
LLNL-CONF-806542

DegreeSketch: Distributed Cardinality
Sketches on Massive Graphs with
Applications

B. W. Priest

March 5, 2020

46th International Conference on Very Large Databases
Tokyo, Japan
August 31, 2020 through September 4, 2020

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

DEGREESKETCH: DISTRIBUTED CARDINALITY
SKETCHES ON MASSIVE GRAPHS WITH APPLICA-
TIONS∗

Benjamin W. Priest

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

priest2@llnl.gov

ABSTRACT

We present DEGREESKETCH, a semi-streaming distributed sketch datastructure
and demonstrate its utility for estimating local neighborhood sizes and local trian-
gle count heavy hitters on massive graphs. DEGREESKETCH consists of vertex-
centric cardinality sketches distributed across a set of processors that are accu-
mulated in a single pass, and then behaves as a persistent query engine capable
of approximately answering graph queries pertaining to the sizes of adjacency
set unions and intersections. The tth local neighborhood of a vertex is the num-
ber of vertices reachable in G from v by traversing at most t edges, whereas the
local triangle count is the number of 3-cycles in which it is included. Both met-
rics are useful in graph analysis applications, but exact computations scale poorly
as graph sizes grow. We present efficient algorithms for estimating both local
neighborhood sizes and local triangle count heavy hitters using DEGREESKETCH.
In our experiments we implement DEGREESKETCH using the celebrated hyper-
loglog cardinality sketch and utilize the distributed communication tool YGM to
achieve state-of-the-art performance in distributed memory.

1 INTRODUCTION AND RELATED WORK

As graph datasets scales continue to grow in applications, basic queries are becoming increasingly
difficult to answer. How connected are the proteins in an interaction network in aggregate? Which
hyperlinks shortcut large numbers of possible intermediate webpages? How many friends of friends
of friends does a particular profile in a social network have? Many such queries amount to reasoning
about the unions and intersections of the neighbor sets of the vertices in a graph. However, answer-
ing such queries exactly is typically superlinear in compute time and communication in distributed
implementations, untenable for massive graphs.

Furthermore, the simple storage of large graphs can become burdensome, particularly as scale-free
graphs include vertices whose degree is linear in the size of the graph. Not to mention, communi-
cating neighborhood set information about such vertices is impractical. It is therefore tempting to
consider schemata for sublinearly summarizing the information contained in vertex adjacency sets,
and estimating unions and intersections. It is known that any data structure that provides relative
error guarantees for the cardinality of a multiset with n unique elements requires O(n) space (Alon
et al., 1999). Consequently, investigators have developed many so-called cardinality sketches that
provide such relative error guarantees in o(n) space while admitting a small probability of failure,
such as PCSA (Flajolet & Martin, 1985), MinCount (Bar-Yossef et al., 2002), LogLog (Durand
& Flajolet, 2003), Multiresolution Bitmap (Estan et al., 2003), HyperLogLog (Flajolet et al., 2007),
and the space-optimal solution of (Kane et al., 2010). While all these cardinality sketches have a nat-
ural union operation that allows one to combine the sketches of two multisets into a sketch of their
union, most have no closed intersection operation. Many, however, admit a heuristic intersection
estimator that cannot obtain bounded error due to known lower bounds.

∗LLNL-CONF-806542

1

mailto:priest2@llnl.gov

We present the DEGREESKETCH data structure, which maintains a cardinality sketch for each vertex
distributed over a set of processors. These sketches accumulate in a single pass over a data stream
describing the graph, and use a total amount of space polyloglinear in the number vertices - i.e.
DEGREESKETCH is a semi-streaming data structure. We demonstrate its utility with distributed
algorithms that estimate local t-neighborhood sizes, as well as edge- and vertex-local triangle count
heavy hitters.

The local t-neighborhood of a vertex is the number of vertices that can be reached in t hops. As
t increases, the t-neighborhoods describe how the “ball” around the vertex grows. Knowledge of
these ball sizes can be useful for applications such as edge prediction in social networks (Gupta et al.,
2013) and probabilistic distance calculations (Boldi et al., 2011; Myers et al., 2014). For example,
knowing the 3-neighborhood size of a user profile in a social network predicts cost of performing
a computation over the set of its friends of friends of friends. The ANF (Palmer et al., 2002) and
HYPERANF (Boldi et al., 2011) algorithms estimate the neighborhood function, the “average ball”
around vertices in a graph, by individually estimating and summing the local t-estimates for all
vertices. using Flajolet-Martin and HYPERLOGLOG cardinality sketches, respectively. We present
an algorithm producing an estimate of a similar form, but its distributed implementation allows it to
scale to much larger graphs. Moreover, DEGREESKETCH is a leave-behind reusable data structure.

Counting the number of triangles in simple graphs is a canonical problem in network science. A
“triangle” is a trio of co-adjacent vertices, and is the smallest nontrivial community structure. Both
the global count of triangles and the vertex-local counts, i.e. the number of triangles incident upon
each vertex, are key to network analysis and graph theory topics such as cohesiveness (Lim &
Kang, 2015), global and local clustering coefficients (Tsourakakis, 2008), and trusses (Cohen, 2008).
Local triangle counts are useful in protein interaction analysis (Milo et al., 2002), spam detection
(Becchetti et al., 2010), and community discovery (Wang et al., 2010; Berry et al., 2011).

Although many exact algorithms have been proposed for the triangle counting problem
(Tsourakakis, 2008; Becchetti et al., 2010; Chu & Cheng, 2011; Suri & Vassilvitskii, 2011; Wolf
et al., 2017), their time complexity is superlinear in the number of edges (O(m

3
2)). In order to

avoid this dreaded superlinear scaling for applications involving large graphs, many researchers have
turned to streaming approximations. These serial streaming algorithms maintain a limited number
of sampled edges from an edge stream. Streaming global triangle estimation algorithms have arisen
that sample edges with equal probability (Tsourakakis et al., 2009), sample edges with probability
relative to counted adjacent sampled edges and incident triangles (Ahmed et al., 2017), and sample
edges along with paths of length two (Jha et al., 2013). The first proposed semi-streaming local
triangle estimation algorithm relies upon min-wise independent permutations accumulated over a
logarthmic number of passes (Becchetti et al., 2008). More recently, true single-pass sampling al-
gorithms have arisen such as MASCOT (Lim & Kang, 2015) and TRIÉST (Stefani et al., 2017).

While many distributed global and vertex-local triangle counting algorithms have been proposed, the
overwhelming majority store the graph in distributed memory and return exact solutions (Suri & Vas-
silvitskii, 2011; Arifuzzaman et al., 2013; Pearce, 2017). Recently, the study of distributed streaming
vertex-local triangle counting was intiated in earnest with the presentation of TRY-FLY (Shin et al.,
2018a), a parallelized generalization of TRIÉST, and its follow-up DISLR that introduced limited
edge redundancy (Shin et al., 2018b). Our approach is fundamentally different to these methods,
depending upon sketching rather than sampling as its core primitive. DEGREESKETCH also permits
the estimation of edge-local triangle counts, or the number of triangles in which individual edges
participate. While the sampling approaches produce estimates and a stochastically sampled sparse
graph, we produce a leave-behind queryable data structure.

We begin with a discussion of some of the preliminaries and notation in Section 2. Section 3 in-
troduces DEGREESKETCH, as well as describing algorithms that utilize DEGREESKETCH to per-
form local neighborhood size estimation as well as approximately recovering edge- and vertex-local
triangle count heavy hitters. Section 4 describes the details of a particular implementation of DE-
GREESKETCH using HYPERLOGLOG cardinality sketches. We conclude with experiments in Sec-
tion 5.

2

2 PRELIMINARIES AND NOTATION

Throughout this document we will consider an undirected graph G = (V, E), which we assume to
be large. We adopt the usual convention that |V| = n and |E| = m. Let dG(x, y) be the length of the
shortest path in G between x, y ∈ V , and let d(x) be the degree of x. We will consider a universe
of processors P , and further assume a partitioning of vertices to processors f : V → P . We will
occasionally abuse notation and use f−1(P) to describe the set of vertices that map to P ∈ P . We
make no assumptions about the particulars of f , noting that vertex partitions are a subject of intense
academic scrutiny. In effect, our algorithms are designed to work alongside any reasonable f . In
our algorithms we will occasionally use the keyword REDUCE to refer to a global sum, except were
the operand is a max heap in which case it is the creation of a global max heap.

We assume that G is given by a data stream σ, a sequential list of the edges of E . σ is further
partitioned by some unknown means into |P| substreams, one to be read by each processor. We
assume that each processor P ∈ P has send and receive buffers S[P] and R[P], respectively.
Algorithms are given broken up into Send, Receive, and local Computation Contexts. We make
no assumptions as to how processors handle switching between contexts. In our implementations
we use the software package YGM (Priest et al., 2019) to manages the send and receive buffers, as
well as switching contexts, in a manner that is opaque to the client algorithm.

Consider a vertex x ∈ V . For t ∈ N, let NG(x, t) be the local t-neighborhood of x defined as

NG(x, t) = |{y ∈ V|dG(x, y) ≤ t}|. (1)

Moreover, let the global t-neighborhood NG(t) be defined by

NG(t) =
∑
x∈V
NG(x, t). (2)

We define the edge-local triangle count of an edge xy ∈ E as

TG(xy) = |{z ∈ V \ {x, y} | yz, zx ∈ E}|. (3)

This allows us to define the more con We define the vertex-local triangle count of x as

TG(x) = |{yz ∈ E | xy, zx ∈ E ∧ |{x, y, z}| = 3}|. (4)

We can equivalently define vertex-local triangle counts in terms of edge-local triangle counts as

TG(x) =
1

2

∑
xy∈E

TG(xy). (5)

We will also refer to the global number of triangles in a graph

TG =
1

3

∑
x∈V
TG(x) =

1

3

∑
xy∈E

TG(xy) (6)

We will drop the subscripts where they are clear.

As we have stated, DEGREESKETCH consists of a set of cardinality sketches. Many such sketches
would suffice to implement DegreeSketch, so for the purposes of discussion we will abstract many
of the particulars until Section 4. We will assume a notional sketch that requires O(ε−2) space,
where ε is an accuracy parameter. We assume that this sketch supports an INSERT(·) operation to
add elements and admits a |̃ · | operator, providing an approximation that is within a multiplicative
factor of [1− ε, 1 + ε] of the number of unique inserted items with high probability. We also assume

that the sketch affords a closed ∪̃ operator to combine sketches, and a |̃ · ∩ · | operator to estimate
intersection cardinalities. For reasons that will be described in Section 4.1, we do not assume that
the intersection operator has the same error properties as |̃ · |.

3 DEGREESKETCH

DEGREESKETCH maintains a distributed data structure D that can be queried for an estimate of
a vertex’s degree. For each x ∈ V we maintain a cardinality sketch D[x], which affords the ap-
proximation of d(x). We will assume throughout that f(x) ∈ P is the processor that will hold
D[x].

3

Algorithm 1 Accumulation
Input: σ - edge stream divided into |P| substreams

P - universe of processors
S - dictionary mapping P to send queues
R - dictionary mapping P to receive queues
f - partition mapping V → P

Returns: D - accumulated DegreeSketch

Send Context for P ∈ P:
1: while S[P] is not empty do
2: (f(x), xy)← S[P].pop()
3: R[f(x)].push (xy)

Receive Context for P ∈ P:
4: whileR[P] is not empty do
5: xy ← R[P].pop()
6: if !∃D[x] then D[x]← empty sketch
7: INSERT(D[x], y)

Computation Context for P ∈ P:
8: D ← empty DEGREESKETCH dictionary
9: while σP has unread element uv do

10: S[P].push (f(u), uv)
11: S[P].push (f(v), vu)

12: return D

Algorithm 1 describes the distributed accumulation of a DEGREESKETCH instance on a universe of
processors P . In a distributed pass over the partitioned stream, processors use the partition function
f to send edges to the cognizant processors for each endpoint. These processors each maintain
cardinality sketches for their assigned vertices. When P ∈ P receives an edge xy ∈ E where
f(x) = P , it performs INSERT(D[x], y). Once all processors are done reading and communicating,
D is accumulated.

DEGREESKETCH can be implemented with any cardinality sketch that admits some form of close
union operator and intersection estimation. In fact, the algorithms in Sections 3.2 and 3.3 do not
even require a closed union operator. In our experiments, we focus on the well-known HYPER-
LOGLOG or HLL cardinality sketches.

We describe HLL and discuss these features in greater detail in Section 4. First, however, we
describe algorithms utilizing DEGREESKETCH for neighborhood size estimation in Section 3.1,
recovering edge-local triangle count heavy hitters in Section 3.2, and finally recovering vertex-local
triangle count heavy hitters in Section 3.3.

3.1 NEIGHBORHOOD SIZE ESTIMATION

Let D be an instance of DEGREESKETCH as described, so that for x ∈ V , D[x] is a cardinality
sketch of the adjacency set of x. By the properties of cardinality sketches, if we know x’s neighbors
we can compute an estimate of N (x, 2) by computing

Ñ(x, 2) =
˜∣∣∣∣⋃̃y:xy∈E

D[y]

∣∣∣∣. (7)

Higher-order union operations of the form Equation (7) are the core of the ANF (Palmer et al.,
2002) and HYPERANF (Boldi et al., 2011) algorithms. Algorithm 2 is a distributed generalization
of HYPERANF using DEGREESKETCH. After accumulating D1, an instance of DEGREESKETCH,
the algorithm takes a number of additional passes over σ. For t starting at 2, we accumulate

Dt[x] =
⋃̃

y:xy∈E
Dt−1[y] (8)

4

Algorithm 2 Neighborhood Approximation
Input: σ - edge stream divided into |P| substreams

P - universe of processors
D1 - accumulated DEGREESKETCH
S - dictionary mapping P to send queues
R - dictionary mapping P to receive queues
f - partition mapping V → P
k - maximum neighborhood degree

Returns: Ñ (x, t), Ñ (t) for all x ∈ V , t ≤ k
Send Context for P ∈ P:

1: while S[P] is not empty do
2: if next message is an EDGE then
3: (f(x), xy, t)← S[P].pop()
4: R[f(x)].push (EDGE, (xy, t))
5: else if next message is a SKETCH then
6: (f(y),Dt−1[x], y, t)← S[P].pop()
7: R[f(y)].push

(
SKETCH, (Dt−1[x], y, t)

)
Receive Context for P ∈ P:

8: whileR[P] is not empty do
9: if next message is an EDGE then

10: (xy, t)← R[P].pop()
11: S[P].push

(
SKETCH, (f(y),Dt−1[x], y, t))

)
12: else if next message is a SKETCH then
13: (Dt−1[x], y, t)← R[P].pop()
14: Dt[y]← Dt[y]∪̃Dt−1[x]

Computation Context for P ∈ P:
15: t← 1
16: while true do
17: Ñ (x, t)← ˜|Dt[x]| for x ∈ f−1(P)

18: Ñ (t)←
∑

x∈f−1(P)

Ñ (x, t)

19: Ñ (t)← REDUCE Ñ (t)
20: t← t+ 1
21: if t > k then break
22: Reset σP
23: Dt ← Dt−1
24: while σP has unread element uv do
25: S[P].push (EDGE, (f(u), uv, t))
26: S[P].push (EDGE, (f(v), vu, t))

5

by way of a message-passing scheme similar to Algorithm 1. When P ∈ P receives an edge xy ∈ E
where f(x) = P , it forwards Dt−1[x] to f(y). When f(y) receives Dt−1[x], it merges it into its
next layer local sketch for y, Dt[y], computing Equation (8) once all messages are processed. By
construction, we have that

Dt[x] =
⋃̃

y:d(x,y)=s<t−1
Ds[y]. (9)

Ergo, the set of elements inserted into Dt[x] consists of all y ∈ V such that d(x, y) ≤ t, which

is to say that ˜|Dt[x]| directly approximates N (x, t) (Equation (1)). These data structures can be
maintained for later use by simply storing all Dt between passes.

The summations over all sketches in line 18 of Algorithm 2 estimate N (t) in the form Equation 2.
Note that these summations are performed as distributed REDUCE operations, and occur between
passes over σ. The following theorem states the approximation quality of Algorithm 2 when imple-
mented with HLLs and is inspired by Theorem 1 of (Boldi et al., 2011).

Theorem 1. Let µr,n and ηr,n be the multiplicative bias and standard deviation for HLLs given in
Theorem 1 of (Flajolet et al., 2007). The output Ñ (t) and Ñ (x, t) for x ∈ V at the t-th iteration
satisfies

E
[
Ñ (t)

]
N (t)

=
E
[
Ñ (x, t)

]
N (x, t)

= µr,n for n→∞,

i.e. they are nearly unbiased. Furthermore, both also have standard deviation bounded by ηr,n.
That is, √

Var
[
Ñ (t)

]
N (t)

≤ ηr,n and

√
Var

[
Ñ (x, t)

]
N (x, t)

≤ ηr,n

Proof. For each x, Ñ (x, t) = |Dk[x]|, where Dk[x] is a union of HLLs, into which every y such
that d(x, y) ≤ t is inserted, as we noted from Equation (9). Thus by Theorem 1 of (Flajolet et al.,
2007),

E
[
Ñ (x, t)

]
= µr,nN (x, t)√

Var
[
Ñ (x, t)

]
= ηr,nN (x, t).

Thus, by the linearity of expectation and the subadditivity of variance,

E
[
Ñ(t)

]
=
∑
x∈V

E
[
Ñ (x, t)

]
= µr,n

∑
x∈V
N (x, t) = µr,nN (t), and√

Var
[
Ñ(t)

]
≤
∑
x∈V

√
Var

[
Ñ (x, t)

]
≤ ηr,n

∑
x∈V
N (x, t) = ηr,nN (t).

Theorem 1 tells us that the estimates of Ñ(x, t) and Ñ(t) retain the approximation guarantees of
their underlying sketch. Similar theorems for different cardinality sketches with closed ∪̃ operators
are similarly simple to prove. Hence, we are able to guarantee that all approximations produced by
Algorithm 2 retain the guarantees of their underlying cardinality sketches.

6

Algorithm 3 Local Triangle Count Heavy Hitters Chassis
Input: σ - edge stream divided into |P| substreams

k - integral heavy hitter count
P - universe of processors
D - accumulated DEGREESKETCH
S - dictionary mapping P to send queues
R - dictionary mapping P to receive queues
f - partition mapping V → P

Computation Context for P ∈ P:
1: H̃k ← empty max k-heap
2: T̃ ← 0
3: while σP has unread element uv do
4: S[P].push (EDGE, (f(u), uv))

5: REDUCE T̃
6: T̃ ← 1

3 T̃
7: REDUCE H̃k

3.2 EDGE-LOCAL TRIANGLE COUNT HEAVY HITTERS

In addition to estimating local neighborhood sizes, DEGREESKETCH affords an analysis of local
triangle counts using intersection estimation. Furthermore, while sampling-based streaming algo-
rithms are limited to vertex-local triangle counts, DEGREESKETCH affords the analysis of edge-
local triangle counts, which can be thought of as a generalization of vertex-local triangle counts.
Given the edge-local triangle counts for each edge incident upon a vertex, we can easily compute its
vertex-local triangle count as in Equation (5). The reverse is not true.

Edge-local triangle counts have understandably not received much attention in the streaming liter-
ature, considering that even enumerating them requires Ω(m) space. Given an accumulated DE-
GREESKETCH D we can estimate T (xy) using the intersection estimation operator,

T̃ (xy) = ˜|D[x] ∩ D[y]|. (10)

This procedure is similar in spirit to the well-known if suboptimal intersection method for local
triangle counting. We can also estimate the total number of triangles T following Equation (6) by

T̃ =
1

3

∑
xy∈E

T̃ (xy) (11)

Unfortunately, while most cardinality sketches have a native and closed ∪̃ operation, they all lack a
satisfactory intersection operation, a consequence of the fact that detection of a trivial intersection
is impossible in sublinear memory. Hence, we must instead make use of unsatisfactory intersection
operations in practice, which has been a focus of recent research (Ting, 2016; Cohen et al., 2017;
Ertl, 2017). We will discuss these in more detail in Section 4.1, and analyze their shortcomings in
Appendix B. For our purposes, we will suppose that |̃ · ∩ · | is reliable only where intersections are
large. Consequently, we will attempt only to recovery the heavy hitters, i.e. the edges participating
in the greatest number of triangles.

Algorithm 3 provides a chassis for Algorithms 4 and 5, which differ only in their communication
behavior. In Algorithm 3, all processors read over their edge streams and forward edges to one of
their endpoints, similar to the behavior in the Accumulation Context of Algorithm 2. They also
initialize a counter T̃ and a max heap with a maximum size of k, H̃k. These values are modified in
the Send Context and Receive Context.

Algorithm 4 issues a chain of messages for each read edge, not unlike the procedure in Algorithm 2.
P reads uv, and issues a message of type EDGE containing uv to f(u). Upon receipt, f(u) issues
a message of type SKETCH containing (D[u], uv) to f(v). When f(v) receives this message, it
computes T̃ (uv) via Equation (10) and updates T̃ and H̃k. Once computation is complete and all

7

Algorithm 4 Edge-Local Triangle Count Heavy Hitters

Returns: T̃ , H̃k, the top k edge estimates T̃ (xy)

Send Context for P ∈ P:
1: while S[P] is not empty do
2: if next message is an EDGE then
3: (f(x), xy)← S[P].pop()
4: R[f(x)].push (EDGE, xy)
5: else if next message is a SKETCH then
6: (f(y),D[x], y)← S[P].pop()
7: R[f(y)].push (SKETCH, xy)

Receive Context for P ∈ P:
8: whileR[P] is not empty do
9: if next message is an EDGE then

10: xy ← R[P].pop()
11: S[P].push (SKETCH, (f(y),D[x], xy))
12: else if next message is a SKETCH then
13: (D[x], xy)← R[P].pop()

14: T̃ (xy)← ˜|D[y] ∩ D[x]|
15: T̃ ← T̃ + T̃ (xy)

16: Try to insert T̃ (xy) into H̃k
Computation Context for P ∈ P:

17: Run Algorithm 3 using these communication contexts

receive queues are flushed, the algorithm computes a global REDUCE sum to find T̃ and similarly
finds the global top k estimates via a reduce on H̃k. The algorithm returns T̃ /3 (each triangle is
counted 3 times) and H̃k.

Algorithm 4 addresses edge–local triangle count heavy hitter recovery using memory sublinear in
the size of G. It requires Õ(ε−2m) time and communication, given our assumptions, and a total of
O(ε−2|V| log log |V|+ log |V|) space, where DegreeSketch is implemented using HYPERLOGLOG
sketches with accuracy parameter ε. Unfortunately, we are unable to provide an analytic bound on
the error of this algorithm, due to the nature of sublinear intersection estimation. We provide an ex-
perimental exploration of this problem in Appendix B, and evaluate the performance of Algorithm 4
in Section 5.

3.3 VERTEX-LOCAL TRIANGLE COUNT HEAVY HITTERS

Given access to a DEGREESKETCH instance D and the neighbors of x, we can compute an estimate
of T (x) using

T̃ (x) =
1

2

∑
y:xy∈E

T̃ (xy) =
1

2

∑
y:xy∈E

˜|D[x] ∩ D[y]|, (12)

following Equations (5) and (10). We must still limit our scope to the recovery of vertex-local
triangle count heavy hitters due to problem of estimating small intersections.

Algorithm 5 performs vertex-local triangle count estimation in a manner similar to Algorithm 4 with
some additional steps. We maintain T̃ (x) for each x ∈ V . It performs similar work for xy ∈ E up to
the point processor f(y) estimates T̃ (xy). Instead of inserting this estimate into a local max heap,
we add it to T̃ (y), and forward (T̃ (xy), x) to f(x) so that it can add it to T̃ (x). This message
has the EST type, to distinguish it from EDGE and SKETCH messages. After all processors are
done communicating and updating their local counts, they assemble and reduce a max k-heap of
vertex-local triangle count heavy hitters. Note that we could also return T̃ (x) for all vertices x at no
additional cost, but this is not generally a good idea as explained in Appendix B.

8

Algorithm 5 Vertex-Local Triangle Count Heavy Hitters

Output: T̃ , H̃k, the top k vertex estimates T̃ (x)

Send Context for P ∈ P:
1: while S[P] is not empty do
2: if next message is an EDGE then
3: (f(x), xy)← S[P].pop()
4: R[f(x)].push (EDGE, xy)
5: else if next message is a SKETCH then
6: (f(y),D[x], xy)← S[P].pop()
7: R[f(y)].push (SKETCH, (D[x], xy))
8: else if next message is an EST then
9: (f(y), T̃ (xy), y)← S[P].pop()

10: R[f(y)].push
(

EST, (T̃ (xy), y)
)

Receive Context for P ∈ P:
11: whileR[P] is not empty do
12: if next message is an EDGE then
13: xy ← R[P].pop()
14: S[P].push (SKETCH, (f(y),D[x], xy)))
15: else if next message is a SKETCH then
16: (D[x], xy)← R[P].pop()

17: T̃ (xy)← ˜|D[y] ∩ D[x])|
18: T̃ (x)← T̃ (x) + T̃ (xy)

19: T̃ ← T̃ + T̃ (xy)

20: S[P].push
(

EST, (f(y), T̃ (xy), y)
)

21: else if next message is an EST then
22: (T̃ (xy), y)← R[P].pop()

23: T̃ (y)← T̃ (y) + T̃ (xy)

Computation Context for P ∈ P:
24: T̃ (x)← 0 ∀x ∈ f−1(P)
25: Run Algorithm 3 using these communication contexts
26: Accumulate max heap H̃k from T̃ (x) ∀x ∈ f−1(P)

Algorithm 5 addresses vertex–local triangle count heavy hitter recovery using the same asymptotic
computation, memory and communication costs as Algorithm 4. Unfortunately, we are similarly
unable to provide an a priori analytic bound on the error of this algorithm.

4 THE HYPERLOGLOG SKETCH

The HyperLogLog sketch is arguably the most popular cardinality sketch in applications, and has
attained widespread adoption (Flajolet et al., 2007). The sketch relies on the key insight that the
binary representation of a random machine word starts with 0j−11 with probability 2−j . Thus, if
the maximum number of leading zeros in a set of random words is j − 1, then 2j is a good estimate
of the cardinality of the set (Flajolet & Martin, 1985). However, this estimator clearly has high
variance. The variance is traditionally minimized using stochastic averaging to simulate parallel
random trials (Flajolet & Martin, 1985).

Assume we have a stream σ of random machine words of a fixed size W . For a W = (p + q)-bit
word w, let ξ(w) be the first p bits of w, and let ρ(w) be the number of leading zeros plus one of
its remaining q bits. We pseudorandomly partition elements e of σ into r = 2p substreams of the
form σi = {e ∈ σ|ξ(e) = i}. For each of these approximately equally-sized streams, we maintain
an independent estimator of the above form. Each register ri, i ∈ [r], accumulates the value

ri = max
x∈σi

ρ(x). (13)

9

Of course, in practice we simulate randomness using hash functions. We utilize the non-
cryptographic xxhash (Collet, 2014) in our implementation. We will assume throughout that al-
gorithms have access to such a hash function h : 264 → 264.

After accumulation, ri stores the maximum number of leading zeroes in the substream σi, plus
one. The authors of HyperLogLog show in (Flajolet et al., 2007) that the normalized bias corrected
harmonic mean of these registers,

D̃ = αrr
2

(
r−1∑
i=0

2−ri

)−1
, (14)

where the bias correction term αr is given by

αr :=

(
r

∫ ∞
0

(
log2

(
2 + u

1 + u

))r
du

)−1
, (15)

is a good estimator of D, the number of unique elements in σ. The error of estimate D̃, |D − D̃|,
has standard error ≈ 1.04/

√
r, i.e. D̃ satisfies

|D − D̃| ≤ (1.04/
√
r)D. (16)

with high probability. However, Equation 14 is known to experience practical bias on small and very
large D. Expanding the hash function to handle 64-bit words instead of the original 32-bit words
practically eliminates bias on large D in most practical problems. Although modifications to handle
small D bias abound, we choose the approach of LOGLOGBETA (Qin et al., 2016) for its simplicity
and replace D̃ with

Ẽ = αrr(r − z)

(
β(r, z) +

r−1∑
i=0

2−ri

)−1
. (17)

Here z is the number of zero registers in r and β(r, z) is an experimentally determined bias mini-
mizer. We follow the lead of the authors of LOGLOGBETA and determined β(r, z) as a 7th-degree
polynomial of log(z), whose weights are set experimentally by solving a least-squares problem like
in Section II.C. of (Qin et al., 2016).

The majority of vertices in many application graphs have a small number of neighbors, which sug-
gests that to maximize memory and communication efficiency we would like a cheaper way to rep-
resent sketches where most of r is empty. We adopt the sparse representation for HYPERLOGLOG
sketches suggested by Heule et al. (Heule et al., 2013). Mathematically, the sparsification procedure
is tantamount to maintaining the set R = {(i, ri)|ri 6= 0}. R requires less memory than r when the
cardinality of the underlying multiset is small. Moreover, it is straightforward to saturate a sparse
sketch into a dense one once it is no longer cost effective to maintain it by instantiating r while
assuming all registers not set in R are zero. We will assume that R is implemented as a map, where
an element R[j] = x if (j, x) ∈ R and is zero otherwise.

A particular HyperLogLog sketch, S, consists a hash function h, a prefix size p (typically between
4 and 16), a maximum register value q, and an array of r = 2p registers, initially an empty sparse
register list R. We summarize references to such a sketch as HLL(p, q, h). Algorithm 6 describes
the functions supported by our version of the HYPERLOGLOG sketch.

Note that HLLs support a natural merge operation: taking the element-wise maximum of each index
of a group of register vectors. This requires that the two sketches were generated using the same
hash function. We assume throughout that all of the sketches in an instance of DEGREESKETCH are
HLL(p, q, h) where p+ q = 64 and h is fixed. Estimate accuracy scales inverse squared with p per
Equation (16). Thus, increasing p improves estimation performance at the cost of computation and
memory overhead.

4.1 INTERSECTION ESTIMATION

A naı̈ve approach to estimating an intersection of two sets A and B using cardinality sketches might
involve computing the intersection via the inclusion-exclusion principle:

|A ∩B| = |A ∪B| − |A| − |B|. (18)

10

Algorithm 6 HLL(p, q, h) Operations
State Variables for HLL(p, q, h) S :

ν mode ∈ {SPARSE, DENSE}, initially SPARSE
r 2p

r dense register list of size r, initially ∅
R sparse register set, initially ∅
z count of nonzero elements of R or r, initially 2p

1: function INSERT(S, e)
2: w ← h(e)
3: j ← ξ(w)
4: x← ρ(w)
5: INSERT(S, j, x)

6: function INSERT(S, j, x)
7: if ν = DENSE then
8: rj ← max(rj , x)
9: else if ν = SPARSE then

10: R[j]← max{x,R[j]} (see Figures 6 & 7 of (Heule et al., 2013))
11: if |R| > r/4 then
12: SATURATE(S)

13: function SATURATE(S)
14: ν ← DENSE
15: for (j, x) ∈ R do
16: INSERT(S, j, x)

17: R← ∅
18: function MERGE(S(0), S(1), . . . , S(`−1))
19: S∗ ← empty HLL(p, q, h)
20: for j ∈ [0, r) do
21: x← max

i∈[0,`)

(
max

{
r
(i)
j , R(i)[j]

})
22: if x 6= 0 then
23: INSERT(S∗, j, x)

24: return S∗
25: function ESTIMATE(S)
26: if ν = DENSE then
27: return αrr(r − z)

(
β(r, z) +

∑r−1
i=0 2−ri

)−1
28: else
29: return αrr(r − z)

(
β(r, z) +

∑
(j,x)∈R 2−x

)−1

However, if we attempt to estimate each quantity on the right side of Equation (18) the error noise in
each estimate could result in a negative answer! Furthermore, if the true intersection is small relative
to the set sizes, or if one set is much larger than the other, the variance will be quite high.

Ertl describes a better intersection estimator using a maximum likelihood principle (Ertl, 2017).
The estimator yields estimates of |A \ B|, |B \ A|, and |A ∩ B|. The algorithm depends on the
optimization of a Poisson model, where it is assumed that |A\B| is drawn from a Poisson distribution
with parameter λa, and similarly |B \ A| and |A ∩ B| use Poisson parameters λb and λx. These
parameters can be related to the observed HyperLogLog register lists corresonding to A and B, r(A)

and r(B), via a loglikelihood function L(λa, λb, λx | r(A), r(B)) given by Equation (70) of (Ertl,
2017), which we do not reproduce due to space constraints. L(λa, λb, λx | r(A), r(B)) is a function

11

1 2 3 4 5
Pass Number

0.01

0.02

0.03

0.04

0.05

M
ea

n
Re

la
tiv

e
Er

ro
r

Figure 1: Mean relative error estimating T (x, t) for all x ∈ V and t up to 5 for 10 moderate graphs.
Here a prefix size of 8 was used, guaranteeing standard error around 0.06.

of the statistics:
c
(A),<
k = |{i | k = r

(A)
i < r

(B)
i }|,

c
(A),>
k = |{i | k = r

(A)
i > r

(B)
i }|,

c
(B),<
k = |{i | k = r

(B)
i < r

(A)
i }|,

c
(B),>
k = |{i | k = r

(B)
i > r

(A)
i }|,

c=k = |{i | k = r
(A)
i = r

(B)
i }|,

(19)

which capture the differences in register list distribution. The inclusion-exclusion estimator loses
information present in the more detailed count statistics statistics in Equation (19). Algorithm 9
of (Ertl, 2017) describes the estimation of |A \ B|, |B \ A|, and |A ∩ B| by accumulating the
sufficient statistic (19) and using it to find the maximum of Equation (70) in the source via maximum
likelihood estimation. The author shows extensive simulation evidence indicating that this method
significantly improves upon the estimation error of a naı̈ve estimator. We provide further analyses
of intersection estimation edge cases in Appendix B, and reaffirm some of Ertl’s findings.

5 EXPERIMENTS

We now evaluate the algorithms and claims made throughout this document.

Implementation: We implemented all of our algorithms in C++ and MVAPICH2 2.3. Inter- and
intra-node communication is managed using the pseudo-asynchronous MPI-enabled communication
software package YGM (Priest et al., 2019). We used xxhash as our hash function implementation
(Collet, 2014).

Hardware: All of the experiments were performed on a cluster of compute nodes with twenty-
four 2.4 GHz Intel Xeon E5-2695 v2 processor cores and 128GB memory per node. We varied the
number of nodes per experiment depending on scalability requirements and the size of the graph.
We consider graph partitioning to be a separate problem, and accordingly use simple round-robin
assignment for our experiments.

Graphs: We ran our implementations on a collection of real and synthetic graphs. Many of these
graphs are provided by Stanford’s widely used SNAP dataset (Leskovec & Krevl, 2014). These
graphs are collected from natural sources, such as social media, transportation networks, email
records, peer-to-peer communications, and so on. We casted each graph as unweighted, ignoring
directionality, self-loops, and repeated edges. We also used 5 graphs derived from nonstochastic
Kronecker products of smaller graphs. These graphs are described in detail in Appendix C.

12

Figure 2: Precision versus recall for the top 10, top 100, and top 1000 ground edge-local triangle
count truth heavy hitters of all SNAP graphs and all 5 synthetic kronecker graphs.

Experiments: Except where noted otherwise, we ran each experiment 100 times using the same
settings while varying the random seed. We set the prefix size p in experiments depending on the
accuracy needs, where larger p implies greater performance at a higher cost. We report mean relative
error (MRE), where the relative error of and estimate E of a true quantity T is |T−E||T | .

Analysis: We performed experiments on real graph datasets for the purpose of establishing the
following of our algorithms:

1. Estimation Quality Do the algorithms yield good local t-neighborhood estimates? How
accurate are the global and edge- and vertex-local estimates?

2. Heavy Hitter recovery Do the heavy hitters returned by Algorithms 4 and 5 correspond
to the ground truth heavy hitters?

3. Speed & Scalability How fast is accumulation? Estimation? How does wall time relate to
|P|?

We examined the performance of the local t-neighborhood estimation algorithm (Algorithm 2) with
prefix size of 8 on 10 moderately sized SNAP graphs up to t = 5. Figure 1 displays the MRE of the
returned local estimates. We find that the MRE matches our expectations informed by Theorem 1.
In early passes, most of the neighborhoods are relatively small and so in practice the cardinality
sketches give very precise estimates. As t grows, the neighborhood balls grow to saturate the graph
and so accordingly the estimation error grows until leveling off around the theoretical error guaran-
tee.

We experimented with Algorithm 4 with a prefix size of 12, attempting to collect the top k =
10, 100, 1000 heavy hitters Hk for all of the SNAP and Kronecker graphs. For each k, we ran the
algorithm with k′ ranging from 0.2 ∗ k up to 2 ∗ k, producing H̃k′ . We performed a similar analysis
and found similar results for Algorithm 5, and omit them for space.

Treating H̃k′ as a one-class classifier of elements in Hk, an edge e ∈ E is a true positive if e ∈
Hk ∩ H̃k′ , a false negative if e ∈ Hk \ H̃k′ , a false positive if e ∈ H̃k′ \ Hk, or a true negative if
e 6∈ Hk ∪ H̃k′ .

We can report the quality of experiments in terms of its recall
(

TP
TP+FN

)
versus its precision(

TP
TP+FP

)
for each setting of k and k′ in Figure 3. The precision versus recall tradeoff is a common

metric in information retrieval, where the goal is to tune model parameters so as to force both the
precision and recall as close to one as possible. Although these measures are known to exhibit bias,
they are accepted as being reasonable for heavily uneven classification problems such as ours, where
the class of interest is a small proportion of the samples (Boughorbel et al., 2017). Although most
graphs show very good precision versus recall curves, there are a few notable outliers.

Figure 3 contrasts the edge-local triangle count distribution between a graph with good performance
in Figure 2 and three with relatively poor performance. We find that triangle density, or the ratio

13

Figure 3: The triangle counts and triangle densities of the edge-local triangle count heavy hitters up
to 104 for four graphs.

of edge-local triangles versus the union of endpoint adjacency sets is a powerful determiner of per-
formance. Triangle density corresponds with the Jaccard similarity of the edge’s endpoint neighbor
sets, and for neighbor sets A and B is computed as |A∩B||A∪B| . In other words, again, relatively small
intersections produce high error and uncertain heavy hitter recovery.

The cit-Patent graph exhibits good performance in Figure 2, and demonstrates a reasonable triangle
count distribution as well as high triangle density throughout in Figure 3. The other three graphs
demonstrate poor performance in Figure 2. The kronecker em ⊗ em graph exhibits an unusual
number of ties in its triangle count distribution due to its construction, in addition to low triangle
density among its heavy hitters. The P2P-Gnutella24 graph has very low triangle density, and a 3 or
fewer triangles for the vast majority of its edges. The ca-HepTh graph exhibits an unusual triangle
distribution, where a huge portion of its edges tie at 30 triangles. Consequently, even a perfect heavy
hitter extraction procedure will fail on this graph. Notably, the two edges with the largest triangle
counts are reliably returned.

We also examined the performance scaling of the algorithms as a function of data and computing
resource sizes. For each experiment we used a prefix size of 8 and discounted the I/O time spent on
reading data streams from files. Algorithms 4 and 5 exhibit near-identical time performance, and so
we report only the later.

We ran Algorithm 2 for t = 5 on the or ⊗ or Kronecker graph, varying the number of nodes from
N = 4, 8, 16, 32. We note nice weak scaling behavior: as the computational resources double, the

14

Table 1: Scaling Graphs
graph |V| |E| Type
patents 3,774,768 16,518,947 Citation
ye ⊗ ye 5,574,320 88,338,632 Kronecker
or ⊗ or 131,859,288 1,095,962,562 Kronecker
Twitter 41,652,224 1,201,045,942 S. N. (Kunegis, 2013)
WDC 3,563,602,788 128,736,914,864 Web

1 2 3 4 5
Pass Number

0

25

50

75

100

125

150

W
al

l T
im

e
(s

)

N = 4
N = 8
N = 16
N = 32

Figure 4: The time in seconds to perform local t-neighborhood size estimation up to t = 5 for the
or ⊗ or graph for nodes N = 4, 8, 16.32.

time roughly halves. In particular, pass 2 tends to take more time because of the sparsity settings
in our implementations; merges are less efficient for sparse sketches. Once the sketches saturate,
note that the time decreases significantly in later passes. One could implement DEGREESKETCH
using only dense sketches to avoid this hump. If one only intends to perform local t=neighborhood
estimation, omitting sparse sketches is a good idea as all sketches will eventually saturate as t grows.

Similarly, Figure 6 measures the the time in seconds spent for Algorithms 1 and 5 on the cit-Patents
graph, where N varies from 1 up to 72. This weak scaling experiment demonstrates significant
performance improvements on a fixed amount of work as resources increase.

It is difficult to demonstrate strong scaling using graph data, as graphs (especially realistic ones) do
not scale smoothly like, say, linear algebra. We instead present a ”strong scaling” experiment on
the 5 large graphs in Table 1. We found that subsequent passes of Algorithm 2 exhibited similar
behavior to Algorithm 5, and so we only report results for the latter.

Figure 5 measures the the time in seconds spent accumulating DEGREESKETCH and performing the
vertex-local estimation on each graph, plotted against the number of edges in each graph. We used

Figure 5: The time in seconds to accumulate and perform local triangle count estimation using
N = 72 compute nodes for all graphs listed in Table 1.

15

Figure 6: The time in seconds to accumulate and perform local triangle count estimation using
N = 1 up to 72 for the citation-Patents graph.

N = 72 compute nodes in each case. As promised, the wall time is linear in the number edges for
both accumulation and estimation, showing good scaling with graph size on fixed resources. We
found in experiments that the subsequent passes of Algorithm 2 experienced similar linear scaling.

It is worth noting that a competing state-of-the-art exact triangle counting algorithm required
N = 256 compute nodes to even load the largest WebDataCommons graph into distributed memory
(Pearce, 2017).

6 CONCLUSIONS

We have herein demonstrated the efficacy of DEGREESKETCH to scalably and approximately an-
swering queries on massive graphs. Although we have focused on estimating neighborhood sizes and
counting triangles, DEGREESKETCH’s utility extends to more general queries that can be phrased
as unions and possibly an intersection of adjacency sets. In particular, although we have focused
on simple undirected graphs in this work, colored graphs are an interesting area of future work.
A simple generalization to the work here presented allows us to estimate interesting queries of the
form ”how many of x’s t-neighbors are both red and green?” or ”how many of x’s t-neighbors are
not blue?” DEGREESKETCH’s demonstrated scalability coupled with its demonstrated performance
should prove useful in applications where such queries are prevalent, such as motif counting.

7 ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-757958). Experi-
ments were performed at the Livermore Computing Facility.

16

REFERENCES

Nesreen K Ahmed, Nick Duffield, Theodore L Willke, and Ryan A Rossi. On sampling from
massive graph streams. Proceedings of the VLDB Endowment, 10(11):1430–1441, 2017.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58:137–147, 1999.

Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel algorithm for counting
triangles in massive networks. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pp. 529–538. ACM, 2013.

Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct ele-
ments in a data stream. In International Workshop on Randomization and Approximation Tech-
niques in Computer Science, pp. 1–10. Springer, 2002.

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 16–24. ACM, 2008.

Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algorithms for large-
scale local triangle counting. ACM Transactions on Knowledge Discovery from Data (TKDD), 4
(3):13, 2010.

Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A Phillips. Tolerating
the community detection resolution limit with edge weighting. Physical Review E, 83(5):056119,
2011.

Paolo Boldi, Marco Rosa, and Sebastiano Vigna. Hyperanf: Approximating the neighbourhood
function of very large graphs on a budget. In Proceedings of the 20th international conference on
World wide web, pp. 625–634. ACM, 2011.

Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal classifier for imbalanced data
using matthews correlation coefficient metric. PloS one, 12(6):e0177678, 2017.

Shumo Chu and James Cheng. Triangle listing in massive networks and its applications. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 672–680. ACM, 2011.

Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security Agency
Technical Report, 16, 2008.

Reuven Cohen, Liran Katzir, and Aviv Yehezkel. A minimal variance estimator for the cardinality
of big data set intersection. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 95–103. ACM, 2017.

Yann Collet. xxHash. https://github.com/Cyan4973/xxHash, 2014. Accessed: 2018-12-20.

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1):1, 2011.

Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In European Sym-
posium on Algorithms, pp. 605–617. Springer, 2003.

Otmar Ertl. New cardinality estimation algorithms for hyperloglog sketches. arXiv preprint
arXiv:1702.01284, 2017.

Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active flows on
high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement,
pp. 153–166. ACM, 2003.

Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications.
Journal of computer and system sciences, 31(2):182–209, 1985.

17

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and Theoretical
Computer Science, pp. 137–156. Discrete Mathematics and Theoretical Computer Science, 2007.

Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. Wtf: The
who to follow service at twitter. In Proceedings of the 22nd international conference on World
Wide Web, pp. 505–514. ACM, 2013.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic engineer-
ing of a state of the art cardinality estimation algorithm. In Proceedings of the 16th International
Conference on Extending Database Technology, pp. 683–692. ACM, 2013.

Madhav Jha, Comandur Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 589–597. ACM, 2013.

Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for the distinct ele-
ments problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pp. 41–52. ACM, 2010.

Jeremy Kepner, Siddharth Samsi, William Arcand, David Bestor, Bill Bergeron, Tim Davis, Vijay
Gadepally, Michael Houle, Matthew Hubbell, Hayden Jananthan, et al. Design, generation, and
validation of extreme scale power-law graphs. arXiv preprint arXiv:1803.01281, 2018.

Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd International
Conference on World Wide Web, pp. 1343–1350. ACM, 2013.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research,
11(Feb):985–1042, 2010.

Yongsub Lim and U Kang. Mascot: Memory-efficient and accurate sampling for counting local
triangles in graph streams. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 685–694. ACM, 2015.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information network or social
network?: the structure of the twitter follow graph. In Proceedings of the 23rd International
Conference on World Wide Web, pp. 493–498. ACM, 2014.

Christopher R Palmer, Phillip B Gibbons, and Christos Faloutsos. Anf: A fast and scalable tool
for data mining in massive graphs. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 81–90. ACM, 2002.

Roger Pearce. Triangle counting for scale-free graphs at scale in distributed memory. In High
Performance Extreme Computing Conference (HPEC), 2017 IEEE, pp. 1–4. IEEE, 2017.

Benjamin Priest, Trevor Steil, Roger Pearce, and Geoff Sanders. You’ve Got Mail: Building missing
asynchronous communication primitives. In Proceedings of the 2019 International Conference
on Supercomputing, pp. 8. ACM, 2019.

Jason Qin, Denys Kim, and Yumei Tung. Loglog-beta and more: A new algorithm for cardinality
estimation based on loglog counting. arXiv preprint arXiv:1612.02284, 2016.

Geoffrey Sanders, Roger Pearce, Timothy La Fond, and Jeremy Kepner. On large-scale graph
generation with validation of diverse triangle statistics at edges and vertices. arXiv preprint
arXiv:1803.09021, 2018.

18

Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Faloutsos. Tri-Fly:
Distributed estimation of global and local triangle counts in graph streams. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pp. 651–663. Springer, 2018a.

Kijung Shin, Euiwoong Lee, Jinoh Oh, Mohammad Hammoud, and Christos Faloutsos. Dislr: Dis-
tributed sampling with limited redundancy for triangle counting in graph streams. arXiv preprint
arXiv:1802.04249, 2018b.

Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Trièst: Counting local
and global triangles in fully dynamic streams with fixed memory size. ACM Transactions on
Knowledge Discovery from Data (TKDD), 11(4):43, 2017.

Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In
Proceedings of the 20th international conference on World wide web, pp. 607–614. ACM, 2011.

Daniel Ting. Towards optimal cardinality estimation of unions and intersections with sketches. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1195–1204. ACM, 2016.

Charalampos E Tsourakakis. Fast counting of triangles in large real networks without counting:
Algorithms and laws. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on, pp. 608–617. IEEE, 2008.

Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion: counting
triangles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 837–846. ACM, 2009.

Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony KH Tung. On triangulation-based dense
neighborhood graph discovery. Proceedings of the VLDB Endowment, 4(2):58–68, 2010.

Paul M Weichsel. The kronecker product of graphs. Proceedings of the American mathematical
society, 13(1):47–52, 1962.

Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and Sivasankaran Raja-
manickam. Fast linear algebra-based triangle counting with kokkoskernels. In High Performance
Extreme Computing Conference (HPEC), 2017 IEEE, pp. 1–7. IEEE, 2017.

19

A VERTEX-LOCAL VARIANCE BOUND

The following theorem bounds the estimator error variance of Algorithm 5 in terms of the variances
of the atomic edge-local estimates using the subadditivity of the standard deviation - i.e. if random
variables a and b have finite variance,

√
Var [a+ b] ≤

√
Var [a] +

√
Var [b]:

Theorem 2. Let T̃ (x) be the estimated output of Algorithm 5 for x ∈ V , and let T̃ (xy) be the
estimated edge triangle count for xy ∈ E . Assume further that for each xy, we know a standard
deviation bound ηxy so that √

Var
[
T̃ (xy)

]
T (xy)

≤ ηxy. (20)

Furhermore, let η∗ = maxxy∈E ηxy . Then, T̃ (x) has at most twice this maximum standard devia-
tion. That is, √

Var
[
T̃ (x)

]
T (x)

≤ 2η∗.

Proof.

√
Var

[
T̃ (x)

]
T (x)

=

√√√√Var

[∑
xy∈E

T̃ (xy)

]
T (x)

≤

∑
xy∈E

√
Var

[
T̃ (xy)

]
T (x)

subadditivity

≤

∑
xy∈E

ηxyT (xy)

T (x)
Equation (20)

≤
η∗
∑
xy∈E

T (xy)

T (x)

= 2η∗ Equation (5)

Theorem 2 shows that if we can bound the error variance of the edge-local triangle count estimates
produced using DEGREESKETCH, we can also bound the error variance of the vertex-local triangle
count estimates produced by Algorithm 5. Unfortunately, we are unable to provide these bounds
a priori, as they depend upon the sizes of all of the the sets and their intersections, which are an
unknown function of the graph. However, if we are somehow promised that the triangle density of
every edge is above a given threshold, we are able to produce analytic guarantees of the estimation
error.

B DOMINATIONS AND SMALL INTERSECTIONS

We have noted that there are limitations to the sketch intersection estimation in Section 4.1. There
appear to be two main sources of large estimation error in practice. Throughout we will borrow the
parlance of Section 4.1.

The first source of error is the phenomenon where r
(A)
i > r

(B)
i for all i where r

(B)
i > 0, resulting

in c
(A),<
k = c

(B),>
k = 0 for all k and c=k = 0 for all k > 0. This generally only occurs when

|A| � |B| or B ⊆ A. We say that such an A strictly dominates B. In this case, Equation (70) of

20

Figure 7: Mean relative intersection error as a function of |B|, where |A ∩B| = |B|
10 .

(Ertl, 2017) can be rewritten as the sum of functions depending upon λa and λb + λx. This means
that the optimization relative to λa does not depend upon λx or λb. The optimization relative to
λb + λx is similarly independent of λa, and thus is tantamount to using the maximum likelihood
estimator for B independent of A. Consequently, λx could be anything between 0 and λ̃(B) without
affecting the optimum joint likelihood, resulting in arbitrary estimates for the intersection.

We also consider the phenomenon where r
(A)
i ≥ r

(B)
i for all i, resulting in c

(A),<
k = c

(B),>
k = 0

for all k. We say that such an A dominates B. We are unable to make the same analytic statements
about Equation (70), as the terms dependent upon c= are not eliminated. Consequently, the optimum
estimate for λa depends upon λb and λx. IfA dominatesB, the count statistics given by Equation 19
are unable to distinguish whetherB is subset ofA. Many and large nonzero values for c=k for large k
will bias the optimization towards larger intersections, whereas the converse is true if c=k is nonzero
for only a few small values of k. If |A| � |B|, then the latter might occur whether |A ∩ B| is large
or small. Furthermore, note that if B ⊆ A, then A will (possibly strictly) dominate B.

If A dominates B, then S(A∪B) = S(A). Ergo, the inclusion-exclusion estimator returns the esti-
mated value of B. This estimate is dubious, given that we have no evidence that the sets A and B
hold any elements in common. This is especially true if |A| � |B|. Hence, both the naı̈ve and max-
imum likelihood estimators may suffer from bias when a domination event occurs. Figure 7 plots
the mean relative error as one of the sets decreases, with a fixed relative intersection size. As |B|
gets smaller, the likelihood of a domination increases. At |B| = 104 dominations occur in 6.6% of
cases, at |B| = 103 dominations occur in 76.9% of cases, at |B| = 102 dominations occur in 97.5%
of cases, and at |B| = 10 dominations occur in 99.8% of cases. In particular in the two cases where
|B| = 10 and |A ∩ B| = 1 and a domination does not occur, the maximum likelihood estimator
returns exactly 1. So for a fixed intersection size relative to |B|, both the inclusion-exclusion and
maximum likelihood estimators return more reasonable estimates when dominations do not occur.
However, there is no known reliable method to avoid them in practice.

Consequently, it might be safest to disregard dominations in practice, as failing to do so is theo-
retically unsound and likely to produce high and arbitrary error. However, this poses a problem for
many graph applications, as one will frequently have to compare the sketches of high degree vertices
with those of comparatively low degree to find their joint triangle count.

We have also noted the problem of small intersections. As discussed above, the maximum likelihood
intersection estimate is proportional to the number (and size) of the nonzero c=k for k > 0, where
larger k biases the estimate toward larger intersections. If the ground truth intersection is small
relative to |A| and |B|, however, Equation (70) will exhibit high variance.

Figure 8 compares the performance of the inclusion-exclusion estimator to the maximum likelihood
estimator for a prefix size of 12. Here the set sizes are kept constant at 107 Note that the mean
relative error grows quite large as the relative interection size decreases, although the maximum
likelihood estimator consistently outperforms the inclusion-exclusion estimator by roughly an order
of magnitude.

21

Figure 8: HLL inclusion-exclusion and maximum likelihood intersection estimator performance
where |A| = |B| = 107 and |A ∩B| varies from 1 up to |B|.

C KRONECKER GRAPH CONSTRUCTION

Nonstochastic Kronecker graphs (Weichsel, 1962) have adjacency matrices C that are Kronecker
products C = C1 ⊗ C2, where the factors are also adjacency matrices. This type of synthetic
graph is attractive for testing graph analytics at massive scale (Leskovec et al., 2010; Kepner et al.,
2018), as ground truth solution is often cheaply computable. For such graphs, global triangle count
and triangle counts at edges are computed via Kronecker formulas (Sanders et al., 2018): for a
graph with m edges, the worst-case cost of computing global triangle counts is sublinear, O

(
m

3
4

)
,

whereas the cost of computing the full set of edge-local counts is O (m).

Here, we build C = C1 ⊗C2 from identical factors, C1 = C2, that come from a small set of graphs
with m up to 105 from the University of Florida sparse matrix collection (polbooks, celegans,
geom, yeast (Davis & Hu, 2011)). All graphs were forced to be undirected, unweighted, and
without self loops. We compute the number of triangles at each edge for C1 and use the Kronecker
formula in (Sanders et al., 2018) to get the respective quantities for C. Summing over the edges and
dividing by 3 gives the global triangle count for C.

22

