defects, reviewed
26 known degradation mechanisms afforded by the environment,
27 and motivated that degradation can be altered by changing
28 composition and defect concentration. In these sections, we
29 hope to have conveyed that the material degradation of perov-
30 skites appears to be dominated by defects, particularly at the
31 surfaces. Thus, while its rise to fame has been largely afforded
32 by its intrinsic defect tolerance, its push to commercialization
33 will likely require deeper understanding of surface defects,
34 how they impact device performance, and how they ultimately
35 precipitate specific degradation pathways. With a proper grasp
36 of the perovskite material and the factors that affect its sta-
37 bility, we now move to the next level of complexity: device sta-
38 bility. Ideally, gauging stability at this level would be done by
39 testing devices/modules in the field for over 20 years to prove
40 their durability. However, optimization of device architectures
41 through iterations on this process would take far too long
42 and be debilitatingly expensive. As a result, we must develop
43 protocols to accelerate degradation, being careful that we do
44 not create additional mechanisms that are not present under
45 standard operating conditions. To do this, we must understand
46 not only which degradation mechanisms are present under
47 standard operating conditions, but also the associated rate for
48 each reaction, how to increase it (intensity, voltage, tempera-
49 ture, strain, etc.), and its impact on device performance.^[5,159]

50 Building on the last few sections, we increase the com-
51 plexity with additional layers, all of which can interact and
52 cause degradation. Due to variations in perovskite composi-
53 tion, device architecture, processing conditions, initial effi-
54 ciency, and degradation testing parameters, we will avoid
55 quantitative comparisons between separate studies. Instead,
56 we will focus on outlining the considerations that must be
57 made when analyzing device degradation, reviewing known
58 degradation mechanisms, and discussing state-of-the-art
59 device stability results.

5.1. From Material to Device (Understanding Degradation Modes)

1 As previously discussed, continued optimization of the active
2 layer through alloying and additives will be required to produce
3 stable devices. However, in addition to this, incorporation of
4 the perovskite into a device enables other degradation mecha-
5 nisms due to the presence of new layers and nonequilibrium
6 conditions that perturb the electronic and chemical structure
7 of the device. These mechanisms are significantly more com-
8 plex, architecture specific, and convoluted than those involving
9 only the active layer. Thus, the effectiveness of device architec-
10 tures is generally gauged by comparing the degradation modes
11 of device parameters (e.g., V_{oc} , fill factor (FF), and short-circuit
12 current density (J_{sc})). To hypothesize how changes in these
13 parameters correlate with various degradation mechanisms,
14 existing models for p-i-n and n-i-p photovoltaic technologies
15 had to be modified to fit empirical device observations.

16 More specifically, previous models of most photovoltaic
17 materials assumed that ions in the active layer are immobile.
18 As a result, the ionization potential and electron affinity of the
19 p- and n-type transport layers pin respective carrier densities
20 at the active layer/transport layer interfaces. This results in a
21 uniform drop in potential across the active layer that moves car-
22 riers to the interface where they can be extracted. In this case,
23 changing the energetics of a contact impacts both the built-in
24 voltage and location of carrier densities within the active layer.
25 Although these changes should not affect bimolecular recom-
26 bination in the device, which is determined by the product of
27 carrier densities in the active layer rather than their location
28 within the bandgap, it should alter the rate of monomolecular
29 recombination as it is governed by a single carrier density. This
30 will impact the V_{oc} of the device.

31 On the other hand, perovskites are theorized to have highly
32 mobile halide vacancies that move to the perovskite/hole trans-
33 port layer (HTL) interface when a potential gradient is formed
34 across the active layer.^[160,161] To obey charge neutrality, they
35 leave behind an immobile anion-rich region near the ETL
36 that grows wider as the vacancies drift toward the HTL. These
37 charged defects shift the vacuum-level of the perovskite, causing
38 band bending to occur over an extremely narrow region near
39 the HTL and a larger region near the ETL. As a result, the loca-
40 tion of carrier densities within the perovskite band remain rela-
41 tively unaffected by the energetics of the ETL and HTL.^[160,162] The
42 V_{oc} is then limited by the maximum Fermi level splitting of the
43 active layer and decreases for every instance of nonradiative
44 recombination (i.e., monomolecular recombination from trap
45 sites at the surface). The model proposed^[161] is summarized in
46 Figure 20 next to a standard p-n junction to elucidate simili-
47 ties and differences.

48 If correct, this band diagram has several implications for
49 enhancing performance. First, it implies that the best way
50 to achieve high voltages is not by choosing transport layers
51 with ideal band offset to the perovskite, but rather those
52 that increase its quasi Fermi level splitting through the pas-
53 sivation of defects at the HTL/ETL interface to limit surface
54 recombination.^[160,161] Below the perovskite, this can be done
55 by enhancing nucleation, crystallization, and carrier concen-
56 tration.^[163] While it is still debated whether these changes
57 are induced by electrical potential, terminating groups, or
58

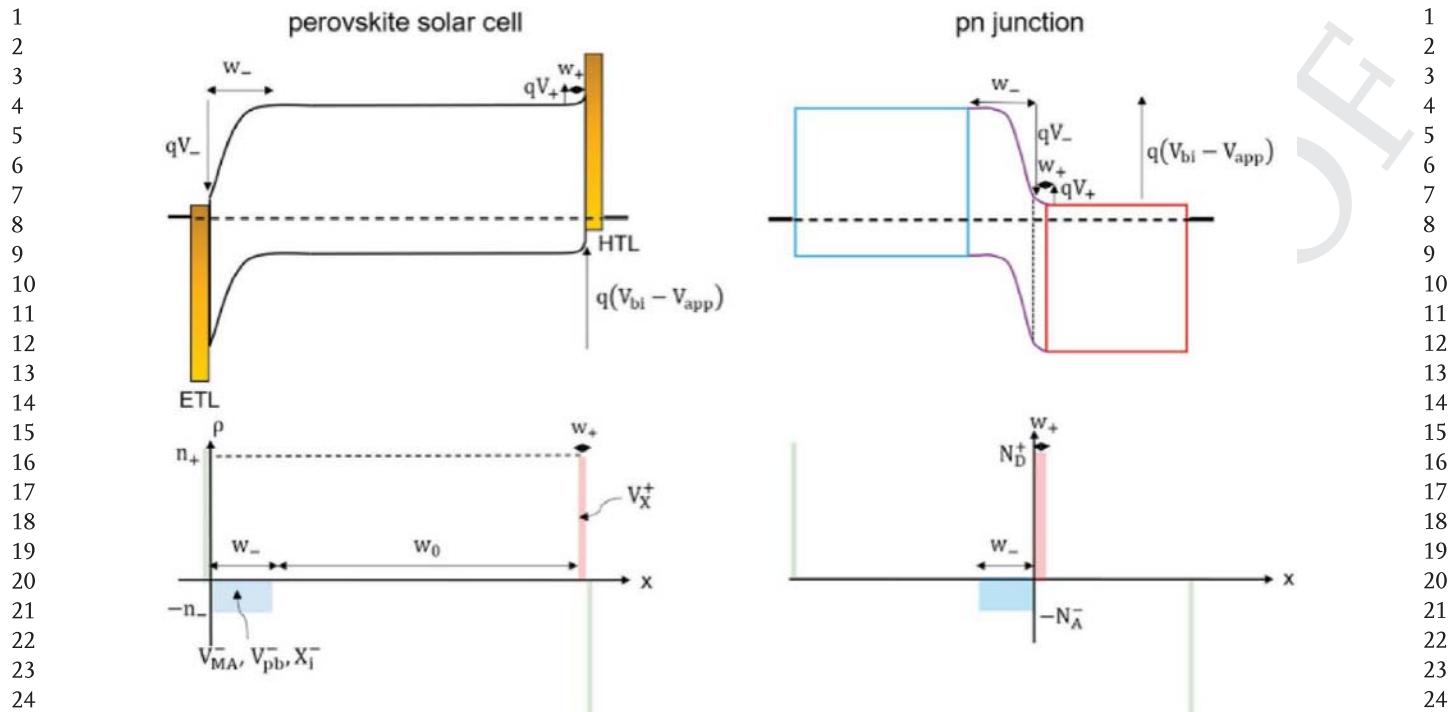


Figure 20. Band diagram (top) and charge distribution (bottom) for a perovskite solar cell (left) and standard p-n junction (right). Reproduced with permission.^[161] Copyright 2019, Elsevier Publishing.

both, it has become clear they can have a large impact on the optoelectronic properties of the active layer: Miller et al. demonstrated that the Fermi level of the perovskite tends to correlate with that of the substrate.^[164] Tirmzi et al. demonstrated that the microwave conductivity of the perovskite varies with the substrate,^[165] and Du et al. demonstrated that a thin interlayer of PTAA can be inserted between nickel oxide and the perovskite to obtain a device with higher voltage.^[166] On the other hand, transport layers above the perovskite can be chosen to dope or passivate defects on the surface. While reports of doing this intentionally are few and far between, it has become apparent that two of the most successful and widely used contacts have unknowingly done this. Namely, reports have shown that both C_{60} ,^[70] the most commonly used ETL in p-i-n devices, and 4-*tert*-butylpyridine,^[167] an additive used in the spiro-OMeTAD layer traditional to n-i-p devices, do just this. Second, it implies surface recombination is most detrimental near the HTL where the band bending from ionic species, and thus carrier selectivity, is smaller in magnitude and width than at the ETL interface. Thus, improvements to the HTL/perovskite interface will reap the largest benefits. Finally, it suggests that the negative effect of surface recombination can be mitigated by minimizing iodide vacancy concentrations such that they have insufficient charge to screen the entire built-in potential, allowing a small electric field to be formed over the bulk of the perovskite. We note that while this may help with current extraction, charge disassociation, and limiting surface recombination, completely getting rid of mobile ionic species returns the band diagram to that of other semi-conductors. Thus, as perovskites improve in material quality and push toward theoretical efficiency limits, the

energy levels of transport layers will have an increasing effect on device performance.

In addition to the above considerations for initial performance, the model has several implications for long-term stability as it suggests the distribution of defects within the active layer can be altered by the choice of selective contacts. More specifically, if halide vacancies move to the perovskite/HTL interface in order to counteract energetic offsets in band alignment, the number of defects required to screen the potential at a given interface should be related to its band offset; perovskites with a large offset at the HTL/perovskite interface should pull a high density of positively charged defects such as iodine vacancies to the interface, leaving behind a high density of negatively charged defects on the ETL side of the device. As a result, devices with a lower built-in voltage will have a lower interfacial concentration of defects when at equilibrium conditions, *ceteris paribus*. However, this distribution of defects is altered when the device is biased. Reverse biasing the device should increase the potential gradient across the perovskite and therefore the concentration of defects at the interface. Meanwhile, forward biasing the device should cause defects at the interface to be pushed toward the bulk of the perovskite until the applied voltage reaches the sum of the offsets at the two interfaces. At this point iodide vacancies should have entirely moved into the bulk and recombined, forming a spatially uniform material. Going past this point will then apply a voltage across the perovskite in the opposite direction of the built-in voltage, causing charged defects to move to the opposite interface. Combining these observations, the concentration of defects at perovskite interfaces should be dictated by the

1 built-in voltage (V_{bi}) minus the applied voltage (V_{app}) and the
2 type of defect by the sign of this voltage
3

$$4 D_{tot} \approx D(V_{tot}) \approx D(V_{bi} - V_{app}) \quad (18)$$

$$6 D_{tot} = \pm \frac{1}{4} \frac{\epsilon_0 \epsilon_r V_T}{L_D} \left[\left(1 + 16 \frac{V_{bi} - V_{app}}{V_T} \right)^{\frac{1}{2}} - 1 \right] \quad (19)$$

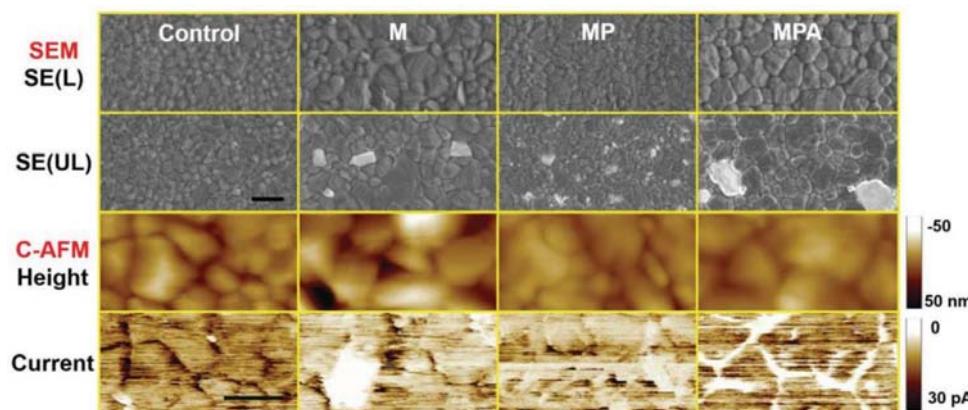
7 where ϵ_0 is permittivity of free space, ϵ_r is the relative permittivity of the perovskite, V_T is the thermal voltage, and L_D is the accumulation region width. We note that while changes in ionic concentration are not expected to alter the thermodynamics of existing degradation mechanisms, which are dependent on the voltage at a given interface and not the density of carriers, they can alter equilibrium concentrations and reaction rates (kinetics). It follows that at every bias there is a list of degradation mechanisms that the perovskite can undergo which are dictated by voltage and available chemical species, and a rate for each mechanism that is dictated by concentration. As a result, the considerations that must be taken at a given interface change depending on defect concentrations, contact materials, and applied bias. Worse yet, if these reactions modify the interface, it is dominant degradation pathways may change.

26 With a better understanding of what degradation mechanisms are for each transport layer/perovskite/transport layer
27 stack, one could and should design interfaces and interlayers to
28 avoid certain reactions. However, to accomplish this, the
29 community must first establish the additional degradation mechanisms enabled by other device layers. Although this will be
30 highly dependent on device architecture and is poorly under-
31 stood to date, there are several concerns that plague common
32 architectures in literature. These reactions are of the photooxi-
33 dative, diffusive, and thermally induced nature.

38 5.2. Photooxidative Reactions

40 Reactions between a transport layer and atmospheric oxygen or
41 other layers in the device can lead to changes in its oxidation
42 state. Depending on the transport layer, this can cause changes
43 in conductivity, transparency, structure, and/or band align-
44 ment with other layers. Although the former two are unlikely
45 to have a major impact on device performance due to the small
46 thickness of transport layers (10–20 nm), the latter can alter
47 the selective properties of the transport layers and defect dis-
48 tribution within the perovskite. While small changes in these
49 parameters may initially have little to no effect on device per-
50 formance, the reactions and their effects can be perturbative and
51 not self-limiting. This would result in moderate changes that
52 reduce FF, likely by increasing series resistance, decreasing
53 shunt resistance, and/or reducing the built-in field across
54 the perovskite. Furthermore, if these changes become large
55 enough, they could drastically hinder extraction, forcing free
56 carriers to spend significantly more time at the interface where
57 recombination is most prevalent. Depending on the barrier to
58 extraction and defect density at that interface, this could result
59 in losses to V_{oc} , J_{sc} , FF, and/or the diodic behavior of the device.

1 In addition to oxidizing or reducing the transport layer, these
2 reactions can also lead to the reduction or oxidation of the
3 perovskite. For example, when excited by UV light, metal oxides
4 (TiO_x , SnO_x , NiO_x) are well known to form reactive superoxides
5 that can catalyze the oxidation of most organic materials in con-
6 tact with them, including perovskites. This has been realized by
7 several groups, including Ito and co-workers, who found that
8 12 h of UV light exposure entirely converts $MAPbI_3$ on TiO_x to
9 PbI_2 .^[168] To explain this, they proposed the following reaction



13 First, TiO_x extracts electrons from iodine, deconstructing
14 methylammonium iodide to form neutral iodine and a meth-
15 ylammonium cation. Then, an equilibrium is formed between
16 the methylammonium cation and its deprotonated form, meth-
17 yamine. Although the left-hand-side of this equilibrium should
18 be favored due to its high acid dissociation constant (pK_a of
19 10.8), continual evaporation of methylamine and consumption
20 of protons in the successive reaction cause it to move forward
21 via Le Chatelier's principle.^[169] Finally, electrons from the TiO_x
22 are reinjected into the perovskite, allowing the iodine gener-
23 ated in step 1 to bond to the protons generated in step 2 and
24 a negative iodide ion from the perovskite to form hydroiodic
25 acid, which quickly evaporates away. Cumulatively, these reac-
26 tions break apart methylammonium into gaseous compounds,
27 leaving behind PbI_2 at the interface which hinders charge
28 extraction and therefore reduces J_{sc} and FF.^[170] Studies have
29 shown that this can be mitigated by modifying the interface
30 with an inorganic perovskite ($CsBr$ ^[171]), placing an electron
31 acceptor (C_{60} ^[172]), blocker (Sb_2S_3 ^[168]), or insulator (AlO_x ^[173])
32 between TiO_x and the perovskite, or replacing the TiO_x with a
33 less photocatalytic oxide (SnO_x ^[170]).

41 5.3. Diffusive Reactions

42 Additionally, the ionic nature of perovskites allows ions to
43 easily diffuse into or out of it and react. While reactions of this
44 nature have the potential to degrade any layer, those between
45 the perovskite and top metal contact cause catastrophic device
46 degradation across a variety of metals, cell architectures, and
47 degradation testing parameters due to the propensity of almost
48 all metals to react with halide and/or halogen species. Studies
49 detailing these reactions suggest that they occur through three
50 separate, but connected, mechanisms.

51 First, numerous stressors including light, temperature,
52 humidity, and electrical bias can create halide vacancy/inter-
53 stitial pairs and other volatile organohalide species that dif-
54 fuse through the top transport layer and react with the metal
55 contact, both corroding the metal and causing an organo-
56 halide deficiency in the perovskite. For example, Kato et al.
57 demonstrated that dark aging of a FTO/ TiO_x / $MAPbI_3$ /Spiro-
58 OMeTAD/Ag device in air for three weeks results in the
59

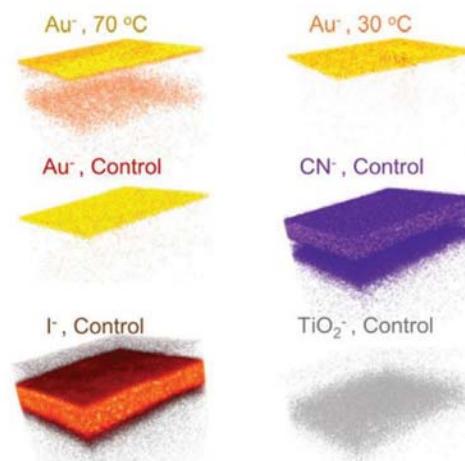
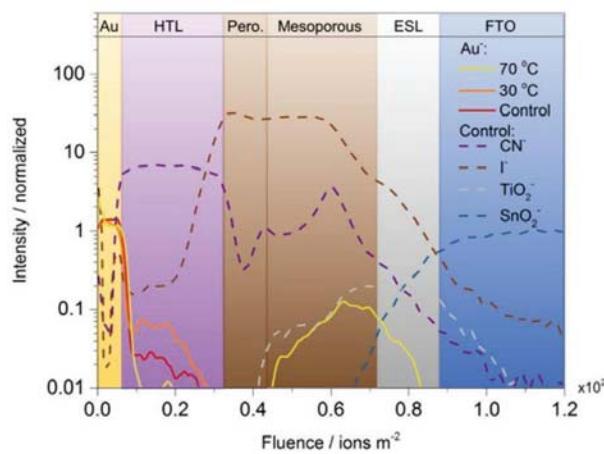



Figure 21. Scanning electron microscope and C-AFM images of MAPbI_3 films in FTO/ NiO_x / MAPbI_3 (control), FTO/ NiO_x / MAPbI_3 (M), FTO/ NiO_x / MAPbI_3 /PCBM (MP), FTO/ NiO_x / MAPbI_3 /PCBM/Ag (MPA) stacks. M, MP, and MPA are aged at 100 °C for 24h. Reproduced with permission.^[175] Copyright 2017, Wiley-VCH.

diffusion of organohalide species to the Ag contact where they convert approximately a fourth of the Ag to AgI , a yellowish wide-bandgap insulating semiconductor that destroys the conductivity of the electrode.^[174] Similarly, Li et al. demonstrated that dark aging of a FTO/ NiO_x / MAPbI_3 /PCBM/Ag device in N_2 at 85 °C results in analogous degradation.^[175] Moreover, they showed that the presence of Ag creates a sink for the volatilized species, causing accelerated loss of organohalide species at grain domains (as shown by the scanning electron microscope and C-AFM scans in Figure 21) that in turn lead to drastically reduced carrier lifetimes and extraction rates.

Second, temperatures in the upper range of standard testing conditions can cause metal to diffuse from the electrode through the top transport layer and into the perovskite, creating species that can hinder charge transport and/or serve as centers for nonradiative recombination. In fact, Domanski et al. demonstrated such diffusion occurs in as little as 15 h for FTO/ TiO_x /FAMACsPbIBr/spiro-OMeTAD/Au devices aged in N_2 when temperatures are increased from 20 to 70 °C, as shown

by the time-of-flight secondary ion mass spectrometry (ToF-SIMS) in Figure 22. Moreover, they reveal that this diffusion of ions is sufficient to lead to a concentration of Au atoms in the perovskite that is only three orders of magnitude less than that of lead (8.9 × 10¹⁴ compared to 10¹⁷ cm⁻²).^[176] Similarly, Boyd et al. demonstrated that Indium doped tin oxide (ITO)/ NiO_x /perovskite/ C_{60} / SnO_x /ITO/Ag devices with $\text{FA}_{0.83}\text{Cs}_{0.17}\text{Pb}(\text{I}_{0.83}\text{Br}_{0.17})_3$, $\text{FA}_{0.75}\text{Cs}_{0.25}\text{Sn}_{0.5}\text{Pb}_{0.5}\text{I}_3$, and MAPbI_3 perovskites suffer from the same fate at 85 °C, indicating that the degradation seen in Domanski's study does not appear to be specific to the active layer, transport layer, gold, or n-i-p configuration used.^[177] To further probe how universal this degradation may be, Ming et al. studied the ability of common metals to form interstitial defects in MAPbI_3 , the energy levels of those defects, and their ability to diffuse through the lattice.^[178] They found that all metals studied besides Mo_i and W_i readily form defects, that all defects besides Cu_i and Ag_i introduce detrimental midgap states, and that Cu_i^+ , Ag_i^+ , Au_i^+ , Co_i^+ , Ni_i^+ , and Pd_i^+ should readily diffuse through perovskites while Cr_i^+ , $\text{Mo}_i^{2/3+}$,

Figure 22. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profile showing diffusion of Au into a FAMACs perovskite after heating at 70 °C in N_2 (left) and corresponding 3D elemental maps for each of the species (right). Reproduced with permission.^[176] Copyright 2016, American Chemical Society.

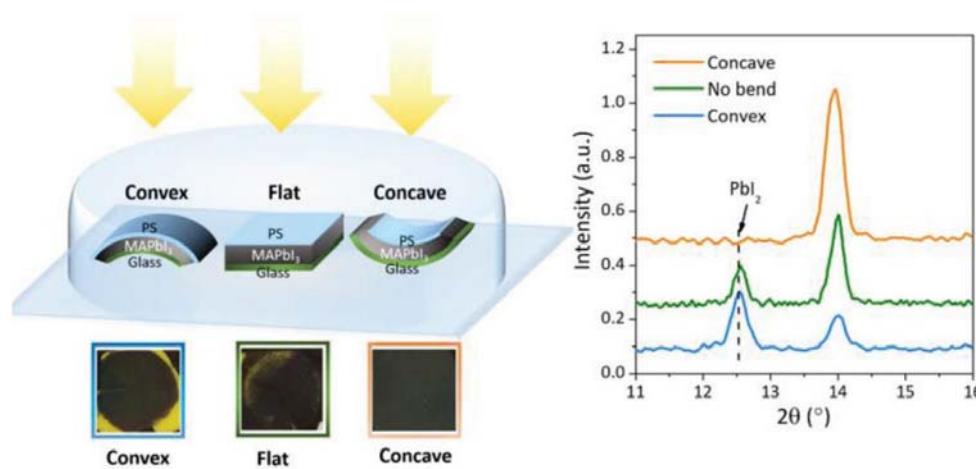
1 $W_i^{2/3+}$, Co_i^{2+} , Ni_i^{2+} , and Pd_i^{2+} should be largely immobile at
2 room temperature.

3 Lastly, direct connection between the perovskite and metal
4 contact can lead to the formation of a redox couple between
5 the metal and Pb^{2+} that causes reduction of Pb^{2+} to Pb^0 and
6 accelerated loss of halide species. Zhao et al. have shown that
7 reactions of this nature occur for $MAPbI_3$, $CsPbI_3$, and $CsPbBr_3$
8 active layers with Ag, Al, Yb, or Cr contacts.^[179] Moreover, they
9 demonstrated that the severity of these reactions follows what
10 is expected based on the standard electrochemical potentials of
11 the metals, suggesting that the oxidation of Ag is only enabled
12 by the presence of iodine.

13 Due to the above reactions catastrophic effect on device
14 performance, significant effort has been made to avoid them.
15 The most obvious method to do so is to utilize alternate contact
16 layers that do not react with halides, such as carbon or
17 transparent conductive oxides (TCOs). However, these materials
18 result in far worse cell performance due to their lower
19 conductivity. Because of these limitations, a variety of barrier
20 layers have been developed to prevent migration of ions
21 between the perovskite and rear metal contact. Cumulatively,
22 these studies have shown that the diffusion of ions, and thus
23 degradation, can be reduced by placing a compact, conformal,
24 and dense material between the top transport layer and metal
25 contact.^[177,180-186] However, it is noteworthy this fails to prevent
26 reactions between the top transport layer and perovskite. While
27 reactions of this nature have not been demonstrated to occur
28 under standard operating conditions, heating ITO/ NiO_x/MAI
29 and ITO/ SnO_x/MAI samples at 120 and 90 °C for 10 min has
30 been demonstrated to generate NiI_2 and SnI_4 , respectively.^[54]
31 Thus, it is likely that these reactions occur with perovskites and
32 have just not been identified yet due to the severity of reactions
33 between the top transport layer and perovskite.

34 35 36 **5.4. Thermally Induced Reactions**

37 Finally, temperatures in the upper range of standard testing
38 conditions (e.g., 85 °C) have the potential to degrade layers within
39 the PSC besides the perovskite. While this is less of a concern
40 for TCOs, metals, and inorganic transport layers which are generally
41 stable to a couple hundred degrees Celsius, organics often
42 possess much lower thermal decomposition temperatures and/or
43 a glass transition temperature where they undergo a transition
44 from a rigid glassy material to a soft material. When this
45 temperature is passed, selective transport properties rapidly
46 change, leading to abrupt deterioration of device performance
47 through losses in J_{sc} and FF. For example, spiro-OMeTAD has a
48 glass transition temperature of 124 °C that reduces significantly
49 when doped with Li-TFSI and 4TBP.^[162,187] As a result, devices
50 employing it quickly fail at higher temperatures.^[162,170]


51 Thus, one would expect an increase in temperature below any
52 phase transitions to initiate no new degradation mechanisms
53 while increasing the rate of chemical reactions exponentially
54 and mass transport linearly. However, the effect of temperature
55 on PSC degradation is not so straightforward. This is because,
56 in addition to accelerating various degradation mechanism
57 kinetics, altering the temperature of the perovskite changes
58 strain. In short, with changing temperature, layers in the device

59 want to expand/contract at different rates determined by their
60 coefficient of thermal expansion (CTE). However, since successive
61 layers are bound to each other, not all layers can expand/contract
62 at their desired rate. This mismatch in expansion/contraction
63 leads to strain within one or more of the device layers. While the effect of strain over the range of standard
64 testing conditions appears to be minimal for most layers in the
65 device stack, evidence suggests that the strain resulting from
66 the mismatch in CTE between the perovskite and its substrate
67 impacts the intrinsic stability of the perovskite. More specifically,
68 Zhao et al. have shown that when a perovskite on a
69 ITO/glass substrate is cooled from its processing temperature
70 to room temperature, its desire to shrink more than the substrate
71 induces a tensile strain in the in-plane direction that is
72 compensated for by a contraction in the out-of-plane direction,
73 regardless of the perovskite composition and deposition
74 method utilized.^[188] Then, by depositing the perovskite on flexible
75 substrates and bending them concave, to reduce strain, and
76 convex, to increase strain, they show that an increase in strain
77 leads to a reduction in the activation energy for ion migration
78 and accelerated degradation in light, as shown by the images
79 of films and X-ray diffraction (XRD) in Figure 23. Finally, they
80 show that due to the origins of this strain, it can be alleviated by
81 either decreasing the mismatch in CTE between the perovskite
82 and substrate or the difference in temperature between fabrication
83 and operation. Others have reported similar results.^[189,190]

84 85 86 **5.5. State-of-the-Art Device Stability**

87 As discussed in the preceding sections, incorporating the
88 variety of active layers available into the myriad of device
89 architectures utilized allows for the possibility of numerous
90 degradation mechanisms, both at the material and device level.
91 Depending on the specific testing conditions employed, any
92 number of these mechanisms can dominate degradation. As a
93 result, summarizing the countless number of reports on stability
94 is out of the scope of this work (for a discussion on state-of-the-art
95 device stability look here).^[191,192] Instead, the goal
96 of this section is to elaborate on how building a mechanistic
97 understanding of degradation allows for the methodical tailoring
98 of active layers, interfaces, and barrier layers to achieve
99 state-of-the-art device stability. To do this, we will first cover
100 the advancements that have led to state-of-the-art operational
101 stability. These advancements iteratively address each of the
102 degradation mechanisms discussed in the preceding sections
103 such that their effect is collectively minimized. However, they
104 may not utilize the best possible solution. As a result, we will
105 follow this discussion with a review of high efficiency devices
106 that have made improvements to one or more of the layers to
107 improve stability.

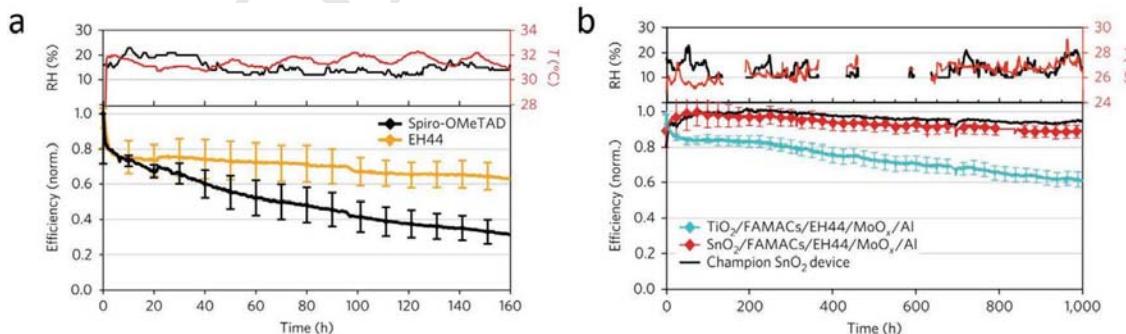
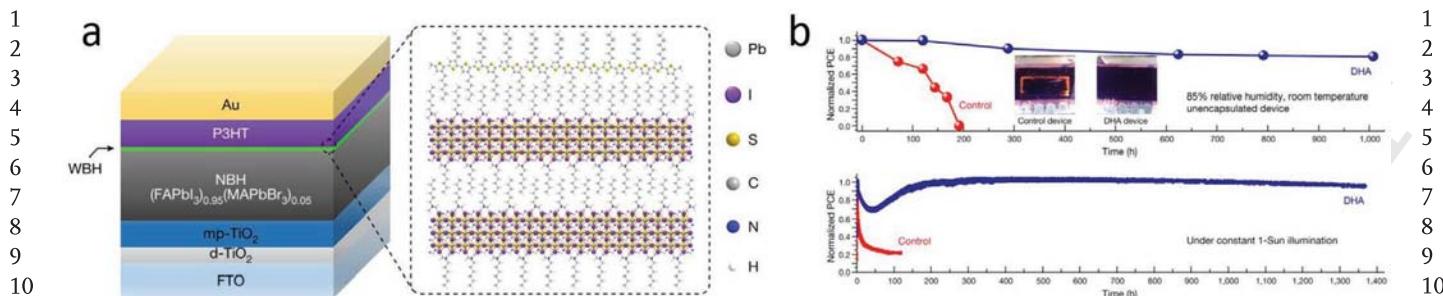

108 Due to the volatility of $MAPbI_3$, initial efforts focused on
109 increasing device stability by creating perovskite layers that
110 were more stable to the intrinsic and extrinsic material degradation
111 mechanisms covered in Sections 2 and 3. One of the most
112 notable advancements in this regard came from Saliba et al.,
113 who showed that alloying cesium into the A-site of FAMA-based
114 perovskites provided significant improvements to performance,
115 reproducibility, and efficiency.^[19] At the optimal concentration,
116

Figure 23. Experimental setup used to induce three different strains in perovskite films (top left), pictures of the films after 500 h illumination (bottom left), and out of plane XRD patterns of the same films (right). Reproduced under the terms of the Creative Commons 4.0 License.^[188] Copyright 2017, American Association for the Advancement of Science (AAAS).

the $\text{Cs}_{0.05}(\text{MA}_{0.17}\text{FA}_{0.83})_{0.95}\text{Pb}(\text{I}_{0.83}\text{Br}_{0.17})_3$ films exhibited greater thermal stability to those without cesium, resulting in slower degradation as evidenced by XRD and absorption. Moreover, films with cesium demonstrated remarkably enhanced stability when incorporated into glass/FTO/compact- TiO_x /Li-doped mesoporous TiO_x /perovskite/Spiro-OMeTAD/Au devices; while control devices without cesium quickly decayed from $\approx 16\%$ to 8% PCE in ≈ 100 h (in N_2 , 25°C , under illumination, at maximum power point (MPP)), devices employing cesium remained mostly stable after an initial decrease in efficiency from $\approx 20\%$ to 18% . Despite a remarkable improvement from the control device, these devices still degraded relatively fast due to the device architecture utilized, which failed to address known degradation mechanisms not inherent to the active layer (i.e., those enabled by other layers in the device which were covered earlier in this section). Thus, the stability of these devices can be further enhanced by tailoring interfaces and other layers within the device. For example, in the first demonstration of unencapsulated cells that maintained $>90\%$ stability for over 1000 h under operational conditions (light, MPP, ambient), Christians et al. replaced several layers of the commonly used device architecture, Glass/FTO/ TiO_x /($\text{FA}_{0.77}\text{MA}_{0.16}\text{Cs}_{0.05}$) $_{0.97}$ $\text{Pb}(\text{I}_{0.84}\text{Br}_{0.16})_{2.97}$ /Spiro-OMeTAD/Au, to enhance stability.^[170]

First, they removed the standard hygroscopic and pinhole riddled spiro-OMeTAD HTL with mobile LiTFSI dopants in favor of a more chemically inert, conformal, hydrophobic EH44 layer to simultaneously provide a stable interface for extraction and limit moisture ingress. Then, they exchanged the TiO_x ETL for a less photocatalytic SnO_x layer and the back Au contact for a MoO_x /Al contact that had been shown to retard ion migration and associated metal induced degradation. All three of these changes resulted in large improvements to stability, allowing the optimized devices to retain $\approx 95\%$ of their original efficiency over 1000 h compared to the control devices which degraded to $\approx 30\%$ of their original efficiency in just 160 h. Results are shown in Figure 24. At the time of publication, these results represented a huge breakthrough in stability as they highlighted the ability of interfaces to methodically address degradation mechanisms—namely, those associated with oxygen and moisture ingress, photooxidation, and ionic diffusion. However, despite using the more thermally stable FAMAC-based active layer, these devices still suffered from significant losses in efficiency at higher temperature due to the low glass transition temperature of EH44. In a recent manuscript Schloemer et al. addressed this issue.^[162] To do this, they first modified the triarylamine substituents on EH44 to create new molecules and

Figure 24. Operational stability of illuminated devices in air at MPP. a) Stability of ITO/TiO_x/FAMACs/HTL/Au devices with spiro-OMeTAD and EH44. b) Stability of ITO/ETL/FAMACs/EH44/MoO_x/Al devices employing TiO_x and SnO_x. Reproduced with permission.^[170] Copyright 2018, Nature Publishing Group.

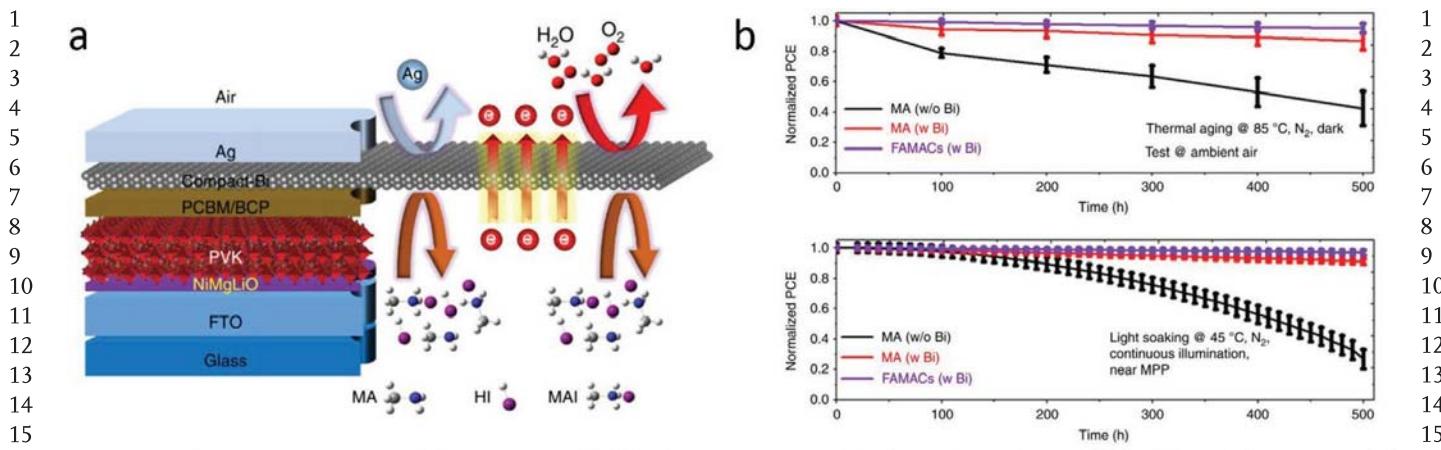

1 associated dopants. Then, they altered dopant type and con-
2 centration for each of the molecules and tested the stability of
3 the optimized HTLs using analogous devices and degradation
4 tests to Christians and co-workers, but at higher temperatures
5 (≈ 50 °C). Their results show that the newly designed HTLs
6 form substantially more stable devices, retaining 60–70% of
7 their initial PCE over 600 h compared to the control devices
8 which completely degraded in ≈ 500 h. To the best of our knowl-
9 edge, these results are the current state-of-the-art in terms of
10 operational stability in ambient conditions, as the modifica-
11 tions made to the device structure collectively address the most
12 severe intrinsic and extrinsic degradation mechanisms at the
13 material and device level. However, due to measurable degra-
14 dation of device modes, several degradation mechanisms clearly
15 had not been entirely eliminated.

16 To address these mechanisms, additional improvements
17 must be made in one or more of the layers. The community
18 has done significant work on this front by gauging the sta-
19 bility of devices to some variant of either dark/85 °C/85% RH
20 to improve the robustness of the device to external degradation
21 factors or light in inert atmosphere to enhance the stability
22 of the device under operational conditions assuming perfect
23 encapsulation. Generally, studies of this nature have avoided
24 reinventing the wheel by modifying a particular layer or set
25 of layers within the device while using other components that
26 have shown to be successful. These include: FTO and ITO for
27 the bottom TCO; TiO_x and SnO_x for the bottom ETL; PTAA,
28 NiO_x or Poly-TPD for the bottom HTL; C₆₀ derivatives with
29 BCP for the top ETL; spiro-OMeTAD, CuSCN, or P3HT for
30 the top HTL; and some combination of MoO_x or other buffer
31 layers and Al, Ag, or Au for the top contact. Modifications can
32 be broken up into two categories, those that address inherent
33 instabilities of the active layer, and those that address those of
34 the device stack.

35 Improvements to active layer stability can be achieved
36 through alloying or incorporating additives to reduce defect
37 concentrations and/or coat the surfaces of the perovskite
38 with more chemically stable elements (i.e., hydrophobic
39 fullerene end-capped polyethylene glycol).^[129] Alloying,
40 which was described in detail earlier, has resulted in three
41 compositions that are generally considered to be the most
42 stable: FA_aMA_bCs_{1-a-b}Pb(I_xBr_{1-x})₃, FA_aCs_{1-a}Pb(I_xBr_{1-x})₃, and
43 FA_aCs_{1-a}Pb_{0.60}Sn_{0.40}I₃. On the other hand, additives have
44 resulted in hundreds of reports that gauge the effectiveness of
45 their specific additive with the use of a control device. As the
46 mechanistic effect of each of these additives was discussed
47 earlier, the following discussion will focus solely on reporting
48 the stability results of devices that incorporate additives to
49 achieve high efficiency (>20%) and good stability. Tavakoli et al.
50 added the ammonium salt MACl to the perovskite of an FTO/
51 compact-TiO_x/SnO_x/(FA_{0.85}MA_{0.15})_{0.95}Cs_{0.05}Pb(I_{0.9}Br_{0.1})₃/spiro-
52 OMeTAD/Au architecture. The 21.6% efficient devices exhib-
53 ited better stability than the control, maintaining 98% of their
54 original efficiency over 60 days shelf life testing, as opposed to
55 the control which maintained 94%. Additionally, devices were
56 shown to be stable under illumination, retaining 96%, 90%,
57 and 85% of their initial PCE over 500 h of illumination at
58 V_{oc} and 20, 50, and 65 °C, respectively.^[77] Li et al. introduced
59 the metal cation NaF into the perovskite of an FTO/SnO_x/

(Cs_{0.05}FA_{0.54}MA_{0.41})Pb(I_{0.98}Br_{0.02})₃/spiro-OMeTAD/Au device 1
stack.^[157] The resulting 21.46% efficient devices retained 90% of 2
their original PCE over 6000 h of shelf-life testing at 25–40 °C 3
and 25–45% RH, 90% over 1000 h at 85 °C, 95% over 1000 h 4
of illumination at V_{oc}, and 90% over 1000 h under illumination 5
at MPP. Control devices were much less stable, decreasing to 6
50%, 50%, 70%, and just 40% in 600 h under the same con- 7
ditions. Wang et al. added europium acetylacetone Eu(acac)₃ 8
into the precursor solution of a FAMAC-based perovskite to 9
create Eu³⁺–Eu²⁺ metal cation redox-pairs.^[102] When incorpo- 10
rated into FTO/SnO_x/FAMACsPbIBr/spiro-OMeTAD/Au archi- 11
tectures, the 21.52% efficient devices retained over 90% of their 12
original PCE over 8000 h of shelf-life testing, 90% over 1000 h 13
under illumination at V_{oc}, and 91% over 500 h under illumina- 14
tion at MPP. These devices showed significantly improved 15
stability to the control devices which degraded to just 10% 16
and 50% under the first two conditions, respectively. Zhang 17
et al. investigated the effect of adding the fullerene derivatives 18
α-bis-PCBM and regular PCBM to the antisolvent of an FTO/ 19
compact-TiO_x/mesporous-TiO_x/FA_{0.85}MA_{0.15}Pb(I_{0.85}Br_{0.15})₃/ 20
spiro-OMeTAD/Au device stack.^[128] α-bis-PCBM was found to 21
exhibit improved stability to both PCBM and controls not using 22
PCBM, maintaining 90% of their original PCE over 46 days 23
storage in ambient conditions (“room temperature” and 45% 24
RH) and 96% over 600 h of MPP tracking under illumination. 25
Control devices using PCBM degraded to 70% and 50% under 26
the same conditions while control devices using no PCBM 27
degraded to 45% and 0% in just 250 h, respectively. Finally, Bai 28
et al. introduced the ionic liquid BMIMBF₄ into the perovskite 29
of an FTO/NiO_x/(FA_{0.83}MA_{0.17})_{0.95}Cs_{0.05}Pb(I_{0.9}Br_{0.1})₃/PCBM/ 30
BCP/Cr₂O₃/Au architecture, yielding 20% efficient devices 31
that maintained 86% of their original efficiency over 100 h of 32
aging at 40–50% RH/60–65 °C and 95% over 1800 h under illu- 33
mination at V_{oc} and 70–75 °C.^[154] Controls without the IL addi- 34
tive degraded fully in just 100 h and to 60% of their initial PCE 35
under the same conditions. Collectively, these results show that 36
optimization of the defect structure and surfaces in perovskites 37
can lead to further stabilization of the active layer, and thus the 38
device. However, interfaces must be addressed as well. 39

40 Several reports have shown that optimizing the trans-
port layers can result in large enhancements to stability. For 41
example, Tan et al. employed a chlorine capping method to 42
TiO₂ to improve perovskite adhesion and suppress the Pb–I 43
antisites that are generally created at the interface in favor of 44
Pb–Cl antisites which have a higher formation energy and shall- 45
lower transition energies.^[193] The resulting 20% efficient ITO/ 46
TiO_x/CsFAMAPbIBr/spiro-OMeTAD/Au devices retained 96% 47
of their original PCE over 2000 h of storage in air and 90% over 48
500 h of UV-free illumination at MPP in N₂, compared to con- 49
trol devices which degraded to \approx 40% over 1440 h and 50% over 50
just 2.5 h, respectively. Similarly, Choi et al. modified a SnO_x 51
surface with zwitterion to passivate Pb–I anti-site defects with 52
positively charged atoms in the zwitterion while simultaneously 53
lowering SnO_x’s work function and creating a dipole at the 54
interface to improve charge extraction and prohibit the back- 55
transfer of electrons.^[194] When coupled with the dopant free 56
HTL asy-PBTBDT, this lead to 20.5% efficient FTO/SnO_x/Zw- 57
itterion/FAMAPbI_{3-x}Br_x/asy-PBTBDT/Au devices that retained 58
93% of their initial efficiency over 140 h at 85 °C/85% RH, 59


Figure 25. a) Device stack and interactions between wide-bandgap perovskite and P3HT. b) Stability of unencapsulated devices with and without wide-bandgap layer under 85% RH at room temperature (top) and encapsulated devices with and without wide bandgap layer under illumination at MPP in N₂ (bottom). Reproduced with permission.^[78] Copyright 2019, Nature Publishing Group.

compared to devices with no zwitterions that retained 82%, and devices with no zwitterions and spiro-OMeTAD as the HTL which retained 70%. In addition to modifications to the ETL, modifications can be made to the HTL to increase stability. For example, Jung et al. incorporated *n*-hexyl trimethyl ammonium bromide into a post treatment for the perovskite of a FTO/compact-TiO_x/mesoporous-TiO_x/(FAPbI₃)_{0.95}(MAPbBr₃)_{0.05}/P3HT/Au device to create a wide-bandgap interlayer between the perovskite and HTL.^[78] This wide-bandgap layer was suggested to passivate defects on the surface while simultaneously providing alkyl chains for the P3HT to template off, resulting in orientated P3HT and thus much better mobility due to strong π - π interactions. Devices employing this layer generated substantially higher PCEs of 22.7% rather than 13.8% as well as improved stability, retaining 80% of their initial PCE over 1000 h at 85% RH / room temperature and 95% over 1370 h encapsulated under illumination at MPP in N₂, compared to control devices which degraded to 0% over 200 h and 20% over 100 h, respectively. The device structure, wide-bandgap layer-P3HT interaction, and stability results are shown in Figure 25. Cumulatively, these results highlight the importance of modifying charge extracting interfaces on stability.

However, when these charge extracting interfaces are above the perovskite, they must also be stable to the metal interface, provide a barrier to external factors, and block/hinder metal and halide diffusion—something that spiro-OMeTAD does not. To achieve this, Arora et al. employed inorganic CuSCN as the HTL in FTO/TiO₂/CsFAMAPbI_{3-x}Br_x/CUSCN/Au devices due to its cheap price, high hole mobility, well-aligned work function, and ability to form a compact uniform and pinhole free layer.^[195] When coated with PMAA, these 20.4% devices had far improved stability in dark/air at 85 °C, maintaining 85% of their original PCE over 1000 h compared to the control with Spiro-OMeTAD which degraded to 60%, signifying that they were better at blocking ion diffusion. However, when illuminated and put under bias, devices quickly degraded due to an interaction between the CuSCN and Au. To alleviate this, they employed a reduced graphene oxide layer between the two that blocked the reaction, allowing devices to retain over 95% of their initial PCE over 100 h under illumination at MPP in N₂ at 60 °C, compared to control devices which only retained 90%.

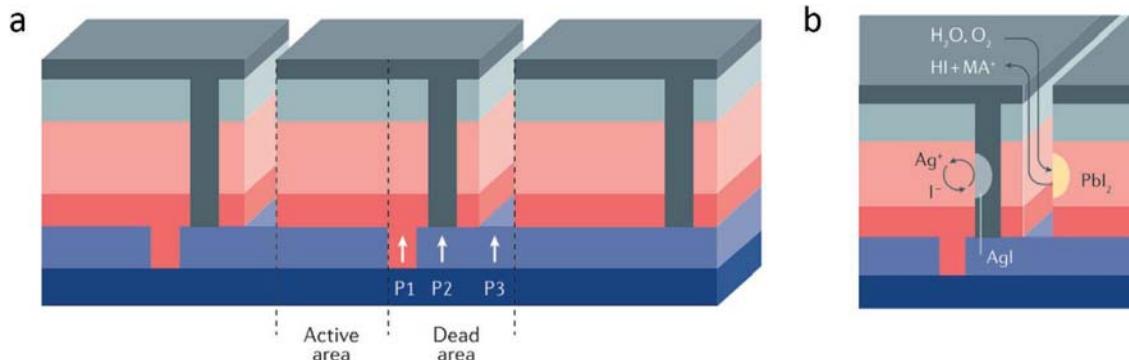
Given the reactivity of the metal contact, others have left the perovskite interfaces alone and instead elected to optimize the top transport layer/metal interface in order to hinder diffusion.

For example, Hou et al. employed such a strategy, using a Ta-WO_x interlayer to form a ITO/C₆₀-SAM/SnO_x/PCBM/FAPbI_{0.83}MA_{0.17}Pb_{1.1}Br_{0.5}I_{2.8}/PDCBT/Ta-WO_x/Au device.^[196] In said study, incorporation of the layer was found to dope the top of the HTL, improving electron transfer between it and the metal contact while also providing a barrier for Au diffusion. As a result, the fabricated 21.2% efficient devices exhibited significantly enhanced stability under illumination at V_{oc} in N₂, maintaining 95% of their initial PCE over 1000 h when control devices finished with spiro-OMeTAD/MoO_x/Au and PDCBT/MoO_x/Au degraded to ~50% in just 200 h. To achieve a similar effect, Wu et al. employed a bismuth interlayer between the BCP and Ag of FTO/Li⁺-doped NiMgO_x/perovskite/PCBM/BCP/Ag devices with FAMACs- and MA-based perovskites.^[183] The bismuth layer was found to drastically improve stability by protecting the diffusion of ions out of and into the perovskite while still maintaining ohmic contact between the PCBM/BCP and Ag layers due to its properly matched work function with Ag (4.25 and 4.3 eV, respectively) and similar conductivity to TCOs. This effect and the resulting stability of devices are shown in Figure 26. As can be seen, devices employing the MAFAC-based perovskite retained 95% of their original efficiency over 500 h in the dark at 85 °C in air and 97% under illumination near MPP in N₂ at 45 °C, while devices employing MAPbI₃ with a bismuth layer retained 87% and 91% under the same conditions, and control devices employing MAPbI₃ without the bismuth interlayer retained 42% and 27%, respectively. Other groups have reported similar results, albeit with lower efficiencies. Boyd et al. reported ITO/NiO_x/MAPbI₃/C₆₀/Spun-coat-PCBM/SnO_x/ITO/Ag devices that maintained ~100% of their original PCE over 1000 h at 85 °C in the dark and N₂.^[177] Chen et al. reported ITO/NiO_x/MAPbI₃/PCBM/methyl acetylacetone/Ag devices that retained 87% over 1000 h illumination at V_{oc} in N₂.^[184] Bi et al. reported FTO/NiMgLiO_x/MAPbI₃/graphene doped PCBM/Carbon quantum dots/Ag devices that maintained 88% over 1000 h under illumination at V_{oc} when encapsulated and 98% over 500 h at 85 °C in N₂ when not encapsulated.^[185] Chen et al. reported FTO/NiMgLiO_x/MAPbI₃/PCBM/TiNbO_x/Ag devices that maintained 90% over 1000 h illumination at V_{oc} in N₂, Fang et al. reported FTO/NiMgLiO_x/MAPbI₃/PCBM/cerium oxide/ag devices that maintained 90% over 200 h under illumination at MPP in air and 30% RH,^[186] etc. As can be seen, the variety and effectiveness of interfacial layers is broad, but clearly incorporating buffer layers is crucial

Figure 26. a) Device structure and illustration of the blocking properties of the bismuth interlayer. b) Stability of devices at 85 °C in N₂ and dark (top) and under illumination near MPP at 45 °C in N₂ (bottom). Reproduced under the terms of the Creative Commons 4.0 License.^[183] Copyright 2019, Nature Publishing Group.

for long-term PSC stability. While the above discussion is just a small fragment of the devices reported in literature, they highlight that the communities mechanistic understanding of degradation is starting to lead to improvements that have the potential to result in stable and efficient devices.

6. Beyond Devices


6.1. From Device to Module

Once stable and efficient device architectures are identified, the community must overcome the final pillar for commercialization: stability at scale. Moving from the previously discussed research-scale devices to large area modules creates several additional materials and processing challenges to be overcome. The first complication is that while small-area devices can be easily fabricated using spin coating, the technique does not scale to large areas. Thus, recipes must be moved to deposition methods that are appropriate for large area, such as slot-die coating, blade coating, gravure printing, screen printing, and spray coating.^[74] However, many procedures for spin coating do not easily translate their good performance to these processes because of wetting issues and “anti-solvent” crystallization treatments that are challenging to implement on a large scale due to different drying dynamics. Consequently, new inks must be developed that are conducive to these large-area deposition methods. Once developed, these inks must be applied uniformly at scale while avoiding macroscopic defects, such as pin-holes, that can diminish the performance of the entire module and facilitate degradation. Dealing with this defect propagation will be a challenge, even if vapor phase deposition processes are employed.^[197]

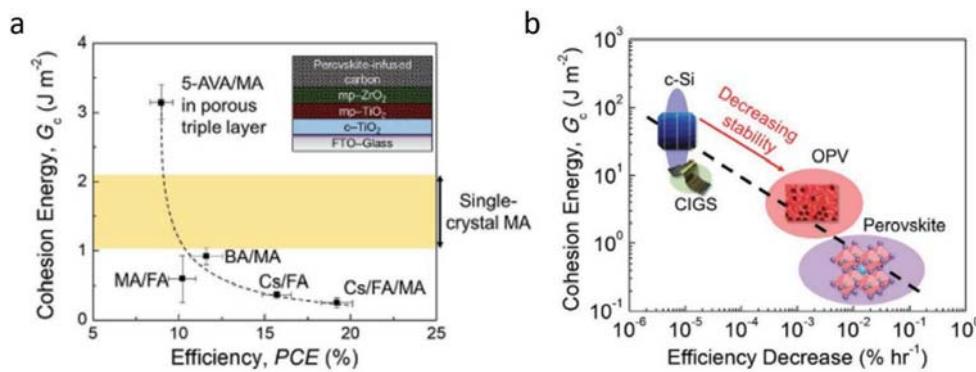
Assuming large area and uniform coating of all layers in the device stack is achieved, the next hurdle to overcome is the high series resistance that results from the high sheet resistance TCO in a meter-wide cell. The most common way to do this at the module level is to divide the film into many narrow (≈ 5 mm wide) cells by using three sets of parallel scribe lines

that cause the top low-sheet resistance metal contact of one cell to connect to the bottom contact of the adjacent cell, adjoining cells in series. This transforms the cell shape to have negligible series resistance from the TCO due to the short distance the current must travel to the low resistance back contact. While these scribes are an elegant way to connect individual cells in series, they have both explicit and implicit consequences to the performance and stability of the resulting module.^[74] First, the area taken by the interconnect no longer generates power, causing the active area of the module to be less than the module area, reducing total anticipated power production. To minimize this effect, scribes are placed as close together as possible. Second, the P2 scribe exposes the perovskite such that the top (metal) contact directly touches the perovskite absorber, and thus introduces a new interface that can precipitate deleterious reaction pathways if not controlled. Third, the P3 scribe leaves an opening in the material and may alter layers within the device (i.e., laser scribing creates a heat effected zone which can volatilize species^[198] while mechanical scribing may result in tearing of one or more layers).^[199] As appropriately designed contacts serve as an effective encapsulate for the PSC absorber, these regions open an avenue from the environment to the exposed absorber as well as other interfaces unless additional measures are taken. A schematic of the P1, P2, and P3 scribes and consequences are illustrated in Figure 27. It is noteworthy that in addition to these well-known mechanisms, the ionic diffusion in PSCs could cause details of the module current pathway and device layout to create additional issues within the module that are distinct from cells. Taken together, these additional scribe-induced interfaces and pathways, if not controlled, are expected to enable degradation. Indeed, many modules have degradation that initiates at the interconnect and spreads,^[200] as will be discussed in the next subsection. As a result, these degradation pathways must be addressed.

Once addressed, the next set of challenges, or in this case opportunities, comes from packaging the module. For packaging, three classes of materials must be considered: front/back-sheets, edge-seals, and encapsulants. A more in-depth discussion on packaging requirements can be found here.^[201]

Figure 27. Perovskite module. a) Standard module layout displaying the P1, P2, and P3 scribe lines and resulting dead area as well as the substrate in dark blue, bottom contact in light blue, bottom transport layer in red, perovskite in pink, top transport layer in light grey, and top contact in dark grey. b) Additional degradation mechanisms that result from the scribes with a Ag based electrode. Reproduced with permission.^[74] Copyright 2018, Nature Publishing Group.

Typical front/back-sheets include glass, flexible barriers, and breathable back-sheets. Si and polycrystalline thin films have taken somewhat divergent approaches to packaging. While all packages prevent liquid water ingress, moisture permeable back-sheets allow encapsulated Si modules to equilibrate with the ambient environment. On the other hand, thin-film modules rely on glass or high moisture barriers and edge-seals to prevent moisture ingress. While there is no substitute for hardening cell architectures to extrinsic stresses like moisture, barriers will likely be required, although to what level is still unknown.


The most commonly used edge-seal material, desiccant-filled poly isobutylene (PIB) requires an edge perimeter of ≈ 1 cm to keep out moisture in the most humid environments for 25 years.^[202] Generally, this thixotropic material is processed at ≈ 140 °C to allow it to soften and flow, however, pressure/time can be substituted for temperature to reduce thermal budget. While existing photovoltaic players handle it in “tape” form with well-defined thickness, heated drums of PIB can also dispense it as a viscous liquid. Besides PIB, laser-welded glass frit is the most likely alternate edge-seal candidate, although it is still more of an experimental rather than commercially deployed option, with its advantages being true hermeticity and challenges processing and potential fragility.

“Encapsulant” means something different for the cell and module communities. The cell community use it to mean “moisture barrier,” whereas the module community uses it to describe (permeable) materials that literally encase the cell. The most common module-level encapsulants are ethylene-vinyl acetate (EVA), polyolefins, silicones, and ionomers (e.g., Surlyn), although cell-level studies have also experimented with a variety overcoats including epoxies (photocurable, thermal, and multipart),^[203,204] poly-methylmethacrylate,^[205] polyurethane,^[206] fluoropolymer,^[207] and inorganic barrier layers.^[208] Si and polycrystalline thin films usually use EVA or polyolefins—processed at ≈ 140 °C—which not all perovskite architectures can withstand. In addition to temperature, chemical byproducts/interactions can be a concern. While a limited number of studies have been published comparing encapsulants, a low elastic modulus has been identified as one desirable property such that encapsulated cells do not delaminate/fracture upon

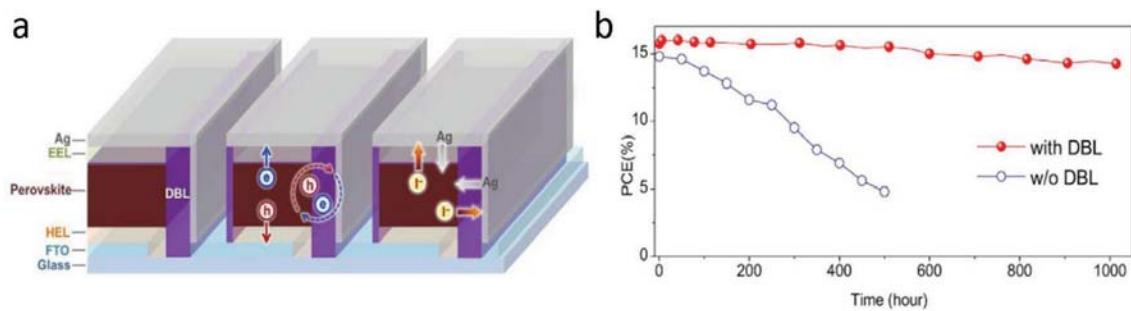
thermal cycling, making EVA and some polyolefins plausible candidates.^[209] Choosing inert/noninteracting materials is another consideration that might be relaxed with certain overcoats. There have been multiple proposals to generate overcoats from ALD,^[208,210] plasma,^[211–213] and solution processes.^[205] With good barrier properties, these also have the potential to relax cost constraints on front/back-sheets—some enable cells to withstand liquid water for minutes to hours. While limiting moisture and oxygen is important for other technologies, for perovskites there may be an additional/parallel requirement to keep constituents like halides or organic cations inside.

Packaging and their failures may be of general interest to many, but they are often outside the bailiwick of academic and early stage industry entrants. Moreover, packaging adds complexity to device fabrication, especially if a package is designed to isolate the cell from a particular known or hypothesized degradation mechanism. Thus, if PSCs require novel or unproven packaging, it can be difficult to ascertain where failures originate. This can cause tests to be dominated by details of the package, including interactions between the cell and the package and the ability of the package to protect the device from external factors, rather than degradation mechanisms inherent to the architecture.^[204,214] However, these tests are critical to assessing real-world degradation as the natural environment is complex with multiple stresses occurring simultaneously and/or sequentially, which has the potential to elucidate mechanisms that might be missed or underestimated otherwise.

Finally, transitioning from individual unpackaged cells to the module level induces some operation challenges such as partial shading, mechanical stresses, and potential induced degradation due to high system voltages. Partial shading can result in hot-spot formation when a shaded cell is forced to pass the current from illuminated series-connected cells. To pass this current, the shaded cell must go into reverse breakdown, which leads to significant dissipation and heating. While non-MPP conditions can harm perovskite cells, preliminary investigations indicate losses from partial shading may be partially recoverable.^[215] Next, mechanical stresses due to hail, CTE mismatches between layers, and mechanical loading have been shown to cause delamination in other technologies and will likely be a problem for perovskites due to their weak cohesion

Figure 28. a) Cohesion energy of common perovskite A-site combinations as a function of PCE. b) Cohesion energy of various photovoltaic technologies versus stability. Reproduced with permission.^[216] Copyright 2018, Wiley-VCH.

energy; this has led to concern that cells/modules may require careful design to survive these stresses (Figure 28).^[216,217] Third, potential induced degradation (PID) can result from encapsulants, system technology, and grounding due to the high voltages that serially connected modules reach.^[218] However, it is presently unknown how susceptible perovskites will be to PID.


6.2. State-of-the-Art Modules

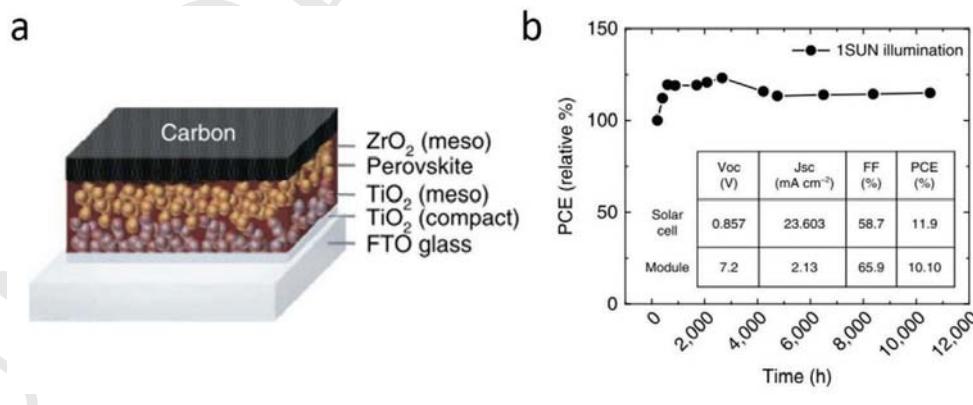
While much of the perovskite community has started to shift focus from optimizing device efficiency to stability, only a handful of research groups notably led by large established electronics companies have begun developing modules due the relatively nascent nature of the perovskite technology and the increase in technical sophistication associated with the module fabrication process. As the perovskite field begins to focus on larger scale fabrication and integrating small lab-scale device improvements into the module-space, three key areas must be addressed simultaneously. Namely, reducing the losses in PCE that arise from interconnecting cells and converting established spin-coating recipes to scalable deposition methods; increasing module area while maintaining uniform, defect-free films; and characterizing, understanding, and improving module stability. However, gauging the importance of developments across modules is complicated by how processes at lab-scale are translated to large volume production. This can lead to the conflation of instabilities that arise from process imperfections with those that are more intrinsic but may not be primary drivers of degradation at the cell level. The following section aims to summarize several of the more noteworthy publications pertaining to modules, first reviewing state-of-the-art module efficiencies and then moving on to stability.

The efficiency of perovskite modules is substantially lower than that of research-scale devices. While the current record for single junction cells is 25.2%,^[2] the most efficient module of area greater than 200 cm² is just 16.1%.^[219] As detailed above, this loss in efficiency of roughly 36% from device to module is partially due to the increased number of interconnects. However, quantifying these inherent engineering losses relative to other losses from defects or process inhomogeneity that result from scaling to a larger area is difficult. One approach to decoupling these factors is to examine the change

in module efficiency as a function of area and compare these losses to those expected from the increase in series resistance. For example, Agresti et al. report efficiency drops from 15.3% to 13.4% when scaling the active area from 82 to 108 cm²,^[220] and microquanta report drops from 17.25%^[221] to 14.25%^[222] when scaling from 17 to 200 cm². Thus, smaller area modules can be expected to have greater efficiency. However, even at relatively small scales, there is still an efficiency loss of roughly 31.5% from the record lab-scale device efficiency to microquanta's record minimodule efficiency. This is much higher than the efficiency losses that other photovoltaic technologies have observed when moving from device to module.^[74] As a result, additional loss mechanisms must be at play that act to reduce efficiencies at a rate greater than simply scaling area. Indeed, if one restricts record devices to those which are produced with scalable inks and methods, it can be seen that small area cells of 0.12 cm², large area cells of 1.2 cm², and modules consisting of four \approx 2.25 cm² cells perform at relatively similar PCEs of 18.5%,^[223] 17.3%,^[223] and 17.9%^[224] when adjusted by active area. This suggests that naïve application of ink and process technology without regard for the differences in coating techniques produces inhomogeneity or other types of anisotropy which have consequences to performance. Consequently, fabricating high efficiency modules will require significant advancements in ink formulations and processing.

While many research groups do not have the capability to fabricate large scale modules (>200 cm²), advancements in ink formulations can be made using a benchtop sized blade coater. Moreover, altering inks is likely to change the details of micro- and macro-scale defects, and thus degradation rates. As a result, we believe that comparing the small amount of stability results available among modules of varying size, coating methods, substrates, perovskite compositions, and degradation testing parameters is complex and likely couples multiple variables. Instead, we will focus on characterizing the additional degradation mechanisms that module level processing and production introduce, while assuming the transition from spin-coating to scalable deposition methods is surmountable. These then primarily come from the P2 and P3 scribe lines used to serially connect sub-cells, which create vertically penetrating interfaces that directly expose perovskite to metal and ambient conditions. While the P3 scribe line serves only to break conductivity in the top metal contact from cell to cell and can thus be filled with a

Figure 29. a) Module design employing a diffusion blocking layer. b) Stability of module at 85 °C/85% RH with and without the diffusion blocking layer. Reproduced with permission.^[225] Copyright 2019, Elsevier Publishing.


range of insulating materials to prevent atmospheric degradation, the P2 scribe line represents a unique challenge due to its requirement to be conductive yet stable to the perovskite-metal reactions discussed earlier.^[200]

One strategy to accomplish this is to use diffusion barrier layers (DBLs) to reduce iodide diffusion into the contact. The effectiveness of several of these layers at blocking ionic diffusion and slowing module degradation was investigated by Bi et al.^[225] In short, they used ToF-SIMS, XPS, and scanning electron microscopy with energy dispersive X-rays to calculate the blocking properties of 0D Al_2O_3 nanoparticles, 1D poly-dimethylsiloxane (PDMS), and 2D graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) DBLs in thermally aged Ag/DBL/MAPbI₃ stacks. Their results show that while all DBLs resulted in 10^3 – 10^7 times lower diffusion coefficients, the 2D material had the best blocking properties due to its ability to form a compact, pinhole free layer with channels smaller than the diameter of iodide ions. Then, they investigated the effect of the layer on module stability and efficiency when incorporated at the perovskite/top transport layer and P2 scribe/metal interconnect interfaces as shown in Figure 29. Impressively, their results show that doing so both increases the module efficiency from 14.1% to 15.6%, due to the defect passivation of the 2D layer, and stability, due to reduced ionic diffusion. This led to the realization of encapsulated modules that maintained 95% of their original PCE over 1000 h of aging at 85 °C/85% R.H. in dark and 91% at 60 °C/ambient conditions in 1 sun UV-filtered illumination at MPP (Figure 29). These results represent a significant improvement

over the control device, which decreased to roughly 40% of its original efficiency over just 500 h in both conditions. Another study by Agresti et al.^[220] followed an analogous approach, utilizing functionalized MoS₂ between the HTL and perovskite (but not in the P2 scribe) to prevent ion diffusion. Similarly, they found that doing so resulted in slightly higher PCE and stability, allowing their modified modules to retain 75% of their initial PCE over 1000 h at 65 °C in the dark as opposed to the control, which degraded to less than 50%.

Besides using barrier layers, other potential passivation strategies have been explored. For example, Hong et al. demonstrated that instead of using the P2 trench as the electrical connection between adjacent cells, a forward bias of 3 volts could be applied to the interconnect region to force metal ions (Au or Cu) to migrate between the two electrodes, connecting the cells.^[226] However, while this resulted in modules that were shelf-life stable for 400 h in a N₂ environment, exposing them to 85 °C/85% RH or 1-sun illumination at V_{oc} resulted in a quick decay in performance to \approx 70% of their original PCE in just 185 h. Another potential solution is to do away with the metal contact in favor of electrodes that are less likely to react. Grancini et al.^[227] investigated this approach, fabricating encapsulated HTM-free devices on mesoporous TiO₂ and ZrO₂ with carbon-based electrodes that demonstrated no loss in efficiency over 10 000 h of UV-filtered AM1.5 g illumination at V_{oc} and 55 °C (Figure 30).

It should be noted these architectures are distinct from others reported by the community due to the carbon-based

Figure 30. Module design employing a TiO₂/ZrO₂ scaffold (left) and corresponding stability under illumination at 55 °C in short circuit conditions (right). Reproduced under the terms of the Creative Commons 4.0 License.^[227] Copyright 2017, Springer Nature.

1 electrode and mesoscale porous structure into which the perov-
2 skite is infiltrated. This unique architecture appears to provide
3 both a kinetic barrier to mass transport and robust interfaces
4 which are electronically favorable. In fact, most outdoor module
5 stability studies reported thus far are based on this design. For
6 example, Hu et al. reported a similar 10.4% efficient 49 cm²
7 printable module that showed no degradation over 1000 h
8 under AM1.5 g illumination, 1 month outdoors, or 1 year in the
9 dark;^[228] Priyadarshi et al. reported a similar structured 11%
10 efficient module that demonstrated 2000 h ambient stability;^[229]
11 and Li et al. reported similarly structured cells that were stable
12 in hot desert climate.^[230] While these results are promising,
13 the stability of these devices at conditions where current flows
14 were not reported and thus are still under question. Moreover,
15 it should be noted that these modules have substantially lower
16 PCE than standard modules—likely due to the alternate contact
17 layers and high series resistance from eliminating the metal
18 contact. As a result, there is a need for more modules, particu-
19 larly those of higher efficiency, to be tested outdoors.

20 Additionally, more work must be done to investigate how
21 outdoor conditions affect performance. To the best of our
22 knowledge, there are only a handful of reports on this so far.
23 Gehlhaar et al. monitored various properties of perovskite
24 modules outdoors.^[231] Using this, they generated a model
25 suggesting perovskite modules might reach temperatures
26 just over 90 °C in cases of extreme ambient temperature
27 (>40 °C) and high solar irradiance. Schwenzer et al. obtained
28 an outdoor temperature profile, examined the effect of load
29 conditions on cells aged indoors under an inert atmosphere
30 with these profiles, and compared the resulting data to
31 devices aged at a constant 25 °C.^[232,233] They observed that
32 pronounced degradation occurred from temperature cycling
33 at reverse bias, with a lessening of the effect as the bias
34 approached open-circuit conditions. Khenkin et al. examined
35 the effects of diurnal cycling,^[234] while Tress et al. went even
36 further to simulate real-world conditions over the course of
37 a year with irradiance, temperature, and wind speed data to
38 study the energy production of perovskites under simulated
39 real-world operating conditions rather than constant illumination.^[235] Results from the latter work show several interesting
40 trends: 1) PSCs exhibit a low decrease in efficiency with ele-
41 vated temperature and low light intensity, and 2) PSCs show
42 a recovery in parameters overnight, suggesting some of the
43 degradation from constant illumination can be reversible.
44 These unique results highlight the importance of more out-
45 door tests but are not in themselves insightful regarding deg-
46 radation mechanisms.

47 In addition to getting more outdoor data, the community
48 must also standardize indoor tests so that comparisons across
49 literature reports can be undertaken. While many groups may
50 not have the ability to MPP-track modules, conducting stability
51 tests at V_{oc} , J_{sc} , and anywhere in between can be achieved by
52 not connecting the anode and cathode, connecting them with
53 a conductive medium, and connecting them with a resistor.
54 Tests of this nature would go a long way toward understanding
55 the degradation induced by interconnects and how they differ
56 from devices. This gets us to our next, and final, point: the need
57 to develop and use proper testing protocols and degradation
58 screening tests.

6.3. Proper Testing Protocols

1 A degradation screening test should target a particular degra-
2 dation pathway that will exist in fielded cells, modules, and/or
3 systems. Ideally, such tests could provide perfect prediction of
4 operational lifetime. However, such insight requires a complete
5 picture of the degradation mechanisms and how they couple
6 to specific degradation modes (e.g., V_{oc} or J_{sc} loss). Unfortu-
7 nately, the perovskite community does not yet have complete
8 grasp on the degradation mechanisms available to the myriad
9 of specific device structures, nor is it clear how particular
10 modes and relevant mechanisms might be altered by modifi-
11 cations to one of the layers. Thus, it is of utmost importance
12 to develop a set of protocols to be able to compare degradation
13 across perovskite devices and modules.^[159,236] Thankfully, there
14 are numerous protocols that have already been developed for
15 other photovoltaic device technologies. The most relevant for
16 the perovskite photovoltaic community to understand are those
17 from the International Electrotechnical Commission (IEC) and
18 ISOS. However, it is important to realize that the two are at
19 opposite ends of the spectrum with respect to the stages of pro-
20 tocol development. The IEC protocols are standards that have
21 been through an arduous process and agreed upon by working
22 groups of international representatives, with fine-tuning taking
23 place over time. The ones that are most relevant to enabling
24 PSC development are IEC 60904 (photovoltaic characteriza-
25 tion—including IV, reference cells and spectrum, simulators,
26 mismatch calculation),^[237] 61730 (safety),^[238] and 61215 (quali-
27 fication).^[239] On the other hand, the ISOS protocols are merely
28 consensus recommended practices (not standards) to provide a
29 framework for aging and reporting early-stage results to enable
30 labs to more readily compare results.

31 The origins of the IEC 61215 qualification tests are grounded
32 in a methodical correlation between fielded failures and lab
33 tests. Much of the early work is based on parallel work that
34 happened as part of the Flat Plate Solar Array (FSA) Project,
35 sometimes referred to as the JPL Block Buys, and the Euro-
36 pean Solar Test Installation (ESTI) under the Joint Research
37 Center (JRC) of the European Commission.^[240] The JPL Block
38 Buys generated a set of protocols that commercial modules
39 would pass before field tests. Postmortem analysis was done on
40 failed modules, which led to modification of existing protocols
41 and introduction of new protocols. Five block buys occurred
42 between 1975 and 1981, with protocols evolving from a thermal
43 cycle test and moderate damp heat test (68 h, 70 °C, 90% R.H.)
44 to introduce hot spot, mechanical loading, hail tests, high pot,
45 and humidity freeze by the fifth block buy. These modifications
46 allowed for far lower rates of failure; one study claimed that the
47 preblock V failure rate was 88.6%, whereas the postblock V rate
48 was <1.3%.^[241]

49 It is critical to understand what the IEC 61215 qualification
50 tests are and are not. They aim to minimize well-understood
51 infant mortality failure modes. Many of these are related to
52 packaging and can be thought of as more module-scale prob-
53 lems that are shared across technologies. Furthermore, most
54 do not step outside of the bounds of conceivable field condi-
55 tions. Hail and mechanical load tests probe the mechanical
56 integrity of the package under harsh, but realistic conditions.
57 Freeze–thaw and humidity-freeze tests excite debonding and
58

1 delamination, again by introducing worst case realistic mechanical stresses. The wet leakage current test and insulation test
2 are both safety tests of the package. The hot-spot endurance test
3 specifically probes how cells interact with one another under worst-case shading conditions. The often-feared damp heat test
4 is intended to reveal susceptibility to corrosion, but by stepping outside the bounds of conditions that might realistically
5 be experienced in terrestrial applications. While modules may
6 be warranted for 25 years, passing the IEC qualification tests
7 in no way should be interpreted as a service life prediction. The
8 tests do not provide quantitative acceleration factors, provide a
9 failure rate, or predict a mean time between failure. The IEC
10 tests, in fact, are only required to be performed on a group of
11 ten panels when a sizable module manufacturer produces millions
12 each year. The applicability of these standards is then not
13 clear to undertaking lab scale development. Even in the context
14 of developing a robust deployable technology, their relevance
15 might be viewed with a degree of skepticism. However, these
16 standards cannot be defenestrated, because at the point where
17 perovskite modules role off production lines at GW scales,
18 standards of these types will need to have been developed and
19 applied with the expectation that there will be at least a minimum
20 core that is very similar to existing standards.

21 On the other hand, the ISOS protocols target earlier stage
22 research with the attempt to provide guidance to the international
23 community such that data can be more readily compared
24 between groups. These were originally deemed necessary
25 because early stability work in the OPV community was being
26 performed at many conditions (temperature, humidity, irradiance,
27 load, etc.), which made it challenging to compare results
28 between labs. After three meetings, general consensus practices
29 for dark, light-soak, temperature cycle, and outdoor aging
30 were recommended.^[5] Each had three levels of increasing
31 “aggression” as well as increased requirements for equipment,
32 control, and monitoring. For instance, the lowest level of dark
33 testing was a “shelf-life” test in which samples could be stored
34 in the dark in a lab drawer and measured periodically on a
35 schedule, without further control of aging conditions. The next
36 level up introduced either 65 or 85 °C, with the highest level a
37 damp-heat test using 85% R.H. in addition to heat. Recently,
38 this framework has been amended.^[242] The update formalized
39 a controlled ambient condition for each class of test that had
40 become popular. It also specified some previously considered
41 but infrequently used protocols for light cycle and voltage bias
42 tests. Lastly, it established a much more detailed reporting
43 framework to facilitate scraping data for machine learning
44 efforts.

45 Ultimately, the ISOS protocols focus on facilitating the community
46 in hardening cells to the most important stressors. They are not,
47 however, prescriptive as to how to understand a mechanism. High quality stability studies should seek to take a step past merely making a processing, material, or architecture change and include some more detailed level of analysis/characterization to identify a mechanism (e.g., deterioration of the active layer leading to decreased quasi Fermi level splitting) rather than merely a mode (e.g., V_{oc} loss). With carefully designed studies, using the ISOS protocol framework, quantitative acceleration factors might be established. For example, establishing the activation energy of a process through

1 temperature dependence (Arrhenius behavior) is well-known to
2 the community, but for the reasons above may not be straightforward for perovskites. Additionally, multi-stress models (e.g.,
3 Eyring) can consider how other common stresses such as
4 heat, light, humidity, mechanical stress, and electric field may
5 be coupled to excite a pathway. While these stresses may be
6 applied at values that exceed what a fielded system will experience,
7 care should be taken not to generate new mechanisms
8 that will not occur in standard operation; an example of this is
9 increasing temperature past a phase transition. It is also critical
10 to note that stresses can be nonlinear with regards to degradation
11 mechanisms. However, while controlled laboratory tests
12 are critical in moving the field forward in addressing the most
13 obvious degradation pathways, it will be important to follow the
14 example that previously commercialized photovoltaic technologies
15 set in getting more devices outdoors to generate confidence
16 that no critical degradation pathways are being overlooked.

Acknowledgements

S.P.D. would like to thank Dennis Schroeder and Talya Klein for help with the TOC image. This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (SETO) project “De-risking Halide Perovskite Solar Cells” program (DE-FOA-0000990). The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

defect, degradation, device, module, perovskite, review, stability

Received: December 10, 2019

Revised: January 23, 2020

Published online:

[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, *J. Am. Chem. Soc.* **2009**, *131*, 6050.
[2] NREL, **2019**, Rev. 07.
[3] J. J. Berry, J. Van De Lagemaat, M. M. Al-Jassim, S. Kurtz, Y. Yan, K. Zhu, *ACS Energy Lett.* **2017**, *2*, 2540.
[4] J. A. Christians, S. N. Habisreutinger, J. J. Berry, J. M. Luther, *ACS Energy Lett.* **2018**, *3*, 2136.
[5] M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morville, E. A. Katz, A. Elschner, O. Haillant, T. R. Currier, V. Shrotriya, M. Hermenau, M. Riede, K. R. Kirov, G. Trimmel, T. Rath,

1 O. Inganäs, F. Zhang, M. Andersson, K. Tvingstedt, M. Lira-Cantu,
2 D. Laird, C. McGuiness, S. Gowrisanker, M. Pannone, M. Xiao,
3 J. Hauch, R. Stein, D. M. Delongchamp, R. Rösch, H. Hoppe,
4 N. Espinosa, A. Urbina, G. Yaman-Uzunoglu, J. B. Bonekamp,
5 A. J. M. Van Breemen, C. Girotto, E. Voroshazi, F. C. Krebs, *Sol. Energy Mater. Sol. Cells* **2011**, *95*, 1253.

[6] Z. Li, M. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, *Chem. Mater.* **2016**, *28*, 284.

[7] W. J. Yin, T. Shi, Y. Yan, *Appl. Phys. Lett.* **2014**, *104*, 063903.

[8] C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler, *Sci. Adv.* **2019**, *5*, eaav0693.

[9] A. Poglitsch, D. Weber, *J. Chem. Phys.* **1987**, *87*, 6373.

[10] C. Quarti, E. Mosconi, J. M. Ball, V. D'Innocenzo, C. Tao, S. Pathak, H. J. Snaith, A. Petrozza, F. De Angelis, *Energy Environ. Sci.* **2016**, *9*, 155.

[11] F. Lehmann, A. Franz, D. M. Többens, S. Levcenco, T. Unold, A. Taubert, S. Schorr, *RSC Adv.* **2019**, *9*, 11151.

[12] T. Chen, B. J. Foley, C. Park, C. M. Brown, L. W. Harriger, J. Lee, J. Ruff, M. Yoon, J. J. Choi, S. H. Lee, *Sci. Adv.* **2016**, *2*, 1601650.

[13] F. Cordero, F. Craciun, F. Trequattrini, A. Generosi, B. Paci, A. M. Paoletti, G. Pennesi, *J. Phys. Chem. Lett.* **2019**, *10*, 2463.

[14] R. J. Sutton, M. R. Filip, A. A. Haghigirad, N. Sakai, B. Wenger, F. Giustino, H. J. Snaith, *ACS Energy Lett.* **2018**, *3*, 1787.

[15] B. Wang, N. Novendra, A. Navrotsky, *J. Am. Chem. Soc.* **2019**, *141*, 14501.

[16] E. C. Schueller, G. Laurita, D. H. Fabini, C. C. Stoumpos, M. G. Kanatzidis, R. Seshadri, *Inorg. Chem.* **2018**, *57*, 695.

[17] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, *Inorg. Chem.* **2013**, *52*, 9019.

[18] E. S. Parrott, R. L. Milot, T. Stergiopoulos, H. J. Snaith, M. B. Johnston, L. M. Herz, *J. Phys. Chem. Lett.* **2016**, *7*, 1321.

[19] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, *Energy Environ. Sci.* **2016**, *9*, 1989.

[20] M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, *Science* **2016**, *354*, 206.

[21] L. T. Schelhas, Z. Li, J. A. Christians, A. Goyal, P. Kairys, S. P. Harvey, D. H. Kim, K. H. Stone, J. M. Luther, K. Zhu, V. Stevanovic, J. J. Berry, *Energy Environ. Sci.* **2019**, *12*, 1341.

[22] E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, *Chem. Sci.* **2015**, *6*, 613.

[23] C. G. Bischak, C. L. Hetherington, H. Wu, S. Aloni, D. F. Ogletree, D. T. Limmer, N. S. Ginsberg, *Nano Lett.* **2017**, *17*, 1028.

[24] D. J. Slotcavage, H. I. Karunadasa, M. D. McGehee, *ACS Energy Lett.* **2016**, *1*, 1199.

[25] K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, J. J. Berry, *ACS Energy Lett.* **2016**, *1*, 360.

[26] J. Kang, L. W. Wang, *J. Phys. Chem. Lett.* **2017**, *8*, 489.

[27] P. Xu, S. Chen, H. J. Xiang, X. G. Gong, S. H. Wei, *Chem. Mater.* **2014**, *26*, 6068.

[28] A. Zunger, *Theoretical Design and Discovery of the Most-Promising, Previously Overlooked Hybrid Perovskite Compounds*, **2012**.

[29] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losoviy, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, *Science* **2015**, *347*, 519.

[30] Y. Huang, W. J. Yin, Y. He, *J. Phys. Chem. C* **2018**, *122*, 1345.

[31] T. Shi, H. S. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H. L. Yip, Y. J. Zhao, *J. Mater. Chem. A* **2017**, *5*, 15124.

[32] N. Liu, C. Y. Yam, *Phys. Chem. Chem. Phys.* **2018**, *20*, 6800.

[33] D. A. Egger, A. Bera, D. Cahen, G. Hodes, T. Kirchartz, L. Kronik, R. Lovrincic, A. M. Rappe, D. R. Reichman, O. Yaffe, *Adv. Mater.* **2018**, *30*, 1800691.

[34] P. Schulz, D. Cahen, A. Kahn, *Chem. Rev.* **2019**, *119*, 3349.

[35] Y. C. Zhao, W. K. Zhou, X. Zhou, K. H. Liu, D. P. Yu, Q. Zhao, *Light: Sci. Appl.* **2017**, *6*, 16243.

[36] G. Y. Kim, A. Senocrate, T. Y. Yang, G. Gregori, M. Grätzel, J. Maier, *Nat. Mater.* **2018**, *17*, 445.

[37] E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, F. De Angelis, *Energy Environ. Sci.* **2016**, *9*, 3180.

[38] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. Saiful Islam, S. A. Haque, *Nat. Commun.* **2017**, *8*, 15218.

[39] N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, *Angew. Chem.* **2015**, *127*, 8326.

[40] F. T. F. O'Mahony, Y. H. Lee, C. Jellett, S. Dmitrov, D. T. J. Bryant, J. R. Durrant, B. C. O'Regan, M. Graetzel, M. K. Nazeeruddin, S. A. Haque, *J. Mater. Chem. A* **2015**, *3*, 7219.

[41] D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchuna ngatchaval, S. Wheeler, J. R. Durrant, S. A. Haque, *Energy Environ. Sci.* **2016**, *9*, 1655.

[42] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H. G. Boyen, *Adv. Energy Mater.* **2015**, *5*, 1500477.

[43] A. Dualeh, P. Gao, S. Il Seok, M. K. Nazeeruddin, M. Grätzel, *Chem. Mater.* **2014**, *26*, 6160.

[44] M. Sawicka, P. Storoniak, P. Skurski, J. Blazejowski, J. Rak, *Chem. Phys.* **2006**, *324*, 425.

[45] D. P. Nenon, J. A. Christians, L. M. Wheeler, J. L. Blackburn, E. M. Sanehira, B. Dou, M. L. Olsen, K. Zhu, J. J. Berry, J. M. Luther, *Energy Environ. Sci.* **2016**, *9*, 2072.

[46] E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, *Energy Environ. Sci.* **2016**, *9*, 3406.

[47] A. E. Williams, P. J. Holliman, M. J. Carnie, M. L. Davies, D. A. Worsley, T. M. Watson, *J. Mater. Chem. A* **2014**, *2*, 19338.

[48] N. K. Kim, Y. H. Min, S. Noh, E. Cho, G. Jeong, M. Joo, S. W. Ahn, J. S. Lee, S. Kim, K. Ihm, H. Ahn, Y. Kang, H. S. Lee, D. Kim, *Sci. Rep.* **2017**, *7*, 4645.

[49] E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, *J. Mater. Chem. A* **2018**, *6*, 9604.

[50] A. Latini, G. Gigli, A. Ciccioli, *Sustainable Energy Fuels* **2017**, *1*, 1351.

[51] S. R. Raga, L. K. Ono, Y. Qi, *J. Mater. Chem. A* **2016**, *4*, 2494.

[52] S. Pang, Y. Zhou, Z. Wang, M. Yang, A. R. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, *J. Am. Chem. Soc.* **2016**, *138*, 750.

[53] S. P. Dunfield, D. T. Moore, T. R. Klein, D. M. Fabian, J. A. Christians, A. G. Dixon, B. Dou, S. Ardo, M. C. Beard, S. E. Shaheen, J. J. Berry, M. F. A. M. Van Hest, *ACS Energy Lett.* **2018**, *3*, 1192.

[54] W. A. Dunlap-Shohl, T. Li, D. B. Mitzi, *ACS Appl. Energy Mater.* **2019**, *2*, 5083.

[55] A. M. Askar, G. M. Bernard, B. Wiltshire, K. Shankar, V. K. Michaelis, *J. Phys. Chem. C* **2017**, *121*, 1013.

[56] A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes, *Chem. Mater.* **2015**, *27*, 3397.

[57] A. Kakekhani, R. N. Katti, A. M. Rappe, *APL Mater.* **2019**, *7*, 041112.

[58] Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, *Angew. Chem., Int. Ed.* **2017**, *56*, 1190.

[59] W. Tan, A. R. Bowring, A. C. Meng, M. D. McGehee, P. C. McIntyre, *ACS Appl. Mater. Interfaces* **2018**, *10*, 5485.

[60] Y. Zong, Z. Zhou, M. Chen, N. P. Padture, Y. Zhou, *Adv. Energy Mater.* **2018**, *8*, 1800997.

[61] Y. Bai, Y. Lin, L. Ren, X. Shi, E. Strounina, Y. Deng, Q. Wang, Y. Fang, X. Zheng, Y. Lin, Z. G. Chen, Y. Du, L. Wang, J. Huang, *ACS Energy Lett.* **2019**, *4*, 1231.

1 [62] S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, 1
2 Z. Yu, J. Zhao, Y. Gao, F. De Angelis, J. Huang, *Science* **2019**, 365, 1
3 473.

4 [63] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. Il Seok, *Nano Lett.* 2
5 **2013**, 13, 1764.

6 [64] Z. Liu, L. Qiu, E. J. Juarez-Perez, Z. Hawash, T. Kim, Y. Jiang, 2
7 Z. Wu, S. R. Raga, L. K. Ono, S. (F) Liu, Y. Qi, *Nat. Commun.* **2018**, 3
8 9, 3880.

9 [65] F. El-Mellouhi, A. Marzouk, E. T. Bentria, S. N. Rashkeev, S. Kais, 1
10 F. H. Alharbi, *ChemSusChem* **2016**, 9, 2648.

11 [66] R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, 2
12 H. G. Boyen, M. F. Toney, M. D. McGehee, *J. Am. Chem. Soc.* **2017**, 3
13 139, 11117.

14 [67] T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney, 4
15 M. D. McGehee, *ACS Energy Lett.* **2017**, 2, 2159.

16 [68] J. S. Yun, J. Kim, T. Young, R. J. Patterson, D. Kim, J. Seidel, S. Lim, 5
17 M. A. Green, S. Huang, A. Ho-Baillie, *Adv. Funct. Mater.* **2018**, 6
18 28, 1705363.

19 [69] Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H. C. Cheng, S. J. Lee, 1
20 G. Wang, Z. Feng, W. A. Goddard, Y. Huang, X. Duan, *Joule* **2017**, 2
21 1, 548.

22 [70] F. Zhang, K. Zhu, *Adv. Energy Mater.* **2019**, 2019, 1902579.

23 [71] H. Min, M. Kim, S. U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee, S. Il 2
24 Seok, *Science* **2019**, 366, 749.

25 [72] B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, *Chem. Soc. Rev.* 3
26 **2019**, 48, 3842.

27 [73] D. Y. Son, J. W. Lee, Y. J. Choi, I. H. Jang, S. Lee, P. J. Yoo, H. Shin, 4
28 N. Ahn, M. Choi, D. Kim, N. G. Park, *Nat. Energy* **2016**, 1, 16081.

29 [74] Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. Van 5
30 Hest, K. Zhu, *Nat. Rev. Mater.* **2018**, 3, 18017.

31 [75] Y. Zhao, K. Zhu, *J. Phys. Chem. C* **2014**, 118, 9412.

32 [76] W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, 6
33 G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, 7
34 H. L. Wang, A. D. Mohite, *Science* **2015**, 347, 522.

35 [77] M. M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, 8
36 S. M. Zakeeruddin, M. Grätzel, *Adv. Energy Mater.* **2019**, 9, 1802646.

37 [78] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, 9
38 J. H. Noh, J. Seo, *Nature* **2019**, 567, 511.

39 [79] N. J. Jeon, H. Na, E. H. Jung, T. Y. Yang, Y. G. Lee, G. Kim, 10
40 H. W. Shin, S. Il Seok, J. Lee, J. Seo, *Nat. Energy* **2018**, 3, 682.

41 [80] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, 11
42 X. Zhang, J. You, *Adv. Mater.* **2017**, 29, 1703852.

43 [81] H. C. Liao, P. Guo, C. P. Hsu, M. Lin, B. Wang, L. Zeng, W. Huang, 12
44 C. M. M. Soe, W. F. Su, M. J. Bedzyk, M. R. Wasielewski, 13
45 A. Faccetti, R. P. H. Chang, M. G. Kanatzidis, T. J. Marks, *Adv. 14
46 Energy Mater.* **2017**, 7, 1.

47 [82] H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie, T. Zhou, X. Wan, X. Zhang, 15
48 Y. Liu, Y. Chen, *J. Am. Chem. Soc.* **2018**, 140, 11639.

49 [83] M. Yang, D. H. Kim, Y. Yu, Z. Li, O. G. Reid, Z. Song, D. Zhao, 16
50 C. Wang, L. Li, Y. Meng, T. Guo, Y. Yan, K. Zhu, *Mater. Today Energy* 17
51 **2018**, 7, 232.

52 [84] C. Zuo, L. Ding, *Nanoscale* **2014**, 6, 9935.

53 [85] Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, H. Han, *Nat. 18
54 Commun.* **2017**, 8, 14555.

55 [86] T. Oku, Y. Ohishi, N. Ueoka, *RSC Adv.* **2018**, 8, 10389.

56 [87] W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu, D. S. Ginger, A. K. Y. Jen, 19
57 *ACS Energy Lett.* **2018**, 3, 2086.

58 [88] J. Liu, Q. Han, Y. Bai, K. Z. Du, T. Li, D. Ji, Y. Zhou, C. Cao, D. Shin, 20
59 J. Ding, A. D. Franklin, J. T. Glass, J. Hu, M. J. Therien, D. B. Mitzi, *Energy Environ. Sci.* **2017**, 10, 2365.

60 [89] J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, 21
61 P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, 22
62 F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, 23
63 M. M. Al-Jassim, M. F. A. M. Van Hest, M. C. Beard, S. E. Shaheen, 24
64 J. J. Berry, Y. Yan, K. Zhu, *Science* **2019**, 364, 475.

65 [90] N. D. Pham, V. T. Tiong, D. Yao, W. Martens, A. Guerrero, 25
66 J. Bisquert, H. Wang, *Nano Energy* **2017**, 41, 476.

67 [91] H. Dong, Z. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, L. Zhang, 26
68 X. Hou, A. K. Y. Jen, *Adv. Funct. Mater.* **2018**, 28, 1704836.

69 [92] S. Yang, W. Liu, L. Zuo, X. Zhang, T. Ye, J. Chen, C. Z. Li, G. Wu, 27
70 H. Chen, *J. Mater. Chem. A* **2016**, 4, 9430.

71 [93] Y. Xiao, L. Yang, G. Han, Y. Li, M. Li, H. Li, *Org. Electron.* **2019**, 28
72 65, 201.

73 [94] X. Yan, S. Hu, Y. Zhang, H. Li, C. Sheng, *Sol. Energy Mater. Sol. 29
74 Cells* **2019**, 191, 283.

75 [95] Y. Xia, C. Ran, Y. Chen, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, 30
76 J. P. Wang, W. Huang, *J. Mater. Chem. A* **2017**, 5, 3193.

77 [96] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, 31
78 J. Huang, *Nat. Energy* **2017**, 2, 9.

79 [97] X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, 32
80 M. K. Nazeeruddin, H. Han, M. Grätzel, *Nat. Chem.* **2015**, 7, 703.

81 [98] Q. Chen, H. Zhou, T. Bin Song, S. Luo, Z. Hong, H. S. Duan, 33
82 L. Dou, Y. Liu, Y. Yang, *Nano Lett.* **2014**, 14, 4158.

83 [99] Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, 34
84 A. Ho-Baillie, S. Huang, M. A. Green, J. Seidel, T. K. Ahn, S. Il Seok, *Adv. Energy Mater.* **2016**, 6, 1.

85 [100] W. Ke, C. Xiao, C. Wang, B. Saparov, H. S. Duan, D. Zhao, Z. Xiao, 35
86 P. Schulz, S. P. Harvey, W. Liao, W. Meng, Y. Yu, A. J. Cimaroli, 36
87 C. S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D. B. Mitzi, Y. Yan, *Adv. 37
88 Mater.* **2016**, 28, 5214.

89 [101] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, 38
90 B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, 39
91 A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, 40
92 C. Ducati, R. H. Friend, S. D. Stranks, *Nature* **2018**, 555, 497.

93 [102] L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, 41
94 Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L. D. Sun, 42
95 C. H. Yan, *Science* **2019**, 363, 265.

96 [103] C. Xiao, F. Zhang, Z. Li, C. Jiang, K. Zhu, M. Al-jassim, C. Xiao, 43
97 F. Zhang, Z. Li, S. P. Harvey, X. Chen, K. Wang, *Matter* **2019**, 1.

98 [104] M. Abdi-Jalebi, M. I. Dar, A. Sadhanala, S. P. Senanayak, 44
99 M. Franckevičius, N. Arora, Y. Hu, M. K. Nazeeruddin, 45
100 S. M. Zakeeruddin, M. Grätzel, R. H. Friend, *Adv. Energy Mater.* 46
101 **2016**, 6, 1502472.

102 [105] C. Chang, X. Zou, J. Cheng, Y. Yang, Y. Yao, T. Ling, H. Ren, 47
103 Z. Xiao, *Adv. Mater. Sci. Eng.* **2019**, 2019, 1.

104 [106] M. Abdi-Jalebi, M. Pazoki, B. Philippe, M. I. Dar, M. Alsari, 48
105 A. Sadhanala, G. Divitini, R. Imani, S. Lilliu, J. Kullgren, 49
106 H. Rensmo, M. Grätzel, R. H. Friend, *ACS Nano* **2018**, 12, 50
107 7301.

108 [107] J. P. Correa-Baena, Y. Luo, T. M. Brenner, J. Snaider, S. Sun, 51
109 X. Li, M. A. Jensen, N. T. P. Hartono, L. Nienhaus, S. Wieghold, 52
110 J. R. Poindexter, S. Wang, Y. S. Meng, T. Wang, B. Lai, M. V. Holt, 53
111 Z. Cai, M. G. Bawendi, L. Huang, T. Buonassisi, D. P. Fenning, 54
112 *Science* **2019**, 363, 627.

113 [108] M. Zhang, J. S. Yun, Q. Ma, J. Zheng, C. F. J. Lau, X. Deng, J. Kim, 55
114 D. Kim, J. Seidel, M. A. Green, S. Huang, A. W. Y. Ho-Baillie, *ACS 56
115 Energy Lett.* **2017**, 2, 438.

116 [109] Y. Shirahata, T. Oku, *Mater. Res. Express* **2018**, 5, 055504.

117 [110] S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, 57
118 J. Wang, Z. Liu, Z. Bian, C. Huang, *J. Am. Chem. Soc.* **2017**, 139, 58
119 7504.

120 [111] K. L. Wang, R. Wang, Z. K. Wang, M. Li, Y. Zhang, H. Ma, 59
121 L. S. Liao, Y. Yang, *Nano Lett.* **2019**, 19, 5176.

122 [112] J. Jin, H. Li, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, 60
123 *ACS Appl. Mater. Interfaces* **2017**, 9, 42875.

124 [113] A. Kooijman, L. A. Muscarella, R. M. Williams, *Appl. Sci.* **2019**, 9, 61
125 1678.

126 [114] F. Yang, M. A. Kamarudin, G. Kapil, D. Hirotani, P. Zhang, 62
127 C. H. Ng, T. Ma, S. Hayase, *ACS Appl. Mater. Interfaces* **2018**, 10, 63
128 24543.

129 Q9 Q10

[115] C. Lu, J. Zhang, D. Hou, X. Gan, H. Sun, Z. Zeng, R. Chen, H. Tian, Q. Xiong, Y. Zhang, Y. Li, Y. Zhu, *Appl. Phys. Lett.* **2018**, 112, 1.

[116] M. C. Wu, T. H. Lin, S. H. Chan, W. F. Su, *J. Taiwan Inst. Chem. Eng.* **2017**, 80, 695.

[117] X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao, H. Li, H. Pan, Y. Shen, Y. Shao, L. Sun, Z. Cui, L. Ding, M. Wang, *Adv. Funct. Mater.* **2018**, 28, 1804286.

[118] E. P. Yao, P. Sun, W. Huang, E. P. Yao, Y. Yang, M. Wang, *Nano Energy* **2017**, 36, 213.

[119] W. S. Subhani, K. Wang, M. Du, S. F. Liu, *Nano Energy* **2019**, 61, 165.

[120] S. H. Chan, M. C. Wu, K. M. Lee, W. C. Chen, T. H. Lin, W. F. Su, *J. Mater. Chem. A* **2017**, 5, 18044.

[121] J. R. Poindexter, R. L. Z. Hoye, L. Nienhaus, R. C. Kurchin, A. E. Morishige, E. E. Looney, A. Osherov, J. P. Correa-Baena, B. Lai, V. Bulović, V. Stevanović, M. G. Bawendi, T. Buonassisi, *ACS Nano* **2017**, 11, 7101.

[122] C. Chen, D. Liu, B. Zhang, W. Bi, H. Li, J. Jin, X. Chen, L. Xu, H. Song, Q. Dai, *Adv. Energy Mater.* **2018**, 8, 1.

[123] E. Mosconi, B. Merabet, D. Meggiolaro, A. Zaoui, F. De Angelis, *J. Phys. Chem. C* **2018**, 122, 14107.

[124] G. Han, H. D. Hadi, A. Bruno, S. A. Kulkarni, T. M. Koh, L. H. Wong, C. Soci, N. Mathews, S. Zhang, S. G. Mhaisalkar, *J. Phys. Chem. C* **2018**, 122, 13884.

[125] C. Liu, W. Li, H. Li, C. Zhang, J. Fan, Y. Mai, *Nanoscale* **2017**, 9, 13967.

[126] J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboons, J. P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, E. H. Sargent, *Nat. Commun.* **2015**, 6, 7081.

[127] C. H. Chiang, C. G. Wu, *Nat. Photonics* **2016**, 10, 196.

[128] F. Zhang, W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T. J. S. Dennis, X. Li, S. Wang, Y. Xiao, S. M. Zakeeruddin, D. Bi, M. Grätzel, *Adv. Mater.* **2017**, 29, 1606806.

[129] Q. Fu, S. Xiao, X. Tang, Y. Chen, T. Hu, *ACS Appl. Mater. Interfaces* **2019**, 11, 24782.

[130] J. W. Lee, Z. Dai, C. Lee, H. M. Lee, T. H. Han, N. De Marco, O. Lin, C. S. Choi, B. Dunn, J. Koh, D. Di Carlo, J. H. Ko, H. D. Maynard, Y. Yang, *J. Am. Chem. Soc.* **2018**, 140, 6317.

[131] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. Il Seok, *Nat. Mater.* **2014**, 13, 897.

[132] D. Bi, C. Yi, J. Luo, J. D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, *Nat. Energy* **2016**, 1, 16142.

[133] R. Wang, J. Xue, L. Meng, J. W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z. K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. Yuan, Y. Huang, Y. Yang, *Joule* **2019**, 3, 1464.

[134] I. Wharf, T. Gramstad, R. Makhija, M. Onyszchuk, *Can. J. Chem.* **1976**, 54, 3430.

[135] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, *ACS Nano* **2014**, 8, 9815.

[136] T. Y. Wen, S. Yang, P. F. Liu, L. J. Tang, H. W. Qiao, X. Chen, X. H. Yang, Y. Hou, H. G. Yang, *Adv. Energy Mater.* **2018**, 8, 1703143.

[137] Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S. A. T. Redfern, H. Wei, H. Wang, H. Shen, W. Zhang, W. Zheng, H. Zhang, J. S. Tse, B. Yang, *Adv. Mater.* **2018**, 30, 1705393.

[138] L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J. W. Lee, C. Zhu, Y. Huang, Y. Li, Y. Yang, *J. Am. Chem. Soc.* **2018**, 140, 17255.

[139] C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, *Adv. Energy Mater.* **2017**, 7, 1602017.

[140] L. Gao, S. Huang, L. Chen, X. Li, B. Ding, S. Huang, G. Yang, *Sol. RRL* **2018**, 2, 1800088.

[141] S. G. Ko, G. Il Ryu, B. Kim, G. J. Cha, J. H. Ri, G. S. Sonu, U. C. Kim, *Sol. Energy Mater. Sol. Cells* **2019**, 196, 105.

[142] T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, *Adv. Energy Mater.* **2019**, 9, 1803766.

[143] M. Qin, J. Cao, T. Zhang, J. Mai, T. K. Lau, S. Zhou, Y. Zhou, J. Wang, Y. J. Hsu, N. Zhao, J. Xu, X. Zhan, X. Lu, *Adv. Energy Mater.* **2018**, 8, 1703399.

[144] Y. H. Wu, X. Q. Shi, X. H. Ding, Y. K. Ren, T. Hayat, A. Alsaedi, Y. Ding, P. Xu, S. Y. Dai, *ACS Appl. Mater. Interfaces* **2018**, 10, 3602.

[145] X. Liu, J. Wu, Y. Yang, T. Wu, Q. Guo, *J. Power Sources* **2018**, 399, 144.

[146] W. Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Y. Deng, X. Xiao, Y. Feng, J. Huang, *Sci. Adv.* **2019**, 5, eaav8925.

[147] J. W. Lee, Z. Dai, T. H. Han, C. Choi, S. Y. Chang, S. J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, *Nat. Commun.* **2018**, 9, 3021.

[148] T. Niu, J. Lu, M. C. Tang, D. Barrit, D. M. Smilgies, Z. Yang, J. Li, Y. Fan, T. Luo, I. McCulloch, A. Amassian, S. Liu, K. Zhao, *Energy Environ. Sci.* **2018**, 11, 3358.

[149] M. Shahiduzzaman, K. Yamamoto, Y. Furumoto, T. Kuwabara, K. Takahashi, T. Taima, *RSC Adv.* **2015**, 5, 77495.

[150] J. Y. Seo, T. Matsui, J. Luo, J. P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, A. Hagfeldt, S. M. Zakeeruddin, U. Steiner, M. Grätzel, A. Abate, *Adv. Energy Mater.* **2016**, 6, 1600767.

[151] M. Salado, F. J. Ramos, V. M. Manzanares, P. Gao, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, *ChemSusChem* **2016**, 9, 2708.

[152] M. Salado, M. A. Fernández, J. P. Holgado, S. Kazim, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, *ChemSusChem* **2017**, 10, 3846.

[153] S. Wang, Z. Li, Y. Zhang, X. Liu, J. Han, X. Li, Z. Liu, S. (F) Liu, W. C. H. Choy, *Adv. Funct. Mater.* **2019**, 29, 1.

[154] S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T. W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H. J. Snaith, *Nature* **2019**, 571, 245.

[155] M. Sun, F. Zhang, H. Liu, X. Li, Y. Xiao, S. Wang, *J. Mater. Chem. A* **2017**, 5, 13448.

[156] F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu, M. Grätzel, *Energy Environ. Sci.* **2018**, 11, 3480.

[157] N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, *Nat. Energy* **2019**, 4, 408.

[158] H. Zhu, F. Zhang, Y. Xiao, S. Wang, X. Li, *J. Mater. Chem. A* **2018**, 6, 4971.

[159] H. J. Snaith, P. Hacke, *Nat. Energy* **2018**, 3, 459.

[160] R. A. Belisle, P. Jain, R. Prasanna, T. Leijtens, M. D. McGehee, *ACS Energy Lett.* **2016**, 1, 556.

[161] L. Bertoluzzi, C. C. Boyd, N. Rolston, J. Xu, R. Prasanna, B. C. O'Regan, M. D. McGehee, *Joule* **2019**, 4, 1.

[162] T. H. Schloemer, T. S. Gehan, J. A. Christians, D. G. Mitchell, A. Dixon, Z. Li, K. Zhu, J. J. Berry, J. M. Luther, A. Sellinger, *ACS Energy Lett.* **2019**, 4, 473.

[163] I. L. Braly, R. J. Stoddard, A. Rajagopal, A. K. Y. Jen, H. W. Hillhouse, *J. Phys. Chem. Lett.* **2018**, 9, 3779.

[164] E. M. Miller, Y. Zhao, C. C. Mercado, S. K. Saha, J. M. Luther, K. Zhu, V. Stevanović, C. L. Perkins, J. Van De Lagemaat, *Phys. Chem. Chem. Phys.* **2014**, 16, 22122.

[165] A. M. Tirmizi, J. A. Christians, R. P. Dwyer, D. T. Moore, J. A. Marohn, *J. Phys. Chem. C* **2019**, 123, 3402.

[166] Y. Du, C. Xin, W. Huang, B. Shi, Y. Ding, C. Wei, Y. Zhao, Y. Li, X. Zhang, *ACS Sustainable Chem. Eng.* **2018**, 6, 16806.

[167] N. K. Noel, S. N. Habisreutinger, A. Pellaroque, F. Pulvirenti, B. Wenger, F. Zhang, Y. H. Lin, O. G. Reid, J. Leisen, Y. Zhang, *Adv. Energy Mater.* **2020**, 1904054 (33 of 35) © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 S. Barlow, S. R. Marder, A. Kahn, H. J. Snaith, C. B. Arnold,
2 B. P. Rand, *Energy Environ. Sci.* **2019**, *12*, 3063.

3 [168] S. Ito, S. Tanaka, K. Manabe, H. Nishino, *J. Phys. Chem. C* **2014**,
4 118, 16995.

5 [169] H. L. Le Chatelier, *C. R.* **1884**, *99*, 786.

6 [170] J. A. Christians, P. Schulz, J. S. Tinkham, T. H. Schloemer,
7 S. P. Harvey, B. J. Tremolet De Villers, A. Sellinger, J. J. Berry,
8 J. M. Luther, *Nat. Energy* **2018**, *3*, 68.

9 [171] W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan,
10 A. A. Haghaghirad, M. B. Johnston, L. Wang, H. J. Snaith, *Energy
Environ. Sci.* **2016**, *9*, 490.

11 [172] C. Liu, M. Cai, Y. Yang, Z. Arain, Y. Ding, X. Shi, P. Shi, S. Ma,
12 T. Hayat, A. Alsaedi, J. Wu, S. Dai, G. Cao, *J. Mater. Chem. A* **2019**,
13 7, 11086.

14 [173] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee,
15 H. J. Snaith, *Nat. Commun.* **2013**, *4*, 2885.

16 [174] Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, Y. Qi, *Adv.
Mater. Interfaces* **2015**, *2*, 1500195.

17 [175] J. Li, Q. Dong, N. Li, L. Wang, *Adv. Energy Mater.* **2017**, *7*, 1602922.

18 [176] K. Domanski, J. P. Correa-Baena, N. Mine, M. K. Nazeeruddin,
19 A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, *ACS Nano*
20 **2016**, *10*, 6306.

21 [177] C. C. Boyd, R. Cheacharoen, K. A. Bush, R. Prasanna, T. Leijtens,
22 M. D. McGehee, *ACS Energy Lett.* **2018**, *3*, 1772.

23 [178] W. Ming, D. Yang, T. Li, L. Zhang, M. H. Du, *Adv. Sci.* **2018**, *5*,
24 1700662.

25 [179] L. Zhao, R. A. Kerner, Z. Xiao, Y. L. Lin, K. M. Lee, J. Schwartz,
26 B. P. Rand, *ACS Energy Lett.* **2016**, *1*, 595.

27 [180] K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen,
28 J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens,
29 I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia,
30 D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi,
31 Z. C. Holman, S. F. Bent, M. D. McGehee, *Nat. Energy* **2017**, *2*,
17009.

32 [181] J. A. Raiford, C. C. Boyd, A. F. Palmstrom, E. J. Wolf, B. A. Fearon,
33 J. J. Berry, M. D. McGehee, S. F. Bent, *Adv. Energy Mater.* **2019**, *9*,
34 1902353.

35 [182] A. F. Palmstrom, G. E. Eperon, T. Leijtens, R. Prasanna,
36 S. N. Habisreutinger, W. Nemeth, E. A. Gaulding, S. P. Dunfield,
37 M. Reese, S. Nanayakkara, T. Moot, J. Werner, J. Liu, B. To,
38 S. T. Christensen, M. D. McGehee, M. F. A. M. van Hest,
39 J. M. Luther, J. J. Berry, D. T. Moore, *Joule* **2019**, *3*, 2193.

40 [183] S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang,
41 C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, *Nat.
Commun.* **2019**, *10*, 1161.

42 [184] W. Chen, L. Xu, X. Feng, J. Jie, Z. He, *Adv. Mater.* **2017**, *29*,
43 1603923.

44 [185] E. Bi, H. Chen, F. Xie, Y. Wu, W. Chen, Y. Su, A. Islam, M. Grätzel,
45 X. Yang, L. Han, *Nat. Commun.* **2017**, *8*, 1.

46 [186] R. Fang, S. Wu, W. Chen, W. Chen, Z. Liu, S. Zhang,
47 R. Chen, Y. Yue, L. Deng, Y. B. Cheng, L. Han, *ACS Nano* **2018**, *12*,
2403.

48 [187] T. Malinauskas, D. Tomkute-Luksiene, R. Sens, M. Daskeviciene,
49 R. Send, H. Wonneberger, V. Jankauskas, I. Bruder, V. Getautis,
50 *ACS Appl. Mater. Interfaces* **2015**, *7*, 11107.

51 [188] J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield,
52 J. Huang, *Sci. Adv.* **2017**, *3*, eaao5616.

53 [189] N. Rolston, K. A. Bush, A. D. Printz, A. Gold-Parker, Y. Ding,
54 M. F. Toney, M. D. McGehee, R. H. Dauskardt, *Adv. Energy Mater.*
55 **2018**, *8*, 1802139.

56 [190] K. A. Bush, N. Rolston, A. Gold-Parker, S. Manzoor, J. Hausele,
57 Z. J. Yu, J. A. Raiford, R. Cheacharoen, Z. C. Holman, M. F. Toney,
58 R. H. Dauskardt, M. D. McGehee, *ACS Energy Lett.* **2018**, *3*, 1225.

59 [191] Z. Zhao, F. Gu, H. Rao, S. Ye, Z. Liu, Z. Bian, C. Huang, *Adv.
Energy Mater.* **2019**, *9*, 1.

192 R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, Y. Yang, *Adv.
Funct. Mater.* **2019**, *29*, 1808843.

193 H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. De Arquer, J. Z. Fan,
194 R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li,
195 L. N. Quan, Y. Zhao, Z. H. Lu, Z. Yang, S. Hoogland, E. H. Sargent,
196 *Science* **2017**, *355*, 722.

197 K. Choi, J. Lee, H. Il Kim, C. W. Park, G. W. Kim, H. Choi, S. Park,
198 S. A. Park, T. Park, *Energy Environ. Sci.* **2018**, *11*, 3238.

199 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber,
200 S. M. Zakeeruddin, M. Grätzel, *Science* **2017**, *358*, 768.

201 Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li,
202 M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker,
203 E. Specker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki,
204 H. P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec,
205 *Science* **2017**, *358*, 1192.

206 R. C. Shallcross, S. Olthof, K. Meerholz, N. R. Armstrong, *ACS
Appl. Mater. Interfaces* **2019**, *11*, 32500.

207 M. Rekow, R. Murison, T. Panarello, C. Dinkel, S. Nikumb, J. Pern,
208 L. Mansfield, in *25th European Photovoltaic Solar Energy Conference
and Exhibition (25th EU PVSEC)*, WCPEC-5, **2010**, pp. 6–10.

209 F. J. Pern, F. Yan, L. Mansfield, S. Glynn, M. Rekow, R. Murison, in
210 *Conf. Record of the IEEE Photovoltaic Specialist Conf.*, IEEE, **2011**,
p. 002792.

211 J. A. Christians, F. Zhang, R. C. Bramante, M. O. Reese,
212 T. H. Schloemer, A. Sellinger, M. F. A. M. Van Hest, K. Zhu,
213 J. J. Berry, J. M. Luther, *ACS Energy Lett.* **2018**, *3*, 2502.

214 M. O. Reese, S. Glynn, M. D. Kempe, D. L. McGott, M. S. Dabney,
215 T. M. Barnes, S. Booth, D. Feldman, N. M. Haegel, *Nat. Energy*
216 **2018**, *3*, 1002.

217 M. D. Kempe, A. A. Dameron, M. O. Reese, *Prog. Photovoltaics*
218 **2014**, *22*, 1159.

219 T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger,
220 A. Petrozza, H. J. Snaith, *Adv. Energy Mater.* **2015**, *5*, 1500963.

221 Q. Dong, F. Liu, K. Wong, W. Tam, A. B. Djuris, A. Ng, C. Surya,
222 K. Chan, A. Man, C. Ng, *ChemSusChem* **2016**, *9*, 2597.

223 S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks,
224 R. J. Nicholas, H. J. Snaith, *Nano Lett.* **2014**, *14*, 5561.

225 Z. Fu, M. Xu, Y. Sheng, Z. Yan, J. Meng, C. Tong, D. Li, Z. Wan,
226 Y. Ming, A. Mei, Y. Hu, Y. Rong, H. Han, *Adv. Funct. Mater.* **2019**,
227 29, 1809129.

228 F. Bella, G. Griffini, J. P. Correa-Baena, G. Saracco, M. Grätzel,
229 A. Hagfeldt, S. Turri, C. Gerbaldi, *Science* **2016**, *354*, 203.

230 D. Koushik, W. J. H. Verhees, Y. Kuang, S. Veenstra, D. Zhang,
231 M. A. Verheijen, M. Creatore, R. E. I. Schropp, *Energy Environ. Sci.*
232 **2017**, *10*, 91.

233 R. Cheacharoen, C. C. Boyd, G. F. Burkhard, T. Leijtens,
234 J. A. Raiford, K. A. Bush, S. F. Bent, M. D. McGehee, *Sustainable
Energy Fuels* **2018**, *2*, 2398.

235 Y. Lv, P. Xu, G. Ren, F. Chen, H. Nan, R. Liu, D. Wang, X. Tan,
236 X. Liu, H. Zhang, Z. K. Chen, *ACS Appl. Mater. Interfaces* **2018**, *10*,
237 23928.

238 C. Wu, K. Wang, X. Feng, Y. Jiang, D. Yang, Y. Hou, Y. Yan,
239 M. Sanghadasa, S. Priya, *Nano Lett.* **2019**, *19*, 1251.

240 N. Rolston, A. D. Printz, F. Hilt, M. Q. Hovish, K. Brüning,
241 C. J. Tassone, R. H. Dauskardt, *J. Mater. Chem. A* **2017**, *5*, 22975.

242 J. Idigoras, F. J. Aparicio, L. Contreras-Bernal, S. Ramos-Terrón,
243 M. Alcaire, J. R. Sánchez-Valencia, A. Borras, Á. Barranco,
244 J. A. Anta, *ACS Appl. Mater. Interfaces* **2018**, *10*, 11587.

245 V. Stoichkov, N. Bristow, J. Troughton, F. De Rossi, T. M. Watson,
246 J. Kettle, *Sol. Energy* **2018**, *170*, 549.

247 A. R. Bowring, L. Bertoluzzi, B. C. O'Regan, M. D. McGehee, *Adv.
Energy Mater.* **2018**, *8*, 1702365.

248 N. Rolston, A. D. Printz, J. M. Tracy, H. C. Weerasinghe,
249 D. Vak, L. J. Haur, A. Priyadarshi, N. Mathews, D. J. Slotcavage,
250 M. D. McGehee, R. E. Kalan, K. Zielinski, R. L. Grimm, H. Tsai,
251 *Adv. Energy Mater.* **2020**, *1904054*

252 1904054 (34 of 35) © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

253 Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
254 The published version of the article is available from the relevant publisher.

1 W. Nie, A. D. Mohite, S. Gholipour, M. Saliba, M. Grätzel,
2 R. H. Dauskardt, *Adv. Energy Mater.* **2018**, *8*, 1702116.

3 [217] N. Rolston, B. L. Watson, C. D. Bailie, M. D. McGehee, J. P. Bastos,
4 R. Gehlhaar, J. E. Kim, D. Vak, A. T. Mallajosyula, G. Gupta,
5 A. D. Mohite, R. H. Dauskardt, *Extrem. Mech. Lett.* **2016**, *9*, 353.

6 [218] W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. P. Harvey,
7 J. P. Singh, J. Chai, Y. Wang, A. G. Aberle, S. Ramakrishna, *Energy
Environ. Sci.* **2017**, *10*, 43.

8 [219] NREL, National Renewable Energy Laboratory, **2019**, p. 52.

9 [220] A. Agresti, S. Pescetelli, A. L. Palma, B. Martín-García, L. Najafi,
10 S. Bellani, I. Moreels, M. Prato, F. Bonaccorso, A. Di Carlo, *ACS
Energy Lett.* **2019**, *4*, 1862.

11 [221] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-
12 Ebinger, M. Yoshita, A. W. Y. Ho-Baillie, *Prog. Photovoltaics* **2019**,
13 27, 3.

14 [222] Microquanta, Microquanta Semiconductor, [http://www.micro-
16 quanta.com/newsinfo/06F899BB54AE99B2/](http://www.micro-
15 quanta.com/newsinfo/06F899BB54AE99B2/) (accessed: 2019).

17 [223] M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol,
18 T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. Van Hest, K. Zhu, *Nat.
Energy* **2017**, *2*, 17038.

19 [224] M. Yang, D. H. Kim, T. R. Klein, Z. Li, M. O. Reese, B. J. Tremolet
20 De Villers, J. J. Berry, M. F. A. M. Van Hest, K. Zhu, *ACS Energy
21 Lett.* **2018**, *3*, 322.

22 [225] E. Bi, W. Tang, H. Chen, Y. Wang, J. Barbaud, T. Wu, W. Kong,
23 P. Tu, H. Zhu, X. Zeng, J. He, S. ichi Kan, X. Yang, M. Grätzel,
24 L. Han, *Joule* **2019**, *3*, 2748.

25 [226] S. Hong, J. Lee, H. Kang, G. Kim, S. Kee, J. H. Lee, S. Jung,
26 B. Park, S. Kim, H. Back, K. Yu, K. Lee, *Sci. Adv.* **2018**, *4*, eaat3604.

27 [227] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi,
28 X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis,
29 M. Graetzel, M. K. Nazeeruddin, *Nat. Commun.* **2017**, *8*, 15684.

30 [228] Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, H. Han, *Sol. RRL* **2017**,
31 1, 1600019.

32 [229] A. Priyadarshi, L. J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing,
33 T. C. Sum, N. Mathews, S. G. Mhaisalkar, *Energy Environ. Sci.*
34 **2016**, *9*, 3687.

35 [230] X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, 1
36 A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, 2
37 M. Grätzel, *Energy Technol.* **2015**, *3*, 551.

38 [231] R. Gehlhaar, T. Merckx, W. Qiu, T. Aernouts, *Glob. Challenges* **2018**, 4
39 2, 1800008.

40 [232] J. A. Schwenzer, L. Rakocevic, R. Gehlhaar, T. Abzieher,
41 S. Gharibzadeh, S. Moghadamzadeh, A. Quintilla, B. S. Richards,
42 U. Lemmer, U. W. Paetzold, *ACS Appl. Mater. Interfaces* **2018**, *10*,
43 16390.

44 [233] J. A. Schwenzer, L. Rakocevic, T. Abzieher, D. Rueda-Delgad,
45 R. Gehlhaar, B. S. Richards, U. Lemmer, U. W. Paetzold, in *2018
46 IEEE 7th World Conf. Photovoltaic Energy Conversion (WCPEC
47 2018)—A Joint Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC*,
48 IEEE, **2018**, p. 2816.

49 [234] M. V. Khenkin, K. M. Anoop, I. Visoly-Fisher, Y. Galagan,
50 F. Di Giacomo, B. R. Patil, G. Sherafatipour, V. Turkovic,
51 H. G. Rubahn, M. Madsen, T. Merckx, G. Uytterhoeven,
52 J. P. A. Bastos, T. Aernouts, F. Brunetti, M. Lira-Cantu, E. A. Katz,
53 *Energy Environ. Sci.* **2018**, *11*, 739.

54 [235] W. Tress, K. Domanski, B. Carlsen, A. Agarwalla, E. A. Alharbi,
55 M. Graetzel, A. Hagfeldt, *Nat. Energy* **2019**, *4*, 568.

56 [236] P. Holzhey, M. Saliba, *J. Mater. Chem. A* **2018**, *6*, 21794.

57 [237] IEC, *IEC 60904 Ed. 2.0 Photovoltaic Devices*, IEC Central Office,
58 Geneva, Switzerland **2006**.

59 [238] IEC, *IEC 61730 Photovoltaic (PV) Module Safety Qualification*, IEC
60 Central Office, Geneva, Switzerland **2015**.

61 [239] IEC, *IEC 61215: Terrestrial Photovoltaic (PV) Modules—Design Qual-
62 ification and Type Approval*, IEC Central Office, Geneva, Switzerland
63 **2005**.

64 [240] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

65 [241] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
66 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

67 [242] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
68 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
69 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
70 Energy* **2020**, *5*, 35.

71 [243] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

72 [244] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
73 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

74 [245] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
75 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
76 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
77 Energy* **2020**, *5*, 35.

78 [246] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

79 [247] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
80 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

81 [248] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
82 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
83 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
84 Energy* **2020**, *5*, 35.

85 [249] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

86 [250] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
87 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

88 [251] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
89 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
90 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
91 Energy* **2020**, *5*, 35.

92 [252] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

93 [253] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
94 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

95 [254] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
96 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
97 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
98 Energy* **2020**, *5*, 35.

99 [255] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

100 [256] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
101 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

102 [257] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
103 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
104 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
105 Energy* **2020**, *5*, 35.

106 [258] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

107 [259] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
108 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

109 [260] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
110 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
111 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
112 Energy* **2020**, *5*, 35.

113 [261] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

114 [262] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
115 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

116 [263] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
117 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
118 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
119 Energy* **2020**, *5*, 35.

120 [264] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

121 [265] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
122 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

123 [266] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
124 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
125 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
126 Energy* **2020**, *5*, 35.

127 [267] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

128 [268] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
129 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

130 [270] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

131 [271] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
132 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

133 [272] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
134 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
135 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
136 Energy* **2020**, *5*, 35.

137 [273] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

138 [274] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
139 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

140 [275] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
141 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
142 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
143 Energy* **2020**, *5*, 35.

144 [276] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

145 [277] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
146 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

147 [278] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
148 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
149 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
150 Energy* **2020**, *5*, 35.

151 [279] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

152 [280] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
153 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

154 [281] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
155 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
156 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
157 Energy* **2020**, *5*, 35.

158 [282] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

159 [283] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
160 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

161 [284] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
162 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
163 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
164 Energy* **2020**, *5*, 35.

165 [285] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

166 [286] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
167 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

168 [287] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
169 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
170 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
171 Energy* **2020**, *5*, 35.

172 [288] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

173 [289] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
174 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

175 [290] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
176 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
177 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
178 Energy* **2020**, *5*, 35.

179 [291] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

180 [292] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
181 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

182 [293] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
183 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
184 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
185 Energy* **2020**, *5*, 35.

186 [294] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

187 [295] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
188 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

189 [296] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
190 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
191 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
192 Energy* **2020**, *5*, 35.

193 [297] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

194 [298] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
195 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

196 [299] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
197 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
198 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
199 Energy* **2020**, *5*, 35.

200 [300] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

201 [301] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
202 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

203 [302] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
204 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
205 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
206 Energy* **2020**, *5*, 35.

207 [303] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

208 [304] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
209 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

210 [305] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
211 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
212 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
213 Energy* **2020**, *5*, 35.

214 [306] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

215 [307] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
216 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

217 [308] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
218 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
219 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
220 Energy* **2020**, *5*, 35.

221 [309] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

222 [310] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
223 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

224 [311] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
225 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
226 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
227 Energy* **2020**, *5*, 35.

228 [312] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

229 [313] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
230 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

231 [314] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
232 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
233 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
234 Energy* **2020**, *5*, 35.

235 [315] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

236 [316] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
237 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

238 [317] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
239 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
240 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
241 Energy* **2020**, *5*, 35.

242 [318] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

243 [319] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
244 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

245 [320] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
246 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
247 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
248 Energy* **2020**, *5*, 35.

249 [321] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

250 [322] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
251 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

252 [323] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
253 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
254 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
255 Energy* **2020**, *5*, 35.

256 [326] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

257 [327] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
258 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

259 [328] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
260 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
261 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
262 Energy* **2020**, *5*, 35.

263 [329] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

264 [330] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
265 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

266 [331] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
267 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
268 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
269 Energy* **2020**, *5*, 35.

270 [332] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

271 [333] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
272 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

273 [334] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
274 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
275 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
276 Energy* **2020**, *5*, 35.

277 [335] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

278 [336] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
279 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

280 [337] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry,
281 C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo,
282 M. Matheron, M. Mcgehee, R. Meitzner, M. K. Nazeeruddin, *Nat.
283 Energy* **2020**, *5*, 35.

284 [338] C. R. Osterwald, T. J. McMahon, *Prog. Photovoltaics* **2009**, *17*, 11.

285 [339] A. L. Rosenthal, M. G. Thomas, S. J. Durand, in *Conf. Record of
286 IEEE Photovoltaic Specialist Conf.*, IEEE, **1993**, p. 1289.

287 [340] M. V. Khenkin, E.