
Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx 

PR
OO

F 

Contents lists available at ScienceDirect 

Renewable and Sustainable Energy Reviews 
journal homepage: http://ees.elsevier.com 

A B S T R A C T  

This article describes an interdisciplinary methodology to calculate the probability of failure for bearing axial 

A methodology for reliability assessment and prognosis of bearing axial cracking in
wind turbine gearboxes 
YiGuo ∗ , ShuangwenSheng, CalebPhillips, JonathanKeller, PaulVeers, LindyWilliams 

National Renewable Energy Laboratory, Golden, CO, 80401, United States 

UN
CO

RR
EC

TE
D

A R T I C L E  I N F O  

cracking, the dominant failure mode in the intermediate and high-speed stages of many wind turbine gearboxes.
This approach is mainly a physics-domain method with needed inputs from the data domain. The gearbox and
bearing design along with operations data and component failure records from a wind power plant provide the
input to physics-based models and defne axial cracking damage metrics. The physics-domain models predict the
bearing loads and sliding velocities, which are the essential elements for quantifying the accumulated frictional
energy. Both accumulated frictional energy and electrical energy generation are proposed as damage metrics for
bearing axial cracking. A frst-order reliability method is then used to compare the proposed damage metrics to
failure threshold functions and calculate the probability of failure of each individual bearing. Although the prob-
ability of failure for the failed turbines is not separated from the population, a feature engineering analysis shows
the potential of frictional energy as a damage metric when combined with roller loads, bearing sliding speed, 
lubricant type, and terrain features. Through statistical analysis of historical data, the proposed methodology 
enables reliability assessment of axial cracking in individual wind turbine bearings and connects the reliability 
forecast with turbine design and operations. 

Nomenclature 

Main shaft torque (Nm)
Generator rotational speed (rpm)
Frictional energy (J)
Frictional energy (nondimensional) 
Frictional energy threshold (nondimensional) 
Limit state function 
Probability of failure
High-speed-shaft torque ( )
Gearbox ratio 
Transmission effciency
Mass matrix ( )
Damping matrix ( )
Stifness matrix ( )
Mass of the brake disc ( )
Mass of the shaft ( )
Displacement vector ( )
Time ( ) 

External load ( )
Damping ratio
Natural frequency ( )
Mode shape matrix ( )
Number of bins 
Frictional coeffcient 
Normal force between inner raceway and roller ( )
Sliding velocity ( 
Bearing cage rotational speed ( 
Roller rotational speed ( 
Bearing inner ring raceway diameter ( 
Bearing pitch diameter ( 
Roller diameter ( 
Number of rollers 
Roller length ( 
Contact load factor 
Length of contact ellipse ( 
Bearing radial load ( )
Weibull shape parameter 
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Weibull scale parameter [9]. It has been successfully applied in military, civil, and many other
applications [10] and received attention in the wind industry, especially
for plant feetwide reliability analysis [11]. However, these reliabil-
ity analyses are conducted at the wind plant or feet levels, and they do
not provide any information on individual turbines and their subcompo-

Weibull location parameter
Bearing clearance variation ( ) or 

During wind plant operations, a large amount of turbine supervi-
sory control and data acquisition (SCADA), condition monitoring, and
plant maintenance records are typically collected. Various modeling and
analysis methods using the collected data have been explored for
dition-based maintenance of major turbine components [12]. However,
the focus has been on fault diagnostics but not prognostics. Prognos-
tic methods for wind are still being explored [13] and they can be 
grouped into physics-based, statistical, artifcial intelligence, and hybrid
approaches [14,15]. Statistical, artifcial intelligence, and reliability en-
gineering life data analysis can be broadly considered as data-driven ap-
proaches. These data-domain-reliability prediction methods are highly
infuenced by the availability of high-quality, informative turbine
ponent reliability data. Most importantly, these approaches are 
pable of connecting reliability estimates with component design para-
meters, operation strategies, and control objectives because of the lack 
of physical understanding of underlying failure mechanisms. In other 
words, methodologies for addressing reliability evaluation throughout a
component's life cycle, including its initial design phases and various op-

Coeffcient of expansion
Bearing outer ring temperature (º )
Bearing inner ring temperature (º ) nents. 
Ambient temperature (º )
Probability density function
Cumulative distribution function 
Bearing outer ring raceway diameter ( )
Bearing inner ring raceway diameter ( )
Number of cycles
Reliability index 
Electrical energy generation ( )
Electrical energy generation threshold ( 

con-

Abbreviations 

O&M Operation and maintenance
White-etching crack
Supervisory control and data acquisition
High-speed shaft
High-speed-shaft bearings
Rotor side 

com-
WEC not ca-
SCADA 

Generator-side inboard 
erational conditions, are yet to be developed.

In this work, a novel interdisciplinary methodology that 
1. Introduction mation from both the physics and data domains is developed for both

reliability assessment and prognosis of wind turbine gearbox bearing ax-
Wind power plant operation and maintenance (O&M) costs can be as ial cracking. The statistical characteristics of bearing damage and failure 

30% of the life-cycle cost of a typical ofshore wind plant, and for a wind plant are assessed by analyzing the accumulated frictional 
about half of that for a typical land-based wind plant [1]. Premature fail- energy of individual turbine bearings using historical SCADA data and 

of wind turbine drivetrain components remain an important con- failure records. Assuming the rest of the wind plant has the 
tributor to higher-than-expected O&M costs of wind power plants [2]. tional energy failure threshold as the failed turbines, reliability forecast 
An accurate reliability forecast provides crucial information for reducing of individual bearings at any operating age is estimated. Moreover, relia-
O&M costs through design improvements, optimized operation strate- bility forecast of wind turbine gearbox bearings inherently considers the 
gies, and enhanced budgeting. effects of bearing design and turbine operations because of the physical 

The current research focuses on reliability modeling and progno- nature of this methodology, which can be used in early design phases to 
sis by examining bearing axial cracking, which is the dominant fail- forecast and reduce O&M costs. 

mode observed in the high- and intermediate-speed-stage bearings This methodology includes a set of mathematical models together 
in many wind turbine gearboxes [3]. “Axial” describes the orientation with operation data and component failure records to calculate proba-
of these cracks, as they align with the axis of the shaft rotation. These bility of failure of gearbox bearings of individual wind turbines through-
cracks typically have white etching areas, which are also referred as out the turbines entire life cycle. Bearing accumulated frictional energy 
white etching cracks (WECs). “White etching” refers to the appearance and electrical power generation are considered as damage metrics for 
of the steel microstructure when the cracked bearing cross sections are axial cracking in this study. The reliability assessment using accumu-
polished, etched with chemicals, and examined under refected light [4]. lated frictional energy includes the following steps: 1) mapping turbine 
These cracks tend to propagate to spalls or lead to a complete splitting rotor loads to drivetrain loads, 2) calculating bearing roller sliding, 3) 
of the bearing inner ring. This mode of failure can occur at 5%–20% of estimating the progression of bearing damage, and 4) assessing proba-

bility of failure considering uncertainties in modeling parameters andthe predicted design life based on rolling contact fatigue and has been 
input signals. Similarly, reliability assessment of bearing axial cracking observed in many industries, bearing locations, bearing types, bearing 
using electrical power generation includes: 1) calculating the accumula-parts, and steel types [5,6]. Although WECs have been reported for over 
tion of electrical power for individual turbines, 2) determining bearing a decade, the conditions leading to axial cracking or WECs, the process 
degradation, and 3) assessing probability of failure. The input for these by which this failure culminates, and the reasons for their apparent 
models comprises wind plant SCADA data, maintenance records, and ba-prevalence in wind turbine gearboxes, are all highly debated. In 2014, 
sic drivetrain design parameters and dimensions. The bearing degrada-benchtop testing conducted at Argonne National Laboratory reproduced 
tion is determined using the aforementioned metrics and the degrada-WECs on a three-ring-on-roller test rig under highly loaded sliding con-
tion threshold is calculated using the failure and maintenance recordsditions [7]. A cumulative frictional-energy metric was derived from the 
from wind power plants. Bearing degradation and probability of failure benchtop testing results [8] for identifying the occurrence of axial crack-
is evaluated for forty-nine MW-size wind turbines of a wind plant. With ing. Based on this damage metric, the presented research aims to in-
this methodology, many other damage metrics, failure modes, or drive-
train components can be easily examined.

The rest of the article is organized Component reliability is typically assessed by ftting the component 

HSS 
HSB 
RS 
GS-in 

infor-uses 

high as 

fric-sameures 

ure 

troduce and demonstrate a reliability assessment methodology for axial
cracking. 

as follows. Section 2 introduces 
the reliability modeling and prognosis methodology. It frst illustrates age at the time of failure with a mathematical distribution, such as 
the fow of the methodology and then briefy discusses various mod-Weibull. This data-domain method provides a quantitative approach to 
els developed from loads to probability of failure. Section 3 presents re compare various designs, manufacturers, operations, and maintenance 
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sults of the methodology using data from an actual wind plant and dis- casted for the future. In the next section, these mathematical models are 
correlation between various features and component probabil- detailed. cusses a 

ity of failure prediction. Then, the component probability of failure eval-
uation is presented based on the frictional energy accumulation induced
by roller sliding. Finally, the electrical energy produced is considered as 
an 
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2.1. Gearbox model 

There are two cylindrical bearings supporting the high-speed shaft
(HSS) of the studied gearboxes. One of them is mounted close to the ro-
tor-side end of the shaft (RS), whereas the other is located near the gen-
erator (GS-in). To calculate the bearing loads, a three-degree-of-freedom
lumped-parameter model is established. This lumped-parameter model 
uses torque as the input and calculates the radial loads and displace-

, and denote the mass, damping, and stifness matri-
and the external loads and denotes the displacements in two 

dial directions and one axial direction. In the model, bearing clearance 
is included to address its effects on bearing loads through piece-wise
force-defection functions [18]. The mass matrix, , comprises the mass 

mass of 668 kg. Modal damp-

alternative metric and compared to the frictional energy approach. 
This article concludes with a summary of the current research and a 
brief discussion of future work. 

2. Methodology 

This section describes the probability of failure calculation method 
using a set of mathematical models and wind power plant SCADA data. 
The developed models are analytic and therefore can be applied to wind
plants with various drivetrain confgurations or designs. Steps for calcu-
lating the bearing frictional energy and probability of failure of individ-
ual turbines within the wind plant are illustrated in Fig. 1 and Fig. 2, 

ments of all three bearings mounted on the high-speed shaft. HSS torque
in the gearbox can be calculated using , where and denote 
the gearbox ratio and transmission effciency.

The concise form of the equation of motion can be written as: 
(2) 

whererespectively.
As shown in Fig. 1, the power, gearbox lubricant temperature, and

rotor speed are taken directly from the turbine SCADA data. Main shaft
in , is not directly measured but can be estimated using 

measured electrical power and generator speed.
The lumped-parameter gearbox model calculates gearbox bearing ra-

dial loads and displacements at any given torque. The loads on indi-
vidual bearing rollers are then estimated [19]. Considering roller loads,
bearing rotational speed, and lubricant temperature, analytic roller 
dynamics model then computes the roller sliding speeds. Given roller
sliding speed and roller loads, is the summation of the nondimensonal 
energy between each roller as it orbits the inner raceway. Frictional en-
ergy generated at the interface between the rollers and cage is not con-
sidered because axial cracking appears on the bearing raceways, not the 

ces ra-
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By following the same steps described in Fig. 1, the frictional en-
ergy accumulation can be estimated for all the turbines within the 
plant. Combining information on frictional energy accumulation for 
both healthy and failed turbines based on the plant failure records, the 
Weibull distribution of the damage threshold of the accumulated 
frictional energy is determined statistically as illustrated in Fig. 2. Given 
the significant uncertainties in calculating , its Weibull distribution 
is used instead of a constant value. A limit state function is then de-
fned that separates healthy and failure domains by subtracting the fric-
tional energy threshold from energy accumulation for a given operat-
ing period of an individual wind turbine. Finally, a reliability analysis 
approach called frst order reliability method (FORM) [16,17] is ap-
plied to calculate probability of failure of individual turbine bear-
ings considering the variability in lubricant temperature, bearing clear-
ance, and frictional energy threshold. Depending on the specifed tem-
perature, speed and torque spectra for the analysis, of individual 
turbines bearings can be assessed for a given time in the past or fore 

of the HSS and brake disk with the total 
ing of is assumed in the simulation, where 
and and 

bearings in series connection, listed in Table 1. Finally, the gear mesh 
force is derived from . Once the bearing loads are calculated, the roller
load distribution is estimated using an analytic approach [19]. 

2.2. Roller dynamics model 

as a 

roller bearings [20]. 

2.3. Frictional energy 

The bearing degradation that results in axial cracking is evaluated 
using the aforementioned accumulated frictional energy mechanism,
given the calculated roller sliding speed and roller loads. The fundamen-
tal formula to calculate frictional energy for a single roller under sliding
for a given period is: 

torque, 

are the mode shapes and natural frequencies of the 
HSS. The stifness matrix is based on the stifness matrices of all three 

rollers. 
With the calculated roller loads, shaft rotation speed, and lubricant 

temperature the input, dynamic bearing model calculates the fric-
tional coeffcient, bearing cage orbiting, and roller sliding speeds. This 
rolling element bearing model considers roller elasticity, roller dynam-
ics, hydrodynamics of lubrication, lubricant temperature, and interac-
tions between the lubricant and rollers. Modeling results compared well
with direct measurement data on cage and roller speeds for cylindrical 

Fig. 1. Modeling steps for calculating frictional energy of individual bearings. 

3 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



Y. Guo et al. Renewable and Sustainable Energy Reviews xxx (xxxx) xxx-xxx 

tions for various wind speeds during the entire operation period, as 
shown in the following: 

PR
OO

Fis the contact load factor that is defned as the ratio 
single roller travels under continuous loading, 

the physical distance between two adjacent rollers. is the number of 
is estimated analytically as the length of con-

tact ellipse in the circumferential direction based on Hertzian contact 

. 
To analyze the reliability of gearbox bearings with respect to ax-

an estimate of the work done 
the distance, , that the 

(5) 
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Fig. 2. Modeling steps for calculating the probability of failure ( ) of individual bearings. 

Stifness matrix between HSS assembly including the bearings and gearbox housing. 

Stifness (N/m) Axial Radial Tangential 

890 × 10 6 12 × 10 6 1.5 × 10 6 

12 × 10 6 5900 × 10 6 190 × 10 6 

Tangential 1.5 × 10 6 190 × 10 6 2700 × 10 6 

(3) 

where denotes the friction coeffcient and denotes normal force at 
the inner raceway of roller . The sliding velocity at the roller and 
inner-raceway contact surface equals: 

(4) 

denotes generator rotational speed in rpm. and denote 
the cage orbiting and roller, , spinning speed, respectively. Parameters 

, and denote the bearing inner ring raceway, bearing pitch, and
roller diameters. 

For radially loaded bearings, only about half of the rollers are 
loaded. This loaded area is often called the bearing load zone. The 
rolling elements orbit with the cage, entering and leaving the loaded 

every orbit. To calculate the total frictional energy generated by 
all rolling elements in an orbit, Eq. (3) is reformulated to refect the 
aforementioned cyclic and time-dependent loading for every roller. Dur-
ing normal production, the torque and speed spectra throughout the 
entire operation history are used as model inputs and divided into 

bins. The estimated accumulated energy counts the accumu-

of the distance a 

rollers. The parameter 

theory [19]. 

denotes roller length and 

ial cracking, is nondimensionalized by 
by bearing frictional force, , over 
rollers travel in 24 h as: 

where denotes the radial load on the bearing. 

2.4. Variations in lubricant temperature and bearing clearance 

The lubricant temperature and bearing clearance also have an impor-
tant infuence on the roller sliding velocity, and consequently, the 
cumulated frictional energy. The lubricant temperature is controlled by
cooling and heating systems, whereas the bearing clearance is related to
the bearing design, interference ft with the shaft, and the temperature
of the bearing itself. These parameters also vary during turbine opera-
tion, just like the drivetrain load and speed, and must be accounted for
when estimating frictional energy accumulation.

where 
, to 

(6) 

where 

(7) 

ac-
Table 1 

Axial 
Radial 

andThe measured lubricant temperature varies between
based on experiments conducted on a commercial wind turbine 
[4,21]. Fig. 3 shows the probability density function of the measured 

Fig. 3. Probability density function of the measured lubricant temperature. 

4 

where 

, 

zone 

lated ball-pass cycles with respect to the inner raceway 
ball-passing frequency under combined radial loads and sliding condi 
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lubricant temperature and its Weibull ft analyzed in ReliaSoft [22]. in higher load cases, but can have a much greater effect in low load 
The expression of the probability density function of the three-parame- cases. 
ter Weibull for the temperature spectrum is described as [23]: 

(8) 
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The proposed model considers these variations in lubricant temper-
ature and bearing clearance during operation by integrating all temper-
atures. The probability density function of the lubricant temperature is
discretized into 200 equally spaced bins. For a given power and rotor 
speed, 200 calculations of are simulated under various lubricant tem-
peratures, as illustrated in Fig. 3, where denotes the bin number. Then 

is computed as , where is the probability density 
when the temperature is within bin . Bearing clearance variation,
, is computed using Eq. (9) for every temperature bin, . 

2.5. Energy threshold 

An essential step in reliability analysis is determining , the fric-
tional energy threshold. The amplitude of has only been reported 

where and denote the shape and location parameters, and is the 
scale parameter and it denotes the mean value of the Weibull-ftted spec-
trum. Weibull parameters of the lubricant temperature distribution are 
listed in Fig. 3, where the mean value of the lubricant temperature 
equals 54.7 °C. 

Bearing clearance during operation can change significantly from its
design value because of the interference ft with the shaft and differ-
ences in temperature between the rings and rollers. Because of the lack
of direct experimental data, the variation of bearing operating clearance 
is estimated as [19]: 

based on bench top testing of a roller sliding against three cylinders (9) for reference oil [8]. Thus, needs to be determined for the gear-
box high-speed bearings. The probability density function of
estimated through Weibull-ftting of the calculated for the entire 
wind plant. The cumulative distribution function of the three-parameter
Weibull can be derived as [23]: 

a 
where 
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denotes the coeffcient of expansion of the bearing. Parame-
, and denote the temperature at the bearing outer and inner

rings, and ambient temperature, and and denote the outer and in-
ner ring raceway diameters, respectively.

Fig. 4 shows the calculated frictional energy over the inner ring
with various lubricant temperatures and bearing clearances. When the 
azimuth angle is less than 0, the rollers are outside the load zone and 

meaningful energy is accumulated. When the azimuth angle is near 
0, the rollers enter the load zone and accelerate. Roller sliding is great-
est at this point while under low roller loads, resulting in the largest 
contribution to frictional energy. At the load zone center at an az-
imuth angle of the rollers are heavily loaded and experience the least 
amount of sliding, generating only small fraction of frictional energy. 
Once the rollers start to leave the load zone at an azimuth angle of 
rad, they begin to decelerate, generating a moderate amount of fric-
tional energy. As the lubricant temperature decreases, the amount of 
frictional energy increases because the lubricant is more viscous and 
causes more sliding. Fig. 4 also illustrates the frictional energy accu-
mulation over the inner ring with C2, CN, and C3 bearing design clear-
ances, ranging from 45 to 145 . The original design clearance is as-
sumed to be 120 μm and 50 μm for RS and GS-in bearings, respectively.
The bearing clearance has only a modest effect on the frictional energy 

where denotes the scale parameter. 
the components among the entire wind plant that will have failed at 
given . For example, 

Fig. 5 shows the Weibull cumulative distribution function of the ac-
cumulated frictional energy for the wind plant, calculated using afore-
mentioned models. For the failed turbines, the accumulated energy was
calculated during the mean time between failures. The entire operation
period was considered for the healthy turbines. RS and GS-in bearings in
both intermediate- and high-speed stages were considered in the analy-
sis. The ReliaSoft Weibull ft [22] crosses the x-axis at a nonzero en-
ergy value (i.e., ). Based on the analysis, the scale parameter, , 
equals 22.6 and is considered to be the mean value of 
10% when = 1.97. The goodness of Weibull ft equals 0.97, suggest-

was 
ters 

(10) 

no 
indicates the percentage of 

a 
equals 63.2% when . 

equals. 

ing a very good ft despite the fact that the failure records cluster early
in time. The coeffcient of variation for this Weibull curve is estimated 

Fig. 4. Effect of (left) lubricant temperature and (right) bearing clearance on frictional energy. 
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The limitations of the study include that it: 

derived 
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Das 0.3 based on its value [24]. Both the mean and variation of are 

considered for the reliability analysis. 

2.6. Reliability analysis 

The accumulation of frictional energy is an irreversible process that
results in the formation of cracks and associated raceway spalling [7,8].
The probability of failure by axial cracking is estimated as bearing dam-
age evolves toward the failure threshold, . A limit state function that 
separates the healthy and failure domains is defned as: 

(11) 

is the threshold beyond which axial cracking will occur and 
is the accumulated frictional energy for the bearing, considering

the variations of temperature and bearing clearance. When is nega-
tive, failure is predicted.

The probability of failure is evaluated with the integral [25]: 

(12) 

The parameter is the vector that consists of all the considered vari-
ables. The function, , is the joint probability density function for
these random variables. Direct evaluation of the probability integration 

be diffcult and time-consuming given the number of random vari-
ables and the nonlinearity in . 

FORM is an effcient way of estimating [16,17] and is used in this
study. This approach simplifes the integrand by transferring the ran-
dom variables from their original random space, , into standard normal 
space based on the knowledge that the cumulative distribution functions
of the random variables remain the same before and after the transfor-
mation. Through searching the point on the integration boundary with
the highest probability density, the distance from the origin to this most
probable point, called the reliability index, , is obtained. Therefore, the
probability of failure can be estimated as [25]: 

(13) 

• relies on 
from benchtop experiments; 

considered; 

ited data availability. 

3. Results and discussion 

northern border is close to a 
from the southwest. The secondary wind direction is from the northeast,
across the valley mentioned earlier, which could cause wind turbulence.
A majority of the time these turbines operate near either rated torque or

a 

3.1. Probability of failure analysis using frictional energy 

as 

Fig. 6 compares the 

on 

present; however, these differences in the 

the degradation model for axial cracks, which was 

• focuses only on normal power production conditions averaged over 
10-min periods. It does not investigate the potential effects of tran-
sient wind conditions and turbine events on roller sliding and bearing
axial cracks; however, the frictional energy accumulated during tran-
sient events is much less than normal power production [26]; 

• addresses a limited number of uncertainties, including lubricant tem-
perature, bearing clearance, and frictional energy accumulation. Un-
certainties in bearing surface roughness, lubricant viscosity and addi-
tives, and material properties, as well as SCADA inputs, have not been 

• does not consider other data streams that could potentially augment
reliability analysis, such as condition monitoring, because of the lim-

A total of forty-nine 1.5-MW wind turbines in a commercial wind 
power plant were analyzed to calculate the probability of failure of gear-
box HSS bearings. The wind plant is located on a fat plain, but its

rugged valley. The dominant wind 
Fig. 5. The Weibull cumulative distribution function of dimensionless frictional energy ac-
cumulation. comes 

very limited torque. The wind turbines all have three-stage gearboxes,
with transmission ratio of about 80, which provided by multiple
suppliers. Despite different gearbox manufacturers, cylindrical bearings 
are used in the intermediate- and high-speed stages. The data set in-
cludes 10 years of operational data and axial cracking failure records. In
this study, a reliability analysis of this wind plant is performed assuming
the plant has been operating for 20 years. Operation profles of power
and rotor speed from year 11–20 
from year 1–10 to investigate the reliability of bearings during the gear-
box design life. 

are 

are assumed to be identical to those 

where 

Common maintenance practice typically treats the HSS and support-
ing bearings one unit to save costs. When any part fails, the entire 
assembly is usually replaced. The fault tree analysis considers RS and 
GS-in bearings in a series relationship, resulting in: 

(14) 

of the RS and GS-in bearings individually,
and the high-speed-bearing (HSB) set together for all 49 wind turbines.
The for the individual bearings and the combined bearings monoto-
nically increase with operating time, reaching 0.54, 0.63, and 0.83,
spectively, after 20 years. The GS-in bearing has a slightly higher proba-
bility of failure than the RS bearing for this particular wind plant, which
matches feld observations. After 2.5 years, there were 9 failures out of
49 turbines HSS bearings, equating to
As shown in Fig. 6, the probability of failure for the bearing set is about
20% after 2.5 years of operation, matching the previously mentioned 
calculation. Small differences in the 

can 

re-

failure percentage of 18%. a 

among these wind turbines
insuffcient to single 

are 
are 

where is the cumulative distribution function of the standard normal bines within the plant after 10 years and quantifes the small differ-
distribution. ences in between turbines. The probability of failure ranges from

0.591 (wind plant row 2 and column 4) to 0.617 (wind plant row 1 and 

6 

out the unhealthy turbines from the entire population.
Fig. 7 compares the of the HSB system for the individual tur-
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Fig. 7. HSB of individual turbines within the plant after 10 years. 

column 5). Quantifying for each turbine can provide information
for O&M decision-making. Furthermore, correlating the of individual 
turbines with the wind plant layout may suggest the significance of ter-
rain, wake, and other location-related factors on turbine health. 

3.2. Probability of failure analysis using electrical energy generation 

In addition to using frictional energy as a damage metric, electrical 
energy generation, , is also considered for comparison. It is a read-
ily available measure of turbine usage but is the same for every bear-
ing in the turbine. The process of calculating probability of failure based 

electrical energy generation is the same as discussed previously, in-
cluding determining the threshold, , for the electrical energy us-

of all of the healthy and failed wind turbines. Fig. 8 shows the cumula-
tive distribution function from the Weibull ft. The mean value of 
is estimated as . 

Fig. 9 shows the calculated 
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Fig. 8. Weibull cumulative distribution function for electrical energy generation. 

based on the measured energy gener-
ation for the same operation conditions as Fig. 6. Compared to Fig. 6, 
the using energy generation shows the 
lar amplitude of 0.49 after 20 years (about
at low electrical energy has higher values than the frictional energy ap-
proach. Most importantly, the
indistinguishable. Thus, 

same trends and has a simi-
). However, the 

of each of the 49 turbines is almost 
analyses using electrical energy generation

cannot differentiate the axial-cracking risks among the turbines. Further-
more, a reliability assessment using electrical energy generation cannot
assess the individual bearings. Despite these shortcomings, using electri-
cal energy generation can provide a fast estimate of the risks of bearing
axial cracking, but only at the wind plant level. 

on 

ing both SCADA and maintenance records, defning a limiting state 
function ; and calculating the using FORM. The 
probability density function of was determined by the Weibull ft Fig. 9. HSB system based on electrical energy generation. 
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Both frictional energy and electrical energy generation refect the us- studied by evaluating its ability to outperform a simple model that al-
age of the turbine and result in highly correlated reliability predictions ways chooses the most 
for the bearings. Even though electrical energy generation cannot be 
used to quantify the reliability of individual bearings, it avoids the de-

common class (i.e., no failure). The logistic re-
gression and random forest model predict greater than 81% of accu-
racy, which is the baseline for the sample model. A random forest model
that utilizes an ensemble tree classifcation modeling method performed
the best and obtained 93% accuracy, with 97% sensitivity (true positive
rate) and 75% specifcity (true negative rate).

Despite the relatively small sample size and limited diversity of gear-
box models, and its constituent components, combined with lubricant
and terrain features, demonstrate potential prognostic precur-
sors and damage metric for monitoring bearing axial cracking. More op-
erational data and failure records from different wind plants and gear-
box manufacturers are required to substantiate this fnding. To fully un-
derstand the relationship between the constituent features and failure 
probability, questions about the ideal design of numerical experiments 
and analysis windowing of data must be addressed as well. 

tailed calculations required of accumulated frictional energy. 

some as 

4. Conclusions 

A methodology for reliability assessment and prognosis of wind tur-

3.3. Feature engineering analysis of damage metrics 

The previous discussion of and suggests that studying damage 
metrics be benefcial for further differentiating failure risks among can 
wind turbines. Using the provided wind plant data, a feature engineer-
ing statistical analysis conducted to investigate predictive features was 
for the wind plant with a broader scope, including not only frictional en-
ergy and its constituent components, but also turbine siting metrics, the
gearbox lubricant, and the gearbox manufacturer. The maximum, min-
imum, and mean values of roller loads, cage speed, roller defections, 
sliding speed, roller speed, and frictional energy within every 10-min
window are calculated for each turbine using the aforementioned devel-
oped mathematical models up to the point of failure. The distance from
the nearby valley is considered as an additional feature that most likely
introduces turbulence, as well as the distance to the nearest turbine as a
potential source for wake infuences.

The relationship between each of these features and the number of 
failures was assessed using box plots and quantifed using a Wilcox test
[27] for numerical features and Chi-squared test for the categorical vari-
ables (e.g., lubricant) [28]. The analysis is limited to a single turbine 
manufacturer and HSS bearing failures. Fig. 10 compares box plots of
the averaged frictional energy and total electrical power generation over
10 years between failed and nonfailing high-speed bearing sets. The 
greater the difference between the healthy and failed distributions, the
greater the chance that the feature is predictive. The electrical and fric-
tional energy distributions for the healthy and failed wind turbines over-
lap significantly. Although there are observable differences in several 
features, the Wilcox test suggests that only the sliding speed maximum 
appears significantly correlated with failure when using the data subset
analyzed here. 

bine gearbox bearings is presented in this work. Unlike other reliabil-
ity analysis approaches, the methodology uses a physics-domain model,
SCADA data, and wind plant failure records to forecast the probability
of failure of individual gearbox bearings in each wind turbine within the
plant. It provides physical insight into the bearing failure mechanism 
and connects reliability to turbine design and wind plant operations. It
can be used by turbine designers and plant operations to evaluate the ef-
fects of design and operations changes on bearing probability of failure
to proactively prolong turbine life.

The methodology was applied to bearing axial cracking failures. Fric-
tional energy accumulation and electrical power generation 
sidered as damage metrics. Only normal power production conditions 
were considered in the analysis because frictional energy accumulation
is limited during transient turbine events. The reliability analysis us-
ing electrical power generation, although relatively simple, does not as-
sess individual bearings like using frictional energy accumulation. Other 

assess the ability of combining multiple features to predict fail- damage metrics and physical drivers of bearing axial cracking may exist 
ures, multivariate model ftting using logistic regression and random for- and could be explored using the established methodology. 
est models are explored. The considered features include terrain fea- The reliability analysis of 10-min-average SCADA data only showed 
tures, lubricant, frictional energy, roller loads, sliding speed, and elec- small differences in the probability of failure for the wind turbines; 
trical energy. The accuracy of each logistic or random forest model is however, these differences were insuffcient to single out the failed tur 

were con-

To 

Fig. 10. Box plots of the (left) total electrical energy and (right) average frictional energy for healthy and failed HSBs. The horizontal line is the median and the box surrounds the in-
terquartile range (25–75 percentile). The vertical line extends to the most extreme data points. 
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