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Introduction and Motivation

Partial differential equation-constrained
combinatorial optimization (PDECCO) problems are
NP-hard. They have the following characteristics:

A A partial differential equation (PDE) governs the
flow of information across the domain

A One set of boundary conditions is discrete (e.g. on/
off controls)

A Design conditions on another boundary may be
continuous

AThis class of problems is important for optimizing
transport problems, e.g. gas network control,
microchip cooling, and traffic optimization.

AWe have developed a mapping that converts
PDECCO problems with linear PDEs as constraints to
QUBO problems that can be solved through
adiabatic quantum optimization (AQQO). On a classical
computer, two common approaches for solving such
problems are genetic algorithms or simulated
annealing. While these algorithms can be modified
for a particular type of PDECCO, they fail to provide a
solution for any general problem in polynomial time.
If an adiabatic quantum computer can speed up the
time required to solve QUBO problems, this would
be an improvement over existing classical algorithms
to solve such problems. Solving PDECCO problems
successfully on a quantum computer also guarantees
that the solution we find would be the global
minimum of the problem, and not a local minimum
as may be obtained with a heuristic algorithm. The
mapping presented holds only for PDECCO problems
constrained by a linear PDE.

Problem Formulation

Formulation of a general PDECCO problem, with
linear PDE constraints:

minimize J = / dd)\\u()\) — uqa(A) |7
B
B = design boundary

Ud = design conditions

Subject to a linear PDE:

ou 0%
F A ———— [ ] [ ] [ ] [ ] [ ] [ ]
(A, u, N OMON,

with boundary conditions
U()\l, O, O, 5 ¢ ) — fl()\la )\2, 5 o )
u(O, )\2, O, - - ) — fg()\l, )\2, > - )
w(0,...,26,0,...)=¢,ceC

C = discrete set of control values

The first step for mapping such problems to QUBO
problems is to implicitly discretize the PDE to get a
linear system of equations, Au = b. A is a constant
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matrix, dependent only on the type of linear PDE,
wave speed, for example, and the spatial and
temporal discretization. The vector b is a function of
the controls. The following figure sketches the
discretization of the domain:
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Solving for u and replacing those values in the
objective function gives the following QUBO problem,
which may be implemented on an AQO:

J=¢c" Bé+ &'+ Z c; <+ Objective function

B_ ( a )2 [(ICiT@@;zT) A_lTMTMA—l (Id@)e;‘n)}

As

W= (2—a> [(If ® e?f) A‘lTMT] {LMA”Q@FS — u_él}

As At

The matrix B gives the qubit-qubit couplings and w the
weight-one terms. Matrices I, e_, M, Q and Al are
constants and depend on the specific problem details
and the PDE constraint. u_ is a vector containing the
boundary conditions. Generally B is a dense matrix, so
a fully-connected coupling graph is required. Overhead
will be incurred when embedding the problem into a
physically-realizable coupling graph.

Example results

As an application, we have investigated a version of
the gas network optimization problem using a brute-
force search. This problem involves minimizing the
time compressors are turned on at substations while
maintaining a desired supply of gas. As the governing
PDE, we consider the advection equation as a proof of
concept. The table shows the convergence of the
minimum solution with respect to the coarseness of
the mesh.

Time steps Best Control Optimal J value
between two Sequence
control points
1 01100000 2.954e-5
4 11111000 5.77e-04
8 11111000 9.71e-04
16 00001000 1.97e-03
24 00001000 2.50e-03

(optimum converges for finer mesh discretization)
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Discussion

Scaling of qubits with problem size:

ASince B is a dense matrix, in general a fully
connected coupling graph is required

ANumber of qubits required does not scale
with mesh size

A Number of qubits required depends only on
the number of control points desired at one
boundary

Time scaling with problem size:

AThe main calculation that has to be
performed on the classical computer is the
matrix inversion process, which scales
polynomially with matrix size.

AScaling of the annealing time required as a
function of the dimension of the space of
controls is an open problem.

Precision/Error propagation:

AThe nominal values of the matrix B (coupler
strengths) and w (qubit weights) are
assumed to be continuous.

A Precision errors in B affect values of A1
which in turn changes the nature of the
original control PDE.

A Precision errors in Al and w can then be
used to calculate the errors in the initial
conditions, u..

Limitations and future work:

AThe mapping works only for linear PDEs.

ANon-linear PDEs cannot be solved with this
procedure as we do not obtain a linear
system of equations after discretizing the
PDEs.

AlLocal linear approximations of non-linearity
might be a way to map non-linear PDECCO
problems onto a QUBO form (steady-state
problems?).

AWould like to characterize the lowest
acceptable precision of coupling strengths
that give the correct optimal solution for the
original problem.
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