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Charge qubit encoding for QUBO Interdot transtion dynamics probed with pulsing
At the triple points of semiconductor double quantum dots, a Si MOS gated double quantum dot Pulsed transitions: amplitude dependence
charge qubit can be formed with an electron on the left or right P Shown below are 50 averages of a detuning sweep for a slow square wave of 215 Hz, 16 ns risetime.
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\ / ° E, °*Measurement technique (e.g., initialization, evolution, read-out) R R e R ™ T
o Eroray , °Test negative exchange design & DQD-DQD coupling ° For this slow transition, the electron has plenty of time to move to move back and forth
k e Characterize material issues between the dots, and there is a peak for each side of the square wave.
\ 51 °* The peaks are broadened by the amplitude of the 43 Hz sine wave used for charge sensing.
. Motivations: Other broadening effects (i.e. temperature) are involved for lower CS signals.
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|1f,|/’ N E ¥ icrgglregr?ngﬁslt encoding is easier to experimentally ° For large enough pulse amplitudes, we would expect to see occupation of excited states. While
o Stable ground state (relaxation self-corrects excitation other features are present in the data, they do not consistently appear.
= \/\/ L) Pulsed transitions: frequency dependence
> \/  |R> UGB e
j Detuning sweeps for 10 mV square wave amplitudes at different frequencies show an
Semiconductor double quantum dots evolution from two peaks to a single peak.

Silicon metal-oxide-semiconductor (MOS) dots 215 Hz 860 Hz _{BOQ Hz = Frequency dependence

x 107 x 107

: : . : : : N T T " o @25 mVpp
MOS devices are started in a silicon fab, and completed with electron beam lithography, ALD aluminum A / \ I \
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n(As)—J % 0. gate oxide Lt As the transition rate increase, the two peaks merge and form a single peak.
SiO, gate oxide 250 A Nitride etch stop 1 ? ) i . i ] . . i
(10-350m) g ypstrate ° Using longer risetimes, the qualitative peak merging effect shown here is very similar.
°* The merged peak indicates that the electron cannot make interdot transitions at these fast rates.
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_ Measurement techniques ° Measurement-induced dephasing rate,Ta = 5 —(v//1 — V'I2)” ~ Hz, with QPC current |, = 2 nA, |-,
Charge sensing = 0.25 pA, is insignificant. The double peak structure, hence, does not result from back action.

The charge occupation of the double dot is measured using a differential technique. The signal indicates )
a change in DQD occupation. Modeling

Assuming relaxation dominated by coupling to acoustic deformation phonons (spin-boson model)
LP, RP ac voltage in-phase LP, RP ac voltage out of phase ° In the differential charge sense

e ', (w) =energy gap-dependent relaxation rate (gap =/ w)

biased with a dc voltage (100 to 500 ‘ ‘ ‘ ‘ - Rate equation for ground/excited sicate occupations:
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signal changes the dot occupation. , , e , , :
Take long-time average (dynamical equilibrium) of this master equation to compute time-averaged
Both ac and dc current are measured.

= occupations. Dependence of occupation on DQD bias is due to competing relaxation rates.
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rp P V) Differential time-averaged occupation 07 /0¢ Relaxation rate agrees with coupling to
Varying RP and LP, we can move an electron from one dot to the other. This detuning sweep moves for 25 mV peak-to-peak switching amplitude deformation acoustic phonons
electrons from \L> to| R) in the energy diagram above. A single peak is observed at the transition
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connection line in the triple point is doubled. to probe slow inelastic relaxation times.
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