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Big Picture Renewable H,: Pathways and Challenges
Electrochemical vs. Thermochemical
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e PV cell cost and efficiency

e Electrolyzer cost and efficiency

e Concentrator cost and efficiency

e Limit: quantum mechanics (band gaps)
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sun->concentrator->reactor>H,

Maximum theoretical solar-to-work efficiency
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e Concentrator cost and efficiency

e Reactor cost and efficiency

e High temperature operation

* Thermodynamics: Low T-> low efficiency

The Big Picture Challenge: Maximize efficiency/levelized cost
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Thermochemical H,: Design Requirements

Key efficiency attributes:

e DIRECT solar absorption by working material Concentrated
* EFFICIENT heat recovery between T, & T, solar heat
e CONTINUOUS on-sun operation Ir ————— + T T T
e INTRINSIC gas and pressure separation |  thermal reduction: ! O2
| |
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Challenge: Design a reactor embodying | MO, 5 recovery MO,
all the key efficiency attributes : ) :
| |
H,O | | H,
I

Approach: —1> H, production: ——

e Respect the thermodynamics SE—— 1
Two-step

metal oxide cycle
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Particle Bed reactor: Design and Operation

Key efficiency attributes:

* DIRECT solar absorption by working material

e EFFICIENT heat recovery between T, & T,
e CONTINUOUS on-sun operation
e INTRINSIC gas and pressure separation

Specific design advantages:
— Small reactive particles (~100um)
— Only particles are thermally cycled

— Only one high T moving part: a ceramic tube

— Independent component optimization
— Straightforward material replacement

— Uses established high T and vacuum techniques

High performance particle receiver reactor
embodies ALL key efficiency attributes
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Thermal reductiona
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High Solar Efficiency: Key Parameters
CeO, cycle, T,=1500°C, T,=1100°C All-inclusive efficiency metric:
\ e Collection losses
— Concentrator & re-radiation
e Oxide heating
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e Oxide thermal reduction

e Feedstock heating (steam)
e Pumping
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e Electrical/mechanical work
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Challenges:

e High counter-flow heat recovery
e Low p,, for reduction

Y M- o?.eooqe Approach:
.. i . Recuperator design and testin
e Solar->H, efficiency >30% possible with CeO, : Rea::)or desien ® ne
e 75% Heat recovery required e Reacti f| desi
@ Sandi eactive oxide design
National
Laboratories
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Recuperator Effectiveness: Critical Importance

Heat flows without heat recovery

CeO, cycle, T,=1500°C, T,=1100°C

Partial O; Pressure in Reduction Zone [Pa]
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e Not recovering heat is
NOT an option
e 75% minimum with CeO,
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Heat flows with 85% solid-solid heat reco

Recuperator Effectiveness: Critical Importance
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Challenge: Conveyor-Recuperator
design must convey active oxide
particles and recover heat

Approach:

e Recuperator numerical modeling

e Design, construction, and testing
under increasingly realistic
conditions
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Recuperator Effectiveness: Conveyor Design

e Highly modified elevator design

3
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e Internal fins used for enhanced heat recovery
e Use multi
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e Multi-helix design shows the most promise so far

Challenges:

e Evaluate and develop the nested multi-screw design

e Build prototypes to assess conveyor-recuperator effectiveness

e Determine the conveyor-recuperator manufacturing approaches at various
scales and establish reactor size limits

Approach:
e Construction and testing of multiple units
FYilQ4 e Use of surrogate materials as well as CeO,
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Prototype Platform Design and Construction

e Highly modified elevator design

Internal fins used for enhanced heat recovery

Use multiple auger design to increase heat recovery

Multi-helix design shows the most promise so far

Challenges:

e Evaluate and develop the nested multi-screw design

e Build prototypes to assess conveyor-recuperator effectiveness

e Determine the conveyor-recuperator manufacturing approaches at various
scales and establish reactor size limits

Approach:
e Construction and testing of multiple units
FY12Q3-4 e Use of surrogate materials as well as CeO,
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Pressure drop [kPa]
Preliminary permeability measurements of
surrogate zirconia-silica microspheres
Low gas permeability of the oxide bed is

to pressure separation and high efficiency

Challenge: “Marry” the particles and Ap requirements

Approach:
e Determine the optimal particle size range
FY12Q3 e Develop and scale up a synthesis method
@ ﬁgggi:al e Test chemical and mechanical durability
Laboratories
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Decreasing O, Partial Pressure: Particle Design
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Decreasing O, Partial Pressure: Pumping Limits
Required pumping speed for 1 MW

solar

=

pa

)
|

Oz pumping speed [mafstIW]
o

recuperator

system

Approach:
e Use the most suitable off-the-shelf pumps
e Evaluate scale-up feasibility with turbomachinery manufacturers
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1000 10000

Partial O; Pressure in Reduction Zone [Pa]

Pumping requirements establish limits to reactor size and pressure

Challenge: Select or develop efficient compressors suited for the
application (compression ratio ~100-1000, inlet flow ~10-1000 m3/s)
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Reactor Materials

e Reactor parts and reactive oxide must not react, even at T,

e Multiple materials tested under realistic conditions
e Alumina compatible to 1550°C, SiC to 1400°C, alumina-coated SiC to 1450°C
e |dentified potential ceramic component manufacturer

T P R
|

Ce0,/SiC Hexoloy, 1400°C

stagnant air, 3h e —— et
Ce0,/Al,0,, 1550°C
stagnant air, 3h

paint Ce0,/Al,0,/SiC, 1450°C
stagnant air, 3h

e For CeO2 reactive oxide no manufacturing showstoppers expected

Challenges:
e Compatibility with every active oxide is required

FY11Q4
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Operatlonal Flexibility 9H|gh Annual Average EfflClency
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Other Issues: 1-3 slides
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Back to the Big Picture: 5-10 year vision
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Thank you for your attention

Questions?
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System Level: Many Losses_and ngh Annual Eff|C|ency

‘\.‘H

Resource efficiency = 95% for Daggett, CA (DNI > 300W/m?)

Operational ~ 94%
Equip. Availability = 97%, Blocking&Shading = 98%, Wind Outage = 99%

Optical ~ 79%
Reflectivity = 93% (two reflections)
Dirt = 95%

Window = 95%

Tracking =99%
Intercept = 95%

Receiver ~ 82%
Radiation = 82%
Conduction/Convection = 0 %

~25% solar to H,
annual average
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Recuperator Effectiveness: Particle Design
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Conveying efficiency depends strongly on particle shape, size,
density, cohesive strength, etc. — in addition to conveyor design.

Challenge: “Marry” the particles and the conveyor

Approach:
FY11Q4 e Determine the optimal particle size range
FY12Q3 e Develop and scale up a synthesis method
@ Sandia o Test chemical and mechanical durability
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