Visualization as a Service for Scientific Data

David Pugmire!, James Kress!, Jieyang Chen', Hank Childs?, Jong Choi!,
Dmitry Ganyushin!, Berk Geveci?, Mark Kim!, Scott Klasky', Xin Liang?!,
Jeremy Logan', Nicole Marsaglia®, Kshitij Mehta!, Norbert Podhorszki®,
Caitlin Ross?, Eric Suchyta', Nick Thompson', Steven Walton?, Lipeng Wan',
and Matthew Wolf!

! Oak Ridge National Laboratory, Oak Ridge TN 37831, USA,
2 Kitware, Inc., Clifton Park, NY, USA,
3 University of Oregon, Eugene, OR 97403, USA

Abstract. One of the primary challenges facing scientists is extracting
understanding from the large amounts of data produced by simulations,
experiments, and observational facilities. The use of data across the en-
tire lifetime ranging from real-time to post-hoc analysis is complex and
varied, typically requiring a collaborative effort across multiple teams of
scientists. Over time,three sets of tools have emerged: one set for analy-
sis, another for visualization, and a final set for orchestrating the tasks.
This trifurcated tool set often results in the manual assembly of analy-
sis and visualization workflows, which are one-off solutions that are often
fragile and difficult to generalize. To address these challenges, we propose
a serviced-based paradigm and a set of abstractions to guide its design.
These abstractions allow for the creation of services that can access and
interpret data, and enable interoperability for intelligent scheduling of
workflow systems. This work results from a codesign process over analy-
sis, visualization, and workflow tools to provide the flexibility required for
production use. Finally, this paper describes a forward-looking research
and development plan that centers on the concept of visualization and
analysis technology as reusable services, and also describes several real-
world use cases that implement these concepts.
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1 Introduction

Gaining insight from large scientific data sets, while challenging, has tradition-
ally been tractable because the process has generally been well understood. This
tractability is the result of three key properties: low barrier to entry, collabo-
ration, and standardization. These traditional approaches had a low barrier to
entry as the data was written to permanent storage in a standardized way and
could easily be shared with others. This in turn enabled rich collaboration among
domain, computational and visualization scientists. Once data is stored on disk,
each stakeholder can access the data at their convenience, and do so with ded-
icated visualization and analysis software, custom scripts, etc., which are easily
shared. Exploration of data often takes place using GUI-based tools that are well
supported and easy to learn. Further, the standardization is helpful on a variety
of fronts, not only in how data is stored and represented, but also in how data is
accessed and processed. The benefit of standardization is in code reuse, enabling
the efforts of a community of software developers to increase their impact. This
is particularly needed for visualization and analysis software, since such software
often contains a large number of algorithms and data format readers.

The three beneficial properties of low barrier to entry, collaboration, and stan-
dardization are rapidly becoming infeasible because of two important trends in
high-performance computing: Big Data and hardware complexity. With respect
to Big Data, scientific data has been dramatically affected by the three V’s —
volume, velocity, and variety. With respect to hardware complexity, modern com-
puters increasingly have heterogeneous hardware, deep memory hierarchies, and
increased costs for data movement and access. As a result of the volume and
velocity components of the Big Data trend, along with the increased costs of
data movement and access, saving all data to disk is no longer possible. Instead,
data will need to be visualized and analyzed while it is being generated, i.e., in
situ processing. But in situ processing presents challenges to the three beneficial
properties. In particular, standardization is more difficult since data is being de-
livered in a variety of ways and locations. Rather than files in known file formats
stored to permanent storage, data may come from a computational simulation
over a socket, from a remote experimental resource, or it may be located in the
memory of a GPU accelerator, just to name a few. Further, the barrier to entry
is often substantially higher, requiring highly-experienced, “ninja” programmers
to incorporate visualization and analysis algorithms. This limits collaboration,
since it is difficult to get visualization and analysis routines applied, leaving the
task to only those that can wrangle complex software.

Scientific campaigns have dealt with these challenges by moving toward au-
tomated workflows to control the complexities with running simulations. These
systems are enabled by middleware systems that provide efficient layers between
applications and systems, and by emerging workflow systems that orchestrate
executables and the movement of data. That said, visualization and analysis has
struggled to adapt to this workflow approach. Despite recent support for in situ
processing and heterogeneous architectures, the fundamental “glue” is lacking
for bringing together the disparate tools and libraries for a scientific software
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campaign. Best efforts often are targeted out of necessity at a narrow range of
use cases and are often brittle and difficult to reuse at a later date or generalize
for usage in other situations. These problems make the practical and widespread
use of these tools difficult, further leading to fragmented approaches as every
scientific team creates its own customized approach. Finally, while the results to
date have been lacking, they have also taken great expertise to achieve. Funda-
mentally, we feel that this mismatch — great expertise to achieve poor results
— indicates a failure in the underlying approach.

In this paper, we advocate for a new model for visualization and analysis of
scientific data to address these challenges that is based on following the “aaS”
paradigm — as a service. This model is focused on identifying abstractions for
points of interaction between visualization, middleware, and workflow systems.
The abstractions provide clear interfaces between these three sub-components in
a scientific campaign and makes it easier for them to work together. These ab-
stractions will make it much easier to move visualization computation to the data,
which is a reversal from the previous model, in which it was easier to move the
data. This in turn restores the possibility of low barrier to entry, collaboration,
and standardization, by making visualization workflows more user-friendly and
intuitive and enabling them to become more schedulable, lightweight, and per-
vasive. Overall, we feel the entire ecosystem will be more cost effective, portable,
efficient, and intuitive — a return to the benefits our community has tradition-
ally enjoyed.

An important benefit of an aaS approach is that it enables each participant
to focus on their own area of expertise. For application scientists, visualization
should be about declarative intentions. For example, isocontours of primary vari-
ables are needed in near-real-time (NRT) to track the progress of a simulation,
and high-quality renderings of vorticity magnitude and particle traces around
regions of interest are needed after the campaign is completed. Visualization
experts should focus on algorithms that provide the necessary functionality, per-
form well on computing platforms, and operate on a variety of data types. Mid-
dleware experts should focus on providing efficient I/O and data movement ca-
pabilities between data producers and data consumers. Workflow experts should
focus on taking scientific intentions and orchestrating the movement of data
from producers among all the data consumers to provide the desired results. By
providing clear interfaces (i.e., abstractions) between these pieces, it is possible
to rethink how analysis and visualization at scale are performed.

The remainder of this paper is organized around the discussion of a set of
abstractions (Figure 3) we have identified that enable Visualization As A Service
(VAAS). These abstractions are targeted at addressing the barriers to extract-
ing insight from large scientific data by providing a service based paradigm, and
provide a road map for research and development that can take full advantage of
the immense power of modern computing systems. At the same time, these ab-
stractions lower the barriers to entry for users giving them the flexibility to build
and connect services together in arbitrary ways. In Section 2 we provide two mo-
tivating examples that helped guide our thinking in the identification of these
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abstractions, and Section 3 discusses related work and complementary efforts to-
wards these goals. Section 4 describes the two tiers of abstractions in detail. The
base tier of abstractions provides the foundation necessary for creating visualiza-
tion services. These abstractions include data access, data interpretation,
and service composition/workflow abstractions. Together, these three ab-
stractions allow for the creation of basic visualization services since there is a
way to access the data, a way to interpret the data, and a workflow system that
understands how to schedule the visualization services in conjunction with the
simulation or experiment. The second tier of abstractions is built on top of the
base tier and is concerned with making visualization services more powerful, eas-
ier to use and schedule, and more intelligent. Specifically, we identify portable
performance, performance modeling, and declarative invocation as this
higher tier. Section 5 discusses how our prior research and experience with ap-
plication engagements have guided our thinking and the development of these
abstractions. We show how these abstractions have proven useful and describe
their impact on scientific applications. Finally, Section 6 concludes with a discus-
sion on how further research and development in these abstractions can improve
the process of analysis and visualization in scientific campaigns.

2 DMotivating Workflows

Creating and successfully executing large, complex workflows is a challenging
task. These workflows must be extensively vetted before execution to ensure
that the necessary results can be captured in a timely manner that efficiently
uses computing and/or experimental facilities. This vetting process often re-
quires substantial time from teams of experts, including application scientists,
computer scientists, mathematicians, and data analysts. The efforts of these in-
dividuals create unique and complicated workflows with a myriad of different
analysis and visualization needs [23]. This section describes two different recent
visualization and analysis workflows with which our group has been involved
and highlights the interesting aspects and complexities of both efforts. The first
use case involves work with a simulation, and the second is with an experiment.

2.1 Fusion Simulation Workflow

The simulation use case comes from the high-fidelity whole device modeling
(WDM) of magnetically confined fusion plasmas. WDM is among the most com-
putationally demanding and scientifically challenging simulation projects that
exists within the US Department of Energy (DOE). The 10 year goal of WDM
is to have a complete and comprehensive application that will include all the
important physics components required to simulate a full toroidal discharge in
a tokamak fusion reactor.

This workflow primarily comprises two different fusion codes, XGC and
GENE, which must be coupled together. Coupling these codes enables the sim-
ulation to advance further in a shorter amount of time while retaining more
accuracy than either code can achieve on its own. XGC is a particle-in-cell code
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Fig. 1. Workflow for coupled physics simulation. Data from the core and edge coupled
physics codes are sent to services to perform analysis and visualization. The resulting
images from the rendering services are saved to disk.

optimized for treating the edge plasma, and GENE is a continuum code opti-
mized for the core of the fusion reactor. In the WDM workflow, ADIOS is used
to save checkpoint/restart files and offloads variables for in situ analysis and vi-
sualization [12]. For in-memory data exchange, ADIOS is used to couple the core
and edge simulations [13]. Figure 1 shows the various components of the WDM
workflow. The workflow is a complex process that requires sending data to and
from multiple separate executables to advance the physics while also visualizing
important variables.

2.2 KSTAR

The experiment analysis workflow that comes from fusion experiments is de-
signed to validate and refine simulations that model complex physical processes
in the fusion reactor and to test and validate hypotheses. Recent advances in
sensors and imaging systems, such as sub-microsecond data acquisition capabil-
ities and extremely fast 2D/3D imaging, allow researchers to capture very large
volumes of data at at high spatial and temporal resolution for monitoring and
diagnostic purposes and post-experiment analyses. Alone, a 2D spatial imaging
system, called Electron Cyclotron Emission Imaging, at the Korean Supercon-
ducting Tokamak Advanced Research (KSTAR) can capture 10 GB of image
data per 10 second shot [51].

A system using ADIOS was developed for KSTAR to support various data
challenges by executing remote experimental data processing workflows in fusion
science. This system is one of the drivers for the development of the DataMan
engine to support science workflows execution over the wide-area network for
NRT streaming of experiment data in remote computing resource facilities.
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Fig. 2. The KSTAR worfklow showing the data traveling back and forth from KSTAR
and the USA. Each box in the workflow is composed of multiple different visualization
services.

An example of a KSTAR workflow is shown in Figure 2. This workflow is a
multilevel workflow in that each box comprises one or more sub-workflows. One
main goal is to stream online fusion experiment data from KSTAR in Korea to
a computing facility in the United States to perform various computationally
intensive analyses, such as instability prediction and disruption simulation. Al-
though our previous effort [11] focused on building remote workflows with data
indexing, we are currently composing the KSTAR workflow with DataMan. In
this workflow, ADIOS provides a remote coupling service to move raw obser-
vational data as streams from Korea to the USA. Once data streams arrives in
a US computing facility, a set of analysis and visualization workflows will be
launched to perform denoising, segmentation, feature detection, and selection
to detect any instabilities. Visualization results can then be delivered back to
Korea for designing the upcoming shots.

3 On the Shoulders of Giants

The abstractions introduced in Section 1 were identified through a careful anal-
ysis of our experiences working with application scientists and from the body of
published literature. This section describes the systems and concepts that guide
our thoughts.

3.1 Tier 1 Related Works

The tier 1 abstractions provide a foundation for data access, data interpretation,
and the ability to compose and schedule visualization tasks.

Traditionally, visualization has been performed as a post-processing task,
which worked well until the petascale era when it broke down due to the limited
I/O bandwith in supercomputers [49,9, 10]. In situ processing has been success-
fully used to avoid this I/O bottleneck, resulting in a rich body of research and
production tools. Recent works [4,6] provide surveys of the state-of-the-art in
situ visualization. Middleware libraries have been developed to provide scalable
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I/O. Systems such as ADIOS [31] and HDF5 [47] provide a publish/subscribe
model that enables flexible data access abstraction.

In situ processing is a rich space that consists of three predominant forms.
In-line in situ is a synchronous method in which the data producer and visual-
ization run concurrently on the same resource. Tools such as VisIt Libsim [48]
and ParaView Catalyst [17, 3] support this model. In-transit in situ is an asyn-
chronous method in which the data producer and visualization run on separate
resources. Tools such as EPIC [16], Freeprocessing [18], and ICARUS [45] sup-
port this model. Hybrid in situ methods provide the flexibility of supporting
both synchronous and asynchronous processing. Tools such as Damaris/Viz [14]
and SENSEI [4] provide interfaces to use VisIt Libsim and ParaView Catalyst to
support a hybrid model. Ascent [28] is a lightweight in situ framework that also
provides hybrid model support. Both SENSEI and Ascent use the ADIOS [39]
middleware library, which provides a publish/subscribe view of data access us-
ing several different data transport mechanisms, including files, in-line, and in-
transit.

Data interpretation has been largely focused on data models and schemas. As-
cent uses the rich capabilities of BluePrint [29], whereas SENSEI Vislt LibSim,
and ParaView Catalyst rely on the Visualization Toolkit (VTK) data model,
which is specifically targeted at the needs of visualization. VizSchema [46] pro-
vides an interpretation layer on top of ADIOS for streaming and file-based data.
The Adaptable Data Interface for Services [2] is a follow-on work to VizSchema
that provides more flexibility and better support for streaming data.

Many of the existing production in situ tools are monolithic and difficult
to decompose for scheduling by workflow systems. Furthermore, they require
instrumentation into application codes (e.g., VisIt Libsim, ParaView Catalyst,
Ascent, SENSEI, Damaris, Freeprocessing) or a shared message passing inter-
face communicator (e.g., EPIC), whereas other require coupling with files (e.g.,
ICARUS).

Using lightweight visualization tasks in addition to production tools has been
explored in [43,21], as described in part in Section 2.

3.2 Tier 2 Related Works

The tier 2 abstractions are focused on providing flexibility, power, and intel-
ligence in visualization tasks. These build on a substantial body of work by
others as well as ourselves; we focus in the following discussion mostly on the
connections of the abstractions to our previous work.

The importance of in situ processing highlighted the need for more flexible
data models for in-memory layouts and portability across heterogeneous archi-
tectures. Early efforts such as the Extreme Scale Analysis and Visualization
Library [36], Dax Toolkit [37], and Piston [32] looked at different aspects of
these challenges and were combined into a single toolkit, VIK-m [38]. These ef-
forts have demonstrated the benefits of flexible data models [35] and the portable
algorithm performance across a wide variety of architectures [44, 50].

A declarative view of visualization has been explored through understanding
the performance of different algorithm implementations under different work-
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loads, levels of concurrency, and architectures. Particle-tracing algorithms, which
are useful methods for understanding flow, can be implemented in several dif-
ferent ways [42], and performance is dependent on factors such as workload,
concurrency, and architecture [41,8,20,7]. Similar work was also done to un-
derstand the performance of different types of rendering algorithms for in situ
settings [27], and the power-performance tradeoffs for visualization [26].

Models for performance and cost prediction can be useful to inform schedul-
ing and placement by workflow systems. Performance and cost models for dif-
ferent in situ visualization methods are described in [24, 25,33, 34], analysis of
costs for in situ analysis algorithms are described in [40], and a model for in situ
rendering is provided in [27].

4 Visualization as a Service Abstractions

Moving away from monolithic or aggregated solutions would help address the
challenges of visualization in an era of large streaming data and complex com-
puting environments. The ability to break visualization and analysis tasks into
pieces that can be deployed, managed, and automated by a workflow system
is powerful and aligns well with the principles of service-oriented architectures
(SOA) [30].

At a high level, SOA is characterized by a self-contained black box that pro-
vides a well-defined set of features for users. SOA takes several forms, including
infrastructure as a service (IaaS)[1], software as a service (SaaS)[19], and mi-
croservices [15]. Cloud computing is the most common example of TaaS in which
costs are controlled by dynamically allocating resources in response to changing
user requirements. SaaS is characterized by the delivery of a capability using a
thin client or ergonomic application programming interface. Scalability for SaaS
is provided by different types of back-end implementations that are appropri-
ately sized. Microservices are small, independently deployable executables with
a distinct goal. Groups of microservices can be orchestrated to perform more
complex tasks.

We envision that visualization as a service (VaaS) will apply the principles of
the SOA paradigm to computational simulations and experiments. Importantly,
we think that VaaS should provide a clear separation between the operations
that scientists want to apply to data and the implementation details required
to perform it. This will allow application scientists to concentrate on under-
standing their simulations. VaaS draws from several different aspects of SOA
implementations.

— Similar to TaaS, visualization and analysis operations must be provisioned
on an appropriate amount of resource. Too much or too little of the wrong
kind of resource can result in inefficiency.

— Similar to SaaS, abstractions for access to data and execution must be pro-
vided so that application scientists can focus on the operations to be per-
formed, and computer scientists can focus on implementation and scalability.

— Similar to microservices, VaaS would support a set of modular analysis and
visualization operations that can be chained together to form complex sci-
entific workflows.
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4.1 Visualization as a Service Abstractions

Realization of an SOA to visualize large scientific data will require coordination
and codesign with application scientists and disciplines within the computer sci-
ence community. This section describes a set of abstractions that are targeted at
guiding the framework design that follows an SOA philosophy. These abstrac-
tions serve as guiding principles for the design of visualization frameworks that
can function in a service-based way. They have resulted from our work with appli-
cation scientists to do visualization and from collaborations with other computer
scientists in leveraging complimentary technologies.

From the perspective of an application scientist, our vision is that a service-
based visualization framework would work as follows. A team of scientists plans
a scientific campaign. They specify a set of visualization tasks in a declarative
way. For example, isocontours of high vorticity around an inlet are required in
NRT (e.g., every minute) to monitor the simulation. Volume renderings of pres-
sure from three different views are necessary after the simulation has completed.
These intentions would then be turned into a sequence of analysis and visual-
ization tasks that would be input into an automated workflow system and run
as services on the computing resources to provide the results. The abstractions
and their relationships are shown in Figure 3. These abstractions describe the
points of interaction between the tasks and their sequencing that are needed to
produce the results. The emphasis is on providing interfaces appropriate for the
intended users. Declarative intentions separate the action from the particular
algorithms selected and the resources used. Data models and schemas provide
information to workflow systems about how tasks can be composed and con-
nected. Performance models for algorithms can inform required resources and
optimize the placement of tasks onto resources.

The remainder of this section describes the abstractions for VaaS in a bottom-
up approach. We begin with a first tier of abstractions that provides a foundation
for VaaS. These foundational abstractions address data access across memory
hierarchies, service composition for workflow systems, and methods for interpre-
tation of data between services. We then discuss a second tier of abstractions
that builds on the first tier and provides improved flexibility, efficiency, and in-
telligence to services. These tier 2 abstractions help map visualization intentions
onto efficiently executing service on the underlying computing resources.

4.2 Tier 1 Abstractions

The foundation required to support visualization requires three basic abstrac-
tions. First, a service must be able to access data from a variety of different
sources. Second, automated workflow systems must be able to dynamically com-
pose services into sequences and schedule and execute across a variety of re-
sources. Finally, data models, schemas, and ontologies are needed so that work-
flow systems know how to connect and schedule services and so that services
know how to operate on the incoming data.

Work in the first two abstractions has a heavy emphasis on disciplines outside
the visualization community. The realization of VaaS will require codesign with
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Fig. 3. Chart denoting the two tiers of abstractions that we have identified, their
relationships to each other, and proximity to the user.

these communities so that the pieces work together smoothly. The visualization
and analysis community must create and codesign the third abstraction together
with the other communities and application scientists so that things work well
together. Each of the three abstractions are discussed in more detail in the
following sections.

Data Access Abstraction: Visualization services need access to data that
come from a variety of sources, including on-node RAM, NVRAM, different
nodes in a system, nodes in a different system, and files. Furthermore, the same
service might need to consume data from different sources under different cir-
cumstances (e.g., from shared memory for an in situ setting, or from disk in a
post-processing setting). Supporting all of these data access modes directly in
the visualization service is inefficient. Middleware systems such as ADIOS [31]
and HDF5 [47] provide a publish/subscribe interface to data that hides the com-
plexity of reading and writing data. The reliance on a data access abstraction
allows the visualization community to focus on functionality and performance
and the middleware community to focus on providing efficient data access. This
also enables greater portability and reuse on different systems and the complex
and evolving memory hierarchy.

Service Composition/Workflow Abstraction: Analysis and visualization
tasks often consist of a sequence of composed subtasks. For example, rendering
an isocontour might involve three steps: (1) recentering a cell-centered variable to
the nodes, (2) computing the isocontour, and (3) rendering the geometry. These
subtasks might have better performance if the variable recenter and isocontour
are performed in situ, and the results are then sent to a set of visualization
resources for rendering. In previous work, we have seen the utility of taking
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these “micro-workflows” and forming integrated in situ visualization libraries
(e.g., Catalyst [3], libSim [48]) that can be hard-coded into an application code,
as well as interface solutions such as SENSEI [4,5] that allow the workflow
mechanics to be embedded into the code while leaving the choice of the in situ
visualization or analytics to a run time configuration. However, to fully realize
the VaaS design opportunities, we must go further in codesigning the size and
scope of the visualization components with high-performance in situ workflow
engines. When coupled with the other design abstractions in the VaaS system,
this can enable an autonomously adapting visualization environment that can
maximize efficiency, latency, or the constraint that is most relevant for that
particular scientist’s research campaign. One approach we have been exploring
is to tie into the extended publish/subscribe semantics for ADIOS, as described
in [22], so that VaaS provides context for “editing” and “managing” the data as
it is published.

Data Interpretation Abstraction: Data interpretation is required for the
workflow system to understand how services can be connected and for individ-
ual services to understand the data that is accessed. This information makes
it possible for the workflow system to know what must be done and how an
intention can be sequenced into a series of services that are chained together
and placed onto resources. Data interpretation makes it possible to know which
services can be connected together and ensures that inputs are paired with the
appropriate outputs; in other literature this is often referred to schemas, data
model matching, or ontologies. This includes information about the execution
behavior of the service (e.g., the service requires collective communication and
so it would run more efficiently on a smaller resource).

Once a service has access to a data stream, ontologies for interpretation and
mapping to a data model are needed so that the ontologies can be used by the
visualization routines. Ontologies provide the semantics for data, intentions, and
operations. These provide information about a service (e.g., a service supports
CPU and GPU execution, a service is compute bound or requires collective com-
munication). Ontologies also map the intentions between different data sources
(e.g., the variable “pressure” is the same as “press”). Data models include in-
formation about the types of meshes in the data (e.g., uniform grid, rectilinear
grid, explicit), the fields that exist on the mesh and their associations (e.g., node,
cell, edge), and other labels associated with the data. This allows a service to
properly process the data. This information also enables the service to perform
data conversions where needed or use optimized algorithms when possible (e.g.,
algorithms for structured data).

4.3 Tier 2 Abstractions

The abstractions in this section build on the aforementioned foundation and
provide the ability to optimize functionality and performance and increase flex-
ibility.
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Portability Abstraction: Modern computing systems provide rich heteroge-
neous resources. Furthermore, executables in a workflow can be mapped onto
these resources in several ways. A visualization service must be able to run on
a variety of different hardware devices. For example, the same visualization ser-
vice might need to run on all core types in a heterogeneous compute node or be
restricted to use only a subset of a particular core type. Visualization services
must run on computing systems that have differing architectures and hardware.
These complications increase when considering edge computing. This relates to
the aforementioned service composition abstraction by providing the workflow
system with the flexibility to place services on available resources and across
different types of systems. Service portability provides the workflow system with
additional options to use for optimizing a scientific campaign.

Performance Models Abstraction: Models that provide performance and
cost estimates for algorithms operating on a given type of data and set of re-
sources can provide valuable information to a workflow system. Such models
would help the workflow ensure that visualization results are provided in the
required time on available resources. These models will inform the selection of
cores (e.g., CPU, GPU), task placement on resources, and task dependencies
that result from service execution time estimates. The way that a service is ex-
ecuted can have a dramatically different impact on a simulation or experiment.
The synchronous in situ processing of expensive services can block the data pro-
ducer, as can excessive data transfer to additional resources for asynchronous in
transit processing.

This abstraction works in conjunction with user intentions, as well as the size
and type of data and available resources. The service must be able to provide
an estimate on the type and amount of resource required to perform the task or
to report that it is impossible so that negotiations can occur with the scientists.
For example, an expensive analysis task might be unfeasible to perform in situ
for every simulation cycle. However, it might be possible to perform every tenth
cycle or, if dedicated visualization resources can be allocated, the user intentions
can be satisfied using in-transit processing.

Declarative Visualization Abstraction: An important distinction exists be-
tween the operation performed by a service and the algorithm used. Common
visualization techniques—such as isocontouring, rendering, or particle tracing—
can be accomplished using several different types of algorithms. Some algorithms
are optimized for certain data types (e.g., structured grids, explicit grids) on cer-
tain hardware types (e.g., GPU or multicore CPU) and have a lower memory
footprint or minimize communication. A declarative abstraction provides a sep-
aration from the intentions of the scientists and the actual algorithm used by the
service. Given the declarative intention from a scientist, separate from a specific
algorithm, coordination with the workflow system is then possible to select the
proper algorithm that will produce the desired result and optimize performance.
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5 Connecting Abstractions to Applications

Both KSTAR and fusion whole device modeling benefits from a data access ab-
straction. Access to data is generally the first significant challenge in developing
a visualization capability, especially for in situ environments. A simple implica-
tion of a data access abstraction is a service that can read data from anywhere
in the memory hierarchy (i.e., file or in situ data access use the same inter-
face). Generally, it is straightforward to obtain output files from previous runs
or test runs from current scientific campaigns. Development, testing, validation,
and scaling against files is generally much easier than trying to do live analysis
in a running campaign. The data access abstraction makes it possible to easily
switch between files and in situ. This was particularly useful for KSTAR where
the data were being moved across the globe. The ability to develop services and
then switch the access mode from file to streams without needing to change
anything else made the development and testing more efficient. This abstraction
enabled the codesign of these services between the visualization and middleware
teams.

The composability and interpretation of data was used in fusion whole de-
vice modeling. This workflow consisted of several different feature extraction
services. As each service extracted features from the simulation output, the data
stream was annotated with VizSchema to describe the relationship among the
underlying data. This allowed a single implementation of a rendering service to
support several different use cases. The workflow system chained these service
together and placed them for execution on the computing resources. The ren-
dering service used the VizSchema provided in the stream to properly interpret
the data and then rendered images. The portability abstraction was also used by
the fusion example. The rendering service and the isocontouring service used the
VTK-m library, which provides portable performance across multiple processor
architectures.

6 Conclusion and Vision for the Future

Rapidly changing computer architectures, the increasing cost of data movement
relative to compute, and the move to automated workflow systems is a significant
challenge to extracting insight from scientific data. However, a move to service-
oriented visualization allows decoupling the complexity of all these tasks. Our
abstractions provide a road map for visualization services that can take full
advantage of the immense power of modern computing systems, while affording
the flexibility to be connected in arbitrary ways by application scientists.

We envision a future in which application scientists will make use of visualiza-
tion services without depending on outside expertise for workflow composition.
The ability to specify intentions for visualization and analysis on data, along with
priorities and timelines for when results are necessary will become a mandatory
feature of visualization packages. We envision that these declarative intentions
will automatically be converted into a set of services via natural language pro-
cessing. The statements of priorities and deadlines will form constraints that can
be validated as satisfiable using performance models. Negotiations with the user
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might be necessary if there are conflicting requirements; deadlines might need
adjusting, or additional resources might be required. The workflow system will
then take this information and construct a graph of requisite services and orches-
trate its execution. Services will use data access and interpretation schemas to
understand and appropriately process in-flight data. The workflow system will
use dynamic monitoring to update the performance models and make real-time
modifications to service behavior and execution. As the data size and complex-
ity increases and services require more time, the granularity of service execution
can be adjusted (e.g., from every tenth cycle to every hundredth cycle) or the
algorithm used by the service can be changed (e.g., use a faster but lower quality
rendering algorithm).

In order to support the tier 1 abstractions, efforts must be made to agree
on standard methods for data access (e.g., a publish/subscribe model). Several
schemas and data models are actively being used and developed, but ontologies
are needed to ensure flexibility and the interoperability of services. The access
and interpretation of data greatly reduces the barriers to service composition
by workflows systems. Research efforts addressing tier 2 abstractions have been
significant, but these challenges have not all been resolved, and continued work
is needed. Great strides have been made in performance portable algorithms,
and these needs will continue into the foreseeable future. Declarative interfaces
between the user and algorithm implementations will allow the users to specify
requirements and the visualization service can select the correct algorithm for
the type and amount of data, and the specified time frame. Performance models
for a wide range of algorithm classes, workloads and data types are needed that
provide time and cost estimates so that services can be scheduled and placed on
resources.

Collectively, there are rich sets of capabilities for addressing these challenges.
The work required to support the VaaS abstractions involves codesign and mul-
tidisciplinary collaboration to ensure that implementations for interfaces are
available. Adoption of these abstractions, and the standardization of these in-
terfaces will enable rich visualization ecosystems. This ecosystem will make it
easier for application scientists to use visualization in their campaigns. It will also
make it easier for visualization scientists to deploy methods and techniques into
workflows and help extract understanding from the large amounts of scientific
data.
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