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ARTICLE INFO ABSTRACT
Keywords This article describes an interdisciplinary ..ethc logy to calculate the probability of failure for bearing axial
Wind turbine cracking, the dominant failure mode in the intermediate and high-speed stages of many wind turbine gearboxes.
Reliability assessment This approach is mainly a physics-domain method with needed inputs from the data domain. The gearbox and
Prognosis bearing design along with operations data and component failure records from a wind power plant provide the
Axial cracking input to physics-based models and define axial cracking damage metrics. The physics-domain models predict the
Probability of failure bearing loads and sliding velocities, which are the essential elements for quantifying the accumulated frictional
Gearbox energy. Both accumulated frictional energy and electrical energy generation are proposed as damage metrics for
bearing axial cracking. A first-order reliability method is then used to compare the proposed damage metrics to
failure threshold functions and calculate the probability of failure of each individual bearing. Although the prob-
ability of failure for the failed turbines is not separated from the population, a feature engineering analysis shows
the potential of frictional energy as a damage metric when combined with roller loads, bearing sliding speed,
lubricant type, and terrain features. Through statistical analysis of historical data, the proposed methodology
enables reliability assessment of axial cracking in individual wind turbine bearings and connects the reliability
forecast with turbine design and operations.
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0g Generator rotational speed (rpm) U Mode shape matrix ()
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mg, Mass of the shaft (kg) b; Length of contact ellipse (#mm)
q Displacement vector (n) Fp Bearing radial load (V)
t Time () B Weibull shape parameter

* Corresponding author.
E-mail addresses: yi.guo@nrel.gov (Y. Guo); shuangwen.sheng@nrel.gov (S. Sheng); caleb.phillips@nrel.gov (C. Phillips); jonathan.keller@nrel.gov (J. Keller); paul.veers@nrel.gov (P.
Veers); lindy.williams@nrel.gov (L. Williams)

https://doi.org/10.1016/j.rser.2020.109888

Received 30 July 2019; Received in revised form 6 April 2020; Accepted 27 April 2020

Available online xxx

1364-0321/© 2020.

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.

The published version of the article is available from the relevant publisher.


https://doi.org/10.1016/j.rser.2020.109888

Y. Guo et al.

n Weibull scale parameter

Y Weibull location parameter

Bearing clearance variation (mm)
Coefficient of expansion

Bearing outer ring temperature (°C)
Bearing inner ring temperature (°C)
Ambient temperature (°C)

Probability density function

Cumulative distribution function

Bearing outer ring raceway diameter (mm)
Bearing inner ring raceway diameter (#mn)
Number of cycles

Reliability index

Electrical energy generation (MWh)

PH* Electrical energy generation threshold (MWh)
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O&M Operation and maintenance

WEC White-etching crack

SCADA  Supervisory control and data acquisition
HSS High-speed shaft

HSB High-speed-shaft bearings

RS Rotor side

GS-in Generator-side inboard

1. Introduction

Wind power plant operation and maintenance (O&M) costs can be as
high as 30% of the life-cycle cost of a typical offshore wind plant, and
about half of that for a typical land-based wind plant [1]. Premature fail-
ures of wind turbine drivetrain components remain an important con-
tributor to higher-than-expected O&M costs of wind power plants [2].
An accurate reliability forecast provides crucial information for reducing
O&M costs through design improvements, optimized operation strate-
gies, and enhanced budgeting.

The current research focuses on reliability modeling and progno-
sis by examining bearing axial cracking, which is the dominant fail-
ure mode observed in the high- and intermediate-speed-stage bearings
in many wind turbine gearboxes [3]. “Axial” describes the orientation
of these cracks, as they align with the axis of the shaft rotation. These
cracks typically have white etching areas, which are also referred as
white etching cracks (WECs). “White etching” refers to the appearance
of the steel microstructure when the cracked bearing cross sections are
polished, etched with chemicals, and examined under reflected light [4].
These cracks tend to propagate to spalls or lead to a complete splitting
of the bearing inner ring. This mode of failure can occur at 5%-20% of
the predicted design life based on rolling contact fatigue and has been
observed in many industries, bearing locations, bearing types, bearing
parts, and steel types [5,6]. Although WECs have been reported for over
a decade, the conditions leading to axial cracking or WECs, the process
by which this failure culminates, and the reasons for their apparent
prevalence in wind turbine gearboxes, are all highly debated. In 2014,
benchtop testing conducted at Argonne National Laboratory reproduced
WECs on a three-ring-on-roller test rig under highly loaded sliding con-
ditions [7]. A cumulative frictional-energy metric was derived from the
benchtop testing results [8] for identifying the occurrence of axial crack-
ing. Based on this damage metric, the presented research aims to in-
troduce and demonstrate a reliability assessment methodology for axial
cracking.

Component reliability is typically assessed by fitting the component
age at the time of failure with a mathematical distribution, such as
Weibull. This data-domain method provides a quantitative approach to
compare various designs, manufacturers, operations, and maintenance
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[9]. It has been successfully applied in military, civil, and many other
applications [10] and received attention in the wind industry, especially
for plant or fleetwide reliability analysis [11]. However, these reliabil-
ity analyses are conducted at the wind plant or fleet levels, and they do
not provide any information on individual turbines and their subcompo-
nents.

During wind plant operations, a large amount of turbine supervi-
sory control and data acquisition (SCADA), condition monitoring, and
plant maintenance records are typically collected. Various modeling and
analysis methods using the collected data have been explored for con-
dition-based maintenance of major turbine components [12]. However,
the focus has been on fault diagnostics but not prognostics. Prognos-
tic methods for wind are still being explored [13] and they can be
grouped into physics-based, statistical, artificial intelligence, and hybrid
approaches [14,15]. Statistical, artificial intelligence, and reliability en-
gineering life data analysis can be broadly considered as data-driven ap-
proaches. These data-domain-reliability prediction methods are highly
influenced by the availability of high-quality, informative turbine com-
ponent reliability data. Most importantly, these approaches are not ca-
pable of connecting reliability estimates with component design para-
meters, operation strategies, and control objectives because of the lack
of physical understanding of underlying failure mechanisms. In other
words, methodologies for addressing reliability evaluation throughout a
component's life cycle, including its initial design phases and various op-
erational conditions, are yet to be developed.

In this work, a novel interdisciplinary methodology that uses infor-
mation from both the physics and data domains is developed for both
reliability assessment and prognosis of wind turbine gearbox bearing ax-
ial cracking. The statistical characteristics of bearing damage and failure
for a wind plant are assessed by analyzing the accumulated frictional
energy of individual turbine bearings using historical SCADA data and
failure records. Assuming the rest of the wind plant has the same fric-
tional energy failure threshold as the failed turbines, reliability forecast
of individual bearings at any operating age is estimated. Moreover, relia-
bility forecast of wind turbine gearbox bearings inherently considers the
effects of bearing design and turbine operations because of the physical
nature of this methodology, which can be used in early design phases to
forecast and reduce O&M costs.

This methodology includes a set of mathematical models together
with operation data and component failure records to calculate proba-
bility of failure of gearbox bearings of individual wind turbines through-
out the turbines entire life cycle. Bearing accumulated frictional energy
and electrical power generation are considered as damage metrics for
axial cracking in this study. The reliability assessment using accumu-
lated frictional energy includes the following steps: 1) mapping turbine
rotor loads to drivetrain loads, 2) calculating bearing roller sliding, 3)
estimating the progression of bearing damage, and 4) assessing proba-
bility of failure considering uncertainties in modeling parameters and
input signals. Similarly, reliability assessment of bearing axial cracking
using electrical power generation includes: 1) calculating the accumula-
tion of electrical power for individual turbines, 2) determining bearing
degradation, and 3) assessing probability of failure. The input for these
models comprises wind plant SCADA data, maintenance records, and ba-
sic drivetrain design parameters and dimensions. The bearing degrada-
tion is determined using the aforementioned metrics and the degrada-
tion threshold is calculated using the failure and maintenance records
from wind power plants. Bearing degradation and probability of failure
is evaluated for forty-nine MW-size wind turbines of a wind plant. With
this methodology, many other damage metrics, failure modes, or drive-
train components can be easily examined.

The rest of the article is organized as follows. Section 2 introduces
the reliability modeling and prognosis methodology. It first illustrates
the flow of the methodology and then briefly discusses various mod-
els developed from loads to probability of failure. Section 3 presents re-
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sults of the methodology using data from an actual wind plant and dis-
cusses a correlation between various features and component probabil-
ity of failure prediction. Then, the component probability of failure eval-
uation is presented based on the frictional energy accumulation induced
by roller sliding. Finally, the electrical energy produced is considered as
an alternative metric and compared to the frictional energy approach.
This article concludes with a summary of the current research and a
brief discussion of future work.

2. Methodology

This section describes the probability of failure calculation method
using a set of mathematical models and wind power plant SCADA data.
The developed models are analytic and therefore can be applied to wind
plants with various drivetrain configurations or designs. Steps for calcu-
lating the bearing frictional energy and probability of failure of individ-
ual turbines within the wind plant are illustrated in Fig. 1 and Fig. 2,
respectively.

As shown in Fig. 1, the power, gearbox lubricant temperature, and
rotor speed are taken directly from the turbine SCADA data. Main shaft
torque, T in Nm, is not directly measured but can be estimated using
measured electrical power and generator speed.

The lumped-parameter gearbox model calculates gearbox bearing ra-
dial loads and displacements at any given torque. The loads on indi-
vidual bearing rollers are then estimated [19]. Considering roller loads,
bearing rotational speed, and lubricant temperature, an analytic roller
dynamics model then computes the roller sliding speeds. Given roller
sliding speed and roller loads, F is the summation of the nondimensonal
energy between each roller as it orbits the inner raceway. Frictional en-
ergy generated at the interface between the rollers and cage is not con:
sidered because axial cracking appears on the bearing raceways, not ti.e
rollers.

By following the same steps described in Fig. 1, the frictional en-
ergy accumulation can be estimated for all the turbines within the
plant. Combining information on frictional energy accumulation for
both healthy and failed turbines based on the plant failure records, the
Weibull distribution of the damage threshold £* of the accumulated
frictional energy is determined statistically as illustrated in Fig. 2. Given
the significant uncertainties in calculating £*, its Weibull distribution
is used instead of a constant value. A limit state function G is then de-
fined that separates healthy and failure domains by subtracting the fric-
tional energy threshold from energy accumulation for a given operat-
ing period of an individual wind turbine. Finally, a reliability analysis
approach called first order reliability method (FORM) [16,17] is ap-
plied to calculate probability of failure £r of individual turbine bear-
ings considering the variability in lubricant temperature, bearing clear-
ance, and frictional energy threshold. Depending on the specified tem-
perature, speed and torque spectra for the analysis, £7 of individual
turbines bearings can be assessed for a given time in the past or fore-
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casted for the future. In the next section, these mathematical models are
detailed.

2.1. Gearbox model

There are two cylindrical bearings supporting the high-speed shaft
(HSS) of the studied gearboxes. One of them is mounted close to the ro-
tor-side end of the shaft (RS), whereas the other is located near the gen-
erator (GS-in). To calculate the bearing loads, a three-degree-of-freedom
lumped-parameter model is established. This lumped-parameter model
uses torque as the input and calculates the radial loads and displace-
ments of all three bearings mounted on the high-speed shaft. HSS torque
in the gearbox can be calculated using 7j, = gﬂg, where € and Yz denote
the gearbox ratio and transmission efficiency.

The concise form of the equation of motion can be written as:

Mi+Cq+K(q.09=1(q.1) (2)

where M,C.K, and f denote the mass, damping, and stiffness matri-
ces and the external loads and ¢ denotes the displacements in two ra-
dial directions and one axial direction. In the model, bearing clearance
is included to address its effects on bearing loads through piece-wise
force-deflection functions [18]. The mass matrix, M, comprises the mass
of the HSS and brake disk with the total mass of 668 kg. Modal damp-
ing of & = 2% is assumed in the simulation, where C = 2¢UTdiag {w,} U
and U and diag {w, } are the mode shapes and natural frequencies of the
HSS. The stiffness matrix is based on the stiffness matrices of all three
bearings in series connection, listed in Table 1. Finally, the gear mesh
force is derived from 7). Once the bearing loads are calculated, the roller
load distribution is estimated using an analytic approach [19].

2.2. Roller dynamics model

With the calculated roller loads, shaft rotation speed, and lubricant
temperature as the input, a dynamic bearing model calculates the fric-
tional coefficient, bearing cage orbiting, and roller sliding speeds. This
rolling element bearing model considers roller elasticity, roller dynam-
ics, hydrodynamics of lubrication, lubricant temperature, and interac-
tions between the lubricant and rollers. Modeling results compared well
with direct measurement data on cage and roller speeds for cylindrical
roller bearings [20].

2.3. Frictional energy

The bearing degradation that results in axial cracking is evaluated
using the aforementioned accumulated frictional energy mechanism,
given the calculated roller sliding speed and roller loads. The fundamen-
tal formula to calculate frictional energy for a single roller under sliding
for a given period [0, 7] is:

SCADA
Lubricant
Temperature Rotor RPM Torque
\ Y v
: Roller
| A Roller Dynamics Model [oads] Gearbox Model
Bearing Design VHollerfCage Speed

Compute Frictional Energy

Fig. 1. Modeling steps for calculating frictional energy of individual bearings.
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Fig. 2. Modeling steps for calculating the probability of failure (£r) of individual bearings.

Table 1
Stiffness matrix between HSS assembly including the bearings and gearbox housing.

Stiffness (N/m) Axial Radial Tangential
Axial 890 x 10° 12 x 10° 1.5 x 10°
Radial 12 x 10° 5900 x 10° 190 x 10°
Tangential 1.5 x 106 190 x 10° 2700 x 10°
t
E = /0 u(7) Q; (2) AV (2) dz 3)

where # denotes the friction coefficient and @;; denotes normal force at
the inner raceway of roller j. The sliding velocity A¥j at the roller and
inner-raceway contact surface equals:

T

A=

(wgB bl a)cdm bl mer) (4)
where “¢ denotes generator rotational speed in rpm. ®c and “» denote
the cage orbiting and roller, J, spinning speed, respectively. Parameters
B, d,,, and D denote the bearing inner ring raceway, bearing pitch, and
roller diameters.

For radially loaded bearings, only about half of the rollers are
loaded. This loaded area is often called the bearing load zone. The
rolling elements orbit with the cage, entering and leaving the loaded
zone every orbit. To calculate the total frictional energy generated by
all rolling elements in an orbit, Eq. (3) is reformulated to reflect the
aforementioned cyclic and time-dependent loading for every roller. Dur-
ing normal production, the torque and speed spectra throughout the
entire operation history are used as model inputs and divided into
N =200 bins. The estimated accumulated energy counts the accumu-
lated ball-pass cycles .k = 1,..., N with respect to the inner raceway
ball-passing frequency under combined radial loads and sliding condi-
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tions for various wind speeds during the entire operation period, as
shown in the following:

N VA 2z
=3 [ e 0000010, 0.0) a7, k.01 o )

2,7 . y . .
where Cy= # is the contact load factor that is defined as the ratio

of the distance a single roller travels under continuous loading, b, to
the physical distance between two adjacent rollers. Z is the number of
rollers. The parameter b; is estimated analytically as the length of con-
tact ellipse in the circumferential direction based on Hertzian contact
theory [19].

(6)

D(1-1)0;]3
2L

by =335x 10*3[

where L denotes roller length and ¥ = dgm.

To analyze the reliability of gearbox bearings with respect to ax-
ial cracking, E is nondimensionalized by an estimate of the work done
by bearing frictional force, #Fg, over the distance, 14407 B that the
rollers travel in 24 h as:

o E
14407 pw, BFp 7
where F denotes the radial load on the bearing.

2.4. Variations in lubricant temperature and bearing clearance

The lubricant temperature and bearing clearance also have an impor-
tant influence on the roller sliding velocity, and consequently, the ac-
cumulated frictional energy. The lubricant temperature is controlled by
cooling and heating systems, whereas the bearing clearance is related to
the bearing design, interference fit with the shaft, and the temperature
of the bearing itself. These parameters also vary during turbine opera-
tion, just like the drivetrain load and speed, and must be accounted for
when estimating frictional energy accumulation.

The measured lubricant temperature varies between 25°C and 65°C
based on experiments conducted on a 1.5MW commercial wind turbine
[4,21]. Fig. 3 shows the probability density function of the measured

0.1 ‘ ' T
_ [ Data )
__g 0.08 — Weibull-fit
Q
- |
i .
>006| N=347°C
@ ' B="7.53
8 ,\T — O-D GC ?f\\
> 0.04 .
E
8 1l
2 0.02
o

0 ‘ .
0 20 40 60 80
Lubricant Temperature (°C)

Fig. 3. Probability density function of the measured lubricant temperature.
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lubricant temperature and its Weibull fit analyzed in ReliaSoft [22].
The expression of the probability density function of the three-parame-
ter Weibull for the temperature spectrum is described as [23]:

p-1 p
¥ (T = e<u> o Hu) ]
n n n

where # and ¥ denote the shape and location parameters, and 7 is the
scale parameter and it denotes the mean value of the Weibull-fitted spec-
trum. Weibull parameters of the lubricant temperature distribution are
listed in Fig. 3, where the mean value of the lubricant temperature
equals 54.7 °C.

Bearing clearance during operation can change significantly from its
design value because of the interference fit with the shaft and differ-
ences in temperature between the rings and rollers. Because of the lack
of direct experimental data, the variation of bearing operating clearance
is estimated as [19]:

AP, =T[d,(T,-T,) - d;(T,~T,)]

®

)

where I' denotes the coefficient of expansion of the bearing. Parame-
ters Ty, T, and 7, denote the temperature at the bearing outer and inner
rings, and ambient temperature, and d, and ¢; denote the outer and in-
ner ring raceway diameters, respectively.

Fig. 4 shows the calculated frictional energy over the inner ring
with various lubricant temperatures and bearing clearances. When the
azimuth angle is less than 0, the rollers are outside the load zone and
no meaningful energy is accumulated. When the azimuth angle is near
0, the rollers enter the load zone and accelerate. Roller sliding is great-
est at this point while under low roller loads, resulting in the largest
contribution to frictional energy. At the load zone center at an az-
imuth angle of 3. the rollers are heavily loaded and experience the least
amount of sliding, generating only small fraction of frictional energy.
Once the rollers start to leave the load zone at an azimuth angle of 7
rad, they begin to decelerate, generating a moderate amount of fric-
tional energy. As the lubricant temperature decreases, the amount of
frictional energy increases because the lubricant is more viscous and
causes more sliding. Fig. 4 also illustrates the frictional energy accu-
mulation over the inner ring with C2, CN, and C3 bearing design clear-
ances, ranging from 45 to 145 #m. The original design clearance is as-
sumed to be 120 ym and 50 pm for RS and GS-in bearings, respectively.
The bearing clearance has only a modest effect on the frictional energy
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in higher load cases, but can have a much greater effect in low load
cases.

The proposed model considers these variations in lubricant temper-
ature and bearing clearance during operation by integrating all temper-
atures. The probability density function of the lubricant temperature is
discretized into 200 equally spaced bins. For a given power and rotor
speed, 200 calculations of E, are simulated under various lubricant tem-
peratures, as illustrated in Fig. 3, where k denotes the bin number. Then

% is computed as ;‘P (7e) Ek, where ¥ (7;) is the probability density

when the temperature is within bin k. Bearing clearance variation, AP
, is computed using Eq. (9) for every temperature bin, 7.

2.5. Energy threshold

An essential step in reliability analysis is determining Z*, the fric-
tional energy threshold. The amplitude of E* has only been reported
based on bench top testing of a roller sliding against three cylinders
for a reference oil [8]. Thus, E* needs to be determined for the gear-
box high-speed bearings. The probability density function of £* was
estimated through Weibull-fitting of the calculated £ for the entire
wind plant. The cumulative distribution function of the three-parameter
Weibull can be derived as [23]:

~ B
~ E -
(D(E) -1 —exp (_y)

n

where 71 denotes the scale parameter. ® (lAT ) indicates the percentage of

10

the components among the entire wind plant that will have failed at a
given E. For example, @ (E ) equals 63.2% when E= n+y.

Fig. 5 shows the Weibull cumulative distribution function of the ac-
cumulated frictional energy for the wind plant, calculated using afore-
mentioned models. For the failed turbines, the accumulated energy was
calculated during the mean time between failures. The entire operation
period was considered for the healthy turbines. RS and GS-in bearings in
both intermediate- and high-speed stages were considered in the analy-
sis. The ReliaSoft Weibull fit [22] crosses the x-axis at a nonzero en-
ergy value (i.e., ¥>0). Based on the analysis, the scale parameter, 7,
equals 22.6 and is considered to be the mean value of g*. ® (E) equals

10% when £ = 1.97. The goodness of Weibull fit equals 0.97, suggest-
ing a very good fit despite the fact that the failure records cluster early
in time. The coefficient of variation for this Weibull curve is estimated

50
_ .l'l.n.l.l','l:::.;u!'il:l C
= = Analytical: 40°C
40 +| === Analytical: 30°C
=
—
Z 30
=
l_:
2 20
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T

Frictional Ener

Azimuth Angle (rad)

Fig. 4. Effect of (left) lubricant temperature and (right) bearing clearance on frictional energy.
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Fig. 5. The Weibull cumulative distribution function of dimensionless frictional energy ac-
cumulation.

as 0.3 based on its # value [24]. Both the mean and variation of E* are
considered for the reliability analysis.

2.6. Reliability analysis

The accumulation of frictional energy is an irreversible process that
results in the formation of cracks and associated raceway spalling [7,8].
The probability of failure by axial cracking is estimated as bearing dam-
age evolves toward the failure threshold, £*. A limit state function that
separates the healthy and failure domains is defined as:

G=F" —-EW.n an

where £* is the threshold beyond which axial cracking will occur and
E @, 1) is the accumulated frictional energy for the bearing, considering
the variations of temperature and bearing clearance. When G is nega-
tive, failure is predicted.

The probability of failure is evaluated with the integral [25]:

Pr=P{G<0} = S )dx 12

G(x)<0

The parameter X is the vector that consists of all the considered vari-
ables. The function, f (x), is the joint probability density function for
these random variables. Direct evaluation of the probability integration
can be difficult and time-consuming given the number of random vari-
ables and the nonlinearity in G.

FORM is an efficient way of estimating Pr[16,17] and is used in this
study. This approach simplifies the integrand by transferring the ran-
dom variables from their original random space, X, into standard normal
space based on the knowledge that the cumulative distribution functions
of the random variables remain the same before and after the transfor-
mation. Through searching the point on the integration boundary with
the highest probability density, the distance from the origin to this most
probable point, called the reliability index, R, is obtained. Therefore, the
probability of failure can be estimated as [25]:

Pf =d(—-R) 13)

where @ is the cumulative distribution function of the standard normal
distribution.
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The limitations of the study include that it:

e relies on the degradation model for axial cracks, which was derived
from benchtop experiments;

e focuses only on normal power production conditions averaged over
10-min periods. It does not investigate the potential effects of tran-
sient wind conditions and turbine events on roller sliding and bearing
axial cracks; however, the frictional energy accumulated during tran-
sient events is much less than normal power production [26];

e addresses a limited number of uncertainties, including lubricant tem-
perature, bearing clearance, and frictional energy accumulation. Un-
certainties in bearing surface roughness, lubricant viscosity and addi-
tives, and material properties, as well as SCADA inputs, have not been
considered;

® does not consider other data streams that could potentially augment
reliability analysis, such as condition monitoring, because of the lim-
ited data availability.

3. Results and discussion

A total of forty-nine 1.5-MW wind turbines in a commercial wind
power plant were analyzed to calculate the probability of failure of gear-
box HSS bearings. The wind plant is located on a flat plain, but its
northern border is close to a rugged valley. The dominant wind comes
from the southwest. The secondary wind direction is from the northeast,
across the valley mentioned earlier, which could cause wind turbulence.
A majority of the time these turbines operate near either rated torque or
very limited torque. The wind turbines all have three-stage gearboxes,
with a transmission ratio of about 80, which are provided by multiple
suppliers. Despite different gearbox manufacturers, cylindrical bearings
are used in the intermediate- and high-speed stages. The data set in-
cludes 10 years of operational data and axial cracking failure records. In
this study, a reliability analysis of this wind plant is performed assuming
the plant has been operating for 20 years. Operation profiles of power
and rotor speed from year 11-20 are assumed to be identical to those
from year 1-10 to investigate the reliability of bearings during the gear-
box design life.

3.1. Probability of failure analysis using frictional energy

Common maintenance practice typically treats the HSS and support-
ing bearings as one unit to save costs. When any part fails, the entire
assembly is usually replaced. The fault tree analysis considers RS and
GS-in bearings in a series relationship, resulting in:

{Pf}HSB =1- (1 - {Pf}RS) (1 - {Pf}GS—in> a1

Fig. 6 compares the Pr of the RS and GS-in bearings individually,
and the high-speed-bearing (HSB) set together for all 49 wind turbines.
The Ps for the individual bearings and the combined bearings monoto-
nically increase with operating time, reaching 0.54, 0.63, and 0.83, re-
spectively, after 20 years. The GS-in bearing has a slightly higher proba-
bility of failure than the RS bearing for this particular wind plant, which
matches field observations. After 2.5 years, there were 9 failures out of
49 turbines on HSS bearings, equating to a failure percentage of 18%.
As shown in Fig. 6, the probability of failure for the bearing set is about
20% after 2.5 years of operation, matching the previously mentioned
calculation. Small differences in the Py among these wind turbines are
present; however, these differences in the P are insufficient to single
out the unhealthy turbines from the entire population.

Fig. 7 compares the Pr of the HSB system for the individual tur-
bines within the plant after 10 years and quantifies the small differ-
ences in Pr between turbines. The probability of failure ranges from
0.591 (wind plant row 2 and column 4) to 0.617 (wind plant row 1 and
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Fig. 7. HSB Ps of individual turbines within the plant after 10 years.

column 5). Quantifying Pr for each turbine can provide information
for O&M decision-making. Furthermore, correlating the Fr of individual
turbines with the wind plant layout may suggest the significance of ter-
rain, wake, and other location-related factors on turbine health.

3.2. Probability of failure analysis using electrical energy generation

In addition to using frictional energy as a damage metric, electrical
energy generation, PH, is also considered for comparison. It is a read-
ily available measure of turbine usage but is the same for every bear-
ing in the turbine. The process of calculating probability of failure based
on electrical energy generation is the same as discussed previously, in-
cluding determining the threshold, PH*, for the electrical energy us-
ing both SCADA and maintenance records, defining a limiting state
function G (PH) = PH* — PH; and calculating the Py using FORM. The
probability density function of PH* was determined by the Weibull fit

Cumulative Distribution Function

1 = 1.62 GWh
B3 =0.415
~=61.3 MWh
107 ' ‘
1E2 1E3 1E4]

Electrical Energy Generation (MWh)

Fig. 8. Weibull cumulative distribution function for electrical energy generation.

of all of the healthy and failed wind turbines. Fig. 8 shows the cumula-
tive distribution function from the Weibull fit. The mean value of PH*
is estimated as 1.62 GWh.

Fig. 9 shows the calculated P based on the measured energy gener-
ation for the same operation conditions as Fig. 6. Compared to Fig. 6,
the Py using energy generation shows the same trends and has a simi-
lar amplitude of 0.49 after 20 years (about 100 MWh). However, the Py
at low electrical energy has higher values than the frictional energy ap-
proach. Most importantly, the Pr of each of the 49 turbines is almost
indistinguishable. Thus, £ analyses using electrical energy generation
cannot differentiate the axial-cracking risks among the turbines. Further-
more, a reliability assessment using electrical energy generation cannot
assess the individual bearings. Despite these shortcomings, using electri-
cal energy generation can provide a fast estimate of the risks of bearing
axial cracking, but only at the wind plant level.
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Fig. 9. HSB system Pr based on electrical energy generation.
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Both frictional energy and electrical energy generation reflect the us-
age of the turbine and result in highly correlated reliability predictions
for the bearings. Even though electrical energy generation cannot be
used to quantify the reliability of individual bearings, it avoids the de-
tailed calculations required of accumulated frictional energy.

3.3. Feature engineering analysis of damage metrics

The previous discussion of £ and PH suggests that studying damage
metrics can be beneficial for further differentiating failure risks among
wind turbines. Using the provided wind plant data, a feature engineer-
ing statistical analysis was conducted to investigate predictive features
for the wind plant with a broader scope, including not only frictional en-
ergy and its constituent components, but also turbine siting metrics, the
gearbox lubricant, and the gearbox manufacturer. The maximum, min-
imum, and mean values of roller loads, cage speed, roller deflections,
sliding speed, roller speed, and frictional energy within every 10-min
window are calculated for each turbine using the aforementioned devel-
oped mathematical models up to the point of failure. The distance from
the nearby valley is considered as an additional feature that most likely
introduces turbulence, as well as the distance to the nearest turbine as a
potential source for wake influences.

The relationship between each of these features and the number of
failures was assessed using box plots and quantified using a Wilcox test
[27] for numerical features and Chi-squared test for the categorical vari-
ables (e.g., lubricant) [28]. The analysis is limited to a single turbine
manufacturer and HSS bearing failures. Fig. 10 compares box plots of
the averaged frictional energy and total electrical power generation over
10 years between failed and nonfailing high-speed bearing sets. The
greater the difference between the healthy and failed distributions, the
greater the chance that the feature is predictive. The electrical and fric-
tional energy distributions for the healthy and failed wind turbines over-
lap significantly. Although there are observable differences in several
features, the Wilcox test suggests that only the sliding speed maximum
appears significantly correlated with failure when using the data subset
analyzed here.

To assess the ability of combining multiple features to predict fail-
ures, multivariate model fitting using logistic regression and random for-
est models are explored. The considered features include terrain fea-
tures, lubricant, frictional energy, roller loads, sliding speed, and elec-
trical energy. The accuracy of each logistic or random forest model is
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studied by evaluating its ability to outperform a simple model that al-
ways chooses the most common class (i.e., no failure). The logistic re-
gression and random forest model predict greater than 81% of accu-
racy, which is the baseline for the sample model. A random forest model
that utilizes an ensemble tree classification modeling method performed
the best and obtained 93% accuracy, with 97% sensitivity (true positive
rate) and 75% specificity (true negative rate).

Despite the relatively small sample size and limited diversity of gear-
box models, £ and its constituent components, combined with lubricant
and terrain features, demonstrate some potential as prognostic precur-
sors and damage metric for monitoring bearing axial cracking. More op-
erational data and failure records from different wind plants and gear-
box manufacturers are required to substantiate this finding. To fully un-
derstand the relationship between the constituent features and failure
probability, questions about the ideal design of numerical experiments
and analysis windowing of data must be addressed as well.

4. Conclusions

A methodology for reliability assessment and prognosis of wind tur-
bine gearbox bearings is presented in this work. Unlike other reliabil-
ity analysis approaches, the methodology uses a physics-domain model,
SCADA data, and wind plant failure records to forecast the probability
of failure of individual gearbox bearings in each wind turbine within the
plant. It provides physical insight into the bearing failure mechanism
and connects reliability to turbine design and wind plant operations. It
can be used by turbine designers and plant operations to evaluate the ef-
fects of design and operations changes on bearing probability of failure
to proactively prolong turbine life.

The methodology was applied to bearing axial cracking failures. Fric-
tional energy accumulation and electrical power generation were con-
sidered as damage metrics. Only normal power production conditions
were considered in the analysis because frictional energy accumulation
is limited during transient turbine events. The reliability analysis us-
ing electrical power generation, although relatively simple, does not as-
sess individual bearings like using frictional energy accumulation. Other
damage metrics and physical drivers of bearing axial cracking may exist
and could be explored using the established methodology.

The reliability analysis of 10-min-average SCADA data only showed
small differences in the probability of failure for the wind turbines;
however, these differences were insufficient to single out the failed tur-
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bines from the rest. A feature engineering analysis did show that the fric-
tional energy and its constituent components, combined with lubricant
and terrain features, have some potential as a damage metric for moni-
toring bearing axial cracking. Further work is needed to refine the dam-
age metric by incorporating additional prognosis precursors and examin-
ing a larger amount of high-resolution SCADA data and failure records.
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