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About the Speaker

» Graduate Student, University of Louisville
— Fall 2017 - Present
— Mentor: Dr. Gautam Gupta

« Graduate Research Assistant, Los Alamos
National Laboratory
— January 2020 — Present

— Mentors: Drs. Ulises Martinez, Rod Borup,
Siddharth Komini-Babu, and Jacob Spendelow

» Research experience:
— Electrocatalysis
— Fuel cells
— Corrosion
— Materials science
— Solar cells
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Scope of this Presentation

1. Introduce high-level aspects of
hydrogen fuel systems

2. Showcase research
addressing relevant
challenges

— Proton exchange membrane fuel
cells (PEMFCs)
» Subzero temperature applications
» AFM characterization of catalyst
layers
— Non-precious-metal hydrogen
evolution catalysts

geopura.com
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The Hydrogen Energy Landscape
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Green Hydrogen Production
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Hydrogen Applications

* Fossil fuel cracking/upgrading

« Ammonia production

« Hydrogenation

* No-emission fuel cell electric vehicles

— Especially heavy duty (semi-trucks)
—H, from steam reformation less suitable

X. Zou, Y. Zhang, Chem.
3% of global CO, emissions Soc. Rev. 44, 5148 (2015).
‘70% of the world’s population}

N
CO; 2 /
. A s D 4 A <

azocleantech.com
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Current Status

« Hydrogen produced mainly by
steam reforming

— 2 % from water electrolysis
* Primarily due to cost

m Steam Reforming
Natural Gas

Steam Reforming
Coal

= Water Electrolysis

~ 7
I
2 6 Combined sensitivity
B . s .
3 . CO; price sensitivity
B CAPEX and OPEX sensitivity
4
@ Fuel cost sensitivity
3 , o IEA, “The Future of
+— v WACC SenSIthlty Hydrogenu (201 9)
2 _‘—B'a_ = ‘ .
=] CO; price
1 I I I m Fuel costs
0 | I = i OPEX

m CAPEX
Electrolysis Electrolysis Natural gas | Natural gas Coal without | Coal with

grid renewable 'without CCUS| with CCUS CCus CCus
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Energy Consumption

H Lawrence Livermore

Estimated U.S. Energy Consumption in 2018: 101.2 Quads v
National Laboratory
Net Electricity 0.05
Solar Imports
0.943 bl
12.9
Nuclear Electricity
8.44 Generation
382 25.3
4.16 Rejected
Residential Energy
11.9
68.5
5.5
/ R 0.96 7.72
Geothermal / 3.31
0.217 . 0.1 d / Commercial
11.0 , 9.45
3.61 6.02 /'/0.15 0.85 6.14
- 10.4 0.01 / 0.0
Industrial e
26.3 q
12 2.55
8.86
0.87
Biomass
5.13 ! Transportation 224
0.24 >0 28.3
5.95
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Greenhouse Gas Emissions

Total ‘U.S. Greenhouse Gas Emissions
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Using green hydrogen to fuel even part of the economy would drastically
reduce greenhouse gas emissions

United States Environmental
Protection Agency
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PEM Electrolyzer & Fuel Cell Cost Challenge

» Approaches: » Other challenges:
— Reduce precious metal content — Hydrogen storage & distribution
— Improve catalyst performance — Device durability
— Design electrodes to utilize more of the — Competition with existing technologies
catalyst — Efficacy of renewable energy sources
— Make more durable devices — System efficiency (balance of plant)
— Replace catalysts with non-precious
metals
1,000 Systems/Year 100,000 Systems/Year 500,000 Systems/Year

M Bipolar Plates

® Membranes

m Catalyst + Application
B GDLs

m MEA Frame/Gaskets

m Balance of Stack

A. Wilson et al., “DOE Hydrogen and Fuel Cells Program
Record Title: Fuel Cell System Cost-2017 Originator” (2017).
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Why Hydrogen?

s . Application Map — Meeting Customer Needs

'~ Thereis no single silver bullet

y
Fuel Cell H ——
e —— S —
B S

.

/ Drive Cycle
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Anatomy of a Fuel Cell

» O, (excess) + H,0
/ / /

Current Collector

Cathode

Diffusion Media

e ' e o o o o CatalystLayer

> AT o’ E T 2 AT 2 AT 2 Y A . 2 R X |
A VS S

Membrane

0,

H, (excess) + H,0O

cat
Anode 2H, + 0, — 2H,0
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Fuel Cell Polarization Curve

Maximum possible operating voltage

Driven by thermodynamics
Caused by reactant gas crossover

and other parasitic currents

‘No loss’ voltage of 1.2 V.

12 === emmaa = =——-
Even the open circuit voltage is less than the ™
1.0 - theoretcial no loss value
Rapid initial fall in vOtage™) N
paintia @10 a2 Kinetic losses
0.8 — oltage falls more slowly;
and graph is fairly linear
0.6

Ohmic losses

0.4 7 Voltage begins to fall faster
at higher currents
0.2
Mass transport losses

! I I I |
0 200 400 600 800 1000

Current density (mA cm™)

Cell voltage (V)
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Fuel Cells Component Breakdown

(8) - [CF2-CF2)]-CF2-CF

¢ Membrane [0~ CF2 - CF] - O~ CF2— CF2- 505~
— Hydrophilic channels
— Hydrophobic PTFE backbone
 Catalyst layer:
— Pt: Catalyzes reaction : y
. ) H. E. Andrada et al, Int. J. Hydrogen
— C: Electrically conductive support Energy. 43, 8936-8943 (2018).

—lonomer: Conducts protons to
active sites Agglomerate

» Diffusion media:
— Microporous layer

{ lr\;-.\.%"’--

~ =
Tlun Nafion Layer Q Carbon )

Secondary pore Nafion Adsorbed Nafion film

Pt supported cartbon

— Gas diffusion layer - s Pz,
« Each component affects the e ?}f
performance! D. Paul et,al ECS Trans. 41, 13931406 (2019).
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Fuel Cell Experiments at LANL
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AFM Analysis of PEMFC Catalyst Layers

* Positive correlation between ionomer content and agglomerate size directly
identified

» Currently working to combine quantitative nanomechanical mapping with
tunneling microscopy
— Direct correlation/comparison of electrical, mechanical, and morphological features.

» Goal: Correlate nanoscale features with performance and use the information
to design more durable cells

a) Height b) Adhesion c) Height with adhesion

=S ;i ’ K. Chintam et al.,
— e o : ECS Trans. 92,
g .| 95-105 (2019).

THickness
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Fuel Cell Operation at Subzero Temperature:

Background

* Below ~-15 °C, reaction heat is insufficient to raise device
temperature above 0 °C

« Accumulation of enough ice causes device failure

1000
a i
50- § o003
] < !
45+ E 800
404 w—T e =25°C, Air stoic.=2 ‘?
35 w—T,_ =25C, Alr stoic =4 g 700
G ] T s *25°C, Air stoic.=6 O
5 30_ - : FET — I — i — —Y"":O’C Air stolc. =4 el 600 4
S 257 Ty =0C. Alf t0IC. =2 B S
B 201 w—T, e Z0°C. A stoic. =8 3 ]
8_ 15_- T =2 C. Alr stoic. =4 5 400
£ 1 —T, o *10°C, Air shoic. =4 =
£ 104 80, Al atolke E
|w—T . =15°C, Air st0ic.=4 r 1 300 4
- 5 gﬁ
0- %’ 200
4 >
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15 ]
71 T 15T 757 L T T T ' 1 . d ' s RN T W ' ' k ) ' } ' ;
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Q. Yan, H. Toghiani, Y. W. Lee, K. Liang, H. Causey, J. Power Sources. 160, 1242—-1250 (2006).
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Fuel Cell Operation at Subzero Temperature:

Background

« Effects of freezing:

— Blocking of active sites / reactant
gas diffusion pathways

— Delamination of CL from
membrane and/or DM

— Fraying & swelling of carbon fibers
in DM (water penetration, coating
delamination)

—Membrane damage
* Roughened surface, cracking,

pinholes promoting crossover

* Ice buildup must be avoided!

Q. Yan, H. Toghiani, Y. W. Lee, K. Liang, H. Causey, J. Power Sources.
160, 1242—1250 (2006).
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Fuel Cell Operation at Subzero Temperature:

Our Approach

» Address problems by component:
— Diffusion media (DM)
» Keep water out
— Catalyst layer (CL)
* Move water out quickly before it accumulates

—Membrane
» Use as a reservoir for product water
« Use dopants to attenuate freezing water content

» Use structured components to:
— Confer hydrophobicity to DM and CL
— Facilitate water transport to membrane
« Shorter distance
— Optimize both activity and stability

Los Alamos National Laboratory 9/2/20
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Electrolyzer vs. Fuel Cell

alninbriaial

e

[

=% 0, |

2e" |
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[

Cathodic I Anodic I
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catalyst catalyst [

Overall reaction: H,0 —> H, + 2 0,

PEM Electrolysis Cell «+(H,0 >~  PEM Fuel Cell

2e-
|.|2 ==
I
Anodic Cathodic
catalyst catalyst

Overall reaction: H, + 2 0, - H,0

Los Alamos National Laboratory

C. Lamy, Int. J. Hydrogen Energy.
41, 15415-15425 (2016).
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UL

Non-Precious-Metal Catalysts for Hydrogen
Evolution

Work Performed at U of L



UL Bis-thiosemicarbazone Catalysts for HER

Initially poor catalytic activity |
— Bigger current @ lower voltage = better A

N3

Activity improves by cycling the catalyst

— Dynamic rearrangement /é\/k \/ )3\%
Ligand substitution affects resulting catalytic @/\ /\ >@

activity DS
0
Reductive . -2 1
Cycling e 41
> O
2
. X £ Cycles
As Deposited Activated = --=100 Cycles
. - -8 --= 200 Cycles
-10 —
8 -06

6 -04 -02 00
E vs. RHE (V)
A.J. Gupta et al., Inorg. Chem. 58,

-0.
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Transition Metal Chalcogenide Catalysts for

UL HER

0 0
*  Precursor converted to MoS, directly on C;t —1Cycle
2 24 —1000 Cycl
substrate by photon energy 21— IPL-MoS 2 yees
. . & — MoS, -
*  Resulting material: § *1—accE § *
— Has good stability E - E s
— Shows activity comparable to other P 8
highly-active MoS2 catalyst preparations
'10 L) Ll L) Ll Ll = T L) T
06 -05 -04 -03 -02 -01 0.0 10—0.4 -0.3 -0.2 -0.1 0.0
E vs. RHE (V)

E vs. RHE (V)

LeemTTTTE T Xenon flash lamp LeomTTTTT RN
/,’ \\‘ /,’ . ~‘ s‘ N
\ ! B
s )
'

® G ::)
A. Gupta et al., :>
Nanotechnology. 30 (2019) — .

| Characterization

| Drop-casting & drying | | Intense Pulsed Light Treatment |
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* The possibilities are endless for applications of electrochemical
hydrogen systems and routes to the eventual realization of the

hydrogen economy.

* “If the fuel cell is to become the modern steam engine, basic research
must provide breakthroughs in understanding, materials, and design
to make a hydrogen-based energy system a vibrant and competitive
force.”

— G. W. Crabtree et al, Phys. Today. 57, 39—44 (2004).
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