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Abstract The reversible execution of C/C++ code has been a target of
research and engineering for more than a decade as reversible computation
has become a central notion in large scale parallel discrete event simulation
(PDES). The simulation models that are implemented for PDES are of in-
creasing complexity and size and require various language features to sup-
port abstraction, encapsulation, and composition when building a simulation
model. In this paper we focus on parallel simulation models that are written
with user-defined C++ abstractions and abstractions of the C++ Standard
Library. We present an approach based on incremental state saving for es-
tablishing reversibility of C++ and an evaluation for a kinetic Monte-Carlo
simulation implemented in C++. Although a significant runtime overhead is
introduced with our technique, it is an enormous win that it allows using
the entire C++ language, and have that code automatically transformed into
reversible code to enable parallel execution with the Rensselaer’s Optimistic
Simulation System (ROSS).

1 Introduction

Reversible computation has become a key concept in optimistic parallel dis-
crete event simulation (PDES) [2,15]. It is essential to achieve high perfor-
mance for large scale models. In optimistic PDES reversibility is required to
perform a distributed rollback in case a conflict is detected due to the opti-
mistic execution.

Jefferson started the subject of rollback-based synchronization in 1984 [9]
with presenting the Time Warp mechanism. This mechanism performs a dis-
tributed rollback by transmitting so called antimessages to “unsend” previ-

Lawrence Livermore National Laboratory



2 Schordan et al.

ously sent messages and by restoring a state as a snapshot of an old state. In
1999 Carothers et. al published the first paper to suggest using reverse com-
putation instead of snapshot restoration as the mechanism for rollback [2]. It
is written in terms of very simple and conventional programming constructs
(C-like rather than C++ -like) and instrumenting the forward code to store
near minimal trace information to allow reversing of side effects when needed.
That paper considers discrete event simulation as one of several applications
of virtual time, but in fact it was then and is now the primary application.
Although the term “virtual time” is used, one can safely read it as “simulation
time”.

Barnes et. al demonstrated in 2013 [1] how important reverse computation
can be in the practical application area of optimistic PDES. In [1] a thorough
historical investigation was presented of all published results on the PHOLD
benchmark from 1995 to 2013 and new results were presented with the high-
est event rate of 504 billion events per second achieved at Lawrence Livermore
National Laboratory on Blue Gene/Q in 2013. The reverse code was hand-
written, and methodologically we know that this is unsustainable for large
models involving several libraries, highlighting the need for a way of auto-
matically generating reverse code from forward code. This is what we address
with the work presented in this paper - to have a tool available, Backstroke,
for establishing the reversibility of C++ code.

One of the major challenges in reversible computation is to avoid infor-
mation loss in the forward computation. In a trace-free reversible language
the reversibility of a program (backward determinism) is ensured, among oth-
ers, by assertions at join points of the control flow [24]. In the absence of
such assertions, auxiliary data structures are needed to trace the lost infor-
mation. Optimized tracing schemes, such as incremental checkpointing, also
called incremental state saving, are described by Perumalla [15]. In this pa-
per we present an approach for applying incremental state saving such that it
allows to establish reversibility for any C++ code.

We will briefly describe reversible computation and its use for optimistic
parallel discrete event simulation, and then describe how we produce reversible
code from ordinary, possibly non-reversible, code written in standard C++.
We go beyond our previous work in [21] by (i) also using C++ Standard
Library abstractions for the implementation of the discrete event simulation
model, (ii) start with a model code where all additional code necessary in
hand-written reverse code to preserve destroyed information is not available,
and (iii) present an evaluation of the simulation model running on a different
hardware architecture and for a much bigger problem size as previously. This
also demonstrates the advantage of our source-to-source approach in compar-
ison to binary instrumentation [3,5], as we can move to a different hardware
architecture without adapting our system to a new hardware architecture.
The overhead of instrumentation is addressed in [4] by also allowing a run-
time decision with multi-coding to determine if the instrumented code is not
suited (because its cost does not pay off), and an alternative method to state
reconstruction based on coasting forward should be instead exploited. This
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decision can be taken at run time depending on the variation of the workload.
In this paper we focus on the instrumentation approach, but a combination
with those other methods is an interesting option to reduce overheads. Another
alternative is to implement the generation of reverse handlers for a lower-level
representation in a compiler, such as the LLVM, allowing to leverage all exist-
ing backends of a given compiler infrastructure for code generation. This was
demonstrated with LORAIN [10] in 2014. In some scenarios, such as the use
of shared libraries for which the source code is not available, combining our
approach with approaches operating on binaries [3], would allow to combine
the advantages of both approaches.

Another approach is the use of a reversible programming language. The
reversible programming language Janus [25,23] also allows to generate C code
for the forward and reverse code. This allows to combine implementations
in C/C++ with reversible functions that are implemented in Janus. For the
presented model this is not an option because most of all computations in-
volve floating-point operations and floating-point arithmetic is inherently irre-
versible due to rounding and truncation at run-time. Reversing floating-point
operations without accumulating errors requires some form of tracing. We con-
sider such a combination in future work with a PDES model that operates on
scalar types only.

At the source-level the challenge is to address the full range of C++ lan-
guage constructs, and as we use the C++ Standard Library’s classes and
functions we also need to ensure that language extensions and built-ins used
in these headers still allow to establish reversibility of C++ with our approach.
In comparison to reverse code generation the advantage of our approach is that
it suffices to only instrument all forms of assignments and memory allocation
and memory deallocation operators, whereas all other language constructs can
remain as in the original program.

Since the change in hardware architectures, from one generation to the next
is a daunting aspect of high-performance computing, this paper also demon-
strates a key aspect of our work in combination with previous work [20,21]
which we want to emphasize with the presented new results: our approach
allows to run models on various hardware architectures. For users it is also
relevant that the model itself can be developed on any computer having avail-
able a C++ compiler and MPI for message passing, because the compiled
simulation code can be run on a laptop as well as on a super computer.

1.1 Discrete Event Simulation

Discrete event simulation (DES) is a simulation paradigm suitable for sys-
tems whose states are modeled as changing discontinuously and irregularly
at discrete moments of simulation time. State changes occur at simulation
times that are calculated dynamically rather than determined statically as
in time-stepped simulations. Most irregular systems whose behavior is not
describable by continuous equations and do not happen to be suitable for
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simple time-stepped models are candidates for DES. Efficient parallel dis-
crete event simulation (PDES) is much more complex than the sequential
version. There are two broad approaches to resolving the PDES synchroniza-
tion issue, called conservative and optimistic [6]. We will discuss optimistic
PDES, which requires reversibility, in more detail in the next section. Recently
Omelchenko and Karimabadi have developed an asynchronous flux-conserving
DES technique for physical simulations [11]. Their preemptive event process-
ing approach to parallel synchronization complements standard optimistic and
conservative strategies for PDES.

1.2 Optimistic Parallel Discrete Event Simulation

The general approach to PDES is to divide the simulation and its state into
semi-independent parallel units called LPs (logical processes) that generally
execute concurrently and communicate asynchronously. Each simulated event
(state change) is executed within one LP and affects only that LP’s state. Any
event may schedule other events for future simulation times. Events sched-
uled for other LPs must be transmitted to them as event messages with a
timestamp indicating the simulation time when the event should be executed.
Arriving event messages get enqueued in the event queues of the receiving LPs
in increasing time stamp order.

What makes PDES so complex is the synchronization problem. Every LP
must execute all of its events in strictly non-decreasing timestamp order de-
spite the fact that it does not know in what order events may arrive or what
timestamps they may carry. At any hypothetical global snapshot of the par-
allel simulation taken at a single instant of wall clock time some LPs will be
ahead in simulation time and some will be behind, and which LPs are ahead
or behind may change during execution.

Conservative synchronization uses conventional process blocking primitives
along with extra knowledge about the simulation model (called lookahead in-
formation) to prevent the execution from ever getting into a situation in which
an event message arrives at an LP with a timestamp in its past. Conservative
synchronization is limited to models with static communication graphs.

Optimistic synchronization, by contrast, allows dynamic communication
graphs. As a result, there is a danger of a causality violation when an LP that
is behind in simulation time, e.g. at t1, sends an event message with a (future)
timestamp t2 > t1 that arrives at a receiver that has already simulated to time
t3 > t2. In that case the receiver has already simulated past the simulation
time when it should have executed the event at t2, but it would be incorrect
to execute events out of order. Whenever that occurs, the simulator rolls back
the LP from t3 to the state it was in at time t2, cancels all event messages
the LP sent after t2, executes the arriving event, and then re-executes forward
from time t2 to t3 and beyond. All event executions are therefore speculative
or provisional, and are subject to rollback if the simulation gets into local
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causality trouble. Most of the time that does not happen and the simulation
proceeds forward in parallel.

Each LP computes its local virtual time (LVT) based on the time stamps
of event messages it receives. Because of rollbacks the LVT can also be reset
to an earlier point in time. The global virtual time (GVT) is defined to be the
minimum of all of the LVTs. Several algorithms exist to compute an estimate
of the GVT during the simulation. Any events with time stamps older than
GVT can be committed because it is guaranteed that they never need to be
reversed. For more detail see [15,9]. That events are committed once they are
older than GVT, allows to delete all information that may have been stored
to enable reversibility.

1.3 Motivation for Generation of Reversible Code

In this paper we assume the parallel simulation model is written in C++. Each
event is the execution of some event method E() that makes changes to the
state variables of the simulation. If that event has to be rolled back to deal
with a causality violation, then the simulator needs a way to exactly reverse
all of the side effects of E() to return the simulation to the exact state it was
in before E() was executed.

However, a C++ method E() will generally destroy information during its
forward execution. It will usually overwrite or update some state variables,
destroy control information (e.g. by forgetting which branch it took at a
conditional), and may also delete data structures on the heap. It is not possible
in general to write a reverse function E′() that can restore information that
was actually destroyed by E(). But we can frame the problem differently and
achieve our purpose.

Instead, for an event method E() written in C++ (with return type void),
we generate a derived method, E+() that is identical to E() except that it
is instrumented to save in an auxiliary data structure a trace of all of the
information that E() would destroy. The simulator uses that saved trace in-
formation to undo the side effects of E+(), and it also destroys the auxiliary
data structure that E+() created.

If E() does any memory deallocation, we do not actually do the deallocation
in E+() since it cannot be reversed. Instead we defer the actual deallocation
of an object (but not the call to its destructor) to be done at commit time
when we can be sure that E+() will never need to be reversed. Once the entire
simulation has progressed (on all nodes) beyond a certain simulation time t
and there is no message in the network with a receive time < t, it is guaranteed
that no event at a simulation time < t will ever need to be reversed. At this
point the commit function is called for all events at simulation times earlier
than t. I/O and certain other issues are also handled at commit time, but they
are beyond the scope of this paper.

Our approach is also described in general by K. S. Perumalla in [15] (p.132)
as incremental check pointing “Among the checkpointing schemes, incremen-
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tal checkpointing is in general the most efficient scheme, but is also one of
the more challenging ones to implement.” - also pointing out that incremen-
tal checkpointing can severely interfere with cache behavior and introduce a
significant performance penalty in particular in cases when entire data struc-
tures are modified. In combination with the above mentioned commit time,
it is an instance of the forward-reverse-commit paradigm as described in [15]
(Chapter 7.3). An event can be reversed if necessary, or it is committed once
it is certain that it never needs to be reversed.

In [18] a method is presented to implement incremental state saving in sim-
ulation kernels based on C++. In contrast to our approach, this method is not
completely transparent. In particular, the user has to explicitly declare state
variables as State<> or RefState<> objects and might have to explicitly
make some casts which were not previously needed.

Our work significantly goes beyond the scope of our work in [21] which
excluded the use of C++ Standard Library abstractions. The complexity that
comes with using the C++ Standard Library implementation in the model’s
implementation is that we need to transform all templates and types provided
in C++11 Standard header files and ensure that these reversible types can also
be used by code that is not supposed be reversed (e.g. Backstroke’s C++ run-
time library implementation itself). We demonstrate our complete approach
to C++ by applying it to a model in a scalable kinetic Monte-Carlo C++
application. The results presented in this paper are based on version 2.1.2 of
our tool Backstroke that can generate reversible forward code for the given
model code without any intervention or requirements on the user. To the best
of our knowledge, this is the very first paper that presents the transformation
of a full C++ simulation model using also C++ Standard Library abstractions
and also transforms all used system headers. In [21] we transformed C++98
code and excluded the use of the C++ Standard Library.

In this paper we apply our approach also to C++11 Standard Library
classes and functions in the C++11 header files and investigate the use of
Backstroke in a more general setting: combining reversible (transformed) code
with non-reversible code and also running reversible code in reversible and
non-reversible mode. It is the combination of these features that makes our
approach applicable to a wide range of use-cases. We discuss these features in
detail when describing the use of the C++ Standard Library, calling ROSS
simulator functions from our model code for sending MPI messages (i.e. com-
munication between nodes of BlueGene/Q), and also the shared use of the
C++ Standard Library abstractions in our model and in code that is not sup-
posed to be reversed. For example, the data structures that are used to record
all modifications of memory by Backstroke generated code at runtime, are im-
plemented using C++ Standard Library abstractions but are not supposed to
be reversed, instead they are only used to achieve reversibility.

In Section 2 we present our approach to generating reversible C++11 code.
In Section 3 we describe the kinetic Monte-Carlo simulation model and in
Section 4 an evaluation of the optimistic parallel execution on our IBM Blue-
Gene/Q supercomputer with the ROSS simulator. All reversible code used
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to implement the reverse function as required with the ROSS simulator, is
generated automatically and no user intervention is necessary. In Section 5 we
present the related work. In Section 6 we conclude on the observed performance
and what future potential we see for further performance improvements.

2 Generation of Reversible Code

Our approach is a variant of incremental state saving (also called incremental
check pointing) and the forward-reverse-commit paradigm as described in [15]
(Chapter 7.3). This paradigm allows us to address situations in which a pro-
gram fragment can be executed optimistically “ahead of time”, but is found
to be incorrect (“too optimistic”), and requires re-execution from a previous
state of execution.

This situation occurs in parallel discrete event simulation with optimistic
synchronization. We need to reverse events if they turn out to be not on the
correct execution path (e.g. because an event that was transmitted on the
network arrives with a timestamp that is older than the one that has already
been simulated). After the event has been reversed we can then re-execute the
event, but also taking into account the events that had occurred with an older
time stamp.

Our approach requires that we transform only the forward event func-
tion. The forward code is transformed such that it records additional infor-
mation in a data structure that is used by the reverse and commit methods.
No code is generated for the reverse and commit method. They share the
same implementation for all variants of transformed forward event codes. We
have implemented our approach in a tool called Backstroke as source-to-source
transformation based on the compiler infrastructure ROSE [17].

In the following sections we describe the code transformation operations,
recorded data at runtime, and how the recorded data is used by the reverse
and commit methods in the following sections.

2.1 Code Transformations for Intercepting Memory Modifying Operations

For our approach it is sufficient to intercept all memory modifying operations.
Measured in bits, we may store more information than is actually destroyed,
but we do not need to store control flow information, because we only restore
the sequence of memory locations that have been modified through assign-
ments in one execution of the event method. When the execution of the event
method is reversed, we restore the memory locations in reverse order of their
modification. For this purpose of restoration, it is irrelevant which execution
path was executed by the event method. One can also consider this to be an
execution trace of all addresses and their old values before they are overwritten
by an assignment. By restoring all those memory locations to their previous
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value, we can restore the program state before execution of the event func-
tion. In addition, we also undo all memory allocation when the effects of an
execution are reversed.

This approach allows us to address the effects of memory modifications for
all of C++. With C++ come a number of language constructs in addition to
the language constructs in C that make the generation of reverse code that
can be executed in reverse very difficult. This applies in particular to C++
exceptions which are used in many modern C++ codes.

We consider three kinds of memory modifying operations: assignment op-
erators, memory allocation, and memory deallocation. C++ offers 15 different
assignment operators, which can modify the memory for all built-in types, two
kinds of operators for memory allocation (single object and arrays) and two
kinds of operators for memory deallocation (single object and arrays). The
number of variants of the new and delete operator are increasing with each
new standard of C++. In this paper we focus on C++11 and address the
C++11 variants of these operators. The only C/C++ language construct not
addressed yet are bitfields, since they require a different transformation as the
address operator cannot be applied to bitfields in C/C++.

In the following section we define the transformations for all the C++
operators that must be transformed in the forward method.

2.2 Forward Code Generation for Assignment Operators

C++ offers 15 memory modifying operators, eleven variants of assignment and
four variants of increment/decrement operators:

1. Assignment: E1 = E2

2. Assignment with additional operation: E1 op E2

where op ∈ {+=, -=, *=, /=, %=, &=, |=, ˆ=, <<=, >>=}
3. pre/post increment/decrement operators: op E, E op where op ∈ {++,--}

For each of the 15 operators we apply a transformation that enables us to
record the old value stored at the address that is modified by an assignment
and the address itself. The code transformation of assignments is only applied
to operations on built-in types. For our approach it is important to be aware
of the fact that memory can only be modified through built-in types. In C++
the assignment of user-defined types is defined by a default assignment oper-
ator (see Section 2.6). If the default assignment operator is user-defined we
transform this implementation in the same way as all other forward code. If
the default assignment operator is not user-defined, we generate a reversible
default assignment operator. This way, the assignment of user-defined types
is addressed as well. In C++11 two kinds of assignment operators exist. If
a default C++11 copy assignment operator is not provided by the user, we
generate a reversible one. If a user-defined C++11 move assignment opera-
tor exists, it is transformed; analogous for the copy assignment operator. If a
C++11 move assignment operator is not defined, it defaults to using a default
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C++11 copy assignment operator, for which we generate a reversible variant.
The C++11 move semantics might require further refinements, but we are not
aware of any codes where reversibility is not established with above rules.

For assignment operators we define the transformation α which intercepts
all 15 forms of C++ assignments. The code that is introduced by this transfor-
mation is applied to all 15 kinds of assignment operators as a unified operation
(including pre- and post-increment/decrement operators). The transformation
α is introduced as follows for the different kinds of assignment:

1. E1 = E2 =⇒ α(E1) = E2

2. E1 op E2 =⇒ α(E1) op E2

3. op E =⇒ op α(E), E op =⇒ α(E) op

For example, let p be a pointer to an object and x be a data member of
this object. Then an assignment of y to this member variable can be writ-
ten as p->x=y. The transformation α instruments the left-hand-side of the
assignment. The right-hand-side of the assignment remains unmodified as we
only require the address of the left hand side of an assignment to access the
old value (i.e. the value before assignment). Hence, we perform the transfor-
mation α(p->x)=y. The transformation α introduces a call to a function in
the Backstroke library that takes as argument a reference parameter and re-
turns the very same reference. This allows us to keep this transformation local
to expressions and we never need to transform any control flow or normalize
code. An example of a transformed code involving assignments and memory
allocation is described in Section 2.5.

2.3 Addressing Dynamic Memory Allocation

To address memory allocation we introduce transformation β, and for deal-
location we introduce transformation γ. This concept is essentially the same
as described in [15] (Chapter 13), but extended for C++ constructors and
destructors, and in particular for C++ array allocation and deallocation. The
correctness proof provided in [15] also applies for our approach. The only
difference is that we split the execution of the destructor from the actual
deallocation. In contrast, constructor calls are not separated from the actual
allocation. We only need to store the address of the allocated object.

Let T be a built-in type or a user defined type (class, struct, or union)
and E be an expression. Then for every occurrence of the operators new and
delete in a program, we introduce the following transformations

1. new T() =⇒ β1(T).
2. new T()[E] =⇒ β2(T ,E).
3. delete E =⇒ γ1(E).
4. delete[] E =⇒ γ2(E).

For array allocation the expression E specifies the size of the array. For
the C++ delete operator (e.g. delete x, where x denotes the address of
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an object) we generate code that invokes the destructor of the respective type,
store the address of the object to be deallocated, and defer the actual memory
deallocation to commit time (i.e. the memory of the object is deallocated when
the commit function in the Backstroke library is invoked by the simulator).

2.4 Semantics of the Transformation Operators for Memory Allocation and
Deallocation

Array deallocation has the additional complication that we also need to know
(i) the size of the array (which is not explicitly provided in the source code), (ii)
apply the destructor for each array element in reverse of the order constructors
were called in the forward code, and finally (iii) to deallocate the memory
allocated for the array and the memory location storing the size.

We completely replace the array allocation and deallocation by our own
allocation scheme. Our allocation scheme adds a word for storing the size of
the array. The pointer returned by our allocation function refers to the actual
memory behind the added size field. This mimics the same behavior as the
code that is usually generated by C++ compilers, where the size of an array is
stored in addition to the array elements. However, it is not standardized where
exactly this size information is stored by a compiler generated code, therefore
we need to maintain this separately. This enables us to ensure that the call to
the destructor and the actual memory deallocation can be separated and it is
also compiler independent.

2.5 Example: Original and Transformed Model Code Fragment

In Figure 1 we show a Backstroke transformed code. It is a code fragment
from the std::vector type used by our model code and the allocator and deal-
locator functions used in STL new allocator class. In our model we use various
C++Std data types (e.g. vector, deque, pair and iterators). We use our own
user-defined type for the map implementation. The reason is that std::map is
only partially implemented the C++Std library headers, but also has parts of
its implementation in the linked C++Std library. This would require to also
transform the entire Standard Library implementation and link with this in-
strumented Standard Library instead of the installed Standard Library. Since
this would impact the performance of all C++ functions, including I/O func-
tions, we use our own map implementation. In future work we will also consider
to transform the entire C++ Standard Library code that is provided in the
shared library. In this paper we describe our approach for transforming all
code that comes with the C++ Standard Library headers.

The example fragment contains assignments, memory allocation, and mem-
ory deallocation. In general, assignments to local variables are not instru-
mented because they are auto-allocated in C++ and destroyed after execution
of a function (usually allocated on the stack). All instrumentations are imple-
mented as functions in the xpdes namespace and therefore easily visible in the
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Listing 1: Reversible Forward Code

template<typename _Tp>
class new_allocator
{
public:
...
pointer

allocate(size_type __n, const void* = 0)
{

if (__n > this->max_size())
std::__throw_bad_alloc();

return static_cast<_Tp*>((xpdes::registerOperatorNewT(::
operator new(__n * sizeof(_Tp)))));
}
void
deallocate(pointer __p, size_type)
{ xpdes::operatorDeleteT(__p); }

}
...
template<typename _Alloc>

class vector<bool, _Alloc> : protected _Bvector_base<_Alloc
>

{
...
public:
...

push_back(bool __x)
{

if (this->_M_impl._M_finish._M_p != this->_M_impl.
_M_end_of_storage)

(xpdes::avpushT(*(xpdes::avpushT(this->_M_impl.
_M_finish))++)) = __x;

else
_M_insert_aux(end(), __x);

}
}

Fig. 1: Example code fragment from the Backstroke instrumented code of the C++Std
Library, showing the allocate and deallocate functions of the class new allocator and the
vector class implementation of the function push in the vector header file.

generated code. The α transformation introduces the xpdes::avpushT(used)
function call. For the new operator the transformation β is applied. It intro-
duces the function call xpdes::registerOperatorNewT for the operator
new in the global namespace (allocating memory of the provided size) and
xpdes::registerAllocationT for the operator new that can be invoked
for a specific type. The transformation γ introduces similar functions for deal-
location. This Backstroke runtime library function introduced by γ records
the pointer of the object memory to be deallocated and defers the dealloca-
tion until commit time. It also invokes the destructor of the respective class
explicitly without deallocating memory.

2.6 Default Assignment Operators of User-Defined Types

C++ allows to implement a user-defined assignment operator for any user-
defined type. A user-defined assignment operator function is invoked whenever
an assignment operator is used for this user-defined type. This way alternative
semantics for assignment can be implemented. We utilize this C++ feature by
generating reversible default assignment operators, if the operator is not pro-
vided by the user. In this case the compiler generates a default assignment



12 Schordan et al.

operator, but since we require a reversible assignment operator we generate
an alternative implementation. A provided user-defined assignment operator
replaces the default implementation. If the user provided an assignment oper-
ator we transform the existing one (like any other function).

2.7 Code Generation

The generated code contains calls to Backstroke library functions that have
been introduced. All transformations are local expressions. Backstroke’s Run-
time Library is linked against the transformed forward code. The execution of
the forward code stores all data necessary to restore any previous state in the
computation of the forward function. All data is maintained in data structures
of Backstroke’s runtime library.

2.8 RTSS Operations

Backstroke’s runtime library uses a Run Time State Storage (RTSS) to manage
the data necessary to restore states to support reversibility. Since our approach
follows the Forward-Reverse-Commit paradigm, the essential data structure
used internally in the RTSS is a double ended queue. The forward code pushes
data on one end of the queue, and the reverse code pops data from the very
same end of the queue. The commit function, in contrast, pops data from the
other end. Note that we maintain a data queue for each event invocation, and
thus, after restoring an event its data queue is guaranteed to be empty after
reversal or commit. Note that maintaining this order is important in cases
where data for the same memory location is restored multiple times (because
multiple writes to the same memory location were recorded).

In the reverse method we deallocate memory that has been allocated, but
may also restore data in this very same memory. Hence, the order of data
restoration and undoing of memory allocation (i.e. deallocation) must be main-
tained in the reverse function. The commit function only disposes data stored
by the forward function and performs the deferred memory deallocation (as
a result of the delete operator). Since deallocated memory blocks cannot
overlap, and no data is restored in the commit function, the order is irrele-
vant - however, it is conceptually clean to perform it in the same order as the
forward function, as memory deallocation is a deferred operation. We do not
consider input/output operations in this paper, but the order is also signifi-
cant when completing deferred output in the commit function. Therefore, we
consider a double ended queue as the appropriate abstraction for maintaining
data for the forward-reverse-commit approach. Handling of input and output
(currently only performed in the initialization of model data and after the end
of the simulation) is the subject of future work.

In summary, the essential operations in the RTSS for supporting Back-
stroke generated reversible forward functions in combination with the reverse
and commit functions which are provided by the RTSS, are shown in Table 1.
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Original Forward Reverse Commit

new register obj allocation deallocate obj dispose obj allocation
delete register obj deallocation dispose obj deallocation deallocate obj
l=r store (addr(l),val(l)) restore (addr(l),val(r)) dispose (addr(l),val(r))

Table 1: Summary of operations performed by the Run Time State Storage (RTSS) in the
Backstroke Library.

In addition, the RTSS offers API functions to turn the recording of data
on or off. The Backstroke Library uses this feature also itself by turning off
recording of data when storing data in C++ Standard Library data structures
(e.g std::deque), because its own data structures are not supposed to be re-
versed. We also use this feature in an interface to the ROSS simulator. This
feature also allows to manually optimize code by reducing the overhead for
pure functions which do not change the state of the simulation. We have ap-
plied this for one function (nextflip) in the KMC model - although the impact
is minimal, it may have a good potential for users to optimize their code man-
ually, but without writing reverse code. However, it does require to understand
reversibility.

2.9 Transformation Statistics for the KMC Model

In Table 2 we show the transformation statistics for the KMC simulation
model that we evaluate in this paper. We show results for the optimized ver-
sion where we detect local variables, which are guaranteed not to be state
variables. Local variables are straight forward to detect in C++ based on
their declaration. Note that this does not apply to data structures referred
to by local variables which may have been assigned an alias to shared data
from an input parameter. For those, precise static analysis can help to further
reduce instrumentation overhead. In C++ const declarations can be further
leveraged as well, but an analysis also needs to take const casts (used for elimi-
nating declared constness) into account. We consider these methods for future
work, and present results with optimized instrumentation overhead for local
variables. However, note that instrumentation only causes data accesses being
recorded if the corresponding data is stored in the heap (see section 2.11 for
more details).

For local variables we do not need to record any information, nor do we
need to check whether it is allocated on the stack or heap, since all local
variables are stored on the runtime stack. We can therefore eliminate the
instrumentation for such assignment. The columns T1-T6 show the number of
instrumentations by language construct as follows

T1 : Assignment operator expression statements (e.g. x=y;)
T2 : Object memory allocation with operator new
T3 : Array memory allocation with operator new[]
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T1 T2 T3 T4 T5 T6 Total

656 4 5 4 3 158 830

Table 2: Overview of the number of applied transformations on the KMC Model code includ-
ing the used C++Std library headers for the six different transformed language constructs.

T4 : Object memory deallocation with operator delete
T5 : Array memory deallocation with operator delete[]
T6 : Default assignment operators that are not implemented by the user and

for which a reversible version is generated.

In the last column we show the total number of transformations. For the
KMC model and the included C++11 Standard header files std::vector
and std::deque (and all headers included by those) the pre-processed origi-
nal file has 27154 lines of code, the Backstroke generated code has 28236. Thus,
Backstroke generates 1082 additional lines of code for 158 default assignment
operators, that’s about 7 lines per default assignment operator function. For
data members of type array loops are generated to copy all array elements. The
transformation of the entire code takes 22.5 seconds with Backstroke 2.1.2.

2.10 C++ Templates

Any modern non-trivial C++ code involves templates. Since our transforma-
tion is performed source-to-source we need to take templates into account.
For each type used in a template the compiler generates a separate instance
of the template with the parameter replaced by the actual type. We trans-
form the original template definition without considering instantiations. We
discuss this in detail for the assignment operator and why this is guaranteed
to be correct in combination with the specific semantics implemented in the
Backstroke library functions.

An assignment that occurs in the template function can be either instanti-
ated for (a) a built-in type, or (b) for a user-defined type. For a built-in type
(e.g. int) the left hand side of the assignment must be passed to a Backstroke
library function to record its address-value pair to support reversibility. For a
user-defined type we do not need to record the address-value pair for the left
hand side variable, because any actual memory-modifying assignments will
occur in the underlying reversible assignment operator for that type.

Since we transform the original template (and not the instantiated code)
the code transformation is the same for both cases. Here C++11 predicates,
which determine at compile time whether a type is a built-in type or a user-
defined type, come to rescue. The implementation in the Backstroke library
uses these predicates such that the C++11 compiler can determine at compile-
time whether the provided type to the library function avpushT is a built-in
type or a user-defined type. For the user-defined type the function performs a
no-op (i.e. fall-through branch). For built-in types code is compiled such that
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the address-value pair is stored. Note that transformed assignment operators
contain an avpushT for each data member of the user-defined type. The use
of these conditional C++11 compile time predicates in the runtime library
enables us to keep the required source-to-source transformations simple. Note
that operators for built-in types cannot be overloaded in C++. That is why we
need to perform a source-to-source transformation (otherwise it would suffice
to implement reversible assignment operators for built-in types).

Memory allocation and deallocation operators are independent of the as-
signment operator semantics. They are only involved when the result of a new
operation (i.e. a pointer to allocated object memory) is assigned to a vari-
able. Assignment of values and memory allocation and deallocation is treated
orthogonally by the separate transformations α, β, and γ.

2.11 Stack vs Heap - The Necessary Check

The Backstroke Runtime Library must ensure that data stored on the runtime
stack of the event is not restored in the reverse function because once the event
function has been executed, all elements on the event function’s runtime stack
are popped from the stack by the C++ runtime system. Therefore a com-
piler/system dependent test is performed for each address-value pair that are
about to be stored in the Run Time State Storage (RTSS). If the pointer refers
to a stack address, then the pointer is not stored in the RTSS. This is necessary,
because otherwise we would restore memory (in the reverse function) that is
no longer valid because the stack frame associated with a previously-executed
function is no longer valid (or possibly overwritten). On the other hand, if it
is a heap pointer, then the pointer is stored in the RTSS and the reverse (or
commit) functions use this information to perform the proper operations to
restore (or remove) the memory state.

Hence, no information about stack allocated memory is ever stored in the
RTSS, only modified heap allocated memory is duplicated in the RTSS.

The Backstroke Runtime Library is initialized at the beginning of the sim-
ulation. For our model this also involves initializing the simulation with data
read from configuration files. Hence, the code performing Input/Output (simi-
lar for generating the results of the simulation) is not part of the event function
and therefore not reversed.

The Backstroke Library stores the current start address and end address
of the thread’s stack (currently we use POSIX pthread library function calls
to determine the stack’s start address and the length of the stack).

3 C++ KMC Model

In order to verify robustness and correctness of Backstroke, we have chosen
to apply it to a grain evolution simulation using a real world parallel kinetic
Monte-Carlo code written for crystal kinetics. The code is named SPOCK
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(Scalable Parallel Optimistic Crystal Kinetics) and is built on the ROSS dis-
crete event simulator by C. Carothers et al., which uses the Time Warp algo-
rithm to achieve a scalable and robust parallelization. The following sections
introduce the ROSS simulator, the kinetic Monte-Carlo method, and the grain
evolution application.

3.1 ROSS Simulator

ROSS is a general purpose discrete event simulator developed at RPI by C.
Carothers et. al. [7]. Within ROSS, a simulation consists of a set of logical
processes (LP’s) that communicate with each other through time-stamped
event messages. A discrete event process formulated in this way is called a
ROSS model. To implement a new model in ROSS one needs to write an
initialization function that sets off the initial state of each LP, and an event
function which is responsible for processing a received event message for a
given LP. The event function also has the opportunity to send further event
messages.

After initialization the simulation logically progresses by processing any
event messages in simulation time order using the provided event functions for
the LP’s.

ROSS has been developed over more than 10 years, and is mature software.
It has the capability of running simulations in parallel using either conservative
or optimistic synchronization. The Time Warp mechanism is the versatile and
scalable option in ROSS for running simulations in parallel. Time Warp is an
optimistic approach, where each processor employs speculative execution to
process any event messages it is aware of. Causality conflicts, such as when
a previously unknown message which should already have been processed is
received, are handled through local roll back. During roll back the effects of
messages that were processed in error are undone.

In order to use Time Warp in a ROSS model, a reverse event function must
be provided. The reverse function is responsible for undoing the state changes
that the forward event function incurred for the same message.

The power of Backstroke in this context is that it can automatically gener-
ate the appropriate reverse event function for a given forward event function.
For complicated discrete event models, this greatly increases productivity since
less code needs to be written by hand. In addition, it is much less error prone
and reduces the code maintenance burden, compared to hand written reverse
code. It can not be stressed enough that even a very minute bug in the reverse
code, so that it only almost reverses the effect of the forward event code, is
disastrous for Time Warp simulations. Small state differences can make the
code address out of bounds, cause exceptions, and result in infinite loops.
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3.2 Model: A Parallel Kinetic Monte-Carlo Application

We have applied Backstroke to the event processing code of SPOCK (Scalable
Parallel Optimistic Crystal Kinetics), a parallel kinetic Monte-Carlo applica-
tion for simulation of growth and morphology evolution of crystals.

We will here give an overview of the kinetic Monte-Carlo method, and of
crystal evolution simulations. After that we will describe the application of
Backstroke to SPOCK and give some performance metrics.

In the kinetic Monte-Carlo method, a physical system is modeled as a set of
interacting objects, and their evolution is described by a sequence of discrete
events that affect the set of objects.

In our crystal grain simulation, we model a piece of solid as a grid of
unit elements. Each unit element represents a microscopic piece of material,
big enough to be able to exhibit a well defined crystal orientation, but much
smaller than typical grain sizes. These unit elements are commonly called
spins, since the nature of grain evolution resembles evolution of magnetic do-
mains, commonly studied by the Ising model in which unit element has a
binary state: spin up or down. A spin that has at least one neighbor of a dif-
ferent orientation than itself is defined a boundary spin, and the set of these
spins comprise the grain boundaries. It is the evolution and morphology of
these boundaries that is of interest in grain evolution simulations.

An event in the grain evolution model is a change in crystal orientation
of a spin. The time of the change, and the next orientation of a given spin
are given by stochastic variables whose distributions depend on the orienta-
tion of the neighboring spins. Typically, it is favorable for a spin to choose
a new orientation that maximizes the number of neighbors with that same
orientation.

A high level description of a grain evolution algorithm is as follows:

1. Initialize the orientations of all spins.
2. For each spin, sample an event from the corresponding time and orientation

distributions. This event is inserted in the event queue, and serves as a
putative event for this spin.

3. Execute the earliest event in the event queue, and advance the simulation
time to that of this event.

4. For all spins whose time and orientation distributions changed due to the
executed event, retract their current putative events, and sample new ones.
Sample a new event also for the spin whose event was just executed. Insert
these events in the event queue.

5. If the earliest event in the event queue is past the end time of the simulation,
stop. Otherwise, go to 3.

Some notes about this algorithm: For short ranged interactions, in 2D
each spin typically has 4 or 8 neighbors, while in 3D this number is often
6 or 26. For longer range interactions the number of neighbors can be much
greater. Typically, at each executed event, as many events as the number of
neighbors are retracted, and new events are sampled. This means that the vast
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majority of scheduled events are retracted. This is in contrast to most event
driven simulations where retractions are rare. The algorithm description above
allows plenty of room for optimization in these grain simulations: often, new
orientations are restricted to those present in the neighbors. Therefore, spins
in the bulk of a grain, i.e. one which as the same spin as all its neighbors, can
not change, and thus no events need to be generated or kept for these spins,
which can be the vast majority of spins in the simulating. This saves both
memory and computational resources.

4 Evaluation

As a case for our evaluation of Backstroke, we have chosen to use the 2D Potts
grain growth model, where the spins are vertices in regular Cartesian grid on
a 2D torus, and each spin interacts with its 8 nearest neighbors. The possible
orientations, or spin values, are represented by integers, and a spin can only
change orientation to that of one of its neighbors.

The event code was not written with Backstroke in mind, and is a relatively
complex C++ code making full use of e.g. templates and overloaded operators.
The forward event code size is around 1800 lines including the implementation
of all used data types.

To run our grain evolution tests, we choose two system sizes: A smaller
system with 192× 192 spins divided into a grid of 24× 24 LP’s, which we run
for 10 simulation time units, or a total of 1053890 events, and a bigger system
with 1536 × 1536 spins in 256 × 256 LP’s. We run the big system for 2 time
units, or a total of 47633718 events.

The tests were run on an IBM BlueGene/Q supercomputer with 16 cores
per node, using up to 8192 cores. We evaluated the correctness of our simula-
tions by recording for each simulation the final number of committed events as
well as intermediate information about the number of orientation changes at
well defined simulation times. There is complete agreement of these numbers
between all simulations, parallel and sequential, and hand written and auto-
matically generated reverse code. The code used in our runs was compiled with
GNU g++ 4.7.2 with the optimization flags:

-O3 --finline-limit=1000000
It is crucial to allow a high amount of inlining to get good performance, as
it enables high-level and low-level optimizations on the code instrumentations
and the inlined Backstroke library functions.

We include performance data both for simulations using hand written for-
ward and reverse code, and using reversible code generated by Backstroke from
the hand written forward code.

In summary we find in our measurements that the simulation with Back-
stroke generated reversible code is 2.8 to 3.6 times slower than with the hand
written forward and reverse code. The performance details can be found in the
left panel of Fig. 2 where the y-axis units are committed events per second. In
Fig. 3 we compare the speed (in units of committed events per second) of the
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Fig. 2: The performance of Potts model of different sizes using Backstroke instrumented
code, as well as hand written reverse code. The big system (in red) consists of 1536 × 1536
spins, divided into a grid of 256 × 256 = 65536 LP’s, and was run for 2 time units. The
small system (in blue) is 192 × 192 spins, divided into a grid of 24 × 24 = 576 LP’s, and
was run for 10 time units. (left) Aggregate event rate as a function of number of MPI tasks
(processors), with ×’s labeling original hand written code, and ◦’s Backstroke generated
code. (right) Rollback fractions as a function of number of MPI tasks. The data for original
and backstroke generated codes are nearly indistinguishable, and only shown for the original
code
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Fig. 3: The slowdown factor of using the Backstroke instrumented code compared to hand
written reverse code.

hand written code to the Backstroke generated code by showing the slowdown
factor. The slowdown factor is defined as the speed with the hand written code
divided by the speed with the Backstroke generated code.

The highest penalty of Backstroke is seen in sequential execution. In this
case the simulator uses a simplified event scheduler with significantly reduced
book-keeping overhead. For all parallel cases, the overhead of Backstroke in-
strumented code is in the range of a factor 2.8-3.2. This can be compared with
our previous results which show a factor of 3.4 in the best case.

In the right panel of Fig. 2 we show the effect on how many events are rolled
back as a function of the number of processors. Interestingly, the numbers for
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the original and Backstroke instrumented codes are nearly indistinguishable
and we show the results only for the original code.

If the fraction of rollbacks is high, it means that the model is running
out of inherent parallelism, and the simulation becomes inefficient. As can
be expected, the number of rollbacks increase with the number of processors,
as more and more parallelism is exploited. In our simulations we see up to
about 15% of the total number of executed events rolled back, which although

impacting the run time by ∼20%
(

1
1−0.15 + rollback cost

)
can be considered

relatively efficient.

Simultaneously with increasing number of rollbacks we see in Fig. 3 the
relative performance of the original and Backstroke instrumented codes re-
maining relatively constant (< 6% deviation between the parallel executions
of the small simulation, and <3% for the big simulation), and can infer that
the data restoration incurred by the Backstroke rollback function does not add
significant overhead compared to the hand written reverse code.

5 Related Work

Perumalla and Alfred Park discuss the use of Reverse Computation for scalable
fault tolerant computations [16]. The paper is limited in a number of ways,
but they make a fundamental point, which is that Reverse Computation can
be used to recover from faults by mechanisms that are much faster than check
pointing mechanisms. The approach presented in this paper uses incremental
checkpointing, which reduces the amount of memory that needs to be stored
for establishing a checkpoint by only storing the changes to a state, instead
of storing the values of all variables (and memory) defining the state of a
program.

In [10] Justin LaPre et. al discuss an approach called Low Overhead Run-
time Assisted Instruction Negation, LORAIN. LORAIN is able to account for,
and in many cases reverse, the computation without resorting to state-saving
techniques. Similar to our presented work, it also uses Rensselaer’s Optimistic
Simulation System (ROSS), but couples it with the LLVM compiler to gen-
erate the reverse code. The reverse code generation is limited as it cannot
handle more sophisticated C++ language features such as virtual functions
and exceptions, but since it operates on the LLVM IR, it is independent of
the source level language, but is limited to LLVM supported backends. Loops
also require user-provided information, which in contrast, our approach does
not. An alternative fine-grain time-sharing Time Warp system is presented in
[13]. It can be run on multi-core Linux machines and makes systematic use of
event preemption in order to dynamically reassign the CPU to higher priority
events/tasks.

The approach in [22,8] is similar to [10] as it takes control flow into ac-
count and generates code for computing additional information required to
reconstruct the execution path that had been take in the forward code, but
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operates at the source code level. It has similar limitations w.r.t. to C++ lan-
guage constructs with complicated control flow, in particular virtual method
calls and exceptions, which are not addressed.

Our approach presented in this paper is different to [2,22,10] as we do not
need to take any control flow information into account. For example, in [22]
only scalar data types and programs without function calls are considered.
Our work presented in this paper allows to address all of C++. However, the
drawback of our approach is that it is likely to generate a high overhead in
the forward code. Therefore, our approach should only be considered as a base
level for establishing reversibility of arbitrary irreversible (i.e. information de-
stroying) C++ code that can benefit from the above mentioned approaches
for reverse code generation. Approaches to reverse code generation that al-
low reverse execution usually induce smaller overhead in the forward code as
our approach if information is destroyed, or no overhead at all for reversible
programs (which do not destroy information).

In [14] an autonomic system is presented that can utilize both an incremen-
tal and a full checkpointing mode. At run time both code variants are available
and the system switches between the two variants, trying to select the more ef-
ficient checkpointing version. With our approach we optimize the incremental
checkpointing by reducing the number of instrumentations at compile time by
determining with static analysis which memory locations are part of the event
object’s state and only need to be instrumented. In [3] an instrumentation
technique is applied to relocatable object files. Specifically, it operates on the
Executable and Linkable Format (ELF). It uses the tool Hijacker [12] to in-
strument the binary code to generate a cache of disassembly information. This
allows to avoid disassembly of instructions at run time. At run time the reverse
instructions are built on-the-fly also using pre-compiled tables of instructions.
This approach has been further refined to also operate on shared libraries [5].
This approach is similar to our approach as it also pays an instrumentation
overhead. The information that it extracts from instructions, the target ad-
dress and the size of a memory write, is similar to our address-value pairs.
With our source-level approach the available type information is sufficient to
determine the value size. Since our transformation operates at the source level
we can target different architectures without further work, which is important
in the field of high-performance computing. Recently progress has been made
also in utilizing hardware transactional memory for further optimizing single
node performance [19].

6 Conclusion

We have demonstrated an approach to reversible computation that can be
applied to C++ and demonstrated it for a model that makes use of tem-
plates, operator overloading, memory allocation, the placement new operator,
user-defined complex data structures, and several data types from the C++11
Standard library. We transform irreversible C++ programs that destroy in-
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formation into instrumented reversible C++ programs. The instrumentation
ensures that all potentially destroyed information is preserved by the trans-
formed forward code such that the reverse function provided in the Backstroke
Runtime Library can restore a previous program state and the commit func-
tion can perform the deferred memory deallocation.

In contrast to other approaches for generating reverse code, we do not
need to explicitly take any control flow information into account, but instead
store address-value pairs of modified memory locations and record informa-
tion about all dynamic memory allocation and deallocation. In addition, we
generate reversible assignment operators. The reversible assignment operators
are crucial for supporting user-defined types that are composed of other user-
defined types and built-in types. When the forward function is executed it is
guaranteed that only heap allocated memory is stored in the Run Time State
Storage (RTSS). With a run time check we ensure that stack allocated memory
is never stored in the RTSS as the event function’s stack frame is only valid
while the event function is executing.

To the best of our knowledge, this is the very first publication where a full
scale C++ model using also C++ Standard Library abstractions is automat-
ically transformed such that it can be executed in parallel optimistically on a
supercomputer. Our scaling study still shows a significant performance penalty
compared to the manually written reverse code. For the big model we observe
a performance penalty between 2.8 and 3.6 for the automatically optimized
version. Further, the optimization of the RTSS and improved static analysis
to reduce the number of program instrumentations have a great potential to
reduce this performance penalty. In this paper we focus on correctness and
will address improvements in performance in future work.

If a user starts with a new model and uses Backstroke, it is sufficient to
write uninstrumented irreversible C++ code (i.e. conservative code). There are
no limitations in what features of C++ can be used. Backstroke can be used
to automatically transform the model’s code and run the code on a parallel
computer using the ROSS simulator. This offers a significantly lower entry level
for model writers to use parallel discrete event simulation. It is worth noting
that even at a performance penalty of a factor of three, parallel execution
enabled by Backstroke at almost no extra work can yield many fold speedup
on a single multicore workstation and give the opportunity to get 1000-fold
speedup on a cluster, compared to original sequential code.

Some of the performance penalty can be addressed at the language level by
implementing functions as pure functions (in C++ as const functions that do
not modify state) as Backstroke does not need to instrument such functions.

In future work we also plan to incorporate approaches that address re-
versible languages into Backstroke. One example is the Janus language which
has been extended to provide a C backend. Such Janus generated reversible
C code is suitable to be combined with Backstroke generated code and of-
fers to avoid the Backstroke induced overhead for reversible code fragments.
How to efficiently combine both approaches is subject to future research. We
also plan to further investigate the manual optimization of models by using
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Backstroke’s feature to turn on or off the recording of data as this will show
how far our approach can be pushed in terms of performance. Furthermore,
alternative implementations of the Backstroke Runtime Library could also be
used to monitor memory accesses and memory allocations for other purposes.
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