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# Outline

* 1-D breakdown simulations

— Electron source: Auger neutralization vs. Cold Field
Emission

— Differential Forward vs. Isotropic Scattering

« Energy-Conserving Vlasov-Poisson formulation
— Momentum error control: Adaptive particle orbit substeps
— lon Acoustic Shock Wave test problem

— Implementation of Realistic Boundary Conditions and
Collisions

* Conclusions
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1D Breakdown Simulations
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> 1D Breakdown in Air

* 1D PIC-DSMC simulations
— Fe cathode and Ag anode (for comparison to experiment)
— Gap filled with air at STP

— Simulate various gap sizes — Find breakdown voltage
— Uniform grid, Ax < Ay at n, = 102" m=3 (typical “breakdown”density)
— Timestep = 5x10-> s < CFL < mean collision time < 1/w,

» Define “Breakdown”: Exponential rise in current as voltage
“collapses” and quasi-neutral plasma forms in gap

— Simulations limited to 5 ns — Obtain upper limit Vcacqown

« “Trigger” breakdown with an initial, very low density uniform
electron & ion plasma of 10 m=3 (~10-°*n,)
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# Gas Interactions Model

* Include e-N,, e-O,, e-N,*, and e-O," interactions
— Elastic, Excitation

« Alter electron energy distribution

« Elastic collisions can be either isotropic or preferentially forward
scattering

— lonization: N,—N,* and O,—0,*
« Source of ions & secondary electrons
» Use total ionization cross section
* Do not include double ionization (N, — N,* & O, — O,**)
* Do not include dissociative ionization (N, - N + N*& O, — O + OY)
— Recombination (O, — O + O), Attachment (N,* — 2N & O,* — 20)
» Sink for electrons, ions
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} Surface Model

* Include Auger Neutralization

— Upon approach to surface, lon is neutralized and liberates

secondary electron with probabilty y,

- ye,N2+=0'026= ye,0;=0.018 (Lieberman & Lichtenberg, 2005)
» Function of the ion species’ ionization potential & surface work

function (use ¢=4.5 for Fe)
 Independent of kinetic energy below ~500 eV
» Dependent on surface contamination

* Include Fowler-Nordheim field emission

— Quantum tunneling through surface potential
barrier accounting for local surface E-field, E,

AIBEP? (_qul-sv(y))_ e (C[BES]O-S)Z
j= " exp [BE.] ; v(y) = 0.95 "

— Assume (=50 (typical for polished metals)
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“Large” Gap Breakdown
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* Initial pulsing of current as ions transit gap and release
electrons from cathode which then generate more ions

» Eventually quasi-neutral plasma established
— Gap voltage drop only across sheath — Fowler-Nordheim

emission accelerates breakdown
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lon travel time across gap ~0.72 ns

\

Initial plasma current

Applied voltage = 250 V across 15 um gap

\

Surface E-Field > 3x10° V/cm
F-N e” emission dominates

Arrival of secondary electrons due

to Auger-neutralization of ions
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} “Small” Gap Breakdown

&b V across 3 micron gap, lime=U
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* For small enough gaps, Fowler-Nordheim field emission
dominate source of electrons

* lonization of gap gas — Net charge buildup near cathode
leads to increased field emission and breakdown
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# Breakdown vs. Gap size
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« Small gaps: Fowler-Nordheim emission
— Sensitive to Field Enhancement Factor due to microscopic roughness

— Data requires initial field of 7x107 V/m; Simulation requires less initial
field as gap size increases (but still Fowler-Nordheim dominated)

» Large Gaps: Auger neutralization electron flux
— Sensitive to secondary emission coefficient and e - neutral interactions
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# Breakdown vs. Gap size

* Paschen curve coefficients
fit to data & based on

e-gas interactions (net 500 - _
. . . - F-N . Auger dominated
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- Discrepancy vs. theory 400} |
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to backscatter events
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Energy-Conserving Implicit PIC
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f" Why Implicit PIC?

 Breakdown simulation timescale ~10xlon transit time
across gap

— Computationally expensive
« Electric field changes over ~lon timescales

— But explicit schemes must still resolve electron motion

timescales, e.g. w,, for stability

* Implicit schemes will allow for much greater field solve

timesteps and ion motion while still accurately capturing
electron motion
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Energy-Conserving Implicit PIC

« Based on work by Chen et al.t

— Use Jacobian-Free Newton Krylov solver & particle enslavement to
nonlinearly eliminate particle quantities

— Vlasov-Poisson with Crank-Nicolson time discretization

EO(E?:ll _ E?’.‘.“r‘l) p?’.'.+l Ax

+1/,

n+1 _ .n n+1 7
Xp Xp _ Vp + v

At 2
B v 9 ZS G G\ ET 4 E]
At omy e\ 2 2
— Energy conservation requires nonlinearly converged particles and fields
n+1k

1. Move particles using E; — assemble p?:l}z and RHS

a) Inner nonlinear iteration — use Picard iteration since it's not stiff
b)  Separate from field solve, can easily add adaptive substepping
n+1,k+1

N

Solve for E;

Form residual

»
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#Adaptive Particle Orbit Substeps

* Algorithm doesn’t enforce exact momentum conservation

« Control momentum errors by adapting timestep for
integration of individual particle movement

— Reduces particle tunneling
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# lon Acoustic Shock Wave Test

Explicit, Time =0
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 Periodic boundaries, sinusoidal perturbation of initial
density and velocity

* lon acoustic shock dynamics develop over ion timescales

» Accurate explicit solution requires timestep resolution of
plasma frequency even though fields vary “slowly” —
Implicit could increase timestep by O(100)
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*’Stochastichharge Creation BC’s

* Particle interaction while moving with neutral,
deterministic boundaries not an issue: .

Lo

— Each iteration, if the particle hits the boundary
it does the same thing. Eventually converges.

 Stochastic boundary (e.g. diffuse) for charged partlcles

— Now each iteration the charge might end
up in a different element. Convergence
not assured.

« Charge creation/destruction boundaries

— Convergence problem if, on given iteration if the charge
reaches the surface net charge created (or lost) .. |
which on the following field solve iteration
prevents the original charge from reaching
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# “Real” Simulations

« Lag charge creation/destruction — Create charge after field solve is
converged & before interactions

» Lock in behavior of diffuse boundary for given particle (not
implemented yet)

» Collisions decoupled from particle movement (typical collisional PIC

mption
assumption) Implicit Field Solve
O |
Crank-Nicholson
Push
O
Collisions < Particle
Creation/Injection
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* Conclusions

» Large Gaps:
— Auger neutralization is primary source of initial e
— Current “waves” as breakdown develops plasma in the gap
— Preferential forward scattering increases V,

— Large discrepancy between simulation and experiment/theory indicates gas
interaction model needs improvement

« Small Gaps:
— Fowler-Nordheim field emission e flux source — no “trigger” plasma needed
— Collisional processes with neutral gas not as important

 For all gap sizes, final breakdown occurs when quasi-neutral plasma forms
a sheath and Fowler-Nordheim field emission results in huge currents

 Implicit, Energy Conserving PIC desirable for breakdown simulations b/c
breakdown occurs over ion timescales

— Must still resolve e timescales — Implicit allows much larger timesteps

— Lag stochastic/charge-creation boundary conditions for “complicated”
boundary conditions
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