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Pa rBa l	
   d iffe renBa l	
   equaBon -­‐ cons t r a i ned	
  
combinatorial	
   opBmizaBon	
   (PDECCO)	
   problems	
   are	
  
NP-­‐hard.	
  They	
  have	
  the	
  following	
  characterisBcs:	
  
	
  

ñ A	
   parBal	
   differenBal	
   equaBon	
   (PDE)	
   governs	
   the	
  
flow	
  of	
  informaBon	
  across	
  the	
  domain	
  
ñ One	
  set	
  of	
  boundary	
  condiBons	
  is	
  discrete	
  (e.g.	
  on/
off	
  controls)	
  
ñ Design	
   condiBons	
   on	
   another	
   boundary	
   may	
   be	
  
conBnuous	
  
ñ This	
   class	
  of	
  problems	
   is	
   important	
   for	
  opBmizing	
  
transport	
   problems,	
   e.g.	
   gas	
   network	
   control,	
  
microchip	
  cooling,	
  and	
  traffic	
  opBmizaBon.	
  
ñ We	
   have	
   developed	
   a	
   mapping	
   that	
   converts	
  
PDECCO	
  problems	
  with	
  linear	
  PDEs	
  as	
  constraints	
  to	
  
QUBO	
   problems	
   that	
   can	
   be	
   solved	
   through	
  	
  
adiabaBc	
  quantum	
  opBmizaBon	
  (AQO).	
  On	
  a	
  classical	
  
computer,	
  two	
  common	
  approaches	
  for	
  solving	
  such	
  
problems	
   are	
   geneBc	
   algorithms	
   or	
   simulated	
  
annealing.	
   While	
   these	
   algorithms	
   can	
   be	
   modified	
  
for	
  a	
  parBcular	
  type	
  of	
  PDECCO,	
  they	
  fail	
  to	
  provide	
  a	
  
soluBon	
  for	
  any	
  general	
  problem	
  in	
  polynomial	
  Bme.	
  	
  
If	
  an	
  adiabaBc	
  quantum	
  computer	
  can	
  speed	
  up	
  the	
  
Bme	
   required	
   to	
   solve	
   QUBO	
   problems,	
   this	
   would	
  
be	
  an	
  improvement	
  over	
  exisBng	
  classical	
  algorithms	
  
to	
   solve	
   such	
   problems.	
   Solving	
   PDECCO	
   problems	
  
successfully	
  on	
  a	
  quantum	
  computer	
  also	
  guarantees	
  
that	
   the	
   soluBon	
   we	
   find	
   would	
   be	
   the	
   global	
  
minimum	
  of	
   the	
  problem,	
  and	
  not	
  a	
   local	
  minimum	
  
as	
  may	
   be	
   obtained	
  with	
   a	
   heurisBc	
   algorithm.	
   The	
  
mapping	
  presented	
  holds	
  only	
  for	
  PDECCO	
  problems	
  
constrained	
  by	
  a	
  linear	
  PDE.	
  	
  

Example	
  results	
  Problem	
  Formula7on	
  
FormulaBon	
   of	
   a	
   general	
   PDECCO	
   problem,	
   with	
  
linear	
  PDE	
  constraints:	
  	
  

As	
   an	
   applicaBon,	
   we	
   have	
   invesBgated	
   a	
   version	
   of	
  
the	
   gas	
   network	
   opBmizaBon	
  problem	
  using	
   a	
   brute-­‐
force	
   search.	
   This	
   problem	
   involves	
   minimizing	
   the	
  
Bme	
   compressors	
   are	
   turned	
   on	
   at	
   substaBons	
  while	
  
maintaining	
  a	
  desired	
  supply	
  of	
  gas.	
  As	
  the	
  governing	
  
PDE,	
  we	
  consider	
  the	
  advecBon	
  equaBon	
  as	
  a	
  proof	
  of	
  
concept.	
   The	
   table	
   shows	
   the	
   convergence	
   of	
   the	
  
minimum	
   soluBon	
   with	
   respect	
   to	
   the	
   coarseness	
   of	
  
the	
  mesh.	
  

Scaling	
  of	
  qubits	
  with	
  problem	
  size:	
  
ñ Since	
  B	
   is	
  a	
  dense	
  matrix,	
   in	
  general	
  a	
   fully	
  
connected	
  coupling	
  graph	
  is	
  required	
  

ñ Number	
   of	
   qubits	
   required	
   does	
   not	
   scale	
  
with	
  mesh	
  size	
  

ñ Number	
  of	
  qubits	
  required	
  depends	
  only	
  on	
  
the	
  number	
  of	
  control	
  points	
  desired	
  at	
  one	
  
boundary	
  

	
  
Time	
  scaling	
  with	
  problem	
  size:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ñ The	
   main	
   calculaBon	
   that	
   has	
   to	
   be	
  
performed	
   on	
   the	
   classical	
   computer	
   is	
   the	
  
matrix	
   inversion	
   process,	
   which	
   scales	
  
polynomially	
  with	
  matrix	
  size.	
  	
  

ñ Scaling	
  of	
   the	
  annealing	
  Bme	
  required	
  as	
  a	
  
funcBon	
   of	
   the	
   dimension	
   of	
   the	
   space	
   of	
  
controls	
  is	
  an	
  open	
  problem.	
  

	
  
Precision/Error	
  propaga7on:	
  
ñ The	
  nominal	
  values	
  of	
  the	
  matrix	
  B	
  (coupler	
  
strengths)	
   and	
   w	
   (qubit	
   weights)	
   are	
  
assumed	
  to	
  be	
  conBnuous.	
  

ñ Precision	
   errors	
   in	
   B	
   affect	
   values	
   of	
   A-­‐1,	
  
which	
   in	
   turn	
   changes	
   the	
   nature	
   of	
   the	
  
original	
  control	
  PDE.	
  	
  

ñ Precision	
   errors	
   in	
   A-­‐1	
   and	
  w	
   can	
   then	
   be	
  
used	
   to	
   calculate	
   the	
   errors	
   in	
   the	
   iniBal	
  
condiBons,	
  us.

	
  

	
  
Limita7ons	
  and	
  future	
  work:	
  
ñ The	
  mapping	
  works	
  only	
  for	
  linear	
  PDEs.	
  
ñ Non-­‐linear	
  PDEs	
  cannot	
  be	
  solved	
  with	
  this	
  
procedure	
   as	
   we	
   do	
   not	
   obtain	
   a	
   linear	
  
system	
   of	
   equaBons	
   aher	
   discreBzing	
   the	
  
PDEs.	
  

ñ Local	
   linear	
  approximaBons	
  of	
  non-­‐linearity	
  
might	
   be	
   a	
  way	
   to	
  map	
   non-­‐linear	
   PDECCO	
  
problems	
   onto	
   a	
   QUBO	
   form	
   (steady-­‐state	
  
problems?).	
  

ñ Would	
   like	
   to	
   characterize	
   the	
   lowest	
  
acceptable	
   precision	
   of	
   coupling	
   strengths	
  
that	
  give	
  the	
  correct	
  opBmal	
  soluBon	
  for	
  the	
  
original	
  problem.	
  

Solving	
   for	
   u	
   and	
   replacing	
   those	
   values	
   in	
   the	
  
objecBve	
  funcBon	
  gives	
  the	
  following	
  QUBO	
  problem,	
  
which	
  may	
  be	
  implemented	
  on	
  an	
  AQO:	
  
	
  

The	
   first	
   step	
   for	
   mapping	
   such	
   problems	
   to	
   QUBO	
  
problems	
   is	
   to	
   implicitly	
   discreBze	
   the	
   PDE	
   to	
   get	
   a	
  
linear	
  system	
  of	
  equaBons,	
  Au	
  =	
  b.	
  A	
  is	
  a	
  constant	
  	
  

The	
  matrix	
  B	
  gives	
  the	
  qubit-­‐qubit	
  couplings	
  and	
  w	
  the	
  
weight-­‐one	
   terms.	
   Matrices	
   I,	
   em,	
  M,	
   Q	
   and	
   A-­‐1	
   are	
  
constants	
   and	
  depend	
  on	
   the	
   specific	
  problem	
  details	
  
and	
   the	
   PDE	
   constraint.	
   us	
   is	
   a	
   vector	
   containing	
   the	
  
boundary	
  condiBons.	
  Generally	
  B	
   is	
  a	
  dense	
  matrix,	
  so	
  
a	
  fully-­‐connected	
  coupling	
  graph	
  is	
  required.	
  Overhead	
  
will	
   be	
   incurred	
  when	
   embedding	
   the	
   problem	
   into	
   a	
  
physically-­‐realizable	
  coupling	
  graph.	
  

Time	
  steps	
  
between	
  two	
  
control	
  points	
  

Best	
  Control	
  
Sequence	
  

Op7mal	
  J	
  value	
  

1	
   01100000	
   2.954e-­‐5	
  
4	
   11111000	
   5.77e-­‐04	
  
8	
   11111000	
   9.71e-­‐04	
  
16	
   00001000	
   1.97e-­‐03	
  
24	
   00001000	
   2.50e-­‐03	
  

Discrete 
controls 

Space 

Tim
e 

minimize J =

�

B
ddλ|u(λ)− ud(λ)|2

=	
  design	
  boundary	
  
=	
  design	
  condi7ons	
  

B
ud

Subject	
  to	
  a	
  linear	
  PDE:	
  

F (λ, u,
∂u

∂λ1
, · · · , ∂2u

∂λ1∂λ2
, · · · ) = 0

with	
  boundary	
  condiBons	
  
u(λ1, 0, 0, . . .) = f1(λ1,λ2, . . .)

u(0,λ2, 0, . . .) = f2(λ1,λ2, . . .)

u(0, . . . ,λc, 0, . . .) = c, c ∈ C

...

J = �cTB�c+ �cT �w +
�

ci

B =
� a

∆s

�2 ��
ITd ⊗ �em

T
�
A−1TMTMA−1 (Id ⊗ �em)

�

�w =

�
2a

∆s

���
ITd ⊗ �em

T
�
A−1TMT

� � 1

∆t
MA−1Q �us − �ud

�

=	
  discrete	
  set	
  of	
  control	
  values	
  C

matrix,	
   dependent	
   only	
   on	
   the	
   type	
   of	
   linear	
   PDE,	
  
wave	
   speed,	
   for	
   example,	
   and	
   the	
   spaBal	
   and	
  
temporal	
   discreBzaBon.	
   The	
   vector	
  b	
   is	
   a	
   funcBon	
   of	
  
the	
   controls.	
   The	
   following	
   figure	
   sketches	
   the	
  
discreBzaBon	
  of	
  the	
  domain:	
  	
  
	
  

D
esign conditions 

objective function 

(optimum converges for finer mesh discretization) 
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