



LAWRENCE  
LIVERMORE  
NATIONAL  
LABORATORY

LLNL-JRNL-801378

# Low Molecular Weight Dissolved Organic Carbon: Aging, Compositional Changes, and Selective Utilization During Global Ocean Circulation

T. A. B. Broek, B. D. Walker, T. P. Guilderson, J. S. Vaughn, H. E. Mason, M. D. McCarthy

January 14, 2020

Global Biogeochemical Cycles

## **Disclaimer**

---

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Low Molecular Weight Dissolved Organic Carbon: Aging,**  
2 **Compositional Changes, and Selective Utilization During**  
3 **Global Ocean Circulation**

4  
5 Taylor A. B. Broek<sup>1,2,\*</sup>, Brett D. Walker<sup>3,4</sup>, Thomas P. Guilderson<sup>2</sup>, John, S. Vaughn<sup>5</sup>, Harris E. Mason<sup>5</sup>, and  
6 Matthew D. McCarthy<sup>1</sup>

7  
8 <sup>1</sup>University of California, Santa Cruz, Ocean Sciences Department.

9 <sup>2</sup>Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry.

10 <sup>3</sup>University of Ottawa, Department of Earth and Environmental Science.

11 <sup>4</sup>University of California, Irvine, Department of Earth Systems Science.

12 <sup>5</sup>Lawrence Livermore National Laboratory, Center for Nuclear Magnetic Resonance Spectroscopy

13  
14 \*Corresponding author: Taylor Broek (broek1@llnl.gov)

15 **Abstract**

16 The composition and cycling dynamics of marine dissolved organic carbon (DOC) have  
17 received increase interest in recent years, however little research has focused on the refractory,  
18 low molecular weight (LMW) component that makes up the majority of this massive C pool. We  
19 measured stable isotopic ( $\delta^{13}\text{C}$ ), radioisotopic ( $\Delta^{14}\text{C}$ ), and compositional (C/N,  $^{13}\text{C}$  solid-state  
20 NMR) properties of separately isolated high molecular weight (HMW) and LMW DOC fractions  
21 collected using a coupled ultrafiltration and solid phase extraction approach from throughout the  
22 water column in the North Central Pacific and Central North Atlantic. The selective isolation of  
23 LMW DOC material allowed the first investigation of the composition and cycling of a previously  
24 elusive fraction of the DOC pool. The structural composition of the LMW DOC material was  
25 homogeneous throughout the water column and closely matched carboxylic rich alicyclic  
26 material that has been proposed as a major component of the marine refractory DOC pool.  
27 Examination of offsets in the measured parameters between the deep waters of the two basins  
28 provides the first direct assessment of changes in the properties of this material with aging and  
29 utilization during ocean circulation. While our direct measurements largely confirm hypotheses  
30 regarding the relative recalcitrance of HMW and LMW DOC, we also demonstrate a number of  
31 novel observations regarding the removal and addition of DOC during global ocean circulation,  
32 including additions of fresh carbohydrate-like HMW DOC to the deep ocean and large-scale  
33 removal of both semi-labile HMW and recalcitrant LMW DOC.

34 **1.0 Introduction**

35       Marine dissolved organic carbon (DOC) is the largest pool of reduced and actively  
36 cycling carbon in the ocean. Early measurements of the radiocarbon age of DOC compared to  
37 that of dissolved inorganic carbon (DIC) demonstrated that at least a portion of DOC persists in  
38 the ocean on longer timescales than ocean circulation (Williams and Druffel, 1987; Druffel et al.,  
39 1992). These radiocarbon measurements combined with depth-based gradients in DOC  
40 concentration were used to form a two-pool model of DOC cycling, with a pool of semi-labile  
41 material that is produced in the surface and degraded or utilized on timescales less than ocean  
42 circulation and a background pool of refractory material that cycles on millennial timescales with  
43 a relatively conservative distribution throughout the water column. The semi-conservative  
44 behavior of DOC in the deep ocean has been utilized as a tracer to investigate transit times of  
45 different water-masses using offsets in radiocarbon age (Bauer et al., 1992; Hansell, 2013;  
46 Bercovici et al., 2018a; Druffel et al., 2019). However, DOC, even in the deep ocean, is a  
47 dynamic pool with constant removal and additions of new material (Smith et al., 1992; Hansman  
48 et al., 2009; Hansell and Carlson, 2013b; Walker et al., 2016a). Further, radiocarbon  
49 measurements of different components of the DOC pool have demonstrated a remarkable  
50 heterogeneity of  $\Delta^{14}\text{C}$  values (Walker et al., 2011; Walker et al., 2014; Zigah et al., 2017; Broek  
51 et al., 2017) ranging from above modern (Druffel and Beaupré, 2009; Repeta and Aluwihare,  
52 2006) to tens of thousands of years (Ziolkowski and Druffel, 2010; Coppola et al., 2015),  
53 suggesting substantial variability in recalcitrance and cycling rates.

54       Increasing evidence has demonstrated a relationship between the average molecular  
55 weight of DOC, its radiocarbon content, and the relative recalcitrance of the material (Walker et  
56 al., 2011; Benner and Amon, 2015; Walker, et al., 2016a; Walker et al., 2016b; Broek et al.,  
57 2017). High molecular weight (HMW) DOC is primarily composed of recently produced material  
58 and contains intact biochemicals, whereas low molecular weight (LMW) DOC is old, degraded,  
59 biologically refractory, and dominates the background DOC pool that persists in the ocean on  
60 millennial timescales (Amon and Benner, 2015). The LMW fraction of the DOC pool is therefore  
61 a critical component that stores the vast majority of the ocean's dissolved organic carbon and  
62 nitrogen.

63       Until recently there has been no analytical approach to directly investigate the refractory  
64 LMW DOC pool. The analyses that are possible in total seawater, primarily concentration  
65 measurements and bulk isotopic analyses, are limited and interpretations based on these  
66 measurements are impacted by the extreme heterogeneity of marine DOC. Material

67 concentrated using ultrafiltration (UDOM) has been widely used for many DOC investigations.  
68 However, this is by definition HMW and therefore not representative of the refractory DOC pool.  
69 New generations of solid phase extraction (SPE) sorbents have more recently been used to  
70 isolate DOC that, based on high resolution mass spectrometry analyses (e.g., FT-ICR MS), has  
71 been largely interpreted as primarily LMW material. However, it has been recently demonstrated  
72 that SPE-DOM isolated from whole seawater contains a fraction of younger, more labile HMW  
73 material (Broek et al., 2017). Coupled with  $^{14}\text{C}$  ages that are comparable to total DOC (Flerus et  
74 al., 2012; Lechtenfeld et al., 2014; Bercovici et al., 2018b), these new observations suggest  
75 SPE isolates are more similar to total DOC than LMW DOC. The diversity of molecules with  
76 varying ages and biological reactivities in SPE-DOM therefore complicates interpretation of the  
77 composition and cycling dynamics of LMW DOC (Broek et al., 2017). An alternate approach to  
78 the study of LMW DOC has been indirect observations from the differences between ultrafiltered  
79 HMW DOC and total DOC. A number of studies have inferred properties of the LMW DOC pool,  
80 such as  $^{14}\text{C}$  age from these indirect calculations. However, these analyses are also severely  
81 limited by what it is possible to measure in whole seawater (Loh et al., 2004; Kaiser and Benner,  
82 2009). Without a method to selectively isolate LMW DOM, it has not been possible to directly  
83 apply many analyses with vast informational potential such as NMR and molecular level  
84 analyses requiring large sample sizes. Overall, this has limited our understanding of the broad  
85 functional composition of DOC.

86 Here we present data from samples collected via a new DOC isolation approach using  
87 sequential ultrafiltration and SPE as an effective means to isolate both young, HMW DOC and  
88 old, LMW DOC from seawater (Broek et al., 2017). By collecting these distinct fractions, thereby  
89 limiting the influence of DOC size and reactivity mixtures, this combined UF/SPE method  
90 provides a more direct approach than has previously been possible to investigate the  
91 composition, sources, and cycling of the most refractory material in the ocean. For the first time  
92 we measure the stable isotope ratios, elemental composition, and molecular composition of  
93 selectively isolated LMW DOC from throughout the water column in both the Atlantic and Pacific  
94 Ocean Basins. We interpret the results in the context of radiocarbon age and offsets between  
95 basins to determine how the properties of this material change during deep ocean circulation.  
96 The isotopic and molecular composition of the LMW fraction and basin offsets in these  
97 properties are compared to the more commonly studied semi-labile HMW UDOM material,  
98 collected from the same water, in order to investigate the relative behavior of different  
99 components of the DOC size and reactivity spectrum. Together these represent the first

100 comprehensive look at compositional changes of both semi-labile and refractory DOC with  
101 aging and utilization during large scale ocean circulation.

102

103 **2.0 Materials and Methods**

104 *2.1 Sample Collection*

105 Samples were collected on four research cruises aboard the R/V Kilo Moana in August  
106 2014 and May 2015 and the R/V Atlantic Explorer in August 2015 and May 2016. Sampling was  
107 conducted at the Hawaii Ocean Time Series (HOT) Station ALOHA (A Long-Term Oligotrophic  
108 Habitat Assessment; 22° 45'N, 158° 00'W) in the North Central Pacific (NCP) and the Bermuda  
109 Atlantic Time Series Site (BATS; 31° 40'N, 64° 10'W) in the Central North Atlantic. Surface  
110 water was sampled via the vessels' underway sampling systems with an inlet at approximately  
111 7.5 m water depth on the R/V Kilo Moana and 2 m water depth on the R/V Atlantic Explorer. The  
112 laboratory seawater taps were flushed for approximately 2 hours prior to each sampling. Large  
113 volume subsurface water samples were collected from 400 m, 850 m, and 2500 m using  
114 successive casts of a rosette equipped with 24 x 12 L Niskin bottles. Seawater was pre-filtered  
115 through 53 µm Nitex mesh and pumped through 0.2 µm polyethersulfone (PES) cartridge filters  
116 prior to ultrafiltration. All filters and storage containers were cleaned with 10% HCl and ultrapure  
117 water (Milli-Q; 18.2 MΩ) then flushed with seawater from the sampling depth prior to use.

118 *2.2 DOC Isolation*

119 A detailed explanation of the DOC isolation protocol is described in Broek et al. (2017).  
120 Briefly, ultrafiltration was performed using a custom-built system consisting of four-spiral wound  
121 PES UF membranes (2.5 kD; GE Osmonics GH2540F30, 40-inch long, 2.5-inch diameter)  
122 mounted in stainless steel housings, plumbed in parallel to a 100 L fluorinated HDPE reservoir,  
123 with flow driven by a 1.5 HP stainless steel centrifugal pump. Seawater samples of 1000-4000  
124 L were concentrated to a final retentate volume of 15-20 L, then further reduced to 2-3 L with a  
125 second custom-built ultrafiltration system with a single membrane of a smaller MW cutoff (1 kD  
126 GE Osmonics GE2540F30, 40-inch long, 2.5-inch diameter, 1 kD MWCO). Samples were then  
127 desalinated by continuously adding 40 L of Milli-Q water at the same rate of membrane  
128 permeation. UDOM samples were dried to powder with a combination of rotovap and centrifugal  
129 evaporation. LMW DOC permeating the UF system was isolated using PPL sorbent (Agilent  
130 Bondesil PPL, 125 µm particle size, part # 5982-0026) following the general recommendations

131 of Dittmar et al. (2008) and Green et al. (2014), including loading rates, seawater to sorbent  
132 ratios, and elution volumes and rates. Permeate from the UF system was acidified in 200 L  
133 batches to pH 2 with HCl and pumped through the SPE sorbent contained in a parallel  
134 combination of 2 medium-pressure glass chromatography columns equipped with 0.2  $\mu$ m quartz  
135 fiber filters at the column inlet to prevent biofouling and remove any particulate contaminants  
136 from the UF permeate. Following sample loading, the SPE sorbent was desalted with 6 L of pH  
137 2 ultrapure water. The LMW SPE-DOM material was eluted with six 500 mL additions of  
138 methanol that was similarly dried to powder via rotovap and centrifugal evaporation.

139 **2.3 Total DOC ([DOC], [DON],  $\Delta^{14}\text{C}$ ,  $\delta^{13}\text{C}$ )**

140 Subsamples for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)  
141 concentration measurements were collected into pre-combusted 40 mL borosilicate glass vials  
142 following 0.2  $\mu$ m-filtration. DOC and TDN concentration measurements were made via the high-  
143 temperature catalytic oxidation method using a Shimadzu TOC-V analyzer in either the Carlson  
144 lab at University of California, Santa Barbara (<https://labs.eemb.ucsb.edu/carlson/craig/services>)  
145 or the Benner lab at the University of South Carolina (Benner et al., 1993). DOC concentrations  
146 measurements were also determined via UV oxidation, cryogenic purification, and manometric  
147 determination at UC Irvine (Beaupré et al., 2007; Walker et al., 2019). DOC concentrations were  
148 similar between the two methods and the presented values represent the error weighted  
149 average of both measurements and uncertainties represent the propagated instrumental  
150 uncertainty of each method. Total DON concentrations were determined by subtracting the sum  
151 of dissolved inorganic nitrogen (DIN) species (nitrate, nitrite, ammonia) concentrations,  
152 determined using a Lachat QuickChem 8000 Flow Injection Analyzer, from the measured TDN  
153 concentrations. Seawater samples for C isotopic analysis ( $\delta^{13}\text{C}$ ,  $\Delta^{14}\text{C}$ ) were collected, following  
154 0.2  $\mu$ m filtration, into pre-combusted 1000 mL Amber Boston Round bottles, immediately frozen,  
155 and stored at -20°C. At BATS, total DOC samples for concentration and isotopic analyses were  
156 collected only during the May sampling period.

157 **2.4 EA-IRMS ( $\delta^{13}\text{C}$ , C/N)**

158 Stable carbon isotope ratios ( $\delta^{13}\text{C}$ ) and elemental ratios (C/N)<sub>a</sub> were determined via  
159 elemental analyzer isotope ratio mass spectrometry (EA-IRMS) at the University of California,  
160 Santa Cruz, Stable Isotope Laboratory (UCSC-SIL; <http://emerald.ucsc.edu/~silab/>) using a  
161 Carlo Erba CHNS-O EA1108-elemental analyzer interfaced via a ConFlo III device with a  
162 ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific).  
163 Standards, EA-IRMS protocols, and correction routines followed standard UCSC-SIL protocols.

164 Analytical uncertainties of n=3 replicate measurements of the  $\delta^{13}\text{C}$  of isotopic standards ranged  
165 from  $\pm 0.05$  to  $0.1\text{\textperthousand}$ .

166 **2.5  $^{14}\text{C}$ -AMS ( $\Delta^{14}\text{C}$ )**

167 Natural abundance radiocarbon ( $^{14}\text{C}$ ) determinations of all isolated fractions were  
168 performed at Lawrence Livermore National Laboratory, Center for Accelerator Mass  
169 Spectrometry (LLNL-CAMS) by AMS following standard graphitization procedures (Vogel et al.,  
170 1984; Santos et al., 2007). The radiocarbon content of total DOC ( $<0.2\text{ }\mu\text{m}$ ) was determined by  
171 UV-oxidation at the UC Irvine Keck Carbon Cycle AMS Lab (Beaupré et al., 2007; Griffin et al.,  
172 2010; Walker et al., 2019). Results are reported as age-corrected  $\Delta^{14}\text{C}$  ( $\text{\textperthousand}$ ) for geochemical  
173 samples and have been corrected to the date of collection and are reported in accordance with  
174 conventions set forth by Stuiver and Polach (1977). The isotopic values are reported as  
175 background and  $\delta^{13}\text{C}$  corrected fraction modern (Fm),  $\Delta^{14}\text{C}$ , and conventional radiocarbon age  
176 (ybp).

177 **2.6 Solid-state  $^{13}\text{C}$  NMR**

178 Solid state  $^{13}\text{C}$   $\{^1\text{H}\}$  cross polarization magic angle spinning (CP/MAS) NMR spectra  
179 were collected on a Bruker Avance III spectrometer operating at 100.5474 MHz for  $^{13}\text{C}$  and  
180 399.8285 MHz for  $^1\text{H}$ . A Bruker HXY MAS probe was used, along with 4 mm ZrO<sub>2</sub> rotors with  
181 Kel-F tips. The  $^1\text{H}$   $\pi/2$  pulse was 4  $\mu\text{s}$ , and cross polarization was achieved via a 70-100%  
182 power ramp on the  $^1\text{H}$  nucleus. Cross polarization contact time was 4 ms, and the MAS rate  
183 was 10 kHz. The  $^{13}\text{C}$  power (62.5 kHz) and SPINAL-64  $^1\text{H}$  decoupling (225 kHz) were  
184 optimized using the peak intensity and peak widths of glycine, and  $^{13}\text{C}$  chemical shifts were  
185 measured relative to the carboxylic acid group on glycine at  $^{13}\text{C} = 176.49$  ppm. A total of 16,384  
186 acquisitions were collected for each sample with a 1 s pulse delay. 512 points were used for  
187 Fourier transform with a 10  $\mu\text{s}$  dwell time. 100 Hz of line broadening was applied during  
188 processing.

189 The relative distribution of different functional groups was determined by integrating the  
190 area under the curve using the chemical shift ranges and assignments from Mao et al., 2012 as  
191 follows (Supplemental Fig. 2): ketone, aldehyde, quinone (220-191 ppm); COO, NC=O (191-164  
192 ppm); aromatic C-O (164-150 ppm); aromatics (150-117 ppm); OCO (94-60 ppm); OC (94-60  
193 ppm); OCH<sub>3</sub>, NCH (60-45 ppm); CCH<sub>2</sub>C, CCHC (45-30 ppm); CCH<sub>2</sub>C, CCH<sub>3</sub> (30-0 ppm). For  
194 some comparisons, including to previous data, regions were combined (as in Koprivnjak et al.,  
195 2009), resulting in four generalized groupings (Fig. 4): carboxyl C (220-164 ppm), aromatic C  
196 (164-117 ppm), alkoxy C (117-60 ppm), and alkyl C (60-0 ppm).

197 Because different functional groups produce varying responses, this spectroscopic  
 198 technique is not completely quantitative, and reported distributions represent the distribution of  
 199 spectroscopic signal associated with each functional group rather than the absolute  
 200 concentration. However, all spectra were collected under identical conditions, allowing the direct  
 201 comparison of these relative distributions between samples. All spectra were normalized to the  
 202 total area for comparison and for the calculation of difference spectra.

203 *2.7 Non-retained DOC mass balance calculations and error propagation*

204 The elemental ratios (C/N) and carbon isotopic values ( $\delta^{13}\text{C}$ ,  $\Delta^{14}\text{C}$ ) of the DOM not  
 205 isolated by the combined UF/SPE method (the non-retained pool; NR) were calculated by  
 206 subtracting the properties of both the HMW UDOM and LMW SPE-DOM fractions from those of  
 207 the total DOM pool. For carbon isotopic values, this was calculated using a simple mass  
 208 balance calculation:

$$X_{NR} = \frac{([Total\ DOC] * X_T) - ([HMW\ UDOC] * X_{HMW}) - ([LMW\ SPEDOC] * X_{LMW})}{[Total\ DOC] - [HMW\ UDOC] - [LMW\ SPEDOC]}$$

209 Where  $X$  represents the isotopic value of the specific fractions / pools. The uncertainties  
 210 associated with the non-retained value were determined by propagating the errors associated  
 211 with both the concentration of each fraction and the instrumental measurement error for each  
 212 isotopic value using the equations described in Taylor (1997) for the calculation of uncertainties  
 213 in functions of several variables. The uncertainties in the recovered mass of the HMW UDOC  
 214 and LMW SPE-DOC used to calculate the concentration of each fraction was assumed to be  $\pm$   
 215 10%, encompassing the error associated with sample weighing and potential losses during  
 216 sample transfers. The average uncertainty of the total DOC concentration measurements was  $\pm$   
 217 3  $\mu\text{mol L}^{-1}$ , encompassing the measurement error of 2 separate methods as described in  
 218 section 2.3.

219 The C/N ratio of the non-retained DOM was determined by separately calculating the  
 220 molar concentration of [DOC] and [DON] in the non-retained pool by difference:

$$C/N_{NR} = \frac{[Total\ DOC] - [HMW\ UDOC] - [LMW\ SPEDOC]}{[Total\ DON] - [HMW\ UDON] - [LMW\ SPEDON]}$$

221 The uncertainties of non-retained C/N values were calculated by propagating the uncertainties  
 222 associated with the concentration measurements ( $\pm$  10% for the HMW UDOM and LMW SPE-  
 223 DOM fractions). The average uncertainty of the total DOC and total DON concentrations used in  
 224 these calculations were  $\pm$  3  $\mu\text{molC L}^{-1}$  and  $\pm$  1  $\mu\text{molN L}^{-1}$  respectively.

225

226

227 **3.0 Results**228 **3.1 DOC Concentration and Recovery of High and Low Molecular Weight DOC Fractions**

229       DOC concentrations in the Central North Atlantic are highest at the surface (average =  
230  $84 \pm 14 \mu\text{M}$ ) with offsets between August ( $94 \pm 5 \mu\text{M}$ ) and May ( $74 \pm 8 \mu\text{M}$ ) sampling (Fig. 1a).  
231       The concentration decreases through the upper 850 m to a relatively constant deep ocean  
232       concentration of  $48 \pm 2 \mu\text{M}$  (Average  $\geq 850 \text{ m}$ ). In the NCP, DOC concentrations are lower  
233       throughout the water column with an average surface concentration of  $78 \pm 3 \mu\text{M}$  decreasing to  
234       a deep ocean (2500 m) value of  $37 \pm 3 \mu\text{M}$ . There is some seasonal variability in surface ocean  
235       concentration, however, to a lesser degree than in the Atlantic Basin (August =  $80 \pm 1 \mu\text{M}$ ; May  
236       =  $76 \pm 1 \mu\text{M}$ ).

237       In the Central North Atlantic, ultrafiltration recovered an average of  $10 \mu\text{mol-C L}^{-1}$  in the  
238       surface and  $5 \mu\text{mol-C L}^{-1}$  in the subsurface ( $\geq 400 \text{ m}$ ), representing  $12 \pm 1 \%$  and  $9 \pm 1 \%$  of  
239       total DOC respectively (Fig. 1b). In the NCP, ultrafiltration recovered  $13 \mu\text{mol-C L}^{-1}$  in the  
240       surface and  $4 \mu\text{mol-C L}^{-1}$  in the subsurface ( $\geq 400 \text{ m}$ ), representing  $17 \pm 1 \%$  and  $9 \pm 1 \%$  of  
241       total DOC respectively. At 2500 m there is a significant difference in the HMW UDOC  
242       concentration between basins ( $t = 4.74$ ;  $df = 10$ ;  $p < 0.001$ )

243       SPE of LMW DOC permeating the ultrafiltration system recovered  $22 \mu\text{mol-C L}^{-1}$  from  
244       surface waters of the Central North Atlantic and an average of  $17 \mu\text{mol-C L}^{-1}$  from subsurface  
245       waters ( $\geq 400 \text{ m}$ ; Fig 1c). SPE recovered less material from the NCP, isolating  $15 \mu\text{mol-C L}^{-1}$  in  
246       the surface and an average of  $12 \mu\text{mol-C L}^{-1}$  in the subsurface ( $\geq 400 \text{ m}$ ). Although the recovery  
247       in the surface was slightly higher than in the subsurface ( $\geq 400 \text{ m}$ ), as a result of the decreasing  
248       concentration of total DOC with depth, the relative % recovery is lower in the surface and higher  
249       at depth. In the Central North Atlantic this recovery represents  $26 \pm 3 \%$  of total DOC in the  
250       surface and  $34 \pm 3 \%$  in the subsurface ( $\geq 400 \text{ m}$ ). In the NCP the DOC recovery represents  $18 \pm 2 \%$  of total DOC in the surface and  $29 \pm 2 \%$  in the subsurface ( $\geq 400 \text{ m}$ ). At 2500 m there is  
251       a significant difference in the LMW SPE-DOC concentration between basins (Fig 1c;  $t = 18.01$ ;  
252        $df = 10$ ;  $p < 0.001$ ).

254 **3.2 Radiocarbon ( $\Delta^{14}\text{C}$ ) of total, HMW, and LMW DOC**

255       In the Central North Atlantic the surface  $\Delta^{14}\text{C}$  value of total DOC is  $-186 \pm 4 \text{ ‰}$  (1590

256 ybp; May sampling only) and decreases through the water column to a minimum value of  $-438 \pm 4$   
257 ‰ (4570 ybp) at 850 m (Fig. 2a). There is a slight increase in  $\Delta^{14}\text{C}$  at 2500 m ( $\Delta^{14}\text{C} = -392 \pm 4$   
258 ‰; 3930 ybp). In the NCP, the  $\Delta^{14}\text{C}$  of total DOC is depleted (older  $^{14}\text{C}$  age) at all depths, with  
259 an average surface value of  $-227 \pm 14$  ‰ (2000 ybp) decreasing to a minimum in the deepest  
260 samples (2500 m;  $-544 \pm 10$  ‰; 6240 ybp). We note that samples for total DOC radiocarbon  
261 analysis were only collected at BATS during the May sampling season. It is likely that there  
262 would be a difference in the  $\Delta^{14}\text{C}$  values of DOC in surface waters between the two sampling  
263 periods, presumably with younger values when concentrations are higher due to the  
264 accumulation of fresh DOC in stratified surface waters. However, if the surface  $\Delta^{14}\text{C}$  offset  
265 within the 2 fractions is considered, the offset in total DOC  $\Delta^{14}\text{C}$  between the two seasons would  
266 be on the order 20 ‰. A seasonal difference on the order of 20‰ with an uncertainty in these  
267 measurements on the order of 5-10 ‰ would be insignificant.

268 HMW UDOC  $\Delta^{14}\text{C}$  values are enriched (younger  $^{14}\text{C}$  age) relative to that of total DOC  
269 throughout the water column in both basins (Fig. 2b) with an average value of  $-54 \pm 15$  ‰ (440  
270 ybp) in the surface of the Central North Atlantic decreasing to a minimum in the deepest  
271 samples (2500 m;  $-278 \pm 16$  ‰; 2630 ybp). In the NCP, the average surface  $\Delta^{14}\text{C}$  of HMW  
272 UDOC is similar to surface waters in the Central North Atlantic ( $-45 \pm 10$  ‰, 300 ybp), however,  
273 is depleted throughout the rest of the water column, with a minimum of  $-375 \pm 10$  ‰ (3700 ybp)  
274 in the deepest samples (2500 m). There is a significant offset in HMW DOC  $\Delta^{14}\text{C}$  between  
275 basins at 2500 m ( $t = 9.86$ ;  $df = 10$ ;  $p < 0.001$ ).

276 In contrast, the  $\Delta^{14}\text{C}$  of LMW SPE-DOC is depleted (older  $^{14}\text{C}$  age) relative to total DOC  
277 throughout the water column in both basins (Fig. 2c). In the Central North Atlantic, the  $\Delta^{14}\text{C}$   
278 value of LMW SPE-DOC mirrors that of total DOC with an average value of  $-323 \pm 12$  ‰ (3120  
279 ybp) in the surface, decreasing to a minimum at 850 m ( $-467 \pm 23$  ‰; 5050 ybp), with a slight  
280 increase in the 2500 m samples ( $\Delta^{14}\text{C} = -437 \pm 37$  ‰; 4530 ybp). In the NCP, the average  $\Delta^{14}\text{C}$   
281 of LMW SPE-DOC is depleted relative to the Central North Atlantic throughout the water column  
282 with an average surface value of  $-350 \pm 9$  ‰ (3380 ybp) decreasing to a minimum of  $-573 \pm 6$  ‰  
283 (6770 ybp) in the deepest samples (2500 m). There is a significant offset in LMW SPE-DOC  
284  $\Delta^{14}\text{C}$  between basins at 2500 m ( $t = 9.69$ ;  $df = 10$ ;  $p < 0.001$ ).

285 The average  $\Delta^{14}\text{C}$  of the non-retained DOC (Fig. 2d) is equivalent within error to total  
286 DOC throughout the water column in both basins (average offset = 14 ‰). As such, this is also  
287 equivalent to the mass weighted sum of the HMW UDOC and LMW-SPE DOC fractions,  
288 demonstrating the representativeness of the two combined fractions relative to total DOC.

289 *3.3 DOC Composition*290 *3.3.1 Elemental (C/N) Composition*

291 Carbon to nitrogen atomic ratios (C/N)<sub>a</sub> of total DOM, HMW UDOM, and LMW SPE-  
292 DOM are distinct from each other throughout the water column (Fig. 3a-c). The average C/N  
293 ratio of total DOM in all samples is  $16 \pm 4$ , however, within each sample the average standard  
294 deviation is high due to the compounded error associated with the high uncertainty of [DOC]  
295 and [DON] values (Fig. 3a). As a result, there is no depth structure in either basin. However, in  
296 the deepest sample (2500 m) there is an offset between the two basins, with higher values in  
297 the NCP ( $18 \pm 3$ ) than the Central North Atlantic ( $11 \pm 2$ ). The C/N ratio of HMW UDOM is lower  
298 on average than total DOM and has a narrow range of values (11 to 14), with no depth structure  
299 or offsets between basins (Fig. 3b). In contrast, the C/N ratio of LMW SPE-DOM is higher than  
300 both total DOM and HMW DOM (Fig. 3c). The ratio is highest in the surface and decreases  
301 through the upper water column. At 2500 m there is a significant offset in the C/N ratio ( $t = 4.41$ ;  
302  $df = 10$ ;  $p \leq 0.01$ ), with higher values in the NCP ( $24 \pm 2$ ) than the Central North Atlantic ( $28.5 \pm$   
303  $1.5$ ).

304 *3.3.2 Stable Isotopic ( $\delta^{13}\text{C}$ ) Composition*

305 The  $\delta^{13}\text{C}$  of total DOC has a narrow range of values (-22.7 to -21.1 ‰) that are  
306 indistinguishable within error throughout the water column between the Central North Atlantic  
307 and NCP (Fig. 3e). There is some depth structure in both basins with the most enriched values  
308 in the surface (average of both basins =  $-21.1 \pm 0.4$  ‰) and more depleted values in the  
309 subsurface (average of all depths  $\geq 400$  m in both basins =  $-22.1 \pm 0.4$  ‰). Similar to total DOC,  
310 there are no offsets in HMW UDOC  $\delta^{13}\text{C}$  values between basins (Fig. 3f). There is depth  
311 structure in HMW UDOC  $\delta^{13}\text{C}$  values that follows the opposite trend of total DOC, with the most  
312 depleted values in the surface (average of both basins =  $-22.4 \pm 0.1$  ‰) and enriched values in  
313 the subsurface (average of all depth  $\geq 400$  m in both basins =  $-21.5 \pm 0.25$  ‰). In the surface  
314 HMW UDOC values are depleted relative to total DOC but are enriched relative to total DOC in  
315 the subsurface. In contrast, the  $\delta^{13}\text{C}$  of LMW SPE-DOM has a narrow range of values that are  
316 depleted relative of both total DOC and HMW UDOC throughout the water column (Fig. 3g;  
317 average of all samples =  $-22.7 \pm 0.3$  ‰). Similar to HMW UDOC, LMW SPE-DOM  $\delta^{13}\text{C}$  values  
318 are most depleted in the surface (average of both basins =  $-22.9 \pm 0.2$  ‰) and increase with  
319 depth (average at 2500 m =  $-22.5 \pm 0.3$  ‰). There is a basin offset in the upper 850 m (average  
320 offset = 0.3 ‰), but no offset in the 2500 m sample.

321 **3.3.3 Functional Composition (Solid State  $^{13}\text{C}$ -NMR)**

322 The  $^{13}\text{C}$   $\{^1\text{H}\}$  CP/MAS NMR spectra of HMW UDOC are dominated by peaks at  $\sim$ 110  
323 ppm (acetal; O-C-O) and  $\sim$ 80 ppm (alkyl O-C-H) (Fig. 4a; Supplemental Fig. 2). The average  
324 ratios of O-alkyl to acetal C in HMW UDOC is  $5.4 \pm 1.0$ , consistent with the ratios of typical  
325 carbohydrates (Sannigrahi et al., 2005). This alkoxy component has the greatest relative  
326 abundance in the surface, comprising an average of  $62 \pm 3$  % of the total signal, and is  
327 attenuated at depth (2500 m;  $47 \pm 2$  %). The remainder of the signal is comprised of carboxyl  
328 ( $\sim$ 175 ppm;  $13 \pm 5$  %), and aliphatic (0-60 ppm;  $31 \pm 4$  %) functional groups, with a minor  
329 aromatic ( $\sim$ 135 ppm;  $\sim$ 1 %) component.

330 In contrast, the LMW SPE-DOC spectra are dominated by aliphatic (0-60 ppm;  $62 \pm 3$  %)  
331 and carboxyl ( $\sim$ 175 ppm;  $16 \pm 1$  %) functionality (Fig. 4b; Supplemental Fig. 2). There is also a  
332 greater proportion of aromatic C ( $\sim$ 135 ppm;  $4 \pm 1$  %) in the LMW fraction. The signal in the  
333 alkoxy region (117-60 ppm; i.e. carbohydrate C in HMW DOC) comprises  $17 \pm 2$  % of the LMW  
334 signal, however this is almost entirely O-alkyl C and therefore the ratio of the O-alkyl to acetal C  
335 is much higher ( $32 \pm 12$ ) than in the HMW fraction. Unlike the HMW material, there is little  
336 variability in relative proportion of functional groups with depth or between basins.

337

338 **4.0 Discussion**339 **4.1 Composition of LMW SPE-DOC and comparison to HMW UDOC**340 **4.1.1 Elemental and Isotopic Composition.**

341 The novel LMW DOC fraction recovered by our combined UF/SPE isolation approach  
342 allows for an examination of the composition of the refractory material that is thought to persist  
343 in the ocean on millennial timescales. While the LMW material collected in the NCP has  
344 previously been characterized (Broek et al., 2017), the addition of material from a second basin  
345 confirms a number of hypotheses that were suggested by more limited data, while also  
346 providing more mechanistic interpretations.

347 Radiocarbon analysis of the LMW material shows an average age that is older than both  
348 the total DOC pool and the HMW UDOC fraction, indicating that it represents a slower cycling  
349 component of marine DOC (Benner and Amon, 2015; Fig. 2). The LMW material has C/N ratios  
350 that are elevated compared to the total pool, suggesting that LMW DOC throughout the water  
351 column is C-rich, consistent with expectations for the alicyclic and lipid derived material that has

352 been hypothesized to account for a considerable portion of recalcitrant marine DOC (Hwang,  
353 2003; Hertkorn et al., 2006; Koprivnjak et al., 2009; Fig. 3c).

354 With the addition of the Central North Atlantic study site, we can now confirm a decrease  
355 in the C/N ratio of the LMW fraction through the upper water column (Fig. 3c). This finding is  
356 unexpected as it suggests that a nitrogenous component exists within the LMW pool that could  
357 be more refractory than some portion of the non-N-containing material. However, while contrary  
358 to expectations based on common assumptions about the relative lability of N-containing  
359 materials, this observation is consistent with the depth related changes in  $\delta^{13}\text{C}$  of the LMW  
360 material (Fig. 3g). Overall, the  $\delta^{13}\text{C}$  values of LMW DOC are depleted relative to the total DOC  
361 pool in both basins that was previously hypothesized to correspond to a contribution from  $^{13}\text{C}$   
362 depleted lipid-like material (Hayes, 2001; Broek et al., 2017). However, the  $\delta^{13}\text{C}$  values are also  
363 variable through the water column in both basins and values become more enriched with depth,  
364 coincident with the observed changes in C/N ratio. A least squares linear regression model of  
365  $\delta^{13}\text{C}$  and C/N ratio shows a strong relationship ( $R^2 = 0.53$ , p-slope  $< 0.001$ ) in both basins,  
366 especially when considered in each basin separately (Atl.  $R^2 = 0.94$ , p-slope  $< 0.001$ ; Pac.  $R^2 =$   
367 0.77, p-slope =0.0047; Supplemental Fig. 1).

368 We hypothesize that these observations can be explained by changes in the relative  
369 contribution of different major compound types. Specifically, in contrast to the  $^{13}\text{C}$  depleted  
370 values of lipid material, N-containing materials known to be present in the marine environment,  
371 such as peptides and tetrapterroles compounds, all have elevated  $\delta^{13}\text{C}$  compared to most other  
372 compound classes (Hayes, 2001). While there are no published data on N functionality of the  
373 LMW pool, there is at least some evidence to suggest that pyrrol and indol containing  
374 compounds may be more important than is currently recognized. For example, hydrolyzable  
375 amino acids make up most N in reactive surface DON, however these are a minor component of  
376 LMW DON (Kaiser and Benner, 2009; Benner and Amon, 2015). At the same time, solid state  
377 NMR of HMW DON indicates increasing heterocyclic-N functionality in the deep ocean  
378 (McCarthy et al., 1997; Aluwihare and Meador., 2008; Mao et al., 2012), representing old  
379 material where HMW and LMW structural compositions may begin to overlap. This evidence  
380 suggests that refractory heterocyclic-N material may be an important component of LMW DON,  
381 and also that more rapid remineralization of a labile, C-rich, lipid-like material could be more  
382 important than is currently understood. Together, this could explain the observed trends in both  
383 the C/N ratio and  $\delta^{13}\text{C}$  of the LMW fraction.

384 Finally, an additional implication of these observations is that there must be some  
385 amount of active cycling occurring within the LMW DOC pool, even in the subsurface ocean,

despite its old average  $^{14}\text{C}$  age. This is also required, given the  $^{14}\text{C}$  depth trends observed within this fraction (Fig. 2c). The average  $^{14}\text{C}$  age of LMW SPE-DOC material in the surface ocean is thousands of years younger than LMW SPE-DOC in the deep ocean, clearly demonstrating that there is a fraction of more rapidly cycling LMW material in the surface ocean that is not present in the deep ocean. However, given that in the subsurface ocean most DOC is LMW, this is not necessarily an unexpected observation.

In contrast, the bulk properties of the more commonly studied HMW UDOC material is unique relative to the LMW SPE-DOC fraction collected from the same water. As mentioned above, the average age of the HMW fraction is significantly younger than both the total DOC pool and the LMW fraction throughout the water column in both basins, suggesting that this fraction represents a faster cycling component of the marine DOC pool (Benner and Amon, 2015; Broek 2017). This is consistent with previous measurements of ultrafiltered material, bioassay experiments, and expectations based on observed size-age relationships (Benner et al., 1997; Walker et al., 2011; Broek et al., 2017; Shen and Benner, 2019). The C/N ratio of the HMW material is also lower than that of the LMW material and consistent throughout the water column in both basins. This was previously interpreted in the NCP as evidence that the youngest, most labile fraction of the DOC pool has a relatively uniform N-content, likely due to rapid and non-selective remineralization (Broek et al., 2017). However, despite the lack of depth trend in C/N ratio within the HMW pool in either basin, there is a depth trend in  $\delta^{13}\text{C}$  values. When looking at both basins together, it is clear that this trend mirrors a similar trend in the LMW pool, with the lowest values in the surface and an increase with depth. The depleted  $\delta^{13}\text{C}$  value of HMW DOC in the surface was previously hypothesized to be evidence of a relatively labile HMW  $^{13}\text{C}$ -deplete component (Broek et al., 2017), but the low C/N ratios and lack of C/N depth trend in the HMW fraction is inconsistent with the C-rich nature of the most likely candidate compounds, such as lipids. However, because the  $\delta^{13}\text{C}$  of lipid-like material can have considerably depleted values (Hayes, 2001) a small contribution from this material in the surface ocean could greatly skew the high  $\delta^{13}\text{C}$  values of the HMW fraction but have little effect on the C/N ratio. Because these more labile lipid compounds are likely to be actively degraded in the surface ocean, it is plausible that their degradation products would be present as both HMW structures and LMW degradation products, potentially decreasing the  $\delta^{13}\text{C}$  value of surface material in both MW fractions. Alternately, it is possible that the lack of C/N variability in the HMW fraction despite the  $\delta^{13}\text{C}$  depth trends could be caused by a labile N-containing lipid component, such as lipopeptides that have been confirmed to be present in surface waters (Kaiser and Benner, 2008) and would likely be HMW (Broek et al., 2019).

420 **4.1.2 NMR functional composition**

421 Solid-state  $^{13}\text{C}$  NMR analysis is a powerful tool for determining the C functional  
422 composition of isolated DOC fractions. While both HMW UDOC (Benner et al., 1992; McCarthy  
423 et al., 1993; Sannigrahi et al., 2005; Hertkorn et al., 2006) and material isolated with reverse  
424 osmosis electro dialysis (RO/ED; Koprivnjak et al., 2009; Mao et al., 2012) have been  
425 characterized by this approach previously, our isolated LMW SPE-DOC fraction provides a  
426 direct view of material that is either absent (in HMW UDOC), or likely to be obscured in a  
427 complex mixture by the presence of semi-labile HMW material (in RO/ED material).

428 The functional composition of our LMW SPE-DOC fraction is considerably different from  
429 that of these previous solid-state NMR measurements. The signal is dominated by alkyl C, with  
430 a substantial amount of highly saturated aliphatic functionality. There is also a large contribution  
431 from carboxyl C and a larger aromatic component than seen in HMW UDOC. There is some  
432 additional signal from alkoxy C, however, the high ratio of O-alkyl to acetal C suggests that this  
433 signal is almost certainly not derived from polysaccharides as is hypothesized for HMW DOC,  
434 but rather other more complex hydroxyl containing structures. When area normalized to the total  
435 signal, the four LMW DOC spectra collected for this study, representing material from the  
436 surface and deep ocean (2500 m) in both Atlantic and Pacific Basins, are identical within the  
437 limits of this technique (Fig. 4b). This is strongly consistent with our  $^{14}\text{C}$  data, indicating that in  
438 both the surface and deep ocean, our isolated LMW fraction represents a persistent refractory  
439 component with long oceanic residence times that is well mixed throughout the water column  
440 and world ocean.

441 The functional composition of HMW UDOC from the same waters is generally consistent  
442 with previous measurements of ultrafiltered material (Supplemental Fig. 3a; Benner et al., 1992;  
443 McCarthy et al., 1993; Sannigrahi et al., 2005), and provides useful contrast with our new LMW  
444 fraction. In the surface ocean, where the signal is dominated by alkoxy C, thought to primarily  
445 represent polysaccharide containing compounds, spectra are essentially identical to those  
446 published previously. There is a decrease in the relative proportion of the alkoxy C signal  
447 between the surface and deep ocean within the HMW fraction in both basins (Fig. 7a), also  
448 consistent with prior observations. This has been interpreted to represent a highly reactive labile  
449 fraction that is preferentially degraded (Repeta and Aluwihare, 2006). Further, the ratio of O-  
450 alkyl to acetal C of the material that is present in the surface but absent at depth is  
451 approximately  $4 \pm 1$ , confirming that the removed material is likely dominated by  
452 polysaccharides (Sannigrahi et al., 2005). There is no disappearance of other functional groups  
453 with depth, suggesting that the more refractory material within the HMW pool is dominated by

454 alkyl C.

455 Direct NMR measurements of DOC isolated by RO/ED that, on average, isolates far  
456 more material (70-80% of total DOC; Vetter et al., 2007) than either UF or SPE alone, show a  
457 compositional intermediate between our two fractions (Supplemental Fig. 3c; Koprivnjak et al.,  
458 2009; Mao et al., 2012). This is expected, as this material contains a larger fraction of total DOC  
459 and therefore represents a mixture of LMW and HMW material. Therefore, on a bulk structural  
460 level, the largest DOC fraction ever isolated (by RO/ED) is a mixture of two or more  
461 compositionally distinct pools. This observation, coupled with our radiocarbon and elemental  
462 composition data, arguably indicates that efforts to isolate the entire DOC pool can confound  
463 interpretations.

464 Beyond general composition, the specific functional distributions of our LMW SPE-DOC,  
465 dominated by alkyl and carboxyl peaks, is also remarkably similar to the functional distribution of  
466 the proposed carboxyl-rich alicyclic molecule (CRAM) fraction of DOC (Hertkorn et al., 2006).  
467 CRAM is hypothesized to be distributed throughout the ocean at all depths, be present in all  
468 MW fractions, and represent a major refractory component of marine DOC. The proposed  
469 functional composition of this material was based on two different solid-state NMR based  
470 approaches. CRAM was first proposed by calculating the difference between deep ocean and  
471 surface UDOC spectra, revealing a component dominated by carboxyl and alkyl C with a  
472 smaller contribution from aromatic C (Hertkorn et al., 2006), and later by a similar approach  
473 subtracting the spectra of UDOC from RO/ED spectra in order to visualize the component of the  
474 DOC pool not isolated by ultrafiltration (Koprivnjak et al., 2009). These visualizations closely  
475 matched that of the hypothetical CRAM fraction and suggested that CRAM is in fact a dominant  
476 component of the background refractory pool of DOC. More important, these subtractions  
477 resulted in spectra identical to that of our LMW SPE-DOM fraction (Supplemental Fig. 3b),  
478 providing further evidence that our LMW material is functionally representative of the whole  
479 LMW DOC pool and confirms that our LMW DOC fraction allows the first direct means to  
480 investigate the composition and cycling of this major DOC pool. The presence and dominance  
481 of CRAM material within the refractory LMW pool is consistent with the relative homogeneity of  
482 the functional composition our LMW DOC fraction at all depths and in both basins.

483 Finally, the identification of CRAM material within the HMW pool, both by previous  
484 studies and in this data (Supplemental Fig. 4), combined with the dominance of CRAM in our  
485 LMW fraction shows that CRAM in fact spans a large range of MW. Combined with the large  
486 range of  $^{14}\text{C}$  ages of our DOC fractions and specifically the LMW material, this observation  
487 suggests that much of the CRAM material that dominates the background DOC pool, is likely

488 produced directly in the surface ocean, in addition to being produced by successive microbial  
489 reprocessing and degradation throughout the water column. This challenges the hypothesis that  
490 LMW DOC comes primarily from the decomposition of HMW DOC and that microbial  
491 degradation is the main driver shaping size-reactivity relationships.

492 *4.2 Changes in deep ocean DOC during ocean circulation*

493 The waters at 2500 m at the BATS and HOTS sites are within the North Atlantic Deep  
494 Water and Pacific Deep Water water-masses respectively. If these water-masses are  
495 interpreted as upstream and downstream endmembers of deep ocean circulation, differences in  
496 the concentration and properties of DOC between basins provides a direct means of  
497 investigating the utilization of DOC over the millennial timescales associated with deep water  
498 movement (DeVries and Primeau, 2011; Hansel, 2013b; Bercovici et al., 2018; Druffel et al.,  
499 2019).

500 At 2500 m there is a  $11 \pm 3 \mu\text{M}$  offset in total DOC concentration between basins,  
501 demonstrating deep removal of approximately 25% of total DOC during ocean circulation (Fig.  
502 6a). This observation is similar to independent prior estimates (e.g.,  $\sim 14 \mu\text{mol kg}^{-1}$ ; Hansell,  
503 2013). Within the individual fractions the offset is  $1.3 \pm 0.7 \mu\text{M}$  for HMW UDOC and  $5.2 \pm 0.7 \mu\text{M}$   
504 for LMW SPE-DOM, representing approximately 10% and 45% of the total remineralized DOC  
505 respectively. This indicates that a large proportion of the remineralized DOC in the deep sea is  
506 LMW, despite the expected recalcitrance of LMW material (Benner and Amon, 2015). Further,  
507 given that LMW material makes up the majority of deep ocean DOC, this result and the prior  
508 observation of a significant concentration gradient requires that some portion of LMW be  
509 removed on the time scale of deep ocean circulation. When considered relative to the DOC  
510 concentration of the HMW UDOM, LMW SPE-DOC, and non-retained fractions individually, the  
511 basin offsets correspond to an approximately 30% decrease in DOC in each fraction, apparently  
512 suggesting that all three pools are removed at generally similar rates despite the expected  
513 differences in reactivity. However, these basin offsets can only show the net change in DOC  
514 concentration and cannot differentiate removal from processes that might add material to the  
515 deep ocean DOC pool such as dissolution of particles, chemoautotrophy, or hydrothermal  
516 sources (e.g., Smith et al., 1992; Ingalls et al., 2006; McCarthy et al., 2010). If there were  
517 additions to an individual pool, the apparent utilization of that pool from concentration  
518 measurements could represent an underestimation of the actual removed material. Therefore,  
519 offsets in properties of each fraction between basins other than concentration must be used in  
520 order to deconvolute the influence of additions to the DOC pool from the removal of material.

521 The bulk  $\Delta^{14}\text{C}$  of DOC represents an average of a heterogeneous pool of material.  
522 Despite this, barring any changes to the concentration or distribution of this material, the  
523 average  $\Delta^{14}\text{C}$  of the total DOC pool will change as a function of time. However, because of the  
524 removal and potential additions of material with unique radiocarbon content during deep ocean  
525 circulation, aging of the total DOC pool cannot be differentiated from these processes. Despite  
526 this removal, and potential addition, of DOC during ocean circulation, the radiocarbon age of  
527 total DOC is largely conserved. A number of studies have shown that the  $\Delta^{14}\text{C}$  value of DOC  
528 tracks the  $\Delta^{14}\text{C}$  value of DIC and is consistent with the timescales of water -mass transit times  
529 (e.g., Bercovici et al., 2018a; Druffel et al., 2019). Within our separate fractions we hypothesize  
530 that changes in  $\Delta^{14}\text{C}$  that differ from that of total DOC can be interpreted as changes in the age  
531 distribution of the pool caused by the removal or addition of DOC. An age offset less than that of  
532 the total DOC pool would require fresh inputs of younger material during deep circulation,  
533 whereas an age offset greater than total DOC would require the selective removal of younger,  
534 more labile material.

535 There are significant  $\Delta^{14}\text{C}$  offsets ( $p < 0.01$ ) between the deep waters (2500 m) of the  
536 Central North Atlantic and NCP in total DOC and in both HMW and LMW DOC fractions (Fig.  
537 6b). The average  $\Delta^{14}\text{C}$  offset at 2500 m is  $150 \pm 10 \text{ \textperthousand}$  in total DOC,  $90 \pm 25 \text{ \textperthousand}$  for HMW UDOC,  
538 and  $140 \pm 35 \text{ \textperthousand}$  for the LMW SPE-DOC fraction; representing  $2300 \pm 200$ ,  $1100 \pm 200$ , and  
539  $2200 \pm 500$  years respectively (Supplemental Fig. 5). Total DOC, LMW SPE-DOC, and the non-  
540 retained DOC all have equivalent age offsets. Combined with the observed concentration  
541 offsets discussed above, showing that LMW DOC material is being removed during ocean  
542 circulation, this suggests that the removal is non-selective relative to  $^{14}\text{C}$  age and there is no  
543 significant preferential utilization of younger DOC.

544 In contrast, the apparent age offset of HMW UDOC is substantially less than that of total  
545 DOC. We hypothesize that this represents an input of fresh HMW DOC to the deep ocean  
546 during circulation and demonstrates that the 30% decrease in HMW DOC concentration  
547 between basins is in fact an underestimation of the actual HMW DOC removal, consistent with  
548 the higher expected lability of this pool relative to LMW DOC. The  $\Delta^{14}\text{C}$  value of the “removed”  
549 DOC, calculated by mass balance, is  $87 \pm 166 \text{ \textperthousand}$  for the total DOC pool. It is unreasonable that  
550 the DOC removed between the deep North Central Atlantic and the NCP would have a  
551 radiocarbon age above modern (Beaupré et al., 2009), and further demonstrates that removal or  
552 utilization of DOC is not the only process involved, and there are likely additions of fresher  
553 material. The  $\Delta^{14}\text{C}$  value of removed HMW UDOC is  $-79 \pm 157 \text{ \textperthousand}$  that, as stated above, makes  
554 up ~30% of the HMW DOC pool at 2500 m. This value is indistinguishable from the “removed”

555 total DOC and is similarly unlikely, therefore requiring some addition of fresh material.  
556 Combined with the other results, the addition of fresher material to the HMW pool likely explains  
557 the basin age offsets for both total and HMW DOC. In contrast, the  $\Delta^{14}\text{C}$  value of removed LMW  
558 DOC is  $-132 \pm 125 \text{ \textperthousand}$ , consistent with the old LMW material that appears to be utilized during  
559 ocean circulation.

560 Despite the suggestion of non-selective removal of LMW DOC from  $\Delta^{14}\text{C}$  offsets, the  
561 observed offsets in C/N ratios in the deep ocean are consistent with selective utilization of more  
562 labile LMW material. In both the total DOC pool and in the LMW fraction there is an increase in  
563 the C/N ratio between the Central North Atlantic and NCP (Total DOC offset =  $7 \pm 4$ ; LMW offset  
564 =  $4 \pm 2.5$ ). This increase demonstrates that there is a preferential removal of N-containing  
565 material, consistent with expectations for the removal of fresher, less degraded material (Benner  
566 and Amon, 2015). In contrast, the lack of any corresponding offset in the HMW DOC fraction  
567 suggests that there is either no selectivity in degradation or utilization of HMW material, or as  
568 suggested from the  $^{14}\text{C}$  age offsets between basins, that there is a relatively constant input of  
569 new, young, low C/N material to the HMW DOC pool.

570 While there is clear removal of LMW DOC during ocean circulation, difference spectra  
571 indicate that there is essentially no change in the functional composition of this material during  
572 deep ocean circulation. This suggests that, in contrast to HMW DOM, the removal of LMW DOC  
573 is completely non-selective. This NMR-based conclusion corresponds to the traditional view of a  
574 refractory “background” pool, however at the same time is inconsistent with the  $\Delta^{14}\text{C}$  and C/N  
575 offsets in LMW SPE-DOC between ocean basins. There are several possible explanations for  
576 this apparent contrast. First, it is possible that the selective utilization of specific compound  
577 types cannot be determined at the functional group level of resolution provided by these NMR  
578 measurements. However, the changes in  $\Delta^{14}\text{C}$  of this material combined with the functional  
579 similarity of LMW SPE-DOC material in the surface and deep ocean, despite the large age  
580 gradient with depth, more likely demonstrates that freshly produced LMW DOC and older LMW  
581 material that survives mixing into the deep ocean both represent a similar mixture of compound  
582 structures containing the same dominant functional groups. This suggests that the pool of  
583 CRAM molecules is a heterogeneous mixture of compounds with different cycling rates but  
584 generally similar structures. Second, the increase in C/N ratio between basins, implying a  
585 selective loss of N-containing compounds, potentially demonstrates that N-containing material  
586 within the LMW pool has a generally similar functional composition as the bulk material. In other  
587 words, this suggests that there is a substantial amount of N-containing CRAM molecules in the  
588 deep ocean.

589 In contrast, while there is no change in the elemental ratios of HMW UDOM, solid-state  
590 NMR difference spectra indicate differences in the functional composition of this material in the  
591 deep ocean between the Atlantic and Pacific (Fig. 7c). In the HMW fraction the primary  
592 difference between spectra corresponds to a higher relative proportion of alkoxy and carboxyl C  
593 in the deep waters of the Pacific. The apparent increase in alkoxy C during deep water transit is  
594 the opposite of the trend observed between surface and deep waters in both basins and  
595 suggests that rather than the removal of a more reactive carbohydrate-like fraction during deep  
596 ocean circulation, there is some amount of carbohydrate-like material added to the deep ocean  
597 HMW DOC pool. We note that the difference spectra also reveal considerably more alkoxy C in  
598 the surface waters of the NCP than the surface waters of the Central North Atlantic (Fig. 7c).  
599 Since surface composition is linked to more rapid local processes, this difference in the surface  
600 between basins likely represents a difference in overall biogeochemistry at these two sites.  
601 Since highly oligotrophic, microbial loop dominated regions generally correspond with both  
602 elevated DOC concentration and C/N ratio, this offset in bulk composition is likely due to the  
603 consistently oligotrophic nature of the HOT site (Williams, 1995; Hansell and Carlson, 2001).

604

## 605 **5.0 Summary and Conclusions**

606 A combination of ultrafiltration and solid phase extraction was used to specifically isolate  
607 HMW and LMW DOC from throughout the water column in both the Central North Atlantic and  
608 NCP Subtropical Gyres. The novel LMW fraction collected for this study represents a new and  
609 direct approach to investigate the composition and cycling of a large fraction of the DOC pool  
610 that dominates the refractory background pool and persists in the ocean for millennial  
611 timescales.

612 Compared to the total DOC pool, or the more commonly studied HMW DOC pool, the  
613 LMW SPE-DOC fraction isolated for this study is older, with depleted  $\delta^{13}\text{C}$  values, higher C/N  
614 ratios, and a composition dominated by alkyl and carboxyl functional groups. NMR analyses of  
615 LMW DOC components demonstrate that the functional composition is essentially identical  
616 throughout the water column and in both ocean basins (Fig. 4b), suggesting a uniform  
617 background DOC pool. The specific distribution of functional groups is remarkably similar to the  
618 CRAM family of structures that has been proposed as a major component of refractory marine  
619 DOC. This is consistent with the slower cycling rates suggested by the considerably older  
620 average  $^{14}\text{C}$  ages of the LMW SPE-DOC fraction.

621        Despite the suggestion from structural composition data that LMW DOC is a  
622 homogeneous refractory background pool, there is also clear evidence for active cycling within  
623 the LMW pool. Depth changes in elemental ratios and isotopic values of LMW SPE-DOC  
624 suggest that there is labile, C-rich material that dominates the surface LMW DOC pool but is  
625 remineralized on timescales shorter than ocean circulation. Further, the clear shifts in LMW  
626 SPE-DOC age with depth suggest that it spans a range of reactivities and cycling rates. There is  
627 also clear removal of LMW DOC in the deep ocean during overturning circulation accompanied  
628 by changes that are consistent with the preferential utilization of a less refractory LMW  
629 component. NMR results also suggest the presence of essentially indistinguishable CRAM  
630 material within the HMW fraction, indicating that CRAM spans a wide range of molecular sizes  
631 and is therefore not exclusively derived from the microbial degradation of labile HMW material.

632        Relative to the LMW SPE-DOC fraction, the HMW DOC isolated for this study has  
633 younger  $^{14}\text{C}$  ages, enriched  $\delta^{13}\text{C}$  values, lower C/N ratios and a dominant carbohydrate like  
634 composition. Basin concentration offsets show removal of HMW DOC during overturning  
635 circulation, however  $^{14}\text{C}$  age offsets are less than can be accounted for based solely on aging,  
636 suggesting the addition of younger HMW material to the deep ocean. This is consistent with  
637 NMR data that demonstrate an increase in carbohydrate-like material in the deep ocean during  
638 deep ocean circulation. We hypothesize this represents a bulk structural signature resulting  
639 from the dissolution of sinking particles, with fresh carbohydrate material being added to the  
640 relatively small HMW DOC pool that survives in the deep ocean. This observation is consistent  
641 with previous  $^{14}\text{C}$  data suggesting a likely source of neutral sugars to the deep ocean from  
642 rapidly sinking particles (Repeta and Aluwihare, 2006; Walker et al., 2016a). Overall, our data  
643 suggest that particle inputs to the deep ocean are likely important in maintaining deep ocean  
644 HMW DOC concentrations.

645        These first direct analyses of the LMW DOC pool and comparison to the more commonly  
646 investigated HMW DOC pool provided data consistent with many basic assumptions about both  
647 the differential cycling of different MW pools and the presence of a refractory background pool  
648 dominated by CRAM like molecular structures. However, despite a generally invariable  
649 functional composition, LMW DOC is likely a more dynamic pool than was previously  
650 recognized, with properties implying a diverse, wide ranging family of CRAM like molecules in  
651 terms of molecular size, N-content and relative reactivity. Our data also point to an unexpected  
652 influence of surface particle flux in both maintaining deep ocean HMW DOC concentrations and  
653 shaping its molecular composition. Future work should focus on the specific molecular  
654 structures of CRAM like material across a range of DOC molecular sizes and what properties

655 potentially govern the differences in relative reactivity of the different structurally related  
656 compounds.

657

## 658 **6.0 Figure and Table Captions**

659 Figure 1. Total DOC concentration and amount of C recovered with a combined UF/SPE  
660 approach. Depth profiles of (a) total DOC concentration, (b) DOC isolated by ultrafiltration and  
661 (c) solid phase extraction, and (d) non-retained DOC. Points connected by solid lines represent  
662 samples collected in the North Central Pacific (HOT), and dotted lines represent samples  
663 collected in the Central North Atlantic (BATS). Points represent the error weighted average of  
664 values from 2 repeat cruise samplings in May and August, and error bars represent the  
665 standard error.

666

667 Figure 2. Radiocarbon content ( $\Delta^{14}\text{C}$ ) of total DOC and C recovered with a combined UF/SPE  
668 approach. Depth profiles of (a) total DOC, (b) HMW UDOC, (c) LMW SPE-DOC, and (d) the  
669 non-retained material (calculated by difference). Points connected by solid lines represent  
670 samples collected in the North Pacific Subtropical Gyre (HOT), and dotted lines represent  
671 samples collected in the Central North Atlantic (BATS). Points represent the error weighted  
672 average of values from 2 repeat cruise samplings in May and August, and error bars represent  
673 the standard error. The uncertainty of the non-retained fraction represents the propagated error  
674 associated with instrumental uncertainty of both the DOC concentrations and  $\Delta^{14}\text{C}$  values.  
675 Samples for total DOC  $^{14}\text{C}$  analyses were only collected at BATS during the May sampling  
676 cruise, the error bars for these values represent the instrument uncertainty of  $\pm 5\text{‰}$ .

677

678 Figure 3. Carbon to nitrogen elemental ratios ( $\text{C}/\text{N}$ )<sub>a</sub> and stable C isotopes ( $\delta^{13}\text{C}$ ) of total DOM  
679 and DOM recovered with a combined UF/SPE approach. Depth profiles of (a and e) total DOM,  
680 (b and f) HMW UDOM, (c and g) LMW SPE-DOM and (d and h) the non-retained material  
681 (calculated by difference). Points connected by solid lines represent samples collected in the  
682 North Central Pacific (HOT), and dotted lines represent samples collected in the Central North  
683 Atlantic (BATS). Points represent the error weighted average of n=3 measurements from  
684 material collected on each of 2 repeat cruise samplings in May and August, and error bars  
685 represent the standard error. The uncertainty of the C/N ratio and  $\delta^{13}\text{C}$  of the non-retained  
686 fraction represents the propagated error associated with instrumental uncertainty of isotopic

687 values and/or DOC/DON concentrations. Samples for total DOC  $^{13}\text{C}$  analyses were only  
688 collected at BATS during the May sampling cruise, the error bars for these values represent the  
689 instrument uncertainty of  $\pm 0.2\text{‰}$ .

690

691 Figure 4. Solid-state  $^{13}\text{C}$  NMR spectra of HMW UDOC and LMW SPE-DOC. (a) spectra of  
692 HMW UDOC collected in the surface (purple) and deep ocean (2500m; light blue) from the  
693 Central North Atlantic (BATS; dashed lines) and North Central Pacific (HOT; solid lines). (b)  
694 spectra of LMW SPE-DOC collected in the surface (dark red) and deep ocean (2500m; orange)  
695 from BATS (dashed lines) and HOT (solid lines). Spectral assignments are as follows: ketone,  
696 aldehyde, quinone (220-191 ppm); COO, NC=O (191-164 ppm); aromatic C-O (164-150 ppm);  
697 aromatics (150-117 ppm); OCO (94-60 ppm); OC (94-60 ppm); OCH<sub>3</sub>, NCH (60-45 ppm);  
698 CCH<sub>2</sub>C, CCHC (45-30 ppm); CCH<sub>2</sub>C, CCH<sub>3</sub> (30-0 ppm). Regions have been combined (as in  
699 Koprivnjak et al., 2009), resulting in four generalized groupings: carboxyl C (220-164 ppm),  
700 aromatic C (164-117 ppm), alkoxy C (117-60 ppm), and alkyl C (60-0 ppm). Spectra showing all  
701 functional group assignments are presented in Supplemental Figure 2.

702

703 Figure 5. Offsets between the surface and 2500 m of (a) the concentration ( $\Delta\text{DOC}$ ) and (b)  
704 radiocarbon content ( $\Delta\Delta^{14}\text{C}$ ) of total DOC and material recovered with a combined UF/SPE  
705 approach. Solid bars represent the surface versus deep offset in the NPSG and striped bars  
706 represent the surface versus deep offset in the Central North Atlantic. Values represent the  
707 offsets between error weighted averages of values from 2 repeat cruise samplings in May and  
708 August, and error bars represent the propagated standard deviation of both sampling seasons  
709 and both depths. The uncertainty of the non-retained fraction represents the propagated error  
710 associated with instrumental uncertainty of the DOC concentrations and isotopic values.

711

712 Figure 6. Basin offsets between the Central North Atlantic (BATS) and North Central Pacific  
713 (HOT) of (a) the concentration ( $\Delta\text{DOC}$ ) and (b) radiocarbon values ( $\Delta\Delta^{14}\text{C}$ ) of total DOC and  
714 material recovered with a combined UF/SPE approach at 2500 m. Values represent the offsets  
715 between error weighted averages of values from 2 repeat cruise samplings in May and August,  
716 and error bars represent the propagated standard deviation of both sampling seasons and both  
717 basins.

718

719 Figure 7. Area normalized solid-state  $^{13}\text{C}$  NMR difference spectra from HMW UDOC and LMW  
720 SPE-DOC. (a) difference between surface and deep (2500 m) HMW UDOC material in the

721 North Central Pacific (HOT; purple) and Central North Atlantic (BATS; light blue). (b) difference  
722 between surface and deep (2500 m) LMW SPE-DOC material at HOT (red) and BATS (orange).  
723 (c) difference between HMW UDOC material collected at HOT and BATS from surface (purple)  
724 and deep ocean (2500 m; light blue). (d) difference between LMW UDOC material collected at  
725 HOT and BATS from surface (red) and deep ocean (2500 m; orange). Values above the  
726 baseline demonstrate the removal of material with depth or between basins (from surface to  
727 deep or BATS to HOT) and values below the baseline demonstrate the addition of material with  
728 depth or between basins (from surface to deep or BATS to HOT).

729

730 Table 1. Properties of total DOM from which MW fractions were isolated including concentration,  
731 C/N ratio, and carbon isotopes ( $\delta^{13}\text{C}$ ,  $\Delta^{14}\text{C}$ )

732

733 Table 2. Isolation parameters and properties of LMW SPE-DOM and HMW UDOM fractions  
734 including recovery efficiency, C/N ratio, and carbon isotopes ( $\delta^{13}\text{C}$ ,  $\Delta^{14}\text{C}$ ). Stable isotopic ( $\delta^{13}\text{C}$ )  
735 values and C/N ratios represent the average of n=3 measurements of each sample and errors  
736 represent the standard deviation. Radiocarbon ( $\Delta^{14}\text{C}$ ) errors represent the instrument  
737 uncertainty.

738

## 739 **7.0 Acknowledgements, Samples, and Data**

740 The authors would foremost like to thank the captains and crews of the UNOLS vessels R/V Kilo  
741 Moana and R/V Atlantic Explorer whose effort allowed for the collection of this novel sample set.  
742 Additional thanks to Amy Bour, Jessie Zupcic-Moore, Danielle Creeley, Yasu Yamaguchi,  
743 Danielle Glynn, Hope Ianiri, Yuan Shen, and Ron Benner for assistance with sample collection  
744 and processing, Colin Carney and Dyke Andreasen of UCSC-SIL for assisting with EA-IRMS  
745 analysis, Alexandra Hedgpeth and Paula Zermenio of LLNL-CAMS for assistance with AMS  
746 sample preparation, and Kimber Moreland for assistance with NMR spectral integration and  
747 processing.

748 All data aside from NMR spectral data are presented in tables within the main text and  
749 supplemental materials of this manuscript and is publicly available in the BCO-DMO data  
750 repository. Data archiving of NMR spectra and integrations is underway in the BCO-DMO data

751 repository. Pending archiving completion, the data are available as Supporting Information  
752 accompanying this submission.

753 This work was primarily supported by a grant from NSF Chemical Oceanography (Award #  
754 1358041) and supported in part by funding from the Canada Research Chair program to B.D.W.  
755 Total DOC  $^{14}\text{C}$  analysis was performed under a UCI Keck Carbon Cycle AMS Lab postdoctoral  
756 scholarship to B.D.W. A portion of this work was performed under the auspices of the U.S.  
757 Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-  
758 07NA27344.

759

760 **8.0 References**

761 Amon, R. M. W., Benner, R., 1996. Bacterial utilization of different size classes of dissolved  
762 organic matter. *Limnology and Oceanography* 41, 41–51.

763

764 Amon, R. M. W., Benner, R., 1994. Rapid cycling of high-molecular-weight dissolved organic  
765 matter in the ocean. *Nature* 369, 549–552.

766

767 Bauer, J. E., Williams, P. M., Druffel, E. R. M., 1992. C-14 activity of dissolved organic carbon  
768 fractions in the north-central Pacific and Sargasso Sea. *Nature* 357, 667–670.

769

770 Beaupré, S. R., Druffel, E. R. M., 2009. Constraining the propagation of bomb-radiocarbon  
771 through the dissolved organic carbon (DOC) pool in the northeast Pacific Ocean. *Deep-Sea  
772 Research Part I – Oceanography Research Papers* 56, 1717–1726.

773

774 Beaupré, S. R., Druffel, E. R. M., Griffin, S., 2007. A low-blank photochemical extraction system  
775 for concentration and isotopic analyses of marine dissolved organic carbon. *Limnology and  
776 Oceanography Methods* 5, 174–184.

777

778 Benner, R., Amon, R. M. W., 2015. The size-reactivity continuum of major bioelements in the  
779 ocean. *Annual Reviews of Marine Science* 7, 185–205.

780

781 Benner, R., Biddanda, B., Black, B., McCarthy, M. D., 1997. Abundance, size distribution, and  
782 stable carbon and nitrogen isotopic compositions of marine organic matter isolated by  
783 tangential-flow ultrafiltration. *Marine Chemistry* 57, 243–263.

784

785 Benner R., Bodungen, V. B., Farrington, J., Hedges, J., Lee, C., Mantoura, F., Suzuki, Y.,  
786 Williams, P. M., 1993. Measurement of dissolved organic carbon and nitrogen in natural waters:  
787 Workshop report. *Marine Chemistry* 41, 5–10.

788

789 Benner, R., Pakulski, J. D., McCarthy, M. D., Hedges, J. I., Hatcher, P. G., 1992. Bulk chemical  
790 characteristics of dissolved organic matter in the ocean. *Science* 255, 1561–1564.

791

792 Bercovici, S. K., McNichol, A. P., Xu, L. and Hansell, D. A., 2018a. Radiocarbon Content of  
793 Dissolved Organic Carbon in the South Indian Ocean. *Geophysical Research Letters* 45, 872–  
794 879.

795

796 Bercovici, S. K., Koch, B. P., Lechtenfeld, O. J., Mccallister, S. L., Schmitt-Kopplin, P., Hansell,  
797 D. A., 2018b. Aging and Molecular Changes of Dissolved Organic Matter Between Two Deep  
798 Oceanic End-Members. *Global Biogeochemical Cycles* 32, 1449-1456.

799

800 Broek, T. A. B., Bour, A. L., Ianiri, H. L., Guilderson, T. P., McCarthy, M. D., 2019. Amino acid  
801 enantiomers in old and young dissolved organic matter: implications for a microbial nitrogen  
802 pump. *Geochimica et Cosmochimica Acta* 247, 207–219.

803

804 Broek, T. A. B., Walker, B. D., Guilderson, T. P., McCarthy, M. D., 2017. Coupled ultrafiltration  
805 and solid phase extraction approach for the targeted study of semi-labile high molecular weight  
806 and refractory low molecular weight dissolved organic matter. *Marine Chemistry* 194, 146-157.

807

808 Carlson, C. A., Hansell, D. A., 2014. DOM sources, sinks, reactivity, and budgets, in: Hansel, D.  
809 A., Carlson, C. A. (Eds.), *The Biogeochemistry of Marine Dissolved Organic Matter*. Academic  
810 Press, pp. 65–126.

811

812 Coppola, A. I., Walker, B. D., Druffel, E. R. M., 2015. Solid phase extraction method for the  
813 study of black carbon cycling in dissolved organic carbon using radiocarbon. *Marine Chemistry*  
814 177, 697–705.

815

816 DeVries, T., Primeau, F., 2011. Dynamically and Observationally Constrained Estimates of  
817 Water-Mass Distributions and Ages in the Global Ocean. *Journal of Physical Oceanography* 41,  
818 2381–2401.

819

820 Druffel, E. R. M., Griffin, S., Wang, N., Garcia, N. G., McNichol, A. P., Key, R. M., Walker, B. D.,  
821 2019. Dissolved Organic Radiocarbon in the Central Pacific Ocean. *Geophysical Research  
letters* 46, 5396–5403.

823

824 Druffel, E. R. M., Griffin, S., Coppola, A. I., Walker, B. D., 2016. Radiocarbon in dissolved  
825 organic carbon of the Atlantic Ocean. *Geophysical Research Letters* 43, 5279–5286.

826

827 Druffel, E. R. M., Griffin, S., Walker, B. D., Coppola, A. I., Glynn, D. S., 2013. Total uncertainty  
828 of radiocarbon measurements of marine dissolved organic carbon and methodological  
829 recommendations. *Radiocarbon* 55, 1135–1141.

830

831 Druffel, E. R. M., Williams, P. M., Bauer, J. E., Ertel, J. R., 1992. Cycling of dissolved and  
832 particulate organic-matter in the open ocean. *Journal of Geophysical Research* 97, 15639–  
833 15659.

834

835 Flerus, R., Lechtenfeld, O. J., Koch, B. P., McCallister, S. L., Schmitt-Kopplin, P., Benner, R.,  
836 Kaiser, K. and Kattner, G., 2012. A molecular perspective on the ageing of marine dissolved  
837 organic matter. *Biogeosciences* 9, 1935–1955.

838

839 Guo, L., Santschi, P. H., Cifuentes, L. A., Trumbore, S. E., Southon, J., 1996. Cycling of high-  
840 molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon  
841 isotopic ( $^{13}\text{C}$  and  $^{14}\text{C}$ ) signatures. *Limnology and Oceanography* 41, 1242–1252.

842

843 Hansell, D. A., 2013a. Recalcitrant dissolved organic carbon fractions. *Annual Review of Marine  
844 Science* 5, 421–445.

845

846 Hansell, D. A., Carlson, C. A., 2013b. Localized refractory dissolved organic carbon sinks in the  
847 deep ocean. *Global Biogeochemical Cycles* 27, 705–710.

848

849 Hansman, R.L., Dittmar, T., Herndl, G. J., 2015. Conservation of dissolved organic matter  
850 molecular composition during mixing of the deep water masses of the northeast Atlantic Ocean.  
851 *Marine Chemistry* 177, 288–297.

852

853 Hayes, J. M., 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes.  
854 *Reviews of Mineral Geochemistry* 43, 225–277.

855

856 Hertkorn, N., Benner, R., Frommberger, M., Schmitt-Kopplin, P., Witt, M., Kaiser, K., Kettrup, A.,  
857 Hedges, J. I., 2006. Characterization of a major refractory component of marine dissolved  
858 organic matter. *Geochimica et Cosmochimica Acta* 70, 2990–3010.

859

860 Hwang, J., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the  
861 ocean? *Science* 299, 881–884.

862

863 Ingalls, A. E., Shah, S. R., Hansman, R. L., Aluwihare, L. I., Santos, G. M., Druffel, E. R. M.,  
864 Pearson, A., 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using  
865 natural radiocarbon. *Proceedings of the National Academy of Sciences* 103, 6442–6447.

866

867 Kaiser, K., Benner, R., 2009. Biochemical composition and size distribution of organic matter at  
868 the Pacific and Atlantic time-series stations. *Marine Chemistry* 113, 63–77.

869

870 Kaiser, K., Benner, R., 2008. Major bacterial contribution to the ocean reservoir of detrital  
871 organic carbon and nitrogen. *Limnology and Oceanography* 53, 99–112.

872

873 Koprivnjak, J. F., Pfromm, P. H., Ingall, E., Vetter, T. A., Schmitt-Kopplin, P., Hertkorn, N.,  
874 Frommberger, M., Knicker, H., Perdue, E. M., (2009) Chemical and spectroscopic  
875 characterization of marine dissolved organic matter isolated using coupled reverse osmosis–  
876 electrodialysis. *Geochimica et Cosmochimica Acta* 73, 4215–4231.

877

878 Lechtenfeld, O. J., Kattner, G. and Flerus, R., 2014. Molecular transformation and degradation  
879 of refractory dissolved organic matter in the Atlantic and Southern Ocean. *Geochimica et*  
880 *Cosmochimica Acta* 126, 321–337.

881

882 Li, S., Zhang, Y., Hong, M., 2010. 3D  $^{13}\text{C}$ – $^{13}\text{C}$ – $^{13}\text{C}$  correlation NMR for de novo distance

883 determination of solid proteins and application to a human A-defensin. *Journal of Magnetic*  
884 *Resonance* 202, 203–210.

885

886 Mao, J., Kong, X., Schmidt-Rohr, K., Pignatello, J. J., Perdue E. M., 2012. Advanced solid-state  
887 NMR characterization of marine dissolved organic matter isolated using the coupled reverse  
888 osmosis/electrodialysis method. *Environmental Science and Technology* 46, 5806–5814.

889

890 McCarthy, M. D., Hedges J. I., Benner, R., 1996. Major biochemical composition of dissolved  
891 high molecular weight organic matter in seawater. *Marine Chemistry* 55, 281–297.

892

893 McCarthy, M. D., Hedges, J. I. and Benner, R., 1993. The chemical composition of dissolved  
894 organic matter in seawater. *Chemical Geology* 107, 503–507.

895

896 Repeta, D. J., Aluwihare, L. I., 2006. Radiocarbon analysis of neutral sugars in high-molecular-  
897 weight dissolved organic carbon: Implications for organic carbon cycling. *Limnology and*  
898 *Oceanography* 51, 1045–1053.

899

900 Sannigrahi, P., Ingall, E. D., Benner, R., 2005. Cycling of dissolved and particulate organic  
901 matter at station aloha: insights from  $^{13}\text{C}$  NMR spectroscopy coupled with elemental, isotopic  
902 and molecular analyses. *Deep-Sea Research Part I* 52, 1429–1444.

903

904 Santos, G. M., Southon, J. R., Griffin, S., Druffel E. R. M., Beaupré S. R., 2007. Ultra small-  
905 mass AMS  $^{14}\text{C}$  sample preparation and analyses at KCCAMS/UCI Facility. *Nuclear Instruments*  
906 *and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 259,  
907 293–302.

908

909 Shen and Benner, 2019. Molecular Properties are a primary control on the microbial utilization  
910 of dissolved organic matter in the ocean. *Limnology and Oceanography X*, X-X.

911

912 Smith, D. C., Simon, M., Alldredge, A. L., Azam, F., 1992. Intense hydrolytic enzyme activity on  
913 marine aggregates and implications for rapid particle dissolution. *Nature* 359, 139–142.

914

915 Stuiver, M., Polach, H. A., 1977. Discussion reporting of  $^{14}\text{C}$  data. *Radiocarbon* 19, 355–363.

916

917 Taylor, J. R., 1997. *An introduction to Error Analysis (second edition)*. Sausalito, CA: University  
918 Science Books.

919

920 Vetter, T. A., Perdue, E. M., Ingall, E., Koprivnjak, J. F., Pfromm, P. H., 2007. Combining  
921 reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter  
922 from seawater. *Separation and Purification Technology* 56, 383–387.

923

924 Vetter, T. A., Perdue, E. M., Ingall, E., Koprivnjak, J. F., Pfromm, P. H., 2007. Combining  
925 reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter  
926 from seawater. *Separation and Purification Technology* 56, 383–387.

927

928 Vogel, J. S., Southon, J. R., Nelson, D. E., Brown, T. A., 1984. Performance of catalytically  
929 condensed carbon for use in accelerator mass-spectrometry. *Nuclear Instrumental Methods in  
930 Physical Research Section B: Beam Interactions with Materials and Atoms* 5, 289–293.

931

932 Walker, B. D., Beaupré, S. R., Guilderson, T. P., Druffel, E. R. M., McCarthy, M. D., 2011.  
933 Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age  
934 relationships in marine dissolved organic matter. *Geochimica et Cosmochimica Acta* 75, 5187–  
935 5202.

936

937 Walker, B. D., Beaupré, S. R., Guilderson, T. P., McCarthy, M. D., Druffel, E.R.M., 2016a.  
938 Pacific carbon cycling constrained by organic matter size, age and composition relationships.  
939 *Nature Geoscience* 9, 888-891.

940

941 Walker, B. D., Griffin, S., Druffel, E., 2016b. Effect of acidified versus frozen storage on marine  
942 dissolved organic carbon concentration and isotopic composition. *Radiocarbon* 59, 843-857.

943

944 Walker, B. D., Primeau, F. W., Beaupré, S. R., Guilderson, T. P., Druffel, E .R. M., McCarthy,  
945 M.D., 2016c. Linked changes in marine dissolved organic carbon molecular size and  
946 radiocarbon age. *Geophysical Research Letters* 43, 10,385–10,393.

947

948 Walker, B. D., Guilderson, T. P., Okimura, K. M., 2014. Radiocarbon signatures and size–age–  
949 composition relationships of major organic matter pools within a unique California upwelling  
950 system. *Geochimica et Cosmochimica Acta* 126, 1–17.

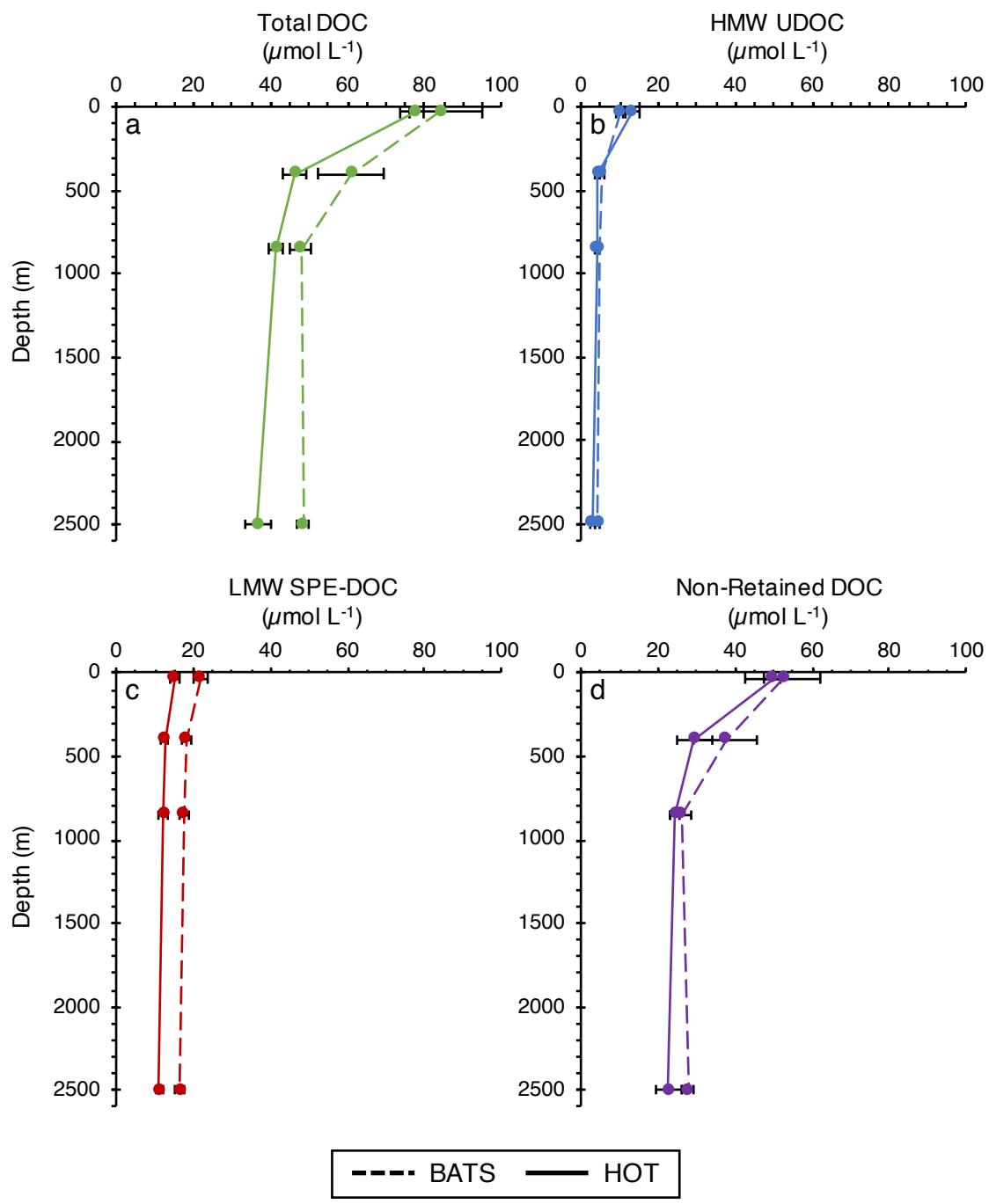
951

952 Williams, P. J. leB., 1995. Evidence for the seasonal accumulation of carbon-rich dissolved  
953 organic material, its scale in comparison with changes in particulate material and the  
954 consequential effect on net C/N assimilation ratios. *Marine Chemistry* 51, 17-29.

955

956 Williams, P. M., Druffel, E. R. M., 1987. Radiocarbon in dissolved organic matter in  
957 the central North Pacific Ocean. *Nature* 330, 246–248.

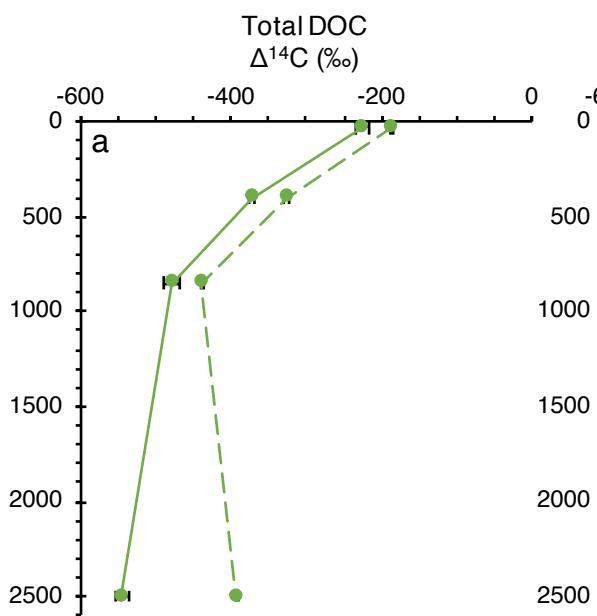
958


959 Zigah, P. K., McNichol, A. P., Xu, L., Johnson, C., Santinelli, C., Karl, D. M., Repeta D. J., 2017.  
960 Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by  
961 carbon isotopes. *Geophysical Research Letters* 49, 4421–9.

962

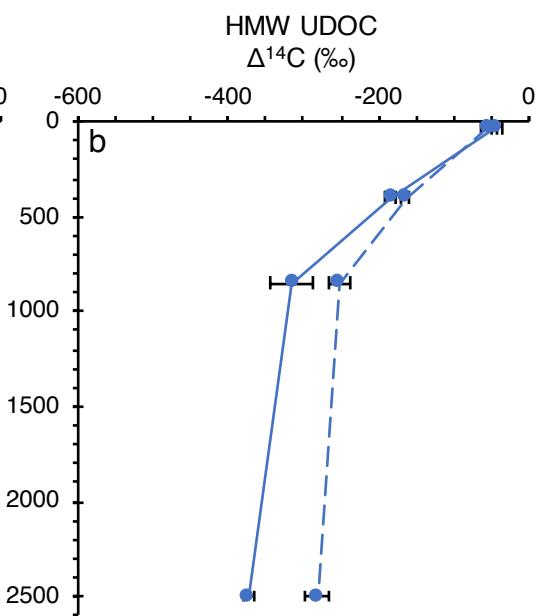
963 Ziolkowski, L. A., Druffel, E. R. M., 2010. Aged black carbon identified in marine dissolved  
964 organic carbon. *Geophysical Research Letters* 37, L16601.

965


**Figure 1.**

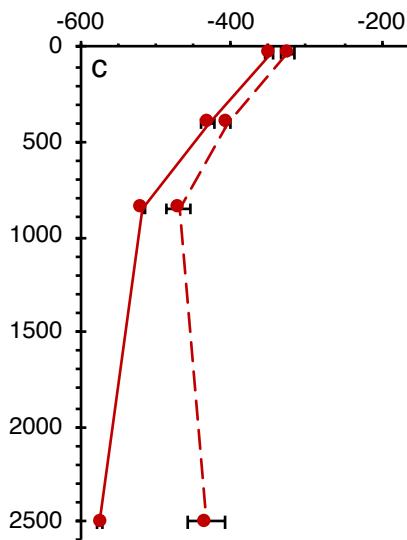


**Figure 2.**


Total DOC  
 $\Delta^{14}\text{C}$  (‰)

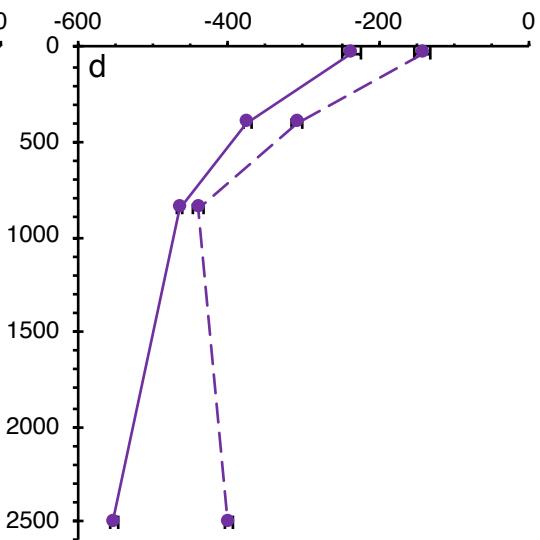
Depth (m)




HMW UDOC  
 $\Delta^{14}\text{C}$  (‰)

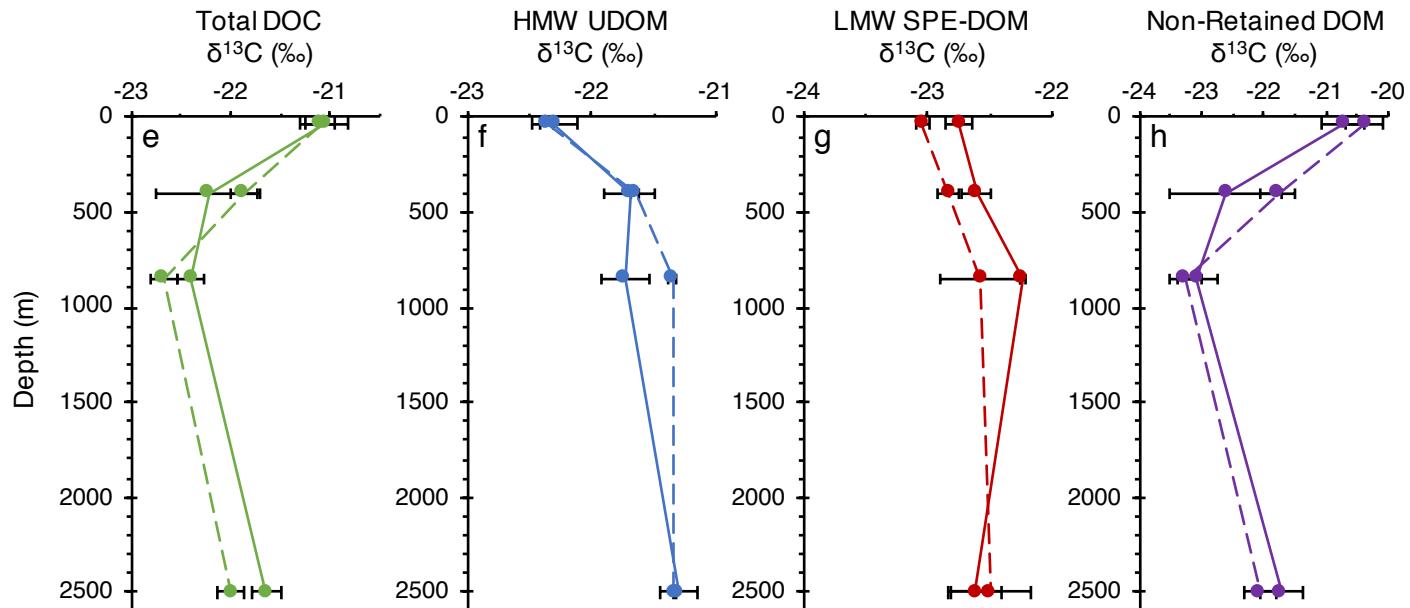
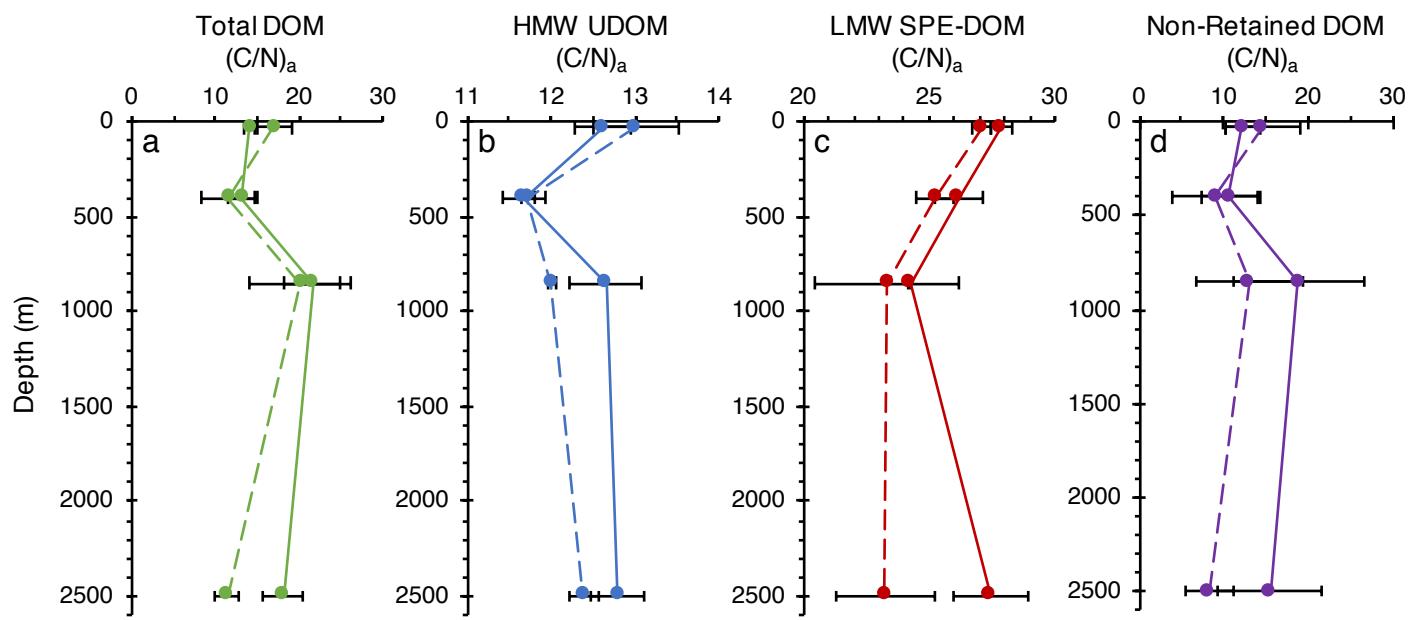
Depth (m)




LMW SPE-DOC  
 $\Delta^{14}\text{C}$  (‰)

Depth (m)





Non-Retained DOC  
 $\Delta^{14}\text{C}$  (‰)

Depth (m)

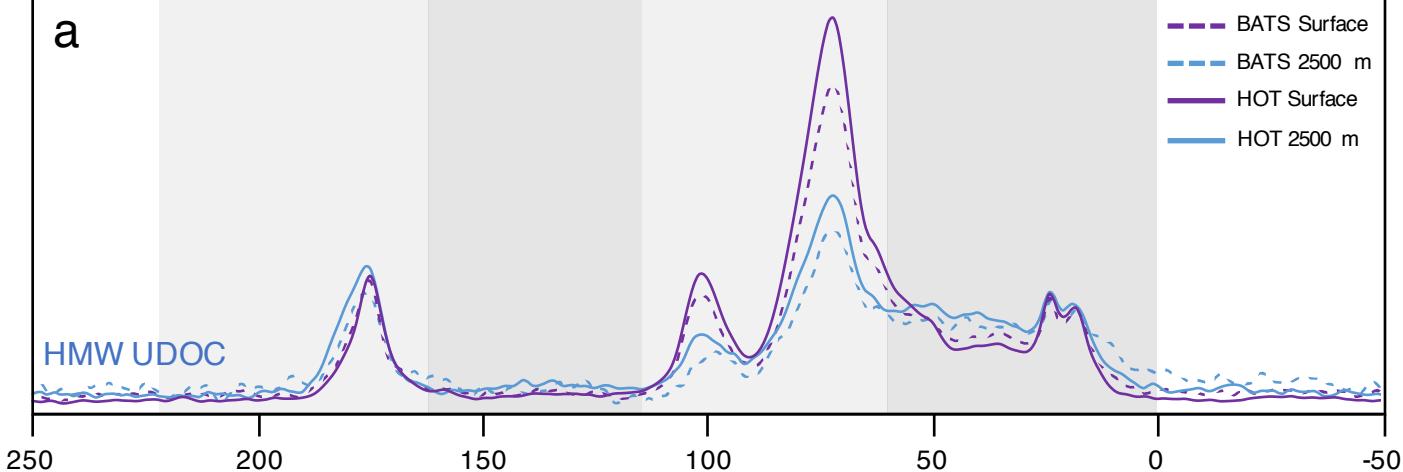
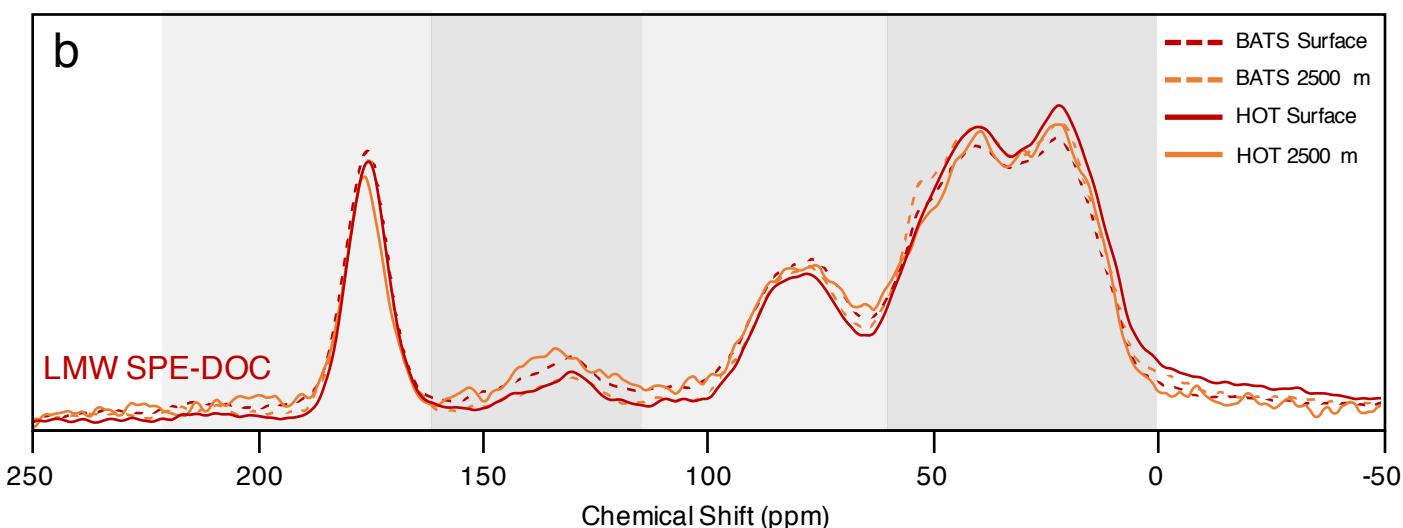


--- BATS — HOT

**Figure 3.**

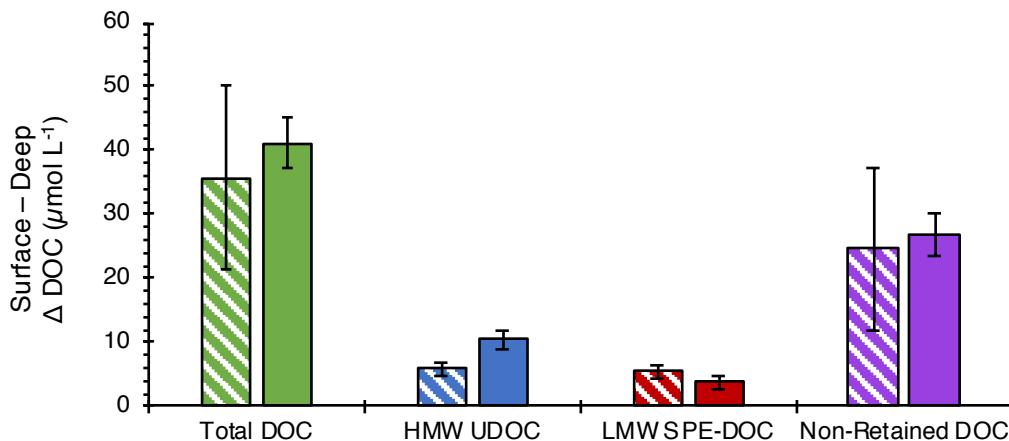


--- BATS — HOT

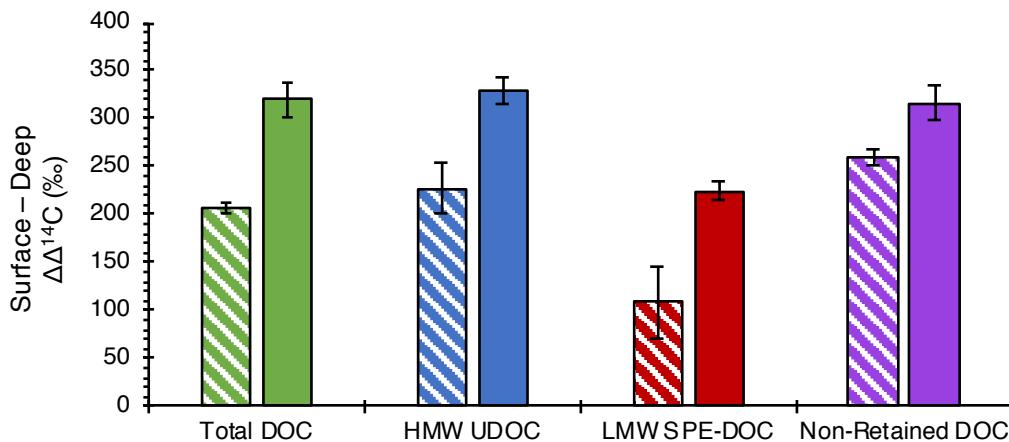


**Figure 4.**

carboxyl

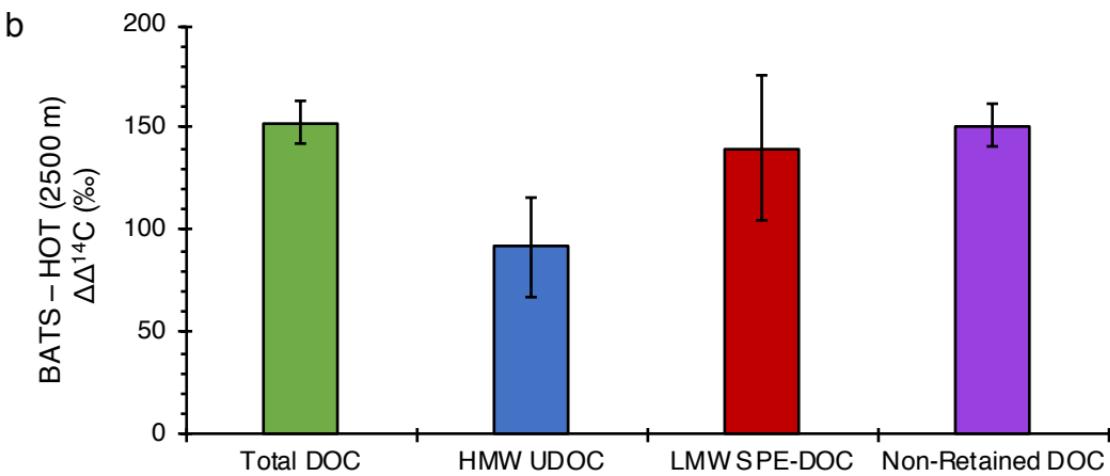
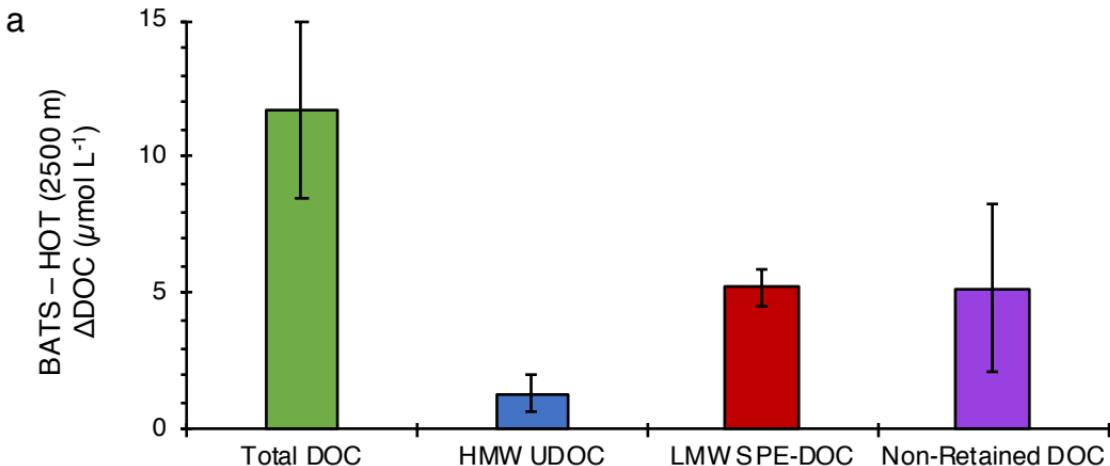
aromatic


alkoxy

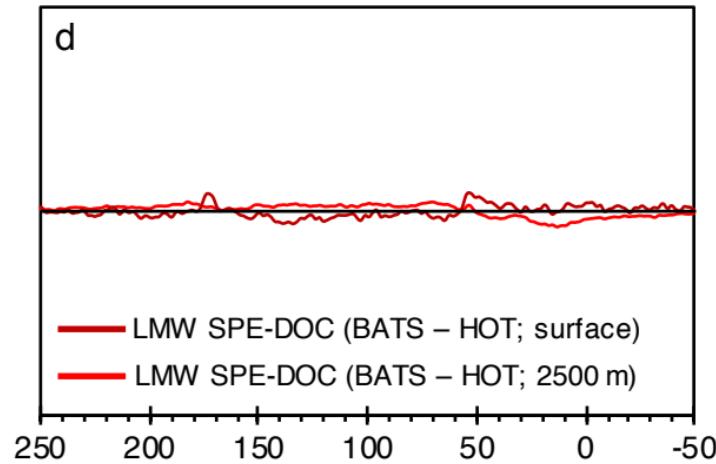
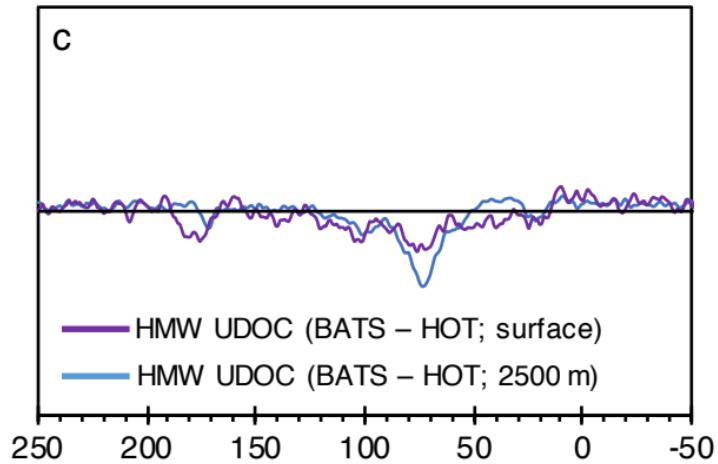
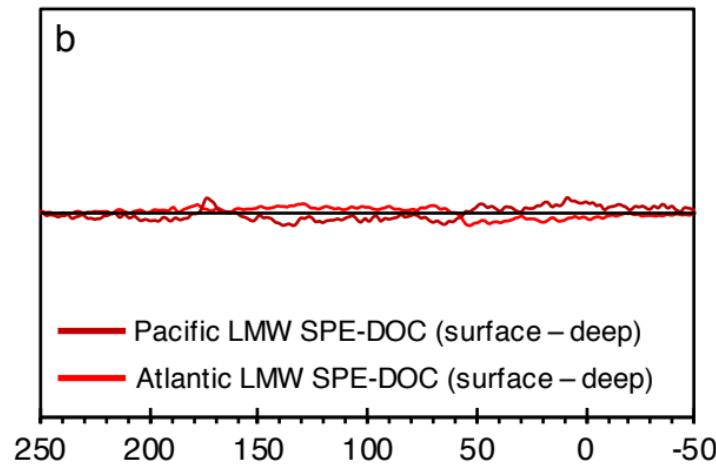
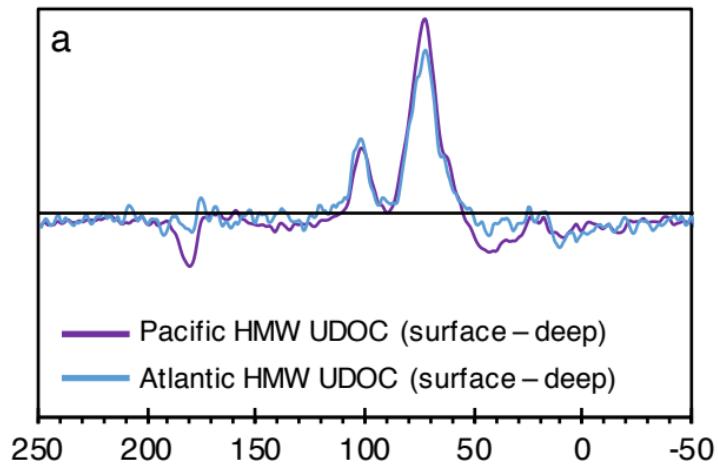
alkyl


**a****b**

**Figure 5.**



a







b



**Figure 6.**



**Figure 7.**



| location | year | month  | sample type | depth (m) | [DOC] (µM) | ±   | C/N  | ±    | UCIAMS # | δ <sup>13</sup> C (‰) | ±   | Fm     | ±      |
|----------|------|--------|-------------|-----------|------------|-----|------|------|----------|-----------------------|-----|--------|--------|
| HOT      | 2014 | August | Total DOM   | 7.5       | 79.8       | 0.6 | 14.1 | 1.6  | 158141   | -20.8                 | 0.2 | 0.7911 | 0.0026 |
| HOT      | 2014 | August | Total DOM   | 400       | 47.2       | 2.8 | 13.2 | 1.7  | 158145   | -22.7                 | 0.2 | 0.6343 | 0.0023 |
| HOT      | 2014 | August | Total DOM   | 850       | 41.0       | 1.1 | 19.7 | 5.0  | 158144   | -22.4                 | 0.2 | 0.5375 | 0.0026 |
| HOT      | 2014 | August | Total DOM   | 2500      | 34.8       | 5.3 | 17.8 | 4.8  | 158143   | -21.8                 | 0.2 | 0.4663 | 0.0020 |
| HOT      | 2015 | May    | Total DOM   | 7.5       | 75.9       | 1.2 | 14.3 | 1.8  | 164612   | -21.3                 | 0.2 | 0.7715 | 0.0019 |
| HOT      | 2015 | May    | Total DOM   | 400       | 45.5       | 7.8 | 13.1 | 3.9  | 164613   | -21.7                 | 0.2 | 0.6308 | 0.0017 |
| HOT      | 2015 | May    | Total DOM   | 850       | 41.8       | 4.6 | 23.4 | 6.1  | 168551   | --                    | --  | 0.5140 | 0.0018 |
| HOT      | 2015 | May    | Total DOM   | 2500      | 38.6       | 5.3 | 18.4 | 4.9  | 168540   | -21.5                 | 0.2 | 0.4519 | 0.0022 |
| BATS     | 2015 | August | Total DOM   | 7.5       | 94.3       | 4.9 | 18.7 | 3.5  | --       | --                    | --  | --     | --     |
| BATS     | 2015 | August | Total DOM   | 400       | 69.0       | 8.6 | 14.1 | 4.8  | --       | --                    | --  | --     | --     |
| BATS     | 2015 | August | Total DOM   | 850       | 50.5       | 1.1 | 15.2 | 1.7  | --       | --                    | --  | --     | --     |
| BATS     | 2015 | August | Total DOM   | 2500      | 49.7       | 1.9 | 11.8 | 2.8  | --       | --                    | --  | --     | --     |
| BATS     | 2016 | May    | Total DOM   | 7.5       | 74.1       | 7.8 | 15.3 | 2.6  | 180280   | -21.1                 | 0.2 | 0.8204 | 0.0018 |
| BATS     | 2016 | May    | Total DOM   | 400       | 52.9       | 1.1 | 9.2  | 4.1  | 180269   | -21.9                 | 0.2 | 0.6793 | 0.0016 |
| BATS     | 2016 | May    | Total DOM   | 850       | 45.1       | 1.6 | 25.0 | 12.2 | 180271   | -22.7                 | 0.2 | 0.5662 | 0.0016 |
| BATS     | 2016 | May    | Total DOM   | 2500      | 47.1       | 1.2 | 11.0 | 2.7  | 180276   | -22.0                 | 0.2 | 0.6129 | 0.0018 |

| $\Delta^{14}\text{C}$ (‰) | ±   | $^{14}\text{C}$ age (ybp) | ±  |
|---------------------------|-----|---------------------------|----|
| -215.1                    | 2.6 | 1880                      | 30 |
| -370.6                    | 2.3 | 3655                      | 30 |
| -466.7                    | 2.6 | 4985                      | 40 |
| -537.4                    | 2.0 | 6130                      | 35 |
| -234.5                    | 1.9 | 2085                      | 25 |
| -374.1                    | 1.7 | 3700                      | 25 |
| -490.0                    | 1.8 | 5345                      | 30 |
| -551.6                    | 2.2 | 6380                      | 40 |
| --                        | --  | --                        | -- |
| --                        | --  | --                        | -- |
| --                        | --  | --                        | -- |
| --                        | --  | --                        | -- |
| -186.1                    | 4.0 | 1590                      | 20 |
| -326.1                    | 4.0 | 3105                      | 20 |
| -438.3                    | 4.0 | 4570                      | 25 |
| -392.0                    | 4.0 | 3930                      | 25 |

| location | year | month  | sample type | depth (m) | volume (L) | CF   | total (mg) | mgC | µmolC/L | %C recovered |
|----------|------|--------|-------------|-----------|------------|------|------------|-----|---------|--------------|
| HOT      | 2014 | August | HMW UDOM    | 7.5       | 3220       | 1073 | 2141       | 548 | 14.2    | 18           |
| HOT      | 2014 | August | HMW UDOM    | 400       | 3880       | 1293 | 689        | 171 | 3.7     | 8            |
| HOT      | 2014 | August | HMW UDOM    | 850       | 3100       | 1033 | 806        | 163 | 4.4     | 11           |
| HOT      | 2014 | August | HMW UDOM    | 2500      | 4300       | 1433 | 865        | 171 | 3.3     | 9            |
| HOT      | 2015 | May    | HMW UDOM    | 7.5       | 3319       | 1037 | 1537       | 492 | 12.4    | 16           |
| HOT      | 2015 | May    | HMW UDOM    | 400       | 2945       | 998  | 770        | 170 | 4.8     | 11           |
| HOT      | 2015 | May    | HMW UDOM    | 850       | 3330       | 1189 | 674        | 154 | 3.9     | 9            |
| HOT      | 2015 | May    | HMW UDOM    | 2500      | 3939       | 1358 | 603        | 117 | 2.5     | 6            |
| BATS     | 2015 | August | HMW UDOM    | 2         | 2549       | 850  | 1988       | 327 | 10.7    | 11           |
| BATS     | 2015 | August | HMW UDOM    | 400       | 2500       | 833  | 1513       | 163 | 5.4     | 8            |
| BATS     | 2015 | August | HMW UDOM    | 850       | 1170       | 390  | 1221       | 66  | 4.7     | 9            |
| BATS     | 2015 | August | HMW UDOM    | 2500      | 1750       | 583  | 1223       | 75  | 3.6     | 7            |
| BATS     | 2015 | August | HMW UDOM    | 2500      | 1750       | 583  | 1621       | 110 | 5.3     | 11           |
| BATS     | 2016 | May    | HMW UDOM    | 2         | 2999       | 1000 | 2240       | 336 | 9.3     | 13           |
| BATS     | 2016 | May    | HMW UDOM    | 400       | 2999       | 1000 | 1804       | 188 | 5.2     | 10           |
| BATS     | 2016 | May    | HMW UDOM    | 850       | 3001       | 1000 | 1726       | 156 | 4.3     | 10           |
| BATS     | 2016 | May    | HMW UDOM    | 2500      | 3007       | 1074 | 1659       | 144 | 4.0     | 8            |

| location | year | month  | sample type | depth (m) | volume (L) | loading (L/g) | total (mg) | mgC | µmolC/L | %C recovered |
|----------|------|--------|-------------|-----------|------------|---------------|------------|-----|---------|--------------|
| HOT      | 2014 | August | LMW SPE-DOM | 7.5       | 796        | 2.7           | 257        | 138 | 14.5    | 18           |
| HOT      | 2014 | August | LMW SPE-DOM | 400       | 1050       | 3.5           | 312        | 162 | 12.9    | 25           |
| HOT      | 2014 | August | LMW SPE-DOM | 850       | 800        | 2.7           | 230        | 117 | 12.2    | 29           |
| HOT      | 2014 | August | LMW SPE-DOM | 2500      | 1000       | 3.3           | 248        | 128 | 10.7    | 25           |
| HOT      | 2015 | May    | LMW SPE-DOM | 7.5       | 2200       | 4.4           | 805        | 409 | 15.5    | 20           |
| HOT      | 2015 | May    | LMW SPE-DOM | 400       | 2500       | 5.0           | 738        | 375 | 12.5    | 23           |
| HOT      | 2015 | May    | LMW SPE-DOM | 2500      | 3180       | 6.4           | 806        | 445 | 11.7    | 29           |
| BATS     | 2015 | August | LMW SPE-DOM | 2         | 1500       | 5.0           | 791        | 404 | 22.4    | 24           |
| BATS     | 2015 | August | LMW SPE-DOM | 400       | 1500       | 5.0           | 640        | 333 | 18.5    | 27           |
| BATS     | 2015 | August | LMW SPE-DOM | 850       | 800        | 2.7           | 362        | 165 | 17.2    | 34           |
| BATS     | 2015 | August | LMW SPE-DOM | 2500      | 1000       | 3.3           | 366        | 185 | 15.4    | 31           |
| BATS     | 2016 | May    | LMW SPE-DOM | 2         | 2000       | 6.7           | 1014       | 508 | 21.2    | 29           |
| BATS     | 2016 | May    | LMW SPE-DOM | 400       | 2000       | 6.7           | 895        | 428 | 17.8    | 34           |
| BATS     | 2016 | May    | LMW SPE-DOM | 850       | 2000       | 6.7           | 873        | 423 | 17.6    | 39           |
| BATS     | 2016 | May    | LMW SPE-DOM | 2500      | 2000       | 6.7           | 829        | 396 | 16.5    | 35           |

| C/N  | ±    | $\delta^{13}\text{C}$ (‰) | ±    | CAMS # | Fm     | ±      | $\Delta^{14}\text{C}$ (‰) | ±   | $^{14}\text{C}$ age (ybp) | ±  |
|------|------|---------------------------|------|--------|--------|--------|---------------------------|-----|---------------------------|----|
| 12.9 | 0.06 | -22.1                     | 0.05 | 169865 | 0.9703 | 0.0038 | -37.3                     | 3.8 | 240                       | 35 |
| 11.9 | 0.06 | -21.5                     | 0.01 | 169866 | 0.8160 | 0.0022 | -190.4                    | 2.2 | 1635                      | 25 |
| 13.1 | 0.03 | -21.9                     | 0.05 | 169867 | 0.6615 | 0.0021 | -343.7                    | 2.1 | 3320                      | 30 |
| 13.1 | 0.07 | -21.1                     | 0.04 | 169868 | 0.6252 | 0.0018 | -379.7                    | 1.8 | 3775                      | 25 |
| 12.3 | 0.02 | -22.5                     | 0.01 | 172708 | 0.9575 | 0.0033 | -50.0                     | 3.3 | 350                       | 30 |
| 11.5 | 0.24 | -21.9                     | 0.33 | 172709 | 0.8292 | 0.0029 | -177.3                    | 2.9 | 1505                      | 30 |
| 12.2 | 0.02 | -21.5                     | 0.31 | 172710 | 0.7188 | 0.0028 | -286.9                    | 2.8 | 2655                      | 35 |
| 12.5 | 0.12 | -21.5                     | 0.06 | 172711 | 0.6393 | 0.0023 | -365.7                    | 2.3 | 3595                      | 30 |
| 13.5 | 0.15 | -22.4                     | 0.07 | 175978 | 0.9570 | 0.0032 | -43.0                     | 3.2 | 355                       | 30 |
| 11.8 | 0.06 | -21.6                     | 0.05 | 175979 | 0.8415 | 0.0029 | -158.5                    | 2.9 | 1385                      | 30 |
| 12.0 | 0.12 | -21.4                     | 0.08 | 175980 | 0.7325 | 0.0022 | -267.5                    | 2.2 | 2500                      | 25 |
| 12.5 | 0.21 | -21.3                     | 0.06 | 175981 | 0.6958 | 0.0019 | -304.2                    | 1.9 | 2915                      | 25 |
| 12.1 | 0.15 | -21.4                     | 0.04 | 175982 | 0.7118 | 0.0022 | -288.2                    | 2.2 | 2730                      | 25 |
| 12.5 | 0.09 | -22.3                     | 0.01 | 175988 | 0.9359 | 0.0031 | -64.1                     | 3.1 | 530                       | 30 |
| 11.7 | 0.09 | -21.7                     | 0.04 | 175989 | 0.8291 | 0.0026 | -170.9                    | 2.6 | 1505                      | 30 |
| 12.0 | 0.05 | -21.3                     | 0.09 | 175990 | 0.7608 | 0.0022 | -239.2                    | 2.2 | 2195                      | 25 |
| 12.5 | 0.31 | -21.3                     | 0.11 | 175991 | 0.7349 | 0.0025 | -265.1                    | 2.5 | 2475                      | 30 |

| C/N  | ±    | $\delta^{13}\text{C}$ (‰) | ±    | CAMS # | Fm     | ±      | $\Delta^{14}\text{C}$ (‰) | ±   | $^{14}\text{C}$ age (ybp) | ±  |
|------|------|---------------------------|------|--------|--------|--------|---------------------------|-----|---------------------------|----|
| 28.2 | 0.26 | -22.9                     | 0.06 | 169869 | 0.6503 | 0.0021 | -354.8                    | 2.1 | 3455                      | 30 |
| 26.2 | 0.11 | -22.5                     | 0.01 | 169870 | 0.5841 | 0.0017 | -420.4                    | 1.7 | 4320                      | 25 |
| 24.2 | 0.01 | -22.2                     | 0.04 | 169871 | 0.4858 | 0.0015 | -518.0                    | 1.5 | 5800                      | 30 |
| 26.4 | 0.21 | -22.4                     | 0.09 | 169872 | 0.4337 | 0.0014 | -569.7                    | 1.4 | 6710                      | 30 |
| 27.6 | 0.15 | -22.6                     | 0.03 | 172712 | 0.6622 | 0.0023 | -343.0                    | 2.3 | 3310                      | 30 |
| 26.1 | 1.90 | -22.7                     | 0.42 | 172713 | 0.5657 | 0.0022 | -438.8                    | 2.2 | 4575                      | 35 |
| 28.5 | 0.03 | -22.8                     | 0.06 | 172715 | 0.4257 | 0.0017 | -577.6                    | 1.7 | 6860                      | 35 |
| 27.2 | 0.06 | -23.0                     | 0.04 | 175983 | 0.6839 | 0.0020 | -316.1                    | 2.0 | 3050                      | 25 |
| 24.7 | 0.13 | -22.7                     | 0.05 | 175984 | 0.4922 | 0.0015 | -507.8                    | 1.5 | 5695                      | 25 |
| 21.3 | 0.25 | -22.3                     | 0.09 | 175985 | 0.5464 | 0.0016 | -453.6                    | 1.6 | 4855                      | 25 |
| 21.7 | 0.02 | -22.1                     | 0.02 | 176498 | 0.5428 | 0.0016 | -461.6                    | 1.6 | 4910                      | 25 |
| 27.1 | 0.72 | -23.1                     | 0.08 | 175992 | 0.6664 | 0.0026 | -333.6                    | 2.6 | 3260                      | 35 |
| 25.8 | 0.02 | -22.9                     | 0.00 | 175993 | 0.5985 | 0.0019 | -401.5                    | 1.9 | 4125                      | 30 |
| 25.4 | 0.06 | -22.9                     | 0.03 | 175994 | 0.5145 | 0.0019 | -485.5                    | 1.9 | 5340                      | 30 |
| 24.6 | 0.09 | -22.8                     | 0.02 | 175995 | 0.5912 | 0.0017 | -408.8                    | 1.7 | 4220                      | 25 |