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Abstract

The composition and cycling dynamics of marine dissolved organic carbon (DOC) have
received increase interest in recent years, however little research has focused on the refractory,
low molecular weight (LMW) component that makes up the majority of this massive C pool. We
measured stable isotopic (5'°C), radioisotopic (A'*C), and compositional (C/N, **C solid-state
NMR) properties of separately isolated high molecular weight (HMW) and LMW DOC fractions
collected using a coupled ultrafiltration and solid phase extraction approach from throughout the
water column in the North Central Pacific and Central North Atlantic. The selective isolation of
LMW DOC material allowed the first investigation of the composition and cycling of a previously
elusive fraction of the DOC pool. The structural composition of the LMW DOC material was
homogeneous throughout the water column and closely matched carboxylic rich alicyclic
material that has been proposed as a major component of the marine refractory DOC pool.
Examination of offsets in the measured parameters between the deep waters of the two basins
provides the first direct assessment of changes in the properties of this material with aging and
utilization during ocean circulation. While our direct measurements largely confirm hypotheses
regarding the relative recalcitrance of HMW and LMW DOC, we also demonstrate a number of
novel observations regarding the removal and addition of DOC during global ocean circulation,
including additions of fresh carbohydrate-like HMW DOC to the deep ocean and large-scale
removal of both semi-labile HMW and recalcitrant LMW DOC.
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1.0 Introduction

Marine dissolved organic carbon (DOC) is the largest pool of reduced and actively
cycling carbon in the ocean. Early measurements of the radiocarbon age of DOC compared to
that of dissolved inorganic carbon (DIC) demonstrated that at least a portion of DOC persists in
the ocean on longer timescales than ocean circulation (Williams and Druffel, 1987; Druffel et al.,
1992). These radiocarbon measurements combined with depth-based gradients in DOC
concentration were used to form a two-pool model of DOC cycling, with a pool of semi-labile
material that is produced in the surface and degraded or utilized on timescales less than ocean
circulation and a background pool of refractory material that cycles on millennial timescales with
a relatively conservative distribution throughout the water column. The semi-conservative
behavior of DOC in the deep ocean has been utilized as a tracer to investigate transit times of
different water-masses using offsets in radiocarbon age (Bauer et al., 1992; Hansell, 2013;
Bercovici et al., 2018a; Druffel et al., 2019). However, DOC, even in the deep ocean, is a
dynamic pool with constant removal and additions of new material (Smith et al., 1992; Hansman
et al., 2009; Hansell and Carlson, 2013b; Walker et al., 2016a). Further, radiocarbon
measurements of different components of the DOC pool have demonstrated a remarkable
heterogeneity of AC values (Walker et al., 2011; Walker et al., 2014; Zigah et al., 2017; Broek
et al., 2017) ranging from above modern (Druffel and Beaupré, 2009; Repeta and Aluwihare,
2006) to tens of thousands of years (Ziolkowski and Druffel, 2010; Coppola et al., 2015),
suggesting substantial variability in recalcitrance and cycling rates.

Increasing evidence has demonstrated a relationship between the average molecular
weight of DOC, its radiocarbon content, and the relative recalcitrance of the material (Walker et
al., 2011; Benner and Amon, 2015; Walker, et al., 2016a; Walker et al., 2016b; Broek et al.,
2017). High molecular weight (HMW) DOC is primarily composed of recently produced material
and contains intact biochemicals, whereas low molecular weight (LMW) DOC is old, degraded,
biologically refractory, and dominates the background DOC pool that persists in the ocean on
millennial timescales (Amon and Benner, 2015). The LMW fraction of the DOC pool is therefore
a critical component that stores the vast majority of the ocean’s dissolved organic carbon and
nitrogen.

Until recently there has been no analytical approach to directly investigate the refractory
LMW DOC pool. The analyses that are possible in total seawater, primarily concentration
measurements and bulk isotopic analyses, are limited and interpretations based on these

measurements are impacted by the extreme heterogeneity of marine DOC. Material
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concentrated using ultrafiltration (UDOM) has been widely used for many DOC investigations.
However, this is by definition HMW and therefore not representative of the refractory DOC pool.
New generations of solid phase extraction (SPE) sorbents have more recently been used to
isolate DOC that, based on high resolution mass spectrometry analyses (e.g., FT-ICR MS), has
been largely interpreted as primarily LMW material. However, it has been recently demonstrated
that SPE-DOM isolated from whole seawater contains a fraction of younger, more labile HMW
material (Broek et al., 2017). Coupled with **C ages that are comparable to total DOC (Flerus et
al., 2012; Lechtenfeld et al., 2014; Bercovici et al., 2018b), these new observations suggest
SPE isolates are more similar to total DOC than LMW DOC. The diversity of molecules with
varying ages and biological reactivities in SPE-DOM therefore complicates interpretation of the
composition and cycling dynamics of LMW DOC (Broek et al., 2017). An alternate approach to
the study of LMW DOC has been indirect observations from the differences between ultrafiltered
HMW DOC and total DOC. A number of studies have inferred properties of the LMW DOC pool,
such as '*C age from these indirect calculations. However, these analyses are also severely
limited by what it is possible to measure in whole seawater (Loh et al., 2004; Kaiser and Benner,
2009). Without a method to selectively isolate LMW DOM, it has not been possible to directly
apply many analyses with vast informational potential such as NMR and molecular level
analyses requiring large sample sizes. Overall, this has limited our understanding of the broad
functional composition of DOC.

Here we present data from samples collected via a new DOC isolation approach using
sequential ultrafiltration and SPE as an effective means to isolate both young, HMW DOC and
old, LMW DOC from seawater (Broek et al., 2017). By collecting these distinct fractions, thereby
limiting the influence of DOC size and reactivity mixtures, this combined UF/SPE method
provides a more direct approach than has previously been possible to investigate the
composition, sources, and cycling of the most refractory material in the ocean. For the first time
we measure the stable isotope ratios, elemental composition, and molecular composition of
selectively isolated LMW DOC from throughout the water column in both the Atlantic and Pacific
Ocean Basins. We interpret the results in the context of radiocarbon age and offsets between
basins to determine how the properties of this material change during deep ocean circulation.
The isotopic and molecular composition of the LMW fraction and basin offsets in these
properties are compared to the more commonly studied semi-labile HMW UDOM material,
collected from the same water, in order to investigate the relative behavior of different

components of the DOC size and reactivity spectrum. Together these represent the first
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comprehensive look at compositional changes of both semi-labile and refractory DOC with

aging and utilization during large scale ocean circulation.

2.0 Materials and Methods

2.1 Sample Collection

Samples were collected on four research cruises aboard the R/V Kilo Moana in August
2014 and May 2015 and the R/V Atlantic Explorer in August 2015 and May 2016. Sampling was
conducted at the Hawaii Ocean Time Series (HOT) Station ALOHA (A Long-Term Oligotrophic
Habitat Assessment; 22° 45'N, 158° 00'W) in the North Central Pacific (NCP) and the Bermuda
Atlantic Time Series Site (BATS; 31° 40'N, 64° 10'W) in the Central North Atlantic. Surface
water was sampled via the vessels’ underway sampling systems with an inlet at approximately
7.5 m water depth on the R/V Kilo Moana and 2 m water depth on the R/V Atlantic Explorer. The
laboratory seawater taps were flushed for approximately 2 hours prior to each sampling. Large
volume subsurface water samples were collected from 400 m, 850 m, and 2500 m using
successive casts of a rosette equipped with 24 x 12 L Niskin bottles. Seawater was pre-filtered
through 53 pm Nitex mesh and pumped through 0.2 um polyethersulfone (PES) cartridge filters
prior to ultrafiltration. All filters and storage containers were cleaned with 10% HCI and ultrapure

water (Milli-Q; 18.2 MQ) then flushed with seawater from the sampling depth prior to use.

2.2 DOC lIsolation

A detailed explanation of the DOC isolation protocol is described in Broek et al. (2017).
Briefly, ultrafiltration was performed using a custom-built system consisting of four-spiral wound
PES UF membranes (2.5 kD; GE Osmonics GH2540F30, 40-inch long, 2.5-inch diameter)
mounted in stainless steel housings, plumbed in parallel to a 100 L fluorinated HDPE reservoir,
with flow driven by a 1.5 HP stainless steel centrifugal pump. Seawater samples of 1000-4000
L were concentrated to a final retentate volume of 15-20 L, then further reduced to 2-3 L with a
second custom-built ultrafiltration system with a single membrane of a smaller MW cutoff (1 kD
GE Osmonics GE2540F30, 40-inch long, 2.5-inch diameter, 1 kD MWCO), Samples were then
desalted by continuously adding 40 L of Milli-Q water at the same rate of membrane
permeation. UDOM samples were dried to powder with a combination of rotovap and centrifugal
evaporation. LMW DOC permeating the UF system was isolated using PPL sorbent (Agilent
Bondesil PPL, 125 um patrticle size, part # 5982-0026) following the general recommendations
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of Dittmar et al. (2008) and Green et al. (2014), including loading rates, seawater to sorbent
ratios, and elution volumes and rates. Permeate from the UF system was acidified in 200 L
batches to pH 2 with HCI and pumped through the SPE sorbent contained in a parallel
combination of 2 medium-pressure glass chromatography columns equipped with 0.2 pm quartz
fiber filters at the column inlet to prevent biofouling and remove any particulate contaminants
from the UF permeate. Following sample loading, the SPE sorbent was desalted with 6 L of pH
2 ultrapure water. The LMW SPE-DOM material was eluted with six 500 mL additions of

methanol that was similarly dried to powder via rotovap and centrifugal evaporation.

2.3 Total DOC ([DOC], [DON], A**C, 5*3C)

Subsamples for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)
concentration measurements were collected into pre-combusted 40 mL borosilicate glass vials
following 0.2 um-filtration. DOC and TDN concentration measurements were made via the high-
temperature catalytic oxidation method using a Shimadzu TOC-V analyzer in either the Carlson
lab at University of California, Santa Barbara (https://labs.eemb.ucsb.edu/carlson/craig/services)
or the Benner lab at the University of South Carolina (Benner et al., 1993). DOC concentrations
measurements were also determined via UV oxidation, cryogenic purification, and manometric
determination at UC Irvine (Beaupré et al., 2007; Walker et al., 2019). DOC concentrations were
similar between the two methods and the presented values represent the error weighted
average of both measurements and uncertainties represent the propagated instrumental
uncertainty of each method. Total DON concentrations were determined by subtracting the sum
of dissolved inorganic nitrogen (DIN) species (nitrate, nitrite, ammonia) concentrations,
determined using a Lachat QuickChem 8000 Flow Injection Analyzer, from the measured TDN
concentrations. Seawater samples for C isotopic analysis (5**C, A*C) were collected, following
0.2 pum filtration, into pre-combusted 1000 mL Amber Boston Round bottles, immediately frozen,
and stored at -20°C. At BATS, total DOC samples for concentration and isotopic analyses were

collected only during the May sampling period.

2.4 EA-IRMS (6™C, CIN)

Stable carbon isotope ratios (5*3C) and elemental ratios (C/N), were determined via
elemental analyzer isotope ratio mass spectrometry (EA-IRMS) at the University of California,
Santa Cruz, Stable Isotope Laboratory (UCSC-SIL; http://emerald.ucsc.edu/~silab/) using a
Carlo Erba CHNS-O EA1108-elemental analyzer interfaced via a ConFlo Il device with a
ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific).

Standards, EA-IRMS protocols, and correction routines followed standard UCSC-SIL protocols.

Pg. 6
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Analytical uncertainties of n=3 replicate measurements of the 3'3C of isotopic standards ranged
from + 0.05 to 0.1%o.

2.5 C-AMS (A**C)

Natural abundance radiocarbon (**C) determinations of all isolated fractions were
performed at Lawrence Livermore National Laboratory, Center for Accelerator Mass
Spectrometry (LLNL-CAMS) by AMS following standard graphitization procedures (Vogel et al.,
1984; Santos et al., 2007). The radiocarbon content of total DOC (<0.2 um) was determined by
UV-oxidation at the UC Irvine Keck Carbon Cycle AMS Lab (Beaupré et al., 2007; Griffin et al.,
2010; Walker et al., 2019). Results are reported as age-corrected A™*C (%) for geochemical
samples and have been corrected to the date of collection and are reported in accordance with
conventions set forth by Stuiver and Polach (1977). The isotopic values are reported as

background and 8™C corrected fraction modern (Fm), A*C, and conventional radiocarbon age
(ybp).

2.6 Solid-state **C NMR

Solid state *3C {*H} cross polarization magic angle spinning (CP/MAS) NMR spectra
were collected on a Bruker Avance Ill spectrometer operating at 100.5474 MHz for **C and
399.8285 MHz for *H. A Bruker HXY MAS probe was used, along with 4 mm ZrO2 rotors with
Kel-F tips. The *H 11/2 pulse was 4 s, and cross polarization was achieved via a 70-100%
power ramp on the *H nucleus. Cross polarization contact time was 4 ms, and the MAS rate
was 10 kHz. The *C power (62.5 kHz) and SPINAL-64 *H decoupling (225 kHz) were
optimized using the peak intensity and peak widths of glycine, and **C chemical shifts were
measured relative to the carboxylic acid group on glycine at **C = 176.49 ppm. A total of 16,384
acquisitions were collected for each sample with a 1 s pulse delay. 512 points were used for
Fourier transform with a 10 ps dwell time. 100 Hz of line broadening was applied during
processing.

The relative distribution of different functional groups was determined by integrating the
area under the curve using the chemical shift ranges and assignments from Mao et al., 2012 as
follows (Supplemental Fig. 2): ketone, aldehyde, quinone (220-191 ppm); COO, NC=0 (191-164
ppm); aromatic C-O (164-150 ppm); aromatics (150-117 ppm); OCO (94-60 ppm); OC (94-60
ppm); OCH3, NCH (60-45 ppm); CCH2C, CCHC (45-30 ppm); CCH2C, CCH3 (30-0 ppm). For
some comparisons, including to previous data, regions were combined (as in Koprivnjak et al.,
2009), resulting in four generalized groupings (Fig. 4): carboxyl C (220-164 ppm), aromatic C
(164-117 ppm), alkoxy C (117-60 ppm), and alkyl C (60-0 ppm).

Pg. 7
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Because different functional groups produce varying responses, this spectroscopic
technique is not completely quantitative, and reported distributions represent the distribution of
spectroscopic signal associated with each functional group rather than the absolute
concentration. However, all spectra were collected under identical conditions, allowing the direct
comparison of these relative distributions between samples. All spectra were normalized to the
total area for comparison and for the calculation of difference spectra.

2.7 Non-retained DOC mass balance calculations and error propagation

The elemental ratios (C/N) and carbon isotopic values (5*3C, A*C) of the DOM not
isolated by the combined UF/SPE method (the non-retained pool; NR) were calculated by
subtracting the properties of both the HMW UDOM and LMW SPE-DOM fractions from those of
the total DOM pool. For carbon isotopic values, this was calculated using a simple mass

balance calculation:

Ko ([Total DOC) * Xy) — ((HMW UDOC] * X yyw) — ([LMW SPEDOC] * X, yyw)
NR — [Total DOC] — [HMW UDOC] — [LMW SPEDOC]

Where X represents the isotopic value of the specific fractions / pools. The uncertainties
associated with the non-retained value were determined by propagating the errors associated
with both the concentration of each fraction and the instrumental measurement error for each
isotopic value using the equations described in Taylor (1997) for the calculation of uncertainties
in functions of several variables. The uncertainties in the recovered mass of the HMW UDOC
and LMW SPE-DOC used to calculate the concentration of each fraction was assumed to be *
10%, encompassing the error associated with sample weighing and potential losses during
sample transfers. The average uncertainty of the total DOC concentration measurements was +
3 umol L™, encompassing the measurement error of 2 separate methods as described in
section 2.3.

The C/N ratio of the non-retained DOM was determined by separately calculating the

molar concentration of [DOC] and [DON] in the non-retained pool by difference:

[Total DOC] — [HMW UDOC] — [LMW SPEDOC]
[Total DON] — [HMW UDON] — [LMW SPEDON]

The uncertainties of non-retained C/N values were calculated by propagating the uncertainties
associated with the concentration measurements (x 10% for the HMW UDOM and LMW SPE-

C/NNR =

DOM fractions). The average uncertainty of the total DOC and total DON concentrations used in

these calculations were + 3 umolC L™ and + 1 pmolIN L™ respectively.
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3.0 Results

3.1 DOC Concentration and Recovery of High and Low Molecular Weight DOC Fractions

DOC concentrations in the Central North Atlantic are highest at the surface (average =
84 + 14 uM) with offsets between August (94 + 5 uM) and May (74 + 8 uM) sampling (Fig. 1a).
The concentration decreases through the upper 850 m to a relatively constant deep ocean
concentration of 48 + 2 uM (Average = 850 m). In the NCP, DOC concentrations are lower
throughout the water column with an average surface concentration of 78 £ 3 UM decreasing to
a deep ocean (2500 m) value of 37 + 3 uM. There is some seasonal variability in surface ocean
concentration, however, to a lesser degree than in the Atlantic Basin (August = 80 = 1 uM; May
=76 + 1 uM).

In the Central North Atlantic, ultrafiltration recovered an average of 10 umol-C L™ in the
surface and 5 pmol-C L™ in the subsurface (= 400 m), representing 12 + 1 % and 9 + 1 % of
total DOC respectively (Fig. 1b). In the NCP, ultrafiltration recovered 13 pmol-C L™ in the
surface and 4 umol-C L™ in the subsurface (= 400 m), representing 17 + 1 % and 9 + 1 % of
total DOC respectively. At 2500 m there is a significant difference in the HMW UDOC
concentration between basins (t = 4.74; df = 10; p < 0.001)

SPE of LMW DOC permeating the ultrafiltration system recovered 22 pmol-C L™ from
surface waters of the Central North Atlantic and an average of 17 pmol-C L™ from subsurface
waters (= 400 m; Fig 1c). SPE recovered less material from the NCP, isolating 15 pmol-C L™ in
the surface and an average of 12 pmol-C L™ in the subsurface (= 400 m). Although the recovery
in the surface was slightly higher than in the subsurface (= 400 m), as a result of the decreasing
concentration of total DOC with depth, the relative % recovery is lower in the surface and higher
at depth. In the Central North Atlantic this recovery represents 26 + 3 % of total DOC in the
surface and 34 + 3 % in the subsurface (= 400 m). In the NCP the DOC recovery represents 18
+ 2 % of total DOC in the surface and 29 + 2 % in the subsurface (= 400 m). At 2500 m there is
a significant difference in the LMW SPE-DOC concentration between basins (Fig 1c; t = 18.01;
df = 10; p < 0.001).

3.2 Radiocarbon (A*C) of total, HMW, and LMW DOC
In the Central North Atlantic the surface A'*C value of total DOC is -186 * 4 %o (1590
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ybp; May sampling only) and decreases through the water column to a minimum value of -438 +
4 %o (4570 ybp) at 850 m (Fig. 2a). There is a slight increase in A™C at 2500 m (A'C =-392 + 4
%o; 3930 ybp). In the NCP, the A'C of total DOC is depleted (older **C age) at all depths, with
an average surface value of -227 + 14 %o (2000 ybp) decreasing to a minimum in the deepest
samples (2500 m; -544 + 10 %o; 6240 ybp). We note that samples for total DOC radiocarbon
analysis were only collected at BATS during the May sampling season. It is likely that there
would be a difference in the A™C values of DOC in surface waters between the two sampling
periods, presumably with younger values when concentrations are higher due to the
accumulation of fresh DOC in stratified surface waters. However, if the surface A*C offset
within the 2 fractions is considered, the offset in total DOC A'C between the two seasons would
be on the order 20 %o. A seasonal difference on the order of 20%0 with an uncertainty in these
measurements on the order of 5-10 %o would be insignificant.

HMW UDOC A'C values are enriched (younger **C age) relative to that of total DOC
throughout the water column in both basins (Fig. 2b) with an average value of -54 + 15 %o (440
ybp) in the surface of the Central North Atlantic decreasing to a minimum in the deepest
samples (2500 m; -278 + 16 %o; 2630 ybp). In the NCP, the average surface A*C of HMW
UDOC is similar to surface waters in the Central North Atlantic (-45 + 10 %o.; 300 ybp), however,
is depleted throughout the rest of the water column, with a minimum of -375 £ 10 %o (3700 ybp)
in the deepest samples (2500 m). There is a significant offset in HMW DOC A'C between
basins at 2500 m (t = 9.86; df = 10; p < 0.001).

In contrast, the A*C of LMW SPE-DOC is depleted (older **C age) relative to total DOC
throughout the water column in both basins (Fig. 2c). In the Central North Atlantic, the A*C
value of LMW SPE-DOC mirrors that of total DOC with an average value of -323 £ 12 %o (3120
ybp) in the surface, decreasing to a minimum at 850 m (-467 £ 23 %o.; 5050 ybp), with a slight
increase in the 2500 m samples (A*C = -437 + 37 %o; 4530 ybp). In the NCP, the average A™C
of LMW SPE-DOC is depleted relative to the Central North Atlantic throughout the water column
with an average surface value of -350 + 9 %o (3380 ybp) decreasing to a minimum of -573 £ 6 %o
(6770 ybp) in the deepest samples (2500 m). There is a significant offset in LMW SPE-DOC
AYC between basins at 2500 m (t = 9.69; df = 10; p < 0.001).

The average A™C of the non-retained DOC (Fig. 2d) is equivalent within error to total
DOC throughout the water column in both basins (average offset = 14 %o). As such, this is also
equivalent to the mass weighted sum of the HMW UDOC and LMW-SPE DOC fractions,

demonstrating the representativeness of the two combined fractions relative to total DOC.
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3.3 DOC Composition

3.3.1 Elemental (C/N) Composition

Carbon to nitrogen atomic ratios (C/N), of total DOM, HMW UDOM, and LMW SPE-
DOM are distinct from each other throughout the water column (Fig. 3a-c). The average C/N
ratio of total DOM in all samples is 16 * 4, however, within each sample the average standard
deviation is high due to the compounded error associated with the high uncertainty of [DOC]
and [DON] values (Fig. 3a). As a result, there is no depth structure in either basin. However, in
the deepest sample (2500 m) there is an offset between the two basins, with higher values in
the NCP (18 = 3) than the Central North Atlantic (11 £ 2). The C/N ratio of HMW UDOM is lower
on average than total DOM and has a narrow range of values (11 to 14), with no depth structure
or offsets between basins (Fig. 3b). In contrast, the C/N ratio of LMW SPE-DOM is higher than
both total DOM and HMW DOM (Fig. 3c). The ratio is highest in the surface and decreases
through the upper water column. At 2500 m there is a significant offset in the C/N ratio (t = 4.41;
df = 10; p < 0.01), with higher values in the NCP (24 + 2) than the Central North Atlantic (28.5
1.5).

3.3.2 Stable Isotopic (6*3C) Composition

The 8"C of total DOC has a narrow range of values (-22.7 to -21.1 %o) that are
indistinguishable within error throughout the water column between the Central North Atlantic
and NCP (Fig. 3e). There is some depth structure in both basins with the most enriched values
in the surface (average of both basins = -21.1 £ 0.4 %o) and more depleted values in the
subsurface (average of all depths 2400 m in both basins = -22.1 + 0.4 %o). Similar to total DOC,
there are no offsets in HMW UDOC &"°C values between basins (Fig. 3f). There is depth
structure in HMW UDOC &*C values that follows the opposite trend of total DOC, with the most
depleted values in the surface (average of both basins = -22.4 £ 0.1 %o.) and enriched values in
the subsurface (average of all depth =2 400 m in both basins = -21.5 + 0.25 %o). In the surface
HMW UDOC values are depleted relative to total DOC but are enriched relative to total DOC in
the subsurface. In contrast, the 5*3C of LMW SPE-DOM has a narrow range of values that are
depleted relative of both total DOC and HMW UDOC throughout the water column (Fig. 3g;
average of all samples = -22.7 + 0.3 %o). Similar to HMW UDOC, LMW SPE-DOM &*C values
are most depleted in the surface (average of both basins = -22.9 + 0.2 %o.) and increase with
depth (average at 2500 m = -22.5 £ 0.3 %0). There is a basin offset in the upper 850 m (average
offset = 0.3 %o), but no offset in the 2500 m sample.
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3.3.3 Functional Composition (Solid State **C-NMR)

The *C {*H} CP/MAS NMR spectra of HMW UDOC are dominated by peaks at ~110
ppm (acetal; O-C-O) and ~80 ppm (alkyl O-C-H) (Fig. 4a; Supplemental Fig. 2). The average
ratios of O-alkyl to acetal C in HMW UDOC is 5.4 £ 1.0, consistent with the ratios of typical
carbohydrates (Sannigrahi et al., 2005). This alkoxy component has the greatest relative
abundance in the surface, comprising an average of 62 + 3 % of the total signal, and is
attenuated at depth (2500 m; 47 = 2 %). The remainder of the signal is comprised of carboxyl
(~175 ppm; 13 £ 5 %), and aliphatic (0-60 ppm; 31 + 4 %) functional groups, with a minor
aromatic (~135 ppm; ~1 %) component.

In contrast, the LMW SPE-DOC spectra are dominated by aliphatic (0-60 ppm; 62 + 3 %)
and carboxyl (~175 ppm; 16 = 1 %) functionality (Fig. 4b; Supplemental Fig. 2). There is also a
greater proportion of aromatic C (~135 ppm; 4 + 1 %) in the LMW fraction. The signal in the
alkoxy region (117-60 ppm; i.e. carbohydrate C in HMW DOC) comprises 17 + 2 % of the LMW
signal, however this is almost entirely O-alkyl C and therefore the ratio of the O-alkyl to acetal C
is much higher (32 + 12) than in the HMW fraction. Unlike the HMW material, there is little

variability in relative proportion of functional groups with depth or between basins.

4.0 Discussion
4.1 Composition of LMW SPE-DOC and comparison to HMW UDOC

4.1.1 Elemental and Isotopic Compaosition.

The novel LMW DOC fraction recovered by our combined UF/SPE isolation approach
allows for an examination of the composition of the refractory material that is thought to persist
in the ocean on millennial timescales. While the LMW material collected in the NCP has
previously been characterized (Broek et al., 2017), the addition of material from a second basin
confirms a number of hypotheses that were suggested by more limited data, while also
providing more mechanistic interpretations.

Radiocarbon analysis of the LMW material shows an average age that is older than both
the total DOC pool and the HMW UDOC fraction, indicating that it represents a slower cycling
component of marine DOC (Benner and Amon, 2015; Fig. 2). The LMW material has C/N ratios
that are elevated compared to the total pool, suggesting that LMW DOC throughout the water

column is C-rich, consistent with expectations for the alicyclic and lipid derived material that has
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been hypothesized to account for a considerable portion of recalcitrant marine DOC (Hwang,
2003; Hertkorn et al., 2006; Koprivnjak et al., 2009; Fig. 3c).

With the addition of the Central North Atlantic study site, we can now confirm a decrease
in the C/N ratio of the LMW fraction through the upper water column (Fig. 3c). This finding is
unexpected as it suggests that a nitrogenous component exists within the LMW pool that could
be more refractory than some portion of the non-N-containing material. However, while contrary
to expectations based on common assumptions about the relative lability of N-containing
materials, this observation is consistent with the depth related changes in '3C of the LMW
material (Fig. 3g). Overall, the 5'*C values of LMW DOC are depleted relative to the total DOC
pool in both basins that was previously hypothesized to correspond to a contribution from **C
depleted lipid-like material (Hayes, 2001; Broek et al., 2017). However, the 5*3C values are also
variable through the water column in both basins and values become more enriched with depth,
coincident with the observed changes in C/N ratio. A least squares linear regression model of
5"3C and C/N ratio shows a strong relationship (R* = 0.53, p-slope < 0.001) in both basins,
especially when considered in each basin separately (Atl. R? =0.94, p-slope < 0.001; Pac. R? =
0.77, p-slope =0.0047; Supplemental Fig. 1).

We hypothesize that these observations can be explained by changes in the relative
contribution of different major compound types. Specifically, in contrast to the **C depleted
values of lipid material, N-containing materials known to be present in the marine environment,
such as peptides and tetrapyrroles compounds, all have elevated 5"*C compared to most other
compound classes (Hayes, 2001). While there are no published data on N functionality of the
LMW pool, there is at least some evidence to suggest that pyrrol and indol containing
compounds may be more important than is currently recognized. For example, hydrolyzable
amino acids make up most N in reactive surface DON, however these are a minor component of
LMW DON (Kaiser and Benner, 2009; Benner and Amon, 2015). At the same time, solid state
NMR of HMW DON indicates increasing heterocyclic-N functionality in the deep ocean
(McCarthy et al., 1997; Aluwihare and Meador., 2008; Mao et al., 2012), representing old
material where HMW and LMW structural compositions may begin to overlap. This evidence
suggests that refractory heterocyclic-N material may be an important component of LMW DON,
and also that more rapid remineralization of a labile, C-rich, lipid-like material could be more
important than is currently understood. Together, this could explain the observed trends in both
the C/N ratio and 5"3C of the LMW fraction.

Finally, an additional implication of these observations is that there must be some

amount of active cycling occurring within the LMW DOC pool, even in the subsurface ocean,
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despite its old average **C age. This is also required, given the **C depth trends observed
within this fraction (Fig. 2c). The average **C age of LMW SPE-DOC material in the surface
ocean is thousands of years younger than LMW SPE-DOC in the deep ocean, clearly
demonstrating that there is a fraction of more rapidly cycling LMW material in the surface ocean
that is not present in the deep ocean. However, given that in the subsurface ocean most DOC is
LMW, this is not necessarily an unexpected observation.

In contrast, the bulk properties of the more commonly studied HMW UDOC material is
unique relative to the LMW SPE-DOC fraction collected from the same water. As mentioned
above, the average age of the HMW fraction is significantly younger than both the total DOC
pool and the LMW fraction throughout the water column in both basins, suggesting that this
fraction represents a faster cycling component of the marine DOC pool (Benner and Amon,
2015; Broek 2017). This is consistent with previous measurements of ultrafiltered material,
bioassay experiments, and expectations based on observed size-age relationships (Benner et
al., 1997; Walker et al., 2011; Broek et al., 2017; Shen and Benner, 2019). The C/N ratio of the
HMW material is also lower than that of the LMW material and consistent throughout the water
column in both basins. This was previously interpreted in the NCP as evidence that the
youngest, most labile fraction of the DOC pool has a relatively uniform N-content, likely due to
rapid and non-selective remineralization (Broek et al., 2017). However, despite the lack of depth
trend in C/N ratio within the HMW pool in either basin, there is a depth trend in 8*°C values.
When looking at both basins together, it is clear that this trend mirrors a similar trend in the
LMW pool, with the lowest values in the surface and an increase with depth. The depleted 5*C
value of HMW DOC in the surface was previously hypothesized to be evidence of a relatively
labile HMW **C-deplete component (Broek et al., 2017), but the low C/N ratios and lack of C/N
depth trend in the HMW fraction is inconsistent with the C-rich nature of the most likely
candidate compounds, such as lipids. However, because the 5*°C of lipid-like material can have
considerably depleted values (Hayes, 2001) a small contribution from this material in the
surface ocean could greatly skew the high 8"3C values of the HMW fraction but have little effect
on the C/N ratio. Because these more labile lipid compounds are likely to be actively degraded
in the surface ocean, it is plausible that their degradation products would be present as both
HMW structures and LMW degradation products, potentially decreasing the 5'3C value of
surface material in both MW fractions. Alternately, it is possible that the lack of C/N variability in
the HMW fraction despite the 5*3C depth trends could be caused by a labile N-containing lipid
component, such as lipopeptides that have been confirmed to be present in surface waters
(Kaiser and Benner, 2008) and would likely be HMW (Broek et al., 2019).
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4.1.2 NMR functional composition

Solid-state **C NMR analysis is a powerful tool for determining the C functional
composition of isolated DOC fractions. While both HMW UDOC (Benner et al., 1992; McCarthy
et al., 1993; Sannigrahi et al., 2005; Hertkorn et al., 2006) and material isolated with reverse
osmosis electro dialysis (RO/ED; Koprivnjak et al., 2009; Mao et al., 2012) have been
characterized by this approach previously, our isolated LMW SPE-DOC fraction provides a
direct view of material that is either absent (in HMW UDOC), or likely to be obscured in a
complex mixture by the presence of semi-labile HMW material (in RO/ED material).

The functional composition of our LMW SPE-DOC fraction is considerably different from
that of these previous solid-state NMR measurements. The signal is dominated by alkyl C, with
a substantial amount of highly saturated aliphatic functionality. There is also a large contribution
from carboxyl C and a larger aromatic component than seen in HMW UDOC. There is some
additional signal from alkoxy C, however, the high ratio of O-alkyl to acetal C suggests that this
signal is almost certainly not derived from polysaccharides as is hypothesized for HMW DOC,
but rather other more complex hydroxyl containing structures. When area normalized to the total
signal, the four LMW DOC spectra collected for this study, representing material from the
surface and deep ocean (2500 m) in both Atlantic and Pacific Basins, are identical within the
limits of this technique (Fig. 4b). This is strongly consistent with our **C data, indicating that in
both the surface and deep ocean, our isolated LMW fraction represents a persistent refractory
component with long oceanic residence times that is well mixed throughout the water column
and world ocean.

The functional composition of HMW UDOC from the same waters is generally consistent
with previous measurements of ultrafiltered material (Supplemental Fig. 3a; Benner et al., 1992;
McCarthy et al., 1993; Sannigrahi et al., 2005), and provides useful contrast with our new LMW
fraction. In the surface ocean, where the signal is dominated by alkoxy C, thought to primarily
represent polysaccharide containing compounds, spectra are essentially identical to those
published previously. There is a decrease in the relative proportion of the alkoxy C signal
between the surface and deep ocean within the HMW fraction in both basins (Fig. 7a), also
consistent with prior observations. This has been interpreted to represent a highly reactive labile
fraction that is preferentially degraded (Repeta and Aluwihare, 2006). Further, the ratio of O-
alkyl to acetal C of the material that is present in the surface but absent at depth is
approximately 4 + 1, confirming that the removed material is likely dominated by
polysaccharides (Sannigrahi et al., 2005). There is no disappearance of other functional groups

with depth, suggesting that the more refractory material within the HMW pool is dominated by
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alkyl C.

Direct NMR measurements of DOC isolated by RO/ED that, on average, isolates far
more material (70-80% of total DOC; Vetter et al., 2007) than either UF or SPE alone, show a
compositional intermediate between our two fractions (Supplemental Fig. 3c; Koprivnjak et al.,
2009; Mao et al., 2012). This is expected, as this material contains a larger fraction of total DOC
and therefore represents a mixture of LMW and HMW material. Therefore, on a bulk structural
level, the largest DOC fraction ever isolated (by RO/ED) is a mixture of two or more
compositionally distinct pools. This observation, coupled with our radiocarbon and elemental
composition data, arguably indicates that efforts to isolate the entire DOC pool can confound
interpretations.

Beyond general composition, the specific functional distributions of our LMW SPE-DOC,
dominated by alkyl and carboxyl peaks, is also remarkably similar to the functional distribution of
the proposed carboxyl-rich alicyclic molecule (CRAM) fraction of DOC (Hertkorn et al., 2006).
CRAM is hypothesized to be distributed throughout the ocean at all depths, be present in all
MW fractions, and represent a major refractory component of marine DOC. The proposed
functional composition of this material was based on two different solid-state NMR based
approaches. CRAM was first proposed by calculating the difference between deep ocean and
surface UDOC spectra, revealing a component dominated by carboxyl and alkyl C with a
smaller contribution from aromatic C (Hertkorn et al., 2006), and later by a similar approach
subtracting the spectra of UDOC from RO/ED spectra in order to visualize the component of the
DOC pool not isolated by ultrafiltration (Koprivnjak et al., 2009). These visualizations closely
matched that of the hypothetical CRAM fraction and suggested that CRAM is in fact a dominant
component of the background refractory pool of DOC. More important, these subtractions
resulted in spectra identical to that of our LMW SPE-DOM fraction (Supplemental Fig. 3b),
providing further evidence that our LMW material is functionally representative of the whole
LMW DOC pool and confirms that our LMW DOC fraction allows the first direct means to
investigate the composition and cycling of this major DOC pool. The presence and dominance
of CRAM material within the refractory LMW pool is consistent with the relative homogeneity of
the functional composition our LMW DOC fraction at all depths and in both basins.

Finally, the identification of CRAM material within the HMW pool, both by previous
studies and in this data (Supplemental Fig. 4), combined with the dominance of CRAM in our
LMW fraction shows that CRAM in fact spans a large range of MW. Combined with the large
range of **C ages of our DOC fractions and specifically the LMW material, this observation

suggests that much of the CRAM material that dominates the background DOC pool, is likely
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produced directly in the surface ocean, in addition to being produced by successive microbial
reprocessing and degradation throughout the water column. This challenges the hypothesis that
LMW DOC comes primarily from the decomposition of HMW DOC and that microbial

degradation is the main driver shaping size-reactivity relationships.

4.2 Changes in deep ocean DOC during ocean circulation

The waters at 2500 m at the BATS and HOTS sites are within the North Atlantic Deep
Water and Pacific Deep Water water-masses respectively. If these water-masses are
interpreted as upstream and downstream endmembers of deep ocean circulation, differences in
the concentration and properties of DOC between basins provides a direct means of
investigating the utilization of DOC over the millennial timescales associated with deep water
movement (DeVries and Primeau, 2011; Hansel, 2013b; Bercovici et al., 2018; Druffel et al.,
2019).

At 2500 m there is a 11 + 3 uM offset in total DOC concentration between basins,
demonstrating deep removal of approximately 25% of total DOC during ocean circulation (Fig.
6a). This observation is similar to independent prior estimates (e.g., ~14 umol kg-1; Hansell,
2013). Within the individual fractions the offset is 1.3 £ 0.7 uM for HMW UDOC and 5.2 + 0.7 uM
for LMW SPE-DOM, representing approximately 10% and 45% of the total remineralized DOC
respectively. This indicates that a large proportion of the remineralized DOC in the deep sea is
LMW, despite the expected recalcitrance of LMW material (Benner and Amon, 2015). Further,
given that LMW material makes up the majority of deep ocean DOC, this result and the prior
observation of a significant concentration gradient requires that some portion of LMW be
removed on the time scale of deep ocean circulation. When considered relative to the DOC
concentration of the HMW UDOM, LMW SPE-DOC, and non-retained fractions individually, the
basin offsets correspond to an approximately 30% decrease in DOC in each fraction, apparently
suggesting that all three pools are removed at generally similar rates despite the expected
differences in reactivity. However, these basin offsets can only show the net change in DOC
concentration and cannot differentiate removal from processes that might add material to the
deep ocean DOC pool such as dissolution of particles, chemoautotrophy, or hydrothermal
sources (e.g., Smith et al., 1992; Ingalls et al., 2006; McCarthy et al., 2010). If there were
additions to an individual pool, the apparent utilization of that pool from concentration
measurements could represent an underestimation of the actual removed material. Therefore,
offsets in properties of each fraction between basins other than concentration must be used in

order to deconvolute the influence of additions to the DOC pool from the removal of material.
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The bulk A™C of DOC represents an average of a heterogeneous pool of material.
Despite this, barring any changes to the concentration or distribution of this material, the
average AMC of the total DOC pool will change as a function of time. However, because of the
removal and potential additions of material with unique radiocarbon content during deep ocean
circulation, aging of the total DOC pool cannot be differentiated from these processes. Despite
this removal, and potential addition, of DOC during ocean circulation, the radiocarbon age of
total DOC is largely conserved. A number of studies have shown that the A'*C value of DOC
tracks the A*C value of DIC and is consistent with the timescales of water -mass transit times
(e.g., Bercovici et al., 2018a; Druffel et al., 2019). Within our separate fractions we hypothesize
that changes in A*C that differ from that of total DOC can be interpreted as changes in the age
distribution of the pool caused by the removal or addition of DOC. An age offset less than that of
the total DOC pool would require fresh inputs of younger material during deep circulation,
whereas an age offset greater than total DOC would require the selective removal of younger,
more labile material.

There are significant A*C offsets (p < 0.01) between the deep waters (2500 m) of the
Central North Atlantic and NCP in total DOC and in both HMW and LMW DOC fractions (Fig.
6b). The average AMC offset at 2500 mis 150 + 10 %o in total DOC, 90 * 25 %, for HMW UDOC,
and 140 £ 35 %o for the LMW SPE-DOC fraction; representing 2300 + 200, 1100 + 200, and
2200 + 500 years respectively (Supplemental Fig. 5). Total DOC, LMW SPE-DOC, and the non-
retained DOC all have equivalent age offsets. Combined with the observed concentration
offsets discussed above, showing that LMW DOC material is being removed during ocean
circulation, this suggests that the removal is non-selective relative to **C age and there is no
significant preferential utilization of younger DOC.

In contrast, the apparent age offset of HMW UDOC is substantially less than that of total
DOC. We hypothesize that this represents an input of fresh HMW DOC to the deep ocean
during circulation and demonstrates that the 30% decrease in HMW DOC concentration
between basins is in fact an underestimation of the actual HMW DOC removal, consistent with
the higher expected lability of this pool relative to LMW DOC. The A™C value of the “removed”
DOC, calculated by mass balance, is 87 £ 166 %o for the total DOC pool. It is unreasonable that
the DOC removed between the deep North Central Atlantic and the NCP would have a
radiocarbon age above modern (Beaupré et al., 2009), and further demonstrates that removal or
utilization of DOC is not the only process involved, and there are likely additions of fresher
material. The A**C value of removed HMW UDOC is -79 + 157 %o that, as stated above, makes

up ~30% of the HMW DOC pool at 2500 m. This value is indistinguishable from the “removed”
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total DOC and is similarly unlikely, therefore requiring some addition of fresh material.
Combined with the other results, the addition of fresher material to the HMW pool likely explains
the basin age offsets for both total and HMW DOC. In contrast, the A*C value of removed LMW
DOC is -132 + 125 %o, consistent with the old LMW material that appears to be utilized during
ocean circulation.

Despite the suggestion of non-selective removal of LMW DOC from A*C offsets, the
observed offsets in C/N ratios in the deep ocean are consistent with selective utilization of more
labile LMW material. In both the total DOC pool and in the LMW fraction there is an increase in
the C/N ratio between the Central North Atlantic and NCP (Total DOC offset = 7 £ 4; LMW offset
=4 + 2.5). This increase demonstrates that there is a preferential removal of N-containing
material, consistent with expectations for the removal of fresher, less degraded material (Benner
and Amon, 2015). In contrast, the lack of any corresponding offset in the HMW DOC fraction
suggests that there is either no selectivity in degradation or utilization of HMW material, or as
suggested from the *C age offsets between basins, that there is a relatively constant input of
new, young, low C/N material to the HMW DOC pool.

While there is clear removal of LMW DOC during ocean circulation, difference spectra
indicate that there is essentially no change in the functional compaosition of this material during
deep ocean circulation. This suggests that, in contrast to HMW DOM, the removal of LMW DOC
is completely non-selective. This NMR-based conclusion corresponds to the traditional view of a
refractory “background” pool, however at the same time is inconsistent with the A*C and C/N
offsets in LMW SPE-DOC between ocean basins. There are several possible explanations for
this apparent contrast. First, it is possible that the selective utilization of specific compound
types cannot be determined at the functional group level of resolution provided by these NMR
measurements. However, the changes in A*C of this material combined with the functional
similarity of LMW SPE-DOC material in the surface and deep ocean, despite the large age
gradient with depth, more likely demonstrates that freshly produced LMW DOC and older LMW
material that survives mixing into the deep ocean both represent a similar mixture of compound
structures containing the same dominant functional groups. This suggests that the pool of
CRAM molecules is a heterogeneous mixture of compounds with different cycling rates but
generally similar structures. Second, the increase in C/N ratio between basins, implying a
selective loss of N-containing compounds, potentially demonstrates that N-containing material
within the LMW pool has a generally similar functional composition as the bulk material. In other
words, this suggests that there is a substantial amount of N-containing CRAM molecules in the

deep ocean.
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In contrast, while there is no change in the elemental ratios of HMW UDOM, solid-state
NMR difference spectra indicate differences in the functional composition of this material in the
deep ocean between the Atlantic and Pacific (Fig. 7c). In the HMW fraction the primary
difference between spectra corresponds to a higher relative proportion of alkoxy and carboxyl C
in the deep waters of the Pacific. The apparent increase in alkoxy C during deep water transit is
the opposite of the trend observed between surface and deep waters in both basins and
suggests that rather than the removal of a more reactive carbohydrate-like fraction during deep
ocean circulation, there is some amount of carbohydrate-like material added to the deep ocean
HMW DOC pool. We note that the difference spectra also reveal considerably more alkoxy C in
the surface waters of the NCP than the surface waters of the Central North Atlantic (Fig. 7c).
Since surface composition is linked to more rapid local processes, this difference in the surface
between basins likely represents a difference in overall biogeochemistry at these two sites.
Since highly oligotrophic, microbial loop dominated regions generally correspond with both
elevated DOC concentration and C/N ratio, this offset in bulk composition is likely due to the

consistently oligotrophic nature of the HOT site (Williams, 1995; Hansell and Carlson, 2001).

5.0 Summary and Conclusions

A combination of ultrafiltration and solid phase extraction was used to specifically isolate
HMW and LMW DOC from throughout the water column in both the Central North Atlantic and
NCP Subtropical Gyres. The novel LMW fraction collected for this study represents a hew and
direct approach to investigate the composition and cycling of a large fraction of the DOC pool
that dominates the refractory background pool and persists in the ocean for millennial
timescales.

Compared to the total DOC pool, or the more commonly studied HMW DOC pool, the
LMW SPE-DOC fraction isolated for this study is older, with depleted *3C values, higher C/N
ratios, and a composition dominated by alkyl and carboxyl functional groups. NMR analyses of
LMW DOC components demonstrate that the functional composition is essentially identical
throughout the water column and in both ocean basins (Fig. 4b), suggesting a uniform
background DOC pool. The specific distribution of functional groups is remarkably similar to the
CRAM family of structures that has been proposed as a major component of refractory marine
DOC. This is consistent with the slower cycling rates suggested by the considerably older
average *C ages of the LMW SPE-DOC fraction.
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Despite the suggestion from structural composition data that LMW DOC is a
homogeneous refractory background pool, there is also clear evidence for active cycling within
the LMW pool. Depth changes in elemental ratios and isotopic values of LMW SPE-DOC
suggest that there is labile, C-rich material that dominates the surface LMW DOC pool but is
remineralized on timescales shorter than ocean circulation. Further, the clear shifts in LMW
SPE-DOC age with depth suggest that it spans a range of reactivities and cycling rates. There is
also clear removal of LMW DOC in the deep ocean during overturning circulation accompanied
by changes that are consistent with the preferential utilization of a less refractory LMW
component. NMR results also suggest the presence of essentially indistinguishable CRAM
material within the HMW fraction, indicating that CRAM spans a wide range of molecular sizes
and is therefore not exclusively derived from the microbial degradation of labile HMW material.

Relative to the LMW SPE-DOC fraction, the HMW DOC isolated for this study has
younger *C ages, enriched 3"3C values, lower C/N ratios and a dominant carbohydrate like
composition. Basin concentration offsets show removal of HMW DOC during overturning
circulation, however *C age offsets are less than can be accounted for based solely on aging,
suggesting the addition of younger HMW material to the deep ocean. This is consistent with
NMR data that demonstrate an increase in carbohydrate-like material in the deep ocean during
deep ocean circulation. We hypothesize this represents a bulk structural signature resulting
from the dissolution of sinking particles, with fresh carbohydrate material being added to the
relatively small HMW DOC pool that survives in the deep ocean. This observation is consistent
with previous **C data suggesting a likely source of neutral sugars to the deep ocean from
rapidly sinking particles (Repeta and Aluwihare, 2006; Walker et al., 2016a). Overall, our data
suggest that particle inputs to the deep ocean are likely important in maintaining deep ocean
HMW DOC concentrations.

These first direct analyses of the LMW DOC pool and comparison to the more commonly
investigated HMW DOC pool provided data consistent with many basic assumptions about both
the differential cycling of different MW pools and the presence of a refractory background pool
dominated by CRAM like molecular structures. However, despite a generally invariable
functional composition, LMW DOC is likely a more dynamic pool than was previously
recognized, with properties implying a diverse, wide ranging family of CRAM like molecules in
terms of molecular size, N-content and relative reactivity. Our data also point to an unexpected
influence of surface particle flux in both maintaining deep ocean HMW DOC concentrations and
shaping its molecular composition. Future work should focus on the specific molecular

structures of CRAM like material across a range of DOC molecular sizes and what properties

Pg. 21



655
656

657

658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

Confidential manuscript submitted to Global Biogeochemical Cycles

potentially govern the differences in relative reactivity of the different structurally related

compounds.

6.0 Figure and Table Captions

Figure 1. Total DOC concentration and amount of C recovered with a combined UF/SPE
approach. Depth profiles of (a) total DOC concentration, (b) DOC isolated by ultrafiltration and
(c) solid phase extraction, and (d) non-retained DOC. Points connected by solid lines represent
samples collected in the North Central Pacific (HOT), and dotted lines represent samples
collected in the Central North Atlantic (BATS). Points represent the error weighted average of
values from 2 repeat cruise samplings in May and August, and error bars represent the

standard error.

Figure 2. Radiocarbon content (A*C) of total DOC and C recovered with a combined UF/SPE
approach. Depth profiles of (a) total DOC, (b) HMW UDOC, (c) LMW SPE-DOC, and (d) the
non-retained material (calculated by difference). Points connected by solid lines represent
samples collected in the North Pacific Subtropical Gyre (HOT), and dotted lines represent
samples collected in the Central North Atlantic (BATS). Points represent the error weighted
average of values from 2 repeat cruise samplings in May and August, and error bars represent
the standard error. The uncertainty of the non-retained fraction represents the propagated error
associated with instrumental uncertainty of both the DOC concentrations and A*C values.
Samples for total DOC **C analyses were only collected at BATS during the May sampling

cruise, the error bars for these values represent the instrument uncertainty of £ 5 %o.

Figure 3. Carbon to nitrogen elemental ratios (C/N), and stable C isotopes (5'3C) of total DOM
and DOM recovered with a combined UF/SPE approach. Depth profiles of (a and e) total DOM,
(b and f) HMW UDOM, (c and g) LMW SPE-DOM and (d and h) the non-retained material
(calculated by difference). Points connected by solid lines represent samples collected in the
North Central Pacific (HOT), and dotted lines represent samples collected in the Central North
Atlantic (BATS). Points represent the error weighted average of n=3 measurements from
material collected on each of 2 repeat cruise samplings in May and August, and error bars
represent the standard error. The uncertainty of the C/N ratio and 3"3C of the non-retained

fraction represents the propagated error associated with instrumental uncertainty of isotopic
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values and/or DOC/DON concentrations. Samples for total DOC *3C analyses were only
collected at BATS during the May sampling cruise, the error bars for these values represent the

instrument uncertainty of + 0.2 %e.

Figure 4. Solid-state 13C NMR spectra of HMW UDOC and LMW SPE-DOC. (a) spectra of
HMW UDOC collected in the surface (purple) and deep ocean (2500m; light blue) from the
Central North Atlantic (BATS; dashed lines) and North Central Pacific (HOT; solid lines). (b)
spectra of LMW SPE-DOC collected in the surface (dark red) and deep ocean (2500m; orange)
from BATS (dashed lines) and HOT (solid lines). Spectral assignments are as follows: ketone,
aldehyde, quinone (220-191 ppm); COO, NC=0 (191-164 ppm); aromatic C-O (164-150 ppm);
aromatics (150-117 ppm); OCO (94-60 ppm); OC (94-60 ppm); OCH3, NCH (60-45 ppm);
CCH2C, CCHC (45-30 ppm); CCH2C, CCH3 (30-0 ppm). Regions have been combined (as in
Koprivnjak et al., 2009), resulting in four generalized groupings: carboxyl C (220-164 ppm),
aromatic C (164-117 ppm), alkoxy C (117-60 ppm), and alkyl C (60-0 ppm). Spectra showing all

functional group assignments are presented in Supplemental Figure 2.

Figure 5. Offsets between the surface and 2500 m of (a) the concentration (ADOC) and (b)
radiocarbon content (AA*C) of total DOC and material recovered with a combined UF/SPE
approach. Solid bars represent the surface versus deep offset in the NPSG and striped bars
represent the surface versus deep offset in the Central North Atlantic. Values represent the
offsets between error weighted averages of values from 2 repeat cruise samplings in May and
August, and error bars represent the propagated standard deviation of both sampling seasons
and both depths. The uncertainty of the non-retained fraction represents the propagated error

associated with instrumental uncertainty of the DOC concentrations and isotopic values.

Figure 6. Basin offsets between the Central North Atlantic (BATS) and North Central Pacific
(HOT) of (a) the concentration (ADOC) and (b) radiocarbon values (AA*C) of total DOC and
material recovered with a combined UF/SPE approach at 2500 m. Values represent the offsets
between error weighted averages of values from 2 repeat cruise samplings in May and August,
and error bars represent the propagated standard deviation of both sampling seasons and both

basins.

Figure 7. Area normalized solid-state **C NMR difference spectra from HMW UDOC and LMW
SPE-DOC. (a) difference between surface and deep (2500 m) HMW UDOC material in the
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North Central Pacific (HOT; purple) and Central North Atlantic (BATS,; light blue). (b) difference
between surface and deep (2500 m) LMW SPE-DOC material at HOT (red) and BATS (orange).
(c) difference between HMW UDOC material collected at HOT and BATS from surface (purple)
and deep ocean (2500 m; light blue). (d) difference between LMW UDOC material collected at
HOT and BATS from surface (red) and deep ocean (2500 m; orange). Values above the
baseline demonstrate the removal of material with depth or between basins (from surface to
deep or BATS to HOT) and values below the baseline demonstrate the addition of material with
depth or between basins (from surface to deep or BATS to HOT).

Table 1. Properties of total DOM from which MW fractions were isolated including concentration,

C/N ratio, and carbon isotopes (813C, A*C)

Table 2. Isolation parameters and properties of LMW SPE-DOM and HMW UDOM fractions
including recovery efficiency, C/N ratio, and carbon isotopes (6130, AYC). Stable isotopic (6130)
values and C/N ratios represent the average of n=3 measurements of each sample and errors
represent the standard deviation. Radiocarbon (A*C ) errors represent the instrument

uncertainty.
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location year month  sample type depth (m)  [DOC] (UM) + CIN + UCIAMS # 5"3C (%o) + Fm +
HOT 2014 August Total DOM 7.5 79.8 0.6 141 1.6 158141 -20.8 0.2 0.7911 0.0026
HOT 2014 August Total DOM 400 47.2 2.8 13.2 1.7 158145 -22.7 0.2 0.6343 0.0023
HOT 2014 August Total DOM 850 41.0 1.1 19.7 5.0 158144 -22.4 0.2 0.5375 0.0026
HOT 2014 August Total DOM 2500 34.8 5.3 17.8 4.8 158143 -21.8 0.2 0.4663 0.0020
HOT 2015 May Total DOM 7.5 75.9 1.2 14.3 1.8 164612 -21.3 0.2 0.7715 0.0019
HOT 2015 May Total DOM 400 455 7.8 13.1 3.9 164613 -21.7 0.2 0.6308 0.0017
HOT 2015 May Total DOM 850 41.8 4.6 23.4 6.1 168551 - - 0.5140 0.0018
HOT 2015 May Total DOM 2500 38.6 5.3 18.4 4.9 168540 -21.5 0.2 0.4519 0.0022
BATS 2015 August Total DOM 7.5 94.3 4.9 18.7 3.5 -- -- - - --
BATS 2015 August Total DOM 400 69.0 8.6 141 4.8 - - - - -
BATS 2015 August Total DOM 850 50.5 1.1 15.2 1.7 - - - - -
BATS 2015 August Total DOM 2500 49.7 1.9 11.8 2.8 - - - - -
BATS 2016 May Total DOM 7.5 74.1 7.8 15.3 2.6 180280 -21.1 0.2 0.8204 0.0018
BATS 2016 May Total DOM 400 52.9 1.1 9.2 4.1 180269 -21.9 0.2 0.6793 0.0016
BATS 2016 May Total DOM 850 451 1.6 25.0 12.2 180271 -22.7 0.2 0.5662 0.0016
BATS 2016 May Total DOM 2500 471 1.2 11.0 2.7 180276 -22.0 0.2 0.6129 0.0018
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location year month sample type depth (m)  volume (L) CF total (mg) mgC pmolC/L  %C recovered
HOT 2014 August HMW UDOM 75 3220 1073 2141 548 14.2 18
HOT 2014 August HMW UDOM 400 3880 1293 689 171 3.7 8
HOT 2014 August HMW UDOM 850 3100 1033 806 163 44 11
HOT 2014 August HMW UDOM 2500 4300 1433 865 171 3.3 9
HOT 2015 May HMW UDOM 75 3319 1037 1537 492 124 16
HOT 2015 May HMW UDOM 400 2945 998 770 170 4.8 11
HOT 2015 May HMW UDOM 850 3330 1189 674 154 3.9 9
HOT 2015 May HMW UDOM 2500 3939 1358 603 117 25 6
BATS 2015 August HMW UDOM 2 2549 850 1988 327 10.7 11
BATS 2015 August HMW UDOM 400 2500 833 1513 163 54 8
BATS 2015 August HMW UDOM 850 1170 390 1221 66 47 9
BATS 2015 August HMW UDOM 2500 1750 583 1223 75 3.6 7
BATS 2015 August HMW UDOM 2500 1750 583 1621 110 53 11
BATS 2016 May HMW UDOM 2 2999 1000 2240 336 9.3 13
BATS 2016 May HMW UDOM 400 2999 1000 1804 188 5.2 10
BATS 2016 May HMW UDOM 850 3001 1000 1726 156 43 10
BATS 2016 May HMW UDOM 2500 3007 1074 1659 144 4.0 8
location year month sample type depth (m) volume (L) loading (L/g)  total (mg) mgC pmolC/L  %C recovered
HOT 2014 August LMW SPE-DOM 7.5 796 2.7 257 138 14.5 18
HOT 2014 August LMW SPE-DOM 400 1050 35 312 162 12.9 25
HOT 2014 August LMW SPE-DOM 850 800 2.7 230 117 12.2 29
HOT 2014 August LMW SPE-DOM 2500 1000 3.3 248 128 10.7 25
HOT 2015 May LMW SPE-DOM 7.5 2200 44 805 409 15.5 20
HOT 2015 May LMW SPE-DOM 400 2500 5.0 738 375 12.5 23
HOT 2015 May LMW SPE-DOM 2500 3180 6.4 806 445 1.7 29
BATS 2015 August LMW SPE-DOM 2 1500 5.0 791 404 224 24
BATS 2015 August LMW SPE-DOM 400 1500 5.0 640 333 18.5 27
BATS 2015 August LMW SPE-DOM 850 800 27 362 165 17.2 34
BATS 2015 August LMW SPE-DOM 2500 1000 3.3 366 185 15.4 31
BATS 2016 May LMW SPE-DOM 2 2000 6.7 1014 508 21.2 29
BATS 2016 May LMW SPE-DOM 400 2000 6.7 895 428 17.8 34
BATS 2016 May LMW SPE-DOM 850 2000 6.7 873 423 17.6 39
BATS 2016 May LMW SPE-DOM 2500 2000 6.7 829 396 16.5 35



CIN + 5"3C (%o) + CAMS # Fm t A™C (%o) t  MCage(ybp) =
12.9 0.06 -22.1 0.05 169865 0.9703 0.0038 -37.3 3.8 240 35
11.9 0.06 215 0.01 169866 0.8160 0.0022 -190.4 2.2 1635 25
13.1 0.03 21.9 0.05 169867 0.6615 0.0021 -343.7 2.1 3320 30
13.1 0.07 211 0.04 169868 0.6252 0.0018 -379.7 1.8 3775 25
12.3 0.02 -22.5 0.01 172708 0.9575 0.0033 -50.0 3.3 350 30
1.5 0.24 21.9 0.33 172709 0.8292 0.0029 -177.3 2.9 1505 30
12.2 0.02 215 031 172710 0.7188 0.0028 -286.9 2.8 2655 35
12.5 0.12 215 0.06 172711 0.6393 0.0023 -365.7 23 3595 30
13.5 0.15 -22.4 0.07 175978 0.9570 0.0032 -43.0 3.2 355 30
11.8 0.06 216 0.05 175979 0.8415 0.0029 -158.5 2.9 1385 30
12.0 0.12 214 0.08 175980 0.7325 0.0022 -267.5 2.2 2500 25
12.5 0.21 213 0.06 175981 0.6958 0.0019 -304.2 1.9 2915 25
12.1 0.15 214 0.04 175982 0.7118 0.0022 -288.2 2.2 2730 25
12.5 0.09 223 0.01 175988 0.9359 0.0031 -64.1 3.1 530 30
1.7 0.09 217 0.04 175989 0.8291 0.0026 -170.9 26 1505 30
12.0 0.05 213 0.09 175990 0.7608 0.0022 -239.2 22 2195 25
12.5 0.31 213 0.11 175991 0.7349 0.0025 -265.1 25 2475 30
CIN + 5"3C (%o) + CAMS # Fm + A™C (%o) +  MCage(ybp) *
28.2 0.26 229 0.06 169869 0.6503 0.0021 -354.8 2.1 3455 30
26.2 0.11 225 0.01 169870 0.5841 0.0017 -420.4 1.7 4320 25
24.2 0.01 222 0.04 169871 0.4858 0.0015 -518.0 15 5800 30
26.4 0.21 224 0.09 169872 0.4337 0.0014 -569.7 1.4 6710 30
276 0.15 226 0.03 172712 0.6622 0.0023 -343.0 23 3310 30
26.1 1.90 227 042 172713 0.5657 0.0022 -438.8 22 4575 35
285 0.03 228 0.06 172715 0.4257 0.0017 -577.6 1.7 6860 35
27.2 0.06 -23.0 0.04 175983 0.6839 0.0020 -316.1 2.0 3050 25
247 0.13 227 0.05 175984 0.4922 0.0015 -507.8 15 5695 25
21.3 0.25 -22.3 0.09 175985 0.5464 0.0016 -453.6 1.6 4855 25
217 0.02 -22.1 0.02 176498 0.5428 0.0016 -461.6 1.6 4910 25
27.1 0.72 -23.1 0.08 175992 0.6664 0.0026 -333.6 26 3260 35
25.8 0.02 229 0.00 175993 0.5985 0.0019 -401.5 1.9 4125 30
25.4 0.06 -22.9 0.03 175994 0.5145 0.0019 -485.5 1.9 5340 30
24.6 0.09 228 0.02 175995 0.5912 0.0017 -408.8 1.7 4220 25



