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Abstract: We study the process γA→ qq̄g +X in the Color Glass Condensate (CGC)

effective theory. After obtaining the cross section, we consider two kinematic limits which

are encompassed in our result. In the so-called correlation limit, the vector sum of the

transverse momenta of the three outgoing particles is small with respect to the individual

transverse momenta; the cross section then simplifies considerably and can be written

in a factorized form, sensitive to both the unpolarized and linearly-polarized Weizsäcker-

Williams transverse momentum dependent gluon distribution function (gluon TMD). The

second limit of the CGC cross section that we consider is the dilute limit, which we obtain

after performing a weak-field expansion; we recover a typical linear-regime expression,

involving a single unintegrated gluon distribution function. Using numerical simulations

of the small-x QCD evolution of the TMDs, we investigate the rapidity dependence of the

cross section in the correlation limit.
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1 Introduction

Quantum Chromodynamics (QCD) at high energies has been the subject of intense study

since many years. In particular, in certain processes such as deep-inelastic lepton-proton

scattering, it is possible to probe the constituents of a proton or nucleus at small val-

ues of x, where x is the fraction of the proton’s longitudinal momentum carried by the

struck parton. Since the basic laws of QCD favor the emission of gluons with arbitrary

small energies, at low x the proton structure is dominated by the gluon distribution. The

power-like rise of this gluon distribution with decreasing x, as predicted by the Balitsky-

Fadin-Kuraev-Lipatov (BFKL) evolution equations [1], is expected to be damped by gluon

recombination effects once a sufficiently dense regime is reached, characterized by the dy-

namically generated saturation scale Qs. The ensuing non-linear low-x evolution equations

were established both from the point of view of the dilute projectile [2, 3], and from that

of the highly dense proton or nucleus [4]. In the latter case, the evolution can be ob-

tained from an effective theory known as the Color Glass Condensate (CGC) [5]. Both

approaches are equivalent and are often denoted BK-JIMWLK, after their main authors

Balitsky, Kovchegov, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner.
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Moreover, in the low-density regime, hence at momenta above the saturation scale, the re-

sults from linear BFKL evolution are recovered. In this work, we will use the most general

semiclassical description of small-x physics, and refer to it as the CGC framework.

More recently, in a series of papers [6] the CGC was explored in reactions characterized

by two strongly ordered scales, let us call them P and q:

√
s� P � q ∼ Qs & ΛQCD . (1.1)

The scales are required to be much smaller than the very high collision energy
√
s, but

(a priori) larger than ΛQCD and thus perturbative. A prime example for such a reaction

is the forward production of a parton pair in lepton-proton or proton-proton collisions,

in the so-called correlation limit where the total transverse momentum of the produced

pair q ∼ |k1 + k2| is much smaller than the typical momentum of the individual particles

P ∼ |k1| ∼ |k2|. The crucial observation that was made in Refs. [6] is that in these

kinematics, the small-x limit of the proton’s or nucleus’ transverse momentum dependent

gluon distributions (gluon TMDs) is probed [7]. Remarkably, at least for 2→ 2 processes,

taking the low-x limit of the calculation in the TMD framework yields the same result as

taking the correlation limit of the CGC calculation.

For the processes that have been studied, the CGC therefore generalizes two different

QCD regimes at low x: the TMD region with two ordered hard scales on the one hand, and

the BFKL regime at low enough gluon densities on the other. Inspired on this, a computa-

tion scheme dubbed ‘Improved TMD factorization’ (ITMD) has been developed in Refs. [8],

which is applicable to massless 2→ 2 processes and just like the CGC interpolates between

the low-x TMD and BFKL (sometimes called High-Energy Factorization, HEF) regimes.

Its advantage, however, is that it is much more suitable for numerical implementation. The

proof of this scheme as an all-order kinematic twist resummation was recently established

by some of us [9].

In addition to the conceptual interest, understanding the TMD framework within

the CGC makes it possible to apply the CGC machinery to TMDs, and vice versa. For

instance, in [10–12] JIMWLK evolution was applied to unpolarized and linearly polarized

gluon TMDs, using the nonperturbative McLerran-Venugopalan model [13] as an initial

condition. Likewise, Sudakov logarithms, which govern the TMD evolution [14], can be

resummed in a consistent way at low x, as was shown in [15] and carried out in e.g. [16].

At least to leading-order accuracy, the above mentioned correspondence between the

CGC and TMD frameworks in their overlapping region of validity holds for 2→ 2 processes,

also when masses are included [10, 12, 17], see [18] for an overview. The present work is

part of our efforts to investigate whether this is also true for more complicated processes1,

and can be regarded as a follow up of Ref. [19], in which we calculated the correlation

limit of three final state particles (two jets and a photon) in proton-nucleus collisions2. In

this configuration, the total transverse momentum of the outgoing particles qT = k1 +

k2 + k3 is again required to be much smaller than their individual transverse momenta

1We should remark that recently there was also made progress in this direction from the point of view

of TMDs, see Ref. [20].
2The correlation limit of two jets and a collinear photon was obtained in [21].
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(k1,k1,k3). However, in contrast to the production of two final state particles, the 2→ 3

kinematics allow us to identify not one but two small transverse sizes in coordinate space.

We showed that it is still possible to take the correlation limit, although the procedure

becomes more involved, and that once again one arrives at an expression which is factorized

in terms of TMDs. We will show in this paper that the same argument holds for three-jet

photoproduction, with the additional feature that, due to the simple color structure of the

process (since there is no initial-state radiation), only the unpolarized and linearly polarized

gluon TMD of the Weizsäcker-Williams type play a role. Using the results from [12], where

the JIMWLK evolution of these TMDs was performed, allows us to do a numerical study.

The remainder of the paper is organized as follows. In section 2, we give a concise

derivation of the CGC cross section for the process γA → qq̄g + X, relegating most of

the details to the appendices. After that, we analytically calculate the correlation limit of

our CGC result in section 3, and numerically study its rapidity evolution in section 4. In

section 5, we expand our CGC cross section in the dilute limit to recover the high-energy

factorization result, and finally summarize our conclusions and outlook in section 6.

2 CGC cross section

The usual approach to calculate a forward particle production cross section in the CGC

is to go to a dipole frame, which is justified at large enough energies and in which the

perturbative ‘dressing’ of the photon state takes place long before the scattering with the

highly boosted proton or nucleus target. In this frame, due to Lorentz contraction the

projectile sees the target as a highly dense shockwave, and the scattering between both

takes place almost instantaneous at a light-cone time which, without losing generality,

we can set to be x+ = 0. Due to the high energy, it is then justified to describe the

scattering in the eikonal approximation, where the hard particles do not undergo a change

in transverse position upon interacting with the target’s gluon fields, but only exchange

transverse momentum and color. Moreover, since due to the high density these gluon fields

are semiclassical, i.e. gsA ∼ 1, the interactions need to be resummed which is done by the

use of Wilson lines. Finally, the way one averages over the semiclassical target gluon fields

reflects the nonperturbative proton structure, which we leave unspecified.

In light-cone perturbation theory (LCPT), the partonic cross section is defined as the

expectation value of the number operator calculated in the relevant component of the

outgoing photon wave function:

2k+
1 2k+

2 2k+
3 (2π)92πδ

(
p+ −

3∑
j=1

k+
j

)
2p+ dσγA→qgq̄+X

d3~k1 d3~k2 d3~k3

=
1

2

〈
out

(γ)
[
~p
]
λ

∣∣Nq(~k1)Ng(~k2)Nq̄(~k3)
∣∣(γ)

[
~p
]
λ

〉
out

, (2.1)

where the factor 1/2 on the right hand side stems from averaging over the photon polariza-

tion λ. The vectors ~ki ≡ (k+
i ,ki) stand for the three-momenta of the produced particles,

with k+
i being the longitudinal and ki the transverse momenta (~k1 for the quark, ~k2 for the

gluon and ~k3 for the antiquark), while p+ is the forward component of the incoming photon
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(note that we assume p = 0). Moreover, the number operators Ni for the dressed (this

will be important later on) quark, gluon and antiquark, are defined in terms of the cor-

responding creation and annihilation operators. For example, the gluon number operator

Ng is defined as

Ng(~k2) = a†ai (~k2) aai (
~k2) , (2.2)

with a†ai (~k2) (abi(
~k2)) the creation (annihilation) operator of a dressed gluon with color a,

polarization i and three-momentum ~k2. The action of these operators on dressed Fock

states is defined in the standard way. For example, for the gluon we have

aai (
~k2)
∣∣(g)[~q2]bj

〉
D

= 2k+
2 (2π)3δ(3)(~k2 − ~q2)δabδij ,

a†ai (~k2)
∣∣0〉 =

∣∣(g)
[
~k2

]a
i

〉
D
. (2.3)

In order to compute the partonic cross section, we need to calculate the explicit expres-

sion of the outgoing Fock state to the relevant order. Hence, for the process in this work,

one needs the outgoing wave function for a quark-antiquark-gluon final state initiated by

a real photon. Since the derivations of similar outgoing wave functions, i.e. q → qgγ and

g → qq̄γ, have been presented in detail Ref. [19], we do not show its derivation here but

rather give a summary in the appendices A.1 and A.2. The order gsge contribution to

the dressed outgoing wave function of a real photon with longitudinal momentum p+ and

vanishing transverse momentum is given by3:

|(γ)[p+,p = 0]λ〉out = gegs

∫
dk+

1

2π

dk+
2

2π

1

4k+
2

√
k+

1 k
+
3

∫
wvx1x2x3

δ(2)
(
w − ξixi

)
×
{

Ψλλ̄
s̄s′(ξ̄3)φηη̄ss̄

(ξ2

ξ̄3

)
Aη̄(x1 − x2)δ(2)

(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
× Gq

[
ξ3,

ξ1

ξ̄3
; v,x1,x2,x3

]cλ̄
ij

−Ψλλ̄
s̄s (ξ̄1)φηη̄s̄s′

(ξ2

ξ̄1

)
Aη̄(x3 − x2)δ(2)

(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
× Gq̄

[
ξ1,

ξ3

ξ̄1
; v,x1,x2,x3

]cλ̄
ij

+ ϕληss′(ξ1, ξ2)δ(2)(v)× GC
[
ξ3, ξ1ξ2; w,x1,x2,x3

]c
ij

}
× |(q)[k+

1 ,x1]is; (g)[k+
2 ,x2]ηc ; (q̄)[k+

3 ,x3]js′〉D . (2.4)

In the above, the quark with color i and spin s carries longitudinal momentum k+
1 and is

located at the transverse position x1. Likewise, the gluon with color c and polarization η

has a longitudinal momentum k+
2 and is located at the transverse position x2, and finally

the antiquark with color j and spin s′ carries longitudinal momentum k+
3 = p+ − k+

1 − k
+
2

and sits at the transverse position x3. The longitudinal momentum fractions that enter

the splitting functions are defined as

ξ1 = k+
1 /p

+ , ξ2 = k+
2 /p

+ , ξ3 = 1− ξ1 − ξ2 ,

ξ̄1 = 1− ξ1 , ξ̄2 = 1− ξ2 , ξ̄3 = ξ1 + ξ2 . (2.5)

The outgoing state Eq. (2.4) contains combinations of three splitting functions, correspond-

3We have introduced a shorthand notation for the two dimensional coordinate integrals:
∫
x
=

∫
d2x.
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Figure 2.1. The three contributions to the gsge term in the photon’s Fock state.

ing respectively to the splitting of a photon into a quark-antiquark pair, the radiation of

a gluon by a quark, and the instantaneous splitting of a photon into a gluon, quark and

antiquark. Their explicit expressions are:

Ψλλ̄
αβ(z) =

(
1− 2z

)
δλλ̄δα,−β − iελλ̄σ3

α,−β ,

φλλ̄αβ(z) = (2− z)δλλ̄δαβ − izελλ̄σ3
αβ ,

ϕληαβ(ξ1, ξ2) =
ξ1ξ2ξ3

ξ̄1ξ̄3

[
(ξ̄3 − ξ̄1)δληδα,−β + i(ξ̄3 + ξ̄1)ελησ3

α,−β
]
, (2.6)

where σ3 is the third Pauli matrix, and with εij the Levi-Civita tensor in two dimensions,

with ε12 = +1. Note that the splitting function for an antiquark emitting a gluon, is ob-

tained from the corresponding splitting function for the quark by an overall multiplication

with −1 and exchanging the spin indices.

The final ingredients of Eq. (2.4) are the functions Gq, Gq̄ and GC , which incorporate

the Wilson line structures of the three different amplitudes where the gluon is emitted

from the quark, from the antiquark, or directly from the photon during its instantaneous

splitting into a quark-antiquark-gluon state (see Fig. 2.1). They are defined as:

Gq
[
ξ3,

ξ1

ξ̄3
; v,x1,x2,x3

]cλ̄
ij

=
{[
SF (x1)S†F (x2)tcSF (x2)S†F (x3)

]
ij
− tcij

}
Aλ̄
(
ξ3,x3 − v;

ξ1

ξ̄3
,x1 − x2

)
−
{[
tcSF (v)S†F (x3)

]
ij
− tcij

}
Aλ̄(x3 − v) , (2.7)

Gq̄
[
ξ1,

ξ3

ξ̄1
; v,x1,x2,x3

]cλ̄
ij

=
{[
SF (x1)S†F (x2)tcSF (x2)S†F (x3)

]
ij
− tcij

}
Aλ̄
(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
−
{[
SF (x1)S†F (v)tc

]
ij
− tcij

}
Aλ̄(x1 − v) , (2.8)

GC
[
ξ3, ξ1ξ2; w,x1,x2,x3

]c
ij

=
{[
SF (x1)S†F (x2)tcSF (x2)S†F (x3)

]
ij
− tcij

}
C
(
ξ3,x3 −w; ξ1ξ2,x1 − x2

)
. (2.9)

In these functions, the Wilson lines are defined in the standard way as the path ordered

exponential of the semiclassical gluon field α−a (x+,x) of the target in a covariant gauge:

SF (x) ≡ P eig
∫
dx+taα−a (x+,x) , (2.10)
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where ta is the SU(Nc) generator in the fundamental representation, indicated with the

subscript4 F . Moreover, in the above expressions, Ai(x) stands for the standard non-

Abelian Weizsäcker-Williams field, which accounts for a single emission:

Ai(x) ≡ − 1

2π

xi

x2
, (2.11)

On the other hand, Ai(ξ,x;χ,y) is the modified Weizsäcker-Williams field, responsible for

two successive emissions, whose explicit expression is written as

Ai
(
ξ,x;χ,y

)
≡ − 1

2π

ξxi

ξx2 + χχ̄y2
. (2.12)

Finally, we have introduced the Coulomb field which accounts for the instantaneous emis-

sion, defined as:

C
(
ξ,x;χ,y

)
≡ 1

(2π)2

ξ

ξx2 + χy2
. (2.13)

As mentioned earlier, the partonic cross section Eq. (2.1) is formally defined as the

expectation value of the number operator in the outgoing wave function. This expectation

value can be calculated in a straightforward way from the action of the creation/annihilation

operators on the outgoing wave function given in Eq. (2.4). The resulting cross section is

then averaged over the configurations of the target field α−(x+,x). We denote this averag-

ing procedure by 〈· · · 〉xA , since it introduces an implicit dependence on xA: the longitudinal

momentum fraction of the gluons in the target wave function. The result is organized in

the following way:

(2π)9 dσγA→qq̄g+X

d3~k1d3~k2d3~k3

= g2
eg

2
s

1

k+
2 p

+
2πδ

(
p+ −

3∑
i=1

k+
i

)
×
〈
Iqq + Iq̄q̄ + ICC + 2Iqq̄ + 2ICq + 2ICq̄

〉
xA

. (2.14)

Each contribution in Eq. (2.14) can be studied separately.

Let us start with what we call the ‘quark-quark’ contribution Iqq, corresponding to a

gluon emission from the quark (leftmost panel in Fig. 2.1) both in the amplitude and in

the complex conjugate amplitude:

〈 Iqq 〉xA =Mλ̄λ̄′;η̄η̄′
qq

(
ξ̄3,

ξ2

ξ̄3

)∫
vv′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x1 − x2)Aη̄
′
(x′1 − x′2) δ(2)

(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
δ(2)
(
v′ − ξ1

ξ̄3
x′1 −

ξ2

ξ̄3
x′2

)
×
〈

Tr
{
G†q
[
ξ3,

ξ1

ξ̄3
; v′,x′1,x

′
2,x
′
3

]λ̄′
Gq
[
ξ3,

ξ1

ξ̄3
; v,x1,x2,x3

]λ̄}〉
xA

, (2.15)

4In the intermediate steps of the calculation, relegated to the appendix, one will encounter Wilson lines

where the generator is in the adjoint representation. These are indicated with the subscript A.
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where the function Mλ̄λ̄′;η̄η̄′
qq is the product of the γ → qq̄ and q → qg splitting functions,

defined in Eq. (2.6), and reads

Mλ̄λ̄′;η̄η̄′
qq

(
ξ̄3,

ξ2

ξ̄3

)
=

1

8
Ψλλ̄′∗
s̃s′ (ξ̄3)φηη̄

′∗
ss̃

(ξ2

ξ̄3

)
Ψλλ̄
s̄s′(ξ̄3)φηη̄ss̄

(ξ2

ξ̄3

)
. (2.16)

It can be evaluated explicitly by using the expressions in Eq. (2.6), yielding:

Mλ̄λ̄′;η̄η̄′
qq

(
ξ̄3,

ξ2

ξ̄3

)
=
(
ξ̄2

3 + ξ2
3

)[
1 +

(
1− ξ2

ξ̄3

)2]
δη̄η̄
′
δλ̄λ̄

′

−ξ2

ξ̄3

(
2− ξ2

ξ̄3

)(
1− 2ξ̄3

)
εη̄η̄
′
ελ̄λ̄
′
. (2.17)

The color trace in Eq. (2.15) can be performed by using the explicit expression of the

function Gq, given in Eq. (2.7), and using the Fierz identity

taαβt
a
σλ =

1

2

(
δαλδβσ −

1

Nc
δαβδσλ

)
. (2.18)

The result of the color algebra can be written in a convenient way by introducing the

following functions

W1

(
x1,x2; y1,y2

∣∣z1, z2; v1,v2

)
= Q(x1,x2,y1,y2)Q(z1, z2,v1,v2)

− s(x1,x2)s(z1, z2)− s(y1,y2)s(v1,v2) + 1 , (2.19)

W2

(
x1,x2

∣∣y1,y2; z1, z2

)
= s(x1,x2)Q(y1,y2, z1, z2)

− s(x1,x2)s(y1,y2)− s(z1, z2) + 1 , (2.20)

W3

(
x1,x2; y1,y2

)
= Q(x1,x2,y1,y2)− s(x1,x2)− s(y1,y2) + 1 , (2.21)

where the dipole and the quadrupole operators are defined as

s(x,y) =
1

Nc
Tr
[
SF (x)S†F (y)

]
,

Q(x,y,u,v) =
1

Nc
Tr
[
SF (x)S†F (y)SF (u)S†F (v)

]
. (2.22)

– 7 –



The final expression for the Iqq contribution to the partonic cross section is:

〈 Iqq 〉xA =
N2
c

2
Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)∫
vv′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x1 − x2)Aη̄
′
(x′1 − x′2) δ(2)

(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
δ(2)
(
v′ − ξ1

ξ̄3
x′1 −

ξ2

ξ̄3
x′2

)
×
〈[
W1

(
x1.x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
1

)]
×Aλ̄

(
ξ3,x3 − v;

ξ1

ξ̄3
,x1 − x2

)
Aλ̄′
(
ξ3,x

′
3 − v′;

ξ1

ξ̄3
,x′1 − x′2

)
−
[
W2

(
x1,x2

∣∣x2,x3; x′3,v
′)− 1

N2
c

W3

(
x1,x3; x′3,v

′)]
×Aλ̄

(
ξ3,x3 − v;

ξ1

ξ̄3
,x1 − x2

)
Aλ̄
′
(x′3 − v′)

−
[
W2

(
x′2,x

′
1

∣∣v,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
v,x3; x′3,x

′
1

)]
×Aλ̄(x3 − v)Aλ̄′

(
ξ3,x

′
3 − v′;

ξ1

ξ̄3
,x′1 − x′2

)
−
(

1− 1

N2
c

)
W3

(
v,x3; x′3,v

′)Aλ̄(x3 − v)Aλ̄
′
(x′3 − v′)

〉
xA

. (2.23)

The second contribution to the partonic cross section Eq. (2.14) is the ‘antiquark-

antiquark’ term Iq̄q̄, corresponding to the emission of the gluon from the antiquark (see the

middle panel in Fig. 2.1) both in the amplitude and in the complex conjugate amplitude.

It reads:

〈 Iq̄q̄ 〉xA =Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)∫
vv′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x3 − x2)Aη̄
′
(x′3 − x′2) δ(2)

(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
v′ − ξ2

ξ̄1
x′2 −

ξ3

ξ̄1
x′3

)
×
〈

Tr
{
G†q̄
[
ξ1,

ξ3

ξ̄1
; v′,x′1,x

′
2,x
′
3

]λ̄′
Gq̄
[
ξ1,

ξ3

ξ̄1
; v,x1,x2,x3

]λ̄}〉
xA

. (2.24)

In order to arrive to the explicit expression of the antiquark-antiquark contribution, one

computes the trace over color indices and performs the color algebra by using the explicit

expression of the function Gq̄ given in Eq. (2.8). The result can be written in terms of the
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functions defined in Eqs. (2.19), (2.20) and (2.21), and reads:

〈 Iq̄q̄ 〉xA =
N2
c

2
Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)∫
vv′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x3 − x2)Aη̄
′
(x′3 − x′2) δ(2)

(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
v′ − ξ2

ξ̄1
x′2 −

ξ3

ξ̄1
x′3

)
×
〈[
W1

(
x1,x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
1

)]
×Aλ̄

(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
Aλ̄′
(
ξ1,x

′
1 − v′;

ξ3

ξ̄1
,x′3 − x′2

)
−
[
W2

(
x2,x3

∣∣x1,x2; v′,x′1
)
− 1

N2
c

W3

(
x1,x3; v′,x′1

)]
×Aλ̄

(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
Aλ̄
′
(x′1 − v′)

−
[
W2

(
x′3,x

′
2

∣∣x′2,x′1,x1,v
)
− 1

N2
c

W3

(
x1,v; x′3,x

′
1

)]
×Aλ̄(x1 − v)Aλ̄′

(
ξ1,x

′
1 − v′;

ξ3

ξ̄1
,x′3 − x′2

)
−
(

1− 1

N2
c

)
W3

(
x1,v; v′,x′1

)
Aλ̄(x1 − v)Aλ̄

′
(x′1 − v′)

〉
xA

. (2.25)

Similarly to the quark-quark contribution, the function Mλ̄λ̄′;η̄η̄′

q̄q̄ encodes the products of

the γ → qg and q̄ → q̄g splitting functions:

Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)
=

1

8
Ψλλ̄′∗
ss̃ (ξ1)

[
− φηη̄

′∗
s̃s′

(ξ2

ξ̄1

)]
Ψλλ̄
ss̄ (ξ1)

[
− φηη̄s̄s′

(ξ2

ξ̄1

)]
,

= Mη̄η̄′;λλ̄′
qq

(
ξ̄1,

ξ2

ξ̄1

)
. (2.26)

Note that, due to the charge conjugation symmetry on the cross section level, Mλ̄λ̄′;η̄η̄′

q̄q̄

can be obtained from Mλλ̄′;η̄η̄′
qq by swapping the quantum numbers of the quark and the

antiquark. Alternatively, we can calculate it using the explicit expressions of the splitting

functions given in Eq. (2.6), yielding:

Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)
=
(
ξ2

1 + ξ̄2
1

)[
1 +

(
1− ξ2

ξ̄1

)2]
δη̄
′η̄δλ̄λ̄

′

−ξ2

ξ̄1

(
2− ξ2

ξ̄1

)
(1− 2ξ̄1)εη̄η̄

′
ελ̄λ̄
′
. (2.27)

The next contribution that we consider is Iqq̄, corresponding to the emission of the

gluon from the antiquark in the amplitude and from the quark in the complex conjugate
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amplitude, or vice versa. This term can be written as:

〈 Iqq̄ 〉xA =Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2)

∫
vv′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x3 − x2)Aη̄
′
(x′1 − x′2) δ(2)

(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
v′ − ξ1

ξ̄3
x′1 −

ξ2

ξ̄3
x′2

)
×
〈

Tr
{
G†q
[
ξ3,

ξ1

ξ̄3
; v′,x′1,x

′
2,x
′
3

]λ̄′
Gq̄
[
ξ1,

ξ3

ξ̄1
; v,x1,x2,x3

]λ̄}〉
xA

. (2.28)

As in the previous two cases, to evaluate this contribution we use the explicit expressions

for the functions Gq and Gq̄, given in Eqs. (2.7) and (2.8), respectively. This yields:

〈 Iqq̄ 〉xA =
N2
c

2
Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2)

∫
vv′

3∏
i=1

∫
x′ixi

eiki·(x′i−xi)

×Aη̄(x3 − x2)Aη̄
′
(x′1 − x′2) δ(2)

(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
v′ − ξ1

ξ̄3
x′1 −

ξ2

ξ̄3
x′2

)
×
〈[
W1

(
x1,x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
2

)]
×Aλ̄

(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
Aλ̄′
(
ξ3,x

′
3 − v′;

ξ1

ξ̄3
,x′1 − x′2

)
−
[
W2

(
x1,x2

∣∣x2,x3; x′3,v
′)− 1

N2
c

W3

(
x1,x3; x′3,v

′)]
×Aλ̄

(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
Aλ̄
′
(x′3 − v′)

−
[
W2

(
x′3,x

′
2

∣∣x′2,x′1; x1,v
)
− 1

N2
c

W3

(
x1,v; x′3,x

′
1

)]
×Aλ̄(x1 − v)Aλ̄′

(
ξ3,x

′
3 − v′;

ξ1

ξ̄3
,x′1 − x′2

)
+
[
W4

(
x1,v; x′3,v

′)− 1

N2
c

W3

(
x1,v; x′3,v

′)]Aλ̄(x1 − v)Aλ̄
′
(x′3 − v′)

〉
xA

,

(2.29)

where we have introduced a new function W4

(
x1,x2; y1,y2

)
corresponding to the following

combination of dipole operators:

W4

(
x1,x2; y1,y2

)
= s(x1,x2)s(y1,y2)− s(x1,x2)− s(y1,y2) + 1 . (2.30)

The product of splitting amplitudes Mλ̄λ̄′;η̄η̄′

qq̄ for this contribution is:

Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2) =
1

8
Ψλλ̄′∗
s̃s′ (ξ̄3)φηη̄

′∗
ss̃

(ξ2

ξ̄3

)
Ψλλ̄†
ss̄ (ξ̄1)

[
− φηη̄s̄s′

(ξ2

ξ̄1

)]
, (2.31)

and reads, when computed explicitly:

Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2) =
(
ξ1 + ξ3 − 2ξ1ξ3

)(
2− ξ2

ξ̄1
− ξ2

ξ̄3

)
δλ̄λ̄

′
δη̄η̄
′

−ξ2(ξ3 − ξ1)2

ξ̄1ξ̄3
ελ̄λ̄
′
εη̄η̄
′
. (2.32)
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The next step is to compute the contributions stemming from the instantaneous split-

ting of the photon into a quark, an antiquark and a gluon (rightmost panel in Fig. 2.1). Let

us start with the ICC contribution, which corresponds to the instantaneous splitting both

in the amplitude and in the complex conjugate amplitude. This contribution is written in

terms of the function GC , defined in Eq. (2.9), and reads

〈 ICC 〉xA =MCC(ξ1, ξ2)

∫
ww′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)δ(2)
(
w − ξixi

)
δ(2)
(
w′ − ξix′i

)
×
〈

Tr
{
G†C
[
ξ3, ξ1ξ2; w′,x′1,x

′
2,x
′
3

]
GC
[
ξ3, ξ1ξ2; w,x1,x2,x3

]}〉
xA

. (2.33)

After performing the color algebra, one obtains:

〈 ICC 〉xA =
N2
c

2
MCC(ξ1, ξ2)

∫
ww′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)δ(2)
(
w − ξixi

)
δ(2)
(
w′ − ξix′i

)
×
〈
W1

(
x1,x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
1

)〉
xA

× C
(
ξ3,x3 −w; ξ1ξ2,x1 − x2

)
C
(
ξ3,x

′
3 −w′; ξ1ξ2,x

′
1 − x′2

)
. (2.34)

The product of splitting functions for the ICC contribution reads

MCC(ξ1, ξ2) =
1

8
ϕλη∗ss′ (ξ1, ξ2)ϕληss′(ξ1, ξ2) = ξ2

1ξ
2
2ξ

2
3

( 1

ξ̄2
1

+
1

ξ̄2
3

)
. (2.35)

The remaining two contributions that need to be computed are 〈 ICq 〉xA and 〈 ICq̄ 〉xA ,

corresponding the interference between the gluon emission from the quark resp. antiquark

in the amplitude, and the instantaneous splitting in the complex conjugate amplitude. The

first one is given by:

〈 ICq 〉xA =Mλ̄η̄
Cq

(
ξ1, ξ2

) ∫
vw′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)δ(2)
(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
δ(2)
(
w′ − ξix′i

)
×Aη̄(x1 − x2)

〈
Tr
{
G†C
[
ξ3, ξ1ξ2; w′,x′1,x

′
2,x
′
3

]
Gq
[
ξ3,

ξ1

ξ̄3
; v,x1,x2,x3

]λ̄}〉
xA

.

(2.36)

As in the case of other contributions, using the explicit expressions of the functions Gq and
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GC and performing the color algebra results in the following expression:

〈 ICq 〉xA =
N2
c

2
Mλ̄η̄

Cq

(
ξ1, ξ2

) ∫
vw′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x1 − x2) δ(2)
(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
δ(2)
(
w′ − ξix′i

)
×
〈[
W1

(
x1,x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
1

)]
×Aλ̄

(
ξ3,x3 − v;

ξ1

ξ̄3
,x1 − x2

)
C
(
ξ3,x

′
3 −w′; ξ1ξ2,x

′
1 − x′2

)
−
[
W2

(
x′2,x

′
1

∣∣x′3,x′2; v,x3

)
− 1

N2
c

W3

(
v,x3; x′3,x

′
1

)]
×Aλ̄(x3 − v) C

(
ξ3,x

′
3 −w′; ξ1ξ2,x

′
1 − x′2

)〉
xA

, (2.37)

with the product of splitting functions Mλ̄η̄
Cq equal to

Mλ̄η̄
Cq

(
ξ1, ξ2

)
=

1

8
ϕλη∗ss′ (ξ1, ξ2) Ψλλ̄

s̄s′(ξ̄3)φηη̄ss̄

(ξ2

ξ̄3

)
= −ξ1ξ2ξ3 δ

λ̄η̄
( ξ̄3

ξ̄1
+
ξ1ξ3

ξ̄2
3

)
. (2.38)

Finally, the last contribution 〈 ICq̄ 〉xA is written in terms of the functions GC and Gq̄
as follows:

〈 ICq̄ 〉xA =Mλ̄η̄
Cq̄

(
ξ1, ξ2

) ∫
vw′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)δ(2)
(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
w′ − ξix′i

)
×Aη̄(x3 − x2)

〈
Tr
{
G†C
[
ξ3, ξ1ξ2; w′,x′1,x

′
2,x
′
3

]
Gq̄
[
ξ1,

ξ3

ξ̄1
; v,x1,x2,x3

]λ̄}〉
xA

,

(2.39)

and yields, after performing the color algebra:

〈 ICq̄ 〉xA =
N2
c

2
Mλ̄η̄

Cq̄

(
ξ1, ξ2

) ∫
vw′

3∏
i=1

∫
xix′i

eiki·(x′i−xi)

×Aη̄(x3 − x2) δ(2)
(
v − ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
δ(2)
(
w′ − ξix′i

)
〈[
W1

(
x1,x2; x′2,x

′
1

∣∣x2,x3; x′3,x
′
2

)
− 1

N2
c

W3

(
x1,x3; x′3,x

′
1

)]
×Aλ̄

(
ξ1,x1 − v;

ξ3

ξ̄1
,x3 − x2

)
C
(
ξ3,x

′
3 −w′; ξ1ξ2,x

′
1 − x′2

)
−
[
W2

(
x′3,x

′
2

∣∣x′2,x′1; x1,v
)
− 1

N2
c

W3

(
x1,v; x′3,x

′
1

)]
×Aλ̄(x1 − v) C

(
ξ3,x

′
3 −w′; ξ1ξ2,x

′
1 − x′2

)〉
xA

, (2.40)
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where the product of splitting functions Mλ̄η̄
Cq̄ is:

Mλ̄η̄
Cq̄

(
ξ1, ξ2

)
=

1

8
ϕλη∗ss′ (ξ1, ξ2) Ψλλ̄

s̄s (ξ̄1)
[
− φηη̄s′s̄

(ξ2

ξ̄1

)]
= −ξ1ξ2ξ3 δ

λ̄η̄
( ξ̄1

ξ̄3
+
ξ1ξ3

ξ̄2
1

)
. (2.41)

Let us summarize our findings for this section. The partonic cross section for the

photoproduction of a quark, an antiquark, and a gluon, is given in Eq. (2.14). Each

contribution to this cross section is calculated separately and the final results are given in

Eqs. (2.23), (2.25), (2.29), (2.34), (2.37) and (2.40). As we would expect from the charge

conjugation symmetry of QCD, the result is fully symmetric under the exchange of the

quark with the antiquark.

Finally, the photoproduction cross section in ep or in eA collisions, or alternatively

in ultra-peripheral pp or pA collisions (UPCs), can be obtained in a very straightforward

way from the partonic cross section by using the equivalent photon approximation. This

approximation consists in simply convolving the partonic cross section with the relevant

photon flux fe,P,A→γ(y, µ2):

σe,p,A+A→qq̄g+X =

∫
dy σ̂γA→qq̄g+X(y)fe,p,A→γ(y, µ2) , (2.42)

where y = P ·p/P ·` ' p+/`+ is the longitudinal momentum fraction carried by the photon

(with `µ the momentum of the photon source) and where µ2 is the factorization scale. For

example, if the photon source is an electron, the real photon flux fe→γ(y, µ2) is given in

the well-known Weizsäcker-Williams approximation by the formula [22]:

fe→γ(y, µ2) =
α

2π

(1 + (1− y)2

y
ln
µ2(1− y)

m2
ey

2
+ 2m2

ey
( 1

µ2
− 1− y
m2
ey

2

))
, (2.43)

where me is the electron mass and α the fine-structure constant.

3 Correlation limit and gluon TMDs

In recent years, there has been a lot of activity in the study of gluon TMDs from CGC

calculations. In Refs. [6], it was shown that the dijet production cross section in forward

pA collisions can be written in terms of gluon TMDs, in a specific kinematic limit that

is referred to as the correlation limit. In these specific kinematics, the total transverse

momentum of the produced pair (∼ |k1 + k2|) is assumed to be much smaller than the

typical momentum of the jets (∼ |k1| ∼ |k2|). In such a situation, the produced jets fly

almost back-to-back in momentum space, which in coordinate space corresponds to a small

transverse distance between the produced jet pair, usually referred to as the dipole size.

Recently, the correlation limit of three final state particles (two jets and a photon)

has been studied in Ref. [19]. In this configuration the total transverse momentum qT =

k1 + k2 + k3 is again required to be much smaller than the individual transverse momenta

of the produced jets (k1,k1,k3). In contrast to the production of two final state particles,
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these kinematics allow us to identify not one but two small transverse sizes in coordinate

space.

Let us turn to our process, and identify the small transverse sizes around which we can

perform a Taylor expansion. These sizes are not necessarily the same for each subprocess,

and can be identified by inspecting the denominators of the structures Eqs. (2.11), (2.12)

and (2.13), which appear in the functions Gq, Gq̄ and GC defined in Eqs. (2.7), (2.8) and

(2.9), respectively.

Firstly, let us consider the function Gq, Eq. (2.7), which is a part of the amplitude

where the final state gluon is emitted from the quark. In the correlation limit, the small

transverse distance for this contribution appears to be

rg = x1 − x2 and rq̄ = x3 − v , (3.1)

where rg is identified as the size of the dipole formed by the final quark and gluon, and

where rq̄ is the dipole size of the final state antiquark and the intermediate quark. With

the help of the delta function δ(2)
(
v − ξ1

ξ̄3
x1 − ξ2

ξ̄3
x2

)
, which accompanies the function Gq

in the outgoing photon wave function Eq. (2.4), we can substitute the coordinates x1, x3

and v in favor of the above defined dipole sizes:

x1 = x2 + rg , x3 = x2 +
ξ1

ξ̄3
rg + rq̄ , and v = x2 +

ξ1

ξ̄3
rg . (3.2)

The small-dipole expansion of Gq is then straightforward, and reads:

Gq
[
ξ3,

ξ1

ξ̄3
; x2, rg, rq̄

]cλ̄
ij
'
{[
∂kSF (x2)

]
S†F (x2)tc

}
ij
rkg Aλ̄

(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
(3.3)

+
{
tcSF (x2)

[
∂kS

†
F (x2)

]}
ij

{ξ1

ξ̄3
rkg Aλ̄

(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
+ rkq̄

[
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
−Aλ̄(rq̄)

]}
,

where we have used that
[
∂kSF (x2)

]
S†F (x2) = −SF (x2)

[
∂kS

†
F (x2)

]
.

Likewise, the dipole sizes appearing in the function Gq̄, Eq. (2.8), which corresponds

to the emission of the final state gluon from the antiquark, are:

rg = x3 − x2 and rq = x1 − v , (3.4)

where rq is the dipole size of the final quark and the intermediate antiquark, and where in

contrast to the previous case rg is dipole size of the final gluon and antiquark. Taking the

delta function δ(2)
(
v− ξ2

ξ̄1
x2 − ξ3

ξ̄1
x3

)
into account, which accompanies the function Gq̄ (see

Eq. (2.4)), the transverse coordinates can be written as:

x3 = x2 + rg , x1 = x2 +
ξ3

ξ̄1
rg + rq , and v = x2 +

ξ3

ξ̄1
rg . (3.5)

The Taylor expansion of Gq̄ then yields:

Gq̄
[
ξ1,

ξ3

ξ̄1
; x2, rg, rq

]cλ̄
ij
'
{
tcSF (x2)

[
∂kS

†
F (x2)

]}
ij
rkg Aλ̄

(
ξ1, rq;

ξ3

ξ̄1
, rg

)
(3.6)

+
{[
∂kSF (x2)

]
S†F (x2)tc

}
ij

{ξ3

ξ̄1
rkg Aλ̄

(
ξ1, rq;

ξ3

ξ̄1
, rg

)
+ rkq

[
Aλ̄
(
ξ1, rq;

ξ3

ξ̄1
, rg

)
−Aλ̄(rq)

]}
.
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Finally, the small transverse sizes that appear in the function GC , Eq. (2.9), corre-

sponding to the instantaneous emission of the quark-gluon-antiquark from the incoming

photon, are:

rg = x1 − x2 and rq̄ =
1

ξ̄3
(x3 −w) , (3.7)

with rg the transverse size of the final quark-gluon dipole, and rq̄ the size of the dipole

formed by the final state antiquark with the incoming photon. Again, rewriting the trans-

verse space coordinates in terms of these dipole sizes we get:

x1 = x2 + rg , and x3 = x2 +
ξ1

ξ̄3
rg + rq̄ . (3.8)

Then, the Taylor expansion of the function GC reads

GC
[
ξ1, ξ2; x2, rg, rq̄

]c
ij
'
(
rkg
{[
∂kSF (x2)

]
S†F (x2)tc

}
ij

(3.9)

+
(ξ1

ξ̄3
rkg + rkq̄

){
tcSF (x2)

[
∂iS
†
F (x2)

]}
ij

)
C
(
ξ3, ξ̄3rq̄; ξ1ξ2, rg

)
.

With the small-dipole expansions of the functions Gq, Gq̄ and GC at hand, we are now ready

to compute the correlation limit of the partonic cross section Eq. (2.14).

Let us start with the Iqq contribution, given in Eq. (2.15). Using the change of variables

that are introduced in Eq. (3.2) both in the amplitude and in the complex conjugate

amplitude, as well as the Taylor-expanded expression of the function Gq given in Eq. (3.3),

we obtain the following result:

〈 Iqq 〉xA = −Nc

2
Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)
(3.10)

×
∫
x2x′2

eiqT ·(x′2−x2)
〈

Tr
{
SF (x′2)

[
∂jS

†
F (x′2)

]
SF (x2)

[
∂iSF (x2)

]}〉
xA

×
∫
rgr′grq̄r

′
q̄

eiQ·(r
′
g−r′g)+ik3·(r′q̄−rq̄)Aη̄(rg)A

η̄′(r′g)

×
{rigAλ̄(ξ3, rq̄;

ξ1

ξ̄3
, rg

)r′jg Aλ̄′(ξ3, r
′
q̄;
ξ1

ξ̄3
, r′g

)
+
rig ξ1

ξ̄3
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
+ riq̄

[
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
−Aλ̄(rq̄)

]
×
r′jg ξ1

ξ̄3
Aλ̄′
(
ξ3, r

′
q̄;
ξ1

ξ̄3
, r′g

)
+ r′jq̄

[
Aλ̄′
(
ξ3, r

′
q̄;
ξ1

ξ̄3
, r′g

)
−Aλ̄′(r′q̄)

]
− 1

N2
c

rig ξ2

ξ̄3
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
− riq̄

[
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
−Aλ̄(rq̄)

]
×
r′jg ξ2

ξ̄3
Aλ̄′
(
ξ3, r

′
q̄;
ξ1

ξ̄3
, r′g

)
− r′jq̄

[
Aλ̄′
(
ξ3, r

′
q̄;
ξ1

ξ̄3
, r′g

)
−Aλ̄′(r′q̄)

]} ,
where the combinations of transverse momenta qT and Q are defined as

qT = k1 + k2 + k3 ,

Q = k1 +
ξ1

ξ̄3
k3 , (3.11)
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and are ordered as |qT | � |k3|, |Q|, corresponding to the dipole sizes to which they are

conjugate being ordered as |x′2|, |x2| � |r′g|, |r′g|, |r′q̄|, |rq̄|. The integrations over the dipole

sizes rg, r′g, rq̄ and r′q̄ factorize from the Wilson line structure, and can be performed with

the help of the following two integrals5:∫
rgrq̄

e−iQ·rg−ik3·rq̄Aη̄(rg) r
i
gAλ̄

(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
= −ik

λ̄
3

k2
3

1

Q2 + c0k2
3

(
δη̄i − 2

Qη̄Qi

Q2 + c0k2
3

)
, (3.12)

and ∫
rgrq̄

e−iQ·rg−ik3·rq̄Aη̄(rg) r
i
q̄

[
Aλ̄
(
ξ3, rq̄;

ξ1

ξ̄3
, rg

)
−Aλ̄(rq̄)

]
= i

Qη̄

Q2

1

k2
3 + c−1

0 Q2

(
δλ̄i − 2

kλ̄3k
i
3

k2
3 + c−1

0 Q2

)
, (3.13)

where we introduced

c0 =
ξ1ξ2

ξ3ξ̄2
3

. (3.14)

Using the results Eqs. (3.12) and (3.13), Eq. (3.10) can be simplified to:

〈 Iqq 〉xA = −Nc

2
Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

) [
Hqq

]λ̄λ̄′;η̄η̄′
ij

(3.15)

×
∫
x2x′2

eiqT ·(x′2−x2)
〈

Tr
{
SF (x′2)

[
∂jS

†
F (x′2)

]
SF (x2)

[
∂iSF (x2)

]}〉
xA

,

where the hard factor is defined as[
Hqq

]λ̄λ̄′;η̄η̄′
ij

= Πλ̄;η̄i[k3, c0,Q] Πλ̄′;η̄′j [k3, c0,Q] (3.16)

+
ξ1

ξ̄3
Πλ̄;η̄i[k3, c0,Q]−Πη̄;λ̄i[Q, c−1

0 ,k3]
ξ1

ξ̄3
Πλ̄′;η̄′j [k3, c0,Q]−Πη̄′;λ̄′j [Q, c−1

0 ,k3]


− 1

N2
c

ξ2

ξ̄3
Πλ̄;η̄i[k3, c0,Q] + Πη̄;λ̄i[Q, c−1

0 ,k3]
ξ2

ξ̄3
Πλ̄′;η̄′j [k3, c0,Q] + Πη̄′;λ̄′j [Q, c−1

0 ,k3]
 ,

and where we introduced the compact notation:

Πi;jk[p, c0,q] ≡ pi

p2

1

q2 + c0p2

(
δjk − 2

qjqk

q2 + c0p2

)
. (3.17)

The crucial observation is now that the remaining integrals of x2 and x′2 in Eq. (3.15), over

the Wilson line structure, are nothing but the small-x limit of the so-called Weizsäcker-

Williams (WW) gluon TMDs6 (see e.g. Ref. [12]):∫
x2x′2

eiqT ·(x′2−x2)
〈

Tr
{
SF (x′2)

[
∂jS

†
F (x′2)

]
SF (x2)

[
∂iS
†
F (x2)

]}〉
xA

= −g2
s (2π)3 1

4

[
1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
. (3.18)

5The derivations of these two integrals can be found in [19].
6Note that in our earlier work, these TMDs are usually written as F (3)

gg and H(3)
gg .
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In the above, F (3)
gg (xA,qT ) is the unpolarized Weizsäcker-Williams gluon TMD, andH(3)

gg (xA,qT )

its linearly polarized partner. Substituting Eq. (3.18) into Eq. (3.15), we can write the final

result for 〈 Iqq 〉xA in the following TMD-factorized form:

〈 Iqq 〉xA = Nc g
2
s π

3Mλ̄λ̄′;η̄η̄′
qq

(
ξ̄3,

ξ2

ξ̄3

) [
Hqq

]λ̄λ̄′;η̄η̄′
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
. (3.19)

Let us now calculate the correlation limit of the 〈 Iq̄q̄ 〉xA contribution to the partonic

cross section, which corresponds to the gluon emission from the antiquark both in the

amplitude and in the complex conjugate amplitude. The calculation is straightforward

and can be performed following the same steps as in the previous case. Equivalently

however, we can circumvent the calculation by observing that, since QCD preserves C-

parity, 〈 Iq̄q̄ 〉xA has be equal to 〈 Iqq 〉xA after exchanging the quark with the antiquark. In

our notation, this corresponds to exchanging 1↔ 3, as well as swapping the relevant color

indices (note that, with the introduction of the products of splitting functionsM, the spin

indices are already contracted). Hence, we have:

Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)
1↔3
= Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)
,

Gq̄
[
ξ1,

ξ3

ξ̄1
; x2, rg, rq

]cλ̄
ij

1↔3
= Gq

[
ξ3,

ξ1

ξ̄3
; x2, rg, rq̄

]cλ̄
ji
,

eiqT ·(x′2−x2)+iQ·(r′g−r′g)+ik3·(r′q̄−rq̄) 1↔3
= eiqT ·(x′2−x2)+iK·(r′g−rg)+ik1·(r′q−rq) , (3.20)

where the new combination of transverse momentum K is defined as

K = k3 +
ξ3

ξ̄1
k1 , (3.21)

and |qT | � |k1| ∼ |K|. Thus, one can immediately write down the following result:

〈 Iq̄q̄ 〉xA = 〈 Iqq 〉xA(1↔ 3) = Nc g
2
s π

3Mλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)[
Hq̄q̄

]λ̄λ̄′;η̄η̄′
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
, (3.22)

where the hard part is defined as[
Hq̄q̄

]λ̄λ̄′;η̄η̄′
ij

=
[
Hqq

]λ̄λ̄′;η̄η̄′
ij

(1↔ 3) = Πλ̄;η̄i[k1, c̃0,K] Πλ̄′;η̄′j [k1, c̃0,K] (3.23)

+
ξ3

ξ̄1
Πλ̄;η̄i[k1, c̃0,K]−Πη̄;λ̄i[K, c̃−1

0 ,k1]
ξ3

ξ̄1
Πλ̄′;η̄′j [k1, c̃0,K]−Πη̄′;λ̄′j [K, c̃−1

0 ,k1]


− 1

N2
c

ξ2

ξ̄1
Πλ̄;η̄i[k1, c̃0,K] + Πη̄;λ̄i[K, c̃−1

0 ,k1]
ξ2

ξ̄1
Πλ̄′;η̄′j [k1, c̃0,K] + Πη̄′;λ̄′j [K, c̃−1

0 ,k1]
 ,

with c̃0 = c0(1↔ 3) = ξ2ξ3
ξ1ξ̄2

1
.
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The interference contribution 〈 Iqq̄ 〉xA originates from the gluon emission from the

antiquark in the amplitude and from the quark in the complex conjugate amplitude, or

vice versa. The small transverse dipole sizes that appear in this contribution are given by

Eqs. (3.2) and (3.4). When written in terms of these new variables, this contribution takes

the following form:

〈 Iqq̄ 〉xA =Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2)

∫
x2x′2rgr

′
grqr

′
q̄

eiqT ·(x′2−x2)+iQ·r′g+ik3·r′q̄−iK·rg−ik1·rqAη̄(rg)A
η̄′(r′g)

×
〈

Tr
{
G†q
[
ξ3,

ξ1

ξ̄3
; x′2, r

′
g, r
′
q̄

]λ̄′
Gq̄
[
ξ1,

ξ3

ξ̄1
; x2, rg, rq

]λ̄}〉
xA

. (3.24)

After introducing the expanded expressions for the functions Gq and Gq̄ given in Eqs. (3.3)

and (3.6), respectively, one can easily perform the transverse integrals. The final expression

for the 〈 Iqq̄ 〉xA contribution in the correlation limit reads:

〈 Iqq̄ 〉xA = Nc g
2
s π

3Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2)
[
Hqq̄

]λ̄λ̄′;η̄η̄′
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
, (3.25)

where the hard part is equal to:[
Hqq̄

]λ̄λ̄′;η̄η̄′
ij

= Πλ̄′;η̄′i
[
k3; c0,Q

]ξ3

ξ̄1
Πλ̄;η̄j

[
k1; c̃0,K

]
−Πη̄;λ̄j

[
K; c̃−1

0 ,k1

] (3.26)

+
ξ1

ξ̄3
Πλ̄′;η̄′i

[
k3, c0,Q

]
−Πη̄′;λ̄′i

[
Q; c−1

0 ,k3

]Πλ̄;η̄j
[
k1; c̃0,K

]
+

1

N2
c

ξ2

ξ̄3
Πλ̄′;η̄′i

[
k3, c0,Q

]
+ Πη̄′;λ̄′i

[
Q; c−1

0 ,k3

]ξ2

ξ̄1
Πλ̄;η̄j

[
k1; c̃0,K

]
+ Πη̄;λ̄j

[
K; c̃−1

0 ,k1

] .

We can now continue with those contributions to the cross section that include the

instantaneous emission of the quark-antiquark-gluon final state from the incoming photon.

The first of these contributions is 〈 ICC 〉xA , corresponding to the instantaneous emission

both in the amplitude and in the complex conjugate amplitude. After introducing the

change of variables given in Eq. (3.7), and using the expanded expression of the function

GC , Eq. (3.9), 〈 ICC 〉xA can be written as:

〈 ICC 〉xA = −Nc

2
MCC(ξ1, ξ2)

∫
x2x′2

eiqT ·(x′2−x2)
〈

Tr
{
SF (x′2)

[
∂jS

†
F (x′2)

]
SF (x2)

[
∂iSF (x2)

]}〉
xA

×
∫
rgr′grq̄r

′
q̄

eiQ·(r
′
g−rg) + ik3·(r′q̄−rq̄) C

(
ξ3, ξ̄3 r′q̄; ξ1ξ2, r

′
g

)
C
(
ξ3, ξ̄3 rq̄; ξ1ξ2, rg

)
×
{ξ1

ξ̄3
r′jg + r′jq̄


ξ1

ξ̄3
rig + riq̄

+ r′jg r
i
g −

1

N2
c

ξ2

ξ̄3
r′jg − r

′j
q̄

ξ2

ξ̄3
rig − riq̄

} . (3.27)

The integrals over the dipole sizes rg, r′g, rq̄ and r′q̄ can be performed thanks to the following

expressions∫
rgrq̄

e−iQ·rg − ik3·rq̄ rig C
(
ξ3, ξ̄3 rq̄; ξ1ξ2, rg

)
= − i

ξ3ξ̄3

1

c0
Πi;jj [Q; c−1

0 ,k3] ,∫
rgrq̄

e−iQ·rg − ik3·rq̄ riq̄ C
(
ξ3, ξ̄3rq̄; ξ1ξ2, rg

)
= − i

ξ3ξ̄3
Πi;jj [k3; c0,Q] . (3.28)
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Finally, one obtains:

〈 ICC 〉xA = Nc g
2
s π

3MCC(ξ1, ξ2)
1

ξ2
3 ξ̄

2
3

[
HCC

]
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
, (3.29)

with the hard part equal to[
HCC

]
ij

=
1

c2
0

Πi;kk
[
Q; c−1

0 ,k3

]
Πj;kk

[
Q; c−1

0 ,k3

]
(3.30)

+
ξ3ξ̄3

ξ2
Πi;kk

[
Q; c−1

0 ,k3

]
+ Πi;kk

[
k3; c0,Q

]ξ3ξ̄3

ξ2
Πj;kk

[
Q; c−1

0 ,k3

]
+ Πj;kk

[
k3; c0,Q

]
− 1

N2
c

ξ3ξ̄3

ξ1
Πi;kk

[
Q; c−1

0 ,k3

]
−Πi;kk

[
k3; c0,Q

]ξ3ξ̄3

ξ1
Πj;kk

[
Q; c−1

0 ,k3

]
−Πj;kk

[
k3; c0,Q

] .

The last two contributions to the cross section are the terms with the instantaneous

emission in the conjugate amplitude, and the gluon emission from the quark resp. antiquark

in the amplitude. Their calculation is completely analogous to the previous cases, and for

〈 ICq 〉xA one obtains:

〈 ICq 〉xA = Nc g
2
s π

3Mλ̄η̄
Cq

(
ξ1, ξ2

) 2

ξ3 ξ̄3

[
HCq

]λ̄η̄
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
, (3.31)

with[
HCq

]λ̄η̄
ij

=
1

c0
Πλ̄;η̄i

[
k3; c0,Q

]
Πj;kk

[
Q; c−1

0 ,k3

]
(3.32)

+
ξ1

ξ̄3
Πλ̄;η̄j

[
k3; c0,Q

]
−Πη̄;λ̄j

[
Q; c−1

0 ,k3

]ξ̄3ξ3

ξ2
Πi;kk

[
Q; c−1

0 ,k3

]
+ Πi;kk

[
k3; c0,Q

]
− 1

N2
c

ξ2

ξ̄3
Πλ̄;η̄i

[
k3; c0,Q

]
+ Πη̄;λ̄i

[
Q; c−1

0 ,k3

]ξ̄3ξ3

ξ2
Πj;kk

[
Q; c−1

0 ,k3

]
−Πj;kk

[
k3; c0,Q

] .

Likewise, the result for 〈 ICq̄ 〉xA is:

〈 ICq̄ 〉xA = Nc g
2
s π

3Mλ̄η̄
Cq̄

(
ξ1, ξ2

) 2

ξ3 ξ̄3

[
HCq̄

]λ̄η̄
ij

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
, (3.33)

where the hard part reads:[
HCq̄

]λ̄η̄
ij

=
ξ1

ξ̄3

1

c0
Πj;kk

[
Q; c−1

0 ,k3

]
+ Πj,kk

[
k3; c0,Q

]Πλ̄;η̄i
[
k1; c̃0,K

]
(3.34)

+
1

c0
Πj;kk

[
Q; c−1

0 ,k3

]ξ3

ξ̄1
Πλ̄;η̄i

[
k1; c̃0,K

]
−Πη̄;λ̄i

[
K; c̃−1

0 ,k1

]
− 1

N2
c

Πj,kk
[
k3; c0; Q

]
− ξ2

ξ̄3

1

c0
Πj,kk

[
Q; c−1

0 ,k3

]ξ2

ξ̄1
Πλ̄;η̄i

[
k1; c̃0; K

]
+ Πη̄;λ̄i

[
K; c̃−1

0 ,k1

] .
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Combining all separate contributions, we reach the main result of this section, i.e. the

TMD factorized expression for the photoproduction of three jets in the correlation limit at

low-x:

(2π)9 dσγA→qq̄g+X

d3~k1d3~k2d3~k3

∣∣∣∣
corr. limit

= 2πδ
(
p+ −

3∑
i=1

k+
i

) [
H
]total

ij
(3.35)

×
[

1

2
δijFWW (xA,qT ) +

1

2

(
2
qiT q

j
T

q2
T

− δij
)
HWW (xA,qT )

]
,

where FWW (xA,qT ) andHWW (xA,qT ) are the unpolarized and linearly polarized Weizsäcker-

Williams gluon TMDs defined in Eq. (3.18), and where the hard factor is found to be:

[
H
]total

ij
= Nc g

2
e g

4
s π

3 1

k+
2 p

+

{
Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)[
Hqq

]λ̄λ̄′;η̄η̄′
ij

+Mη̄η̄′;λ̄λ̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)[
Hq̄q̄

]λ̄λ̄′;η̄η̄′
ij

+2Mη̄η̄′;λ̄λ̄′

qq̄

(
ξ1, ξ2

)[
Hqq̄

]λ̄λ̄′;η̄η̄′
ij

+MCC(ξ1, ξ2)
1

ξ2
3 ξ̄

2
3

[
HCC

]
ij

+ 2MCq(ξ1, ξ2)
2

ξ3ξ̄3

[
HCq

]λ̄η̄
ij

+ 2MCq̄(ξ1, ξ2)
2

ξ3ξ̄3

[
HCq̄

]λ̄η̄
ij

}
. (3.36)

The explicit expressions of the products of splitting functions and of the hard factors

are given in Eqs. (2.17)-(3.16), (2.27)-(3.23), (2.32)-(3.26), (2.35)-(3.30), (2.38)-(3.32) and

(2.41)-(3.34).

4 Numerical study of the cross section in the correlation limit

In this section, we will further study the cross section in the correlation limit, using both

analytical and numerical models of the gluon TMDs in the target proton.

Before doing so, let us make some estimates of the relevant phase space for our process.

Photoproduction can take place as the low-Q2 limit of deep-inelastic lepton-proton/ion

scattering, for instance in the future Electron-Ion Collider, or in ultra-peripheral collisions

(UPCs) involving protons or heavy ions. Let us denote our process as l(`) + A(pA) →
q(k1) + g(k2) + q̄(k3) +X, with A the target proton or ion, and where l the source of the

real photon flux; either a charged lepton, either a proton or ion. The momenta of the

photon source and the target are:

` = (`+, 0−,0) and pA = (0+, p−A ,0) , (4.1)

hence the center-of-mass energy is equal to s = (` + pA)2 ' 2`+p−A . The four-momenta of

the real photon p and the gluon k are then given by

p = y` = (y`+, 0−,0) and k = (0+, k−1 + k−2 + k−3 ,k1 + k2 + k3) , (4.2)

and the value of x reached in the experiment is:

xA =
k−

p−A
=

1

sy

(k2
1

ξ1
+

k2
2

ξ2
+

k2
3

ξ3

)
. (4.3)
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It follows that for realistic EIC center-of-mass (c.o.m.) energies
√
s ∼ 100 GeV, and for

values of y as large as possible, demanding that x . 10−2 means that the transverse

momenta of the jets should not exceed 3 GeV. On the other hand, in ultra-peripheral

proton-proton or lead-lead collisions at the LHC one is able to reach c.o.m. energies of

the order of
√
s ∼ 3 TeV and

√
s ∼ 7 · 102 GeV, respectively (see e.g. Ref. [26]). In such

collisions, values of x down to x ∼ 10−3−10−4 are attainable, with transverse jet momenta

of more workable magnitudes |ki| ∼ 10 GeV.

For these kinematics, it is a reasonable choice to use the nonperturbative McLerran-

Venugopalan (MV) model [13] to estimate the gluon distributions inside the unpolarized

nucleus or proton. In the MV model, the unpolarized and linearly polarized Weizsäcker-

Williams gluon TMDs read [6]:

FWW (x,q2
T ) =

S⊥CF
αsπ3

∫
dr
J0(|qTr|)

r

(
1− e−

r2

4
Q2

sg ln (1/r2Λ2)

)
,

HWW (x,q2
T ) =

S⊥CF
αsπ3

∫
dr
J2(|qTr|)
r ln 1

r2Λ2

(
1− e−

r2

4
Q2

sg ln (1/r2Λ2)

)
. (4.4)

In the above formulas, S⊥ is the transverse size of the proton, and Λ is an infrared cutoff,

which we take to be ΛQCD ' 0.2 GeV). Furthermore, Qsg is the gluon saturation scale for

which we choose the value Qsg = 0.6 GeV for x = 10−2 [11, 12]. A factor e is added inside

the logarithms to guarantee the convergence of the expressions Eq. (4.4).

With these expressions at hand, we plot the logarithm of the differential real photon-

proton cross section in the correlation limit, Eq. (3.35), but expressed in slightly different

variables and with the overall azimuthal dependence integrated out:

ln
dσγA→qq̄g+X

dθ12dθ32Πidξid|ki|

∣∣∣∣
corr. limit

. (4.5)

In the above, the angles θ12 and θ32 are defined as in Fig. 4.1. We present the result in

Fig. 4.2 for the choice |ki| = 10 GeV and ξi = 1/3 with i = 1, 2, 3, and using the WW

gluon TMDs introduced in Eq. (4.4). Since our calculation is valid in the correlation limit

|qT | � |ki| ∼ 10 GeV, the maximum value of qT where our calculation can be trusted

is estimated to be qT ,max =
√

10 GeV, and is illustrated by a black dashed line. Note

that we choose to normalize the cross section by its maximal value over the kinematic

range, so that we are not sensitive to prefactors such as S⊥. For illustrative purposes,

we separately plot the contributions to the cross section from the unpolarized and from

the linearly polarized gluon TMDs. Since the amplitude of the latter is several orders of

magnitude smaller than the former, its contribution to the total cross section is almost

negligible. Nevertheless, as is clearly visible from the plots, the contribution from the

linearly polarized gluon TMD exhibits azimuthal modulations, which can be exploited to

extract this TMD experimentally (see e.g. Ref. [23]).

Furthermore, in Figs. 4.3 and 4.4, we show the nonlinear low-x evolution of the cross

section. For this, we make use of the results of Ref. [12], in which the numerical JIMWLK

evolution of different gluon TMDs was performed, including the unpolarized and linearly
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Figure 4.1. Definition of the angles, in function of which we plot the cross section in the correlation

limit.

Figure 4.2. The cross section in the correlation limit. The limit of validity is demarcated by the

black dashed line.

polarized Weizsäcker-Williams distribution. Its initial condition is a numerical implemen-

tation of the MV model, which slightly differs from the analytical one in Eqs. (4.4). Once

again, we identify the starting point of the evolution to be x = x0 = 10−2 with an asso-

ciated saturation scale Qsg = 0.6 GeV. The evolution is performed to values of x ' 10−3

and x ' 10−4, with corresponding saturation scales of Qsg = 0.86 GeV and Qsg = 1.5 GeV,

respectively [11, 12]. Clearly, the peak of the cross section around qT = 0 broadens quickly

with the evolution, which is expected from the behavior of the saturation scale Qsg around

which the gluons inside the target are distributed. Likewise, the angular modulations,

which appear in the contribution to the cross section from linearly polarized gluons, are

suppressed and pushed further away from the center at qT = 0.
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Figure 4.3. JIMWLK evolution of the logarithm of the total cross section in the correlation limit,

for the values ξi = 1/3 and |ki| = 10 GeV. The limit of validity is demarcated by the black dashed

line, and the approximate values of the saturation scale (resp. Qsg = 0.60 GeV, Qsg = 0.86 GeV,

and Qsg = 1.5 GeV) by the white dashed line.

Figure 4.4. JIMWLK evolution of the logarithm of the linearly polarized gluon contribution to

the cross section in the correlation limit, for the values ξi = 1/3 and |ki| = 10 GeV. The limit of

validity is demarcated by the black dashed line, and the approximate values of the saturation scale

(resp. Qsg = 0.60 GeV, Qsg = 0.86 GeV, and Qsg = 1.5 GeV) by the white dashed line.

5 Weak-field approximation in the CGC and the HEF limit

As is well known, the high-energy factorization (HEF) framework is compassed within the

CGC formalism, and can be extracted by performing the weak-field approximation for

the gauge fields of the target. In this limit, the Wilson line structure in the amplitude

and in the complex conjugate amplitude should be expanded to second order in powers

of the background field α−a (x+,x) of the target. However, the structure of the functions

Gq, Gq̄ and GC , which incorporate the Wilson lines at the amplitude level, ensure that it is

enough to perform the expansion to the first order in powers of the background field since

the zeroth order terms vanish (see Eqs. (2.7), (2.8) and (2.9)). The standard weak-field
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expansion of a fundamental Wilson line reads

SF (x)ij = δij + igs

∫
dx+taij α

−
a (x+,x) +O

[
(α−a )2

]
. (5.1)

In order to compute the dilute limit of the cross section, we will follow the same strategy

as in the correlation limit, i.e.: we first perform the expansion on the level of the amplitude

for the quark, antiquark and instantaneous contributions, and then combine the results on

the cross section level. To do so, we introduce the reduced quark amplitude

[
Tq
]c,η̄λ̄
ij

=

3∏
i=1

∫
xi

e−iki·xiAη̄(x1 − x2)Gq
[
ξ3,

ξ1

ξ̄3
;
ξ1x1 + ξ2x2

ξ̄3
,x1,x2,x3

]cλ̄
ij

. (5.2)

As is clear from the above expression, we define the reduced amplitude as the regular

amplitude, stripped from the tensor structure of the product of the splitting functions

Mλ̄λ̄′;η̄η̄′ , such that, taking the example of the Iqq contribution to the cross section (2.15):

〈Iqq〉xA =Mη̄η̄′;λ̄λ̄′
qq

(
ξ̄3,

ξ2

ξ̄3

)〈
Tr
[
T †q
]η̄′λ̄′[Tq]η̄λ̄〉xA . (5.3)

After introducing the following change of variables

r = x1 − x2 , b =
1

2
(x1 + x2) , x̄3 = x3 −

ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2 , (5.4)

and using Eq. (5.1) for the expansion of the Wilson lines in the function Gq, the reduced

quark amplitude can be cast into the following compact form:

[
Tq
]c,η̄λ̄
ij

= igs

∫
b
e−iqT ·b

∫
dx+ α−a (x+,b)

∫
rx̄3

{
− (tcta)ij e

−ir·m12−ik3·x̄3Aη̄(r)Aλ̄(x̄3)

+

[
(tatc)ij e

ir·p23−ik3·x̄3 − (tatc − tcta)ij e−ir·p13−ik3·x̄3

]
Aη̄(r)Aλ̄

(
ξ3, x̄3;

ξ1

ξ̄3
, r
)

+ (tcta)ij e
−ir·m12+i(k1+k2)·x̄3Aη̄(r)

[
Aλ̄(x̄3)−Aλ̄

(
ξ3, x̄3;

ξ1

ξ̄3
, r
)]}

. (5.5)

In the above expression, qT is the total transverse momentum defined in Eq. (3.11), and

we defined the following combinations of transverse momenta:

p13 = k1 +
ξ1

ξ̄3
k3 , p23 = k2 +

ξ2

ξ̄3
k3 , m12 =

ξ2

ξ̄3
k1 −

ξ1

ξ̄3
k2 . (5.6)

In Eq. (5.5) the integrals over r and x̄3 are factorized from the rest of the expression and

can be performed in straightforward manner. The reduced quark amplitude then becomes:[
Tq
]c,η̄λ̄
ij

= −igs
∫
b
e−iqT ·b

∫
dx+ α−a (x+,b) (5.7)

×
{

(tatc)ijÃ
λ̄(k3)Ãη̄(p23; c0,k3) + (tatc − tcta)ijÃλ̄(k3)Ãη̄(p13; c0,k3)

+ (tcta)ijÃ
λ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0,k1 + k2)

]
+ (tcta)ijÃ

λ̄(k3)Ãη̄(m12)
}
,
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where Ãλ(k) and Ãλ(k; c,p) are the standard and modified Weizsäcker-Williams fields in

momentum space, given by:

Ãλ(k) =
kλ

k2
and Ãλ(k; c,p) =

kλ

k2 + cp2
, (5.8)

and the combination of forward momentum fractions c0 = (ξ1ξ2)/(ξ̄2
3ξ3) which was defined

earlier.

In a similar way, the reduced antiquark amplitude is defined as

[
Tq̄
]c,η̄λ̄
ij

=
3∏
i=1

∫
xi

e−iki·xiAη̄(x3 − x2)Gq̄
[
ξ1,

ξ3

ξ̄1
;
ξ2

ξ̄1
x2 +

ξ3

ξ̄1
x3x1,x2,x3

]cλ̄
ij

. (5.9)

Following the same steps as for the reduced quark amplitude, the weak-field limit of the

reduced antiquark amplitude can be computed and reads:[
Tq̄
]c,η̄λ̄
ij

= igs

∫
b
e−iqT ·b

∫
dx+ α−a (x+,b) (5.10)

×
{

(tcta)ijÃ
λ̄(k1)Ãη̄(q21; c̃0,k1) + (tcta − tatc)ijÃλ̄(k1)Ãη̄(q31; c̃0,k1)

+ (tatc)ijÃ
λ̄(k2 + k3)

[
Ãη̄(m32)− Ãη̄(m32; c̃0,k2 + k3)

]
+ (tatc)ijÃ

λ̄(k1)Ãη̄(m32)
}
,

with

q21 = k2 +
ξ2

ξ̄1
k1 , q31 = k3 +

ξ3

ξ̄1
k1 , m32 =

ξ2

ξ̄1
k3 −

ξ3

ξ̄1
k2 , (5.11)

and the combination c̃0 = (ξ2ξ3)/(ξ̄2
1ξ1) which was also defined earlier.

Finally, we define the reduced amplitude for the instantaneous contribution:

[
TC
]c,λ̄
ij

=

3∏
i=1

∫
xi

e−iki·xi GC
[
ξ3, ξ1ξ2; ξ̄3x3 − ξ1x1 − ξ2x2,x1,x2,x3

]cλ̄
ij
, (5.12)

which, after the weak-field expansion, takes the following form[
TC
]c,λ̄
ij

= igs

∫
b
e−iqT ·b

∫
dx+α−a (x+,b)

{
(tatc)ij C̃(ξ3, ξ̄3p23; ξ1ξ2,k3) (5.13)

− (tatc − tcta)ij C̃(ξ3, ξ̄3p13; ξ1ξ2,k3)− (tcta)ij C̃(ξ3, ξ̄3m12; ξ1ξ2,k1 + k2)
}
,

where the different combinations of transverse momenta p13, p23 and m12 are defined in

Eq. (5.6). The function C̃(ξ3, ξ̄3p; ξ1ξ2,k) is the Fourier transform of the Coulomb field

defined in Eq. (2.13) and reads:

C̃(ξ3, ξ̄3p; ξ1ξ2,k) =
ξ3

ξ̄2
3p2 + ξ1ξ2k2

. (5.14)

We will now use the explicit expressions of the reduced amplitudes in the weak-field

limit: Eq. (5.7), (5.10), and (5.13), to calculate the HEF expression for the photoproduction

cross section.
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Let us start with the 〈 Iqq 〉xA contribution to the partonic cross section. Written in

terms of the weak-field expansion of the reduced quark amplitude Eq. (5.7), this contribu-

tion can be cast into the following form:

〈 Iqq 〉xA = g2
s

Nc

4
δaa
′W λ̄λ̄′;η̄η̄′

qq Mλ̄λ̄′;η̄η̄′
qq

(
ξ̄3,

ξ2

ξ̄3

)
×
∫
bb′

e−iqT ·(b−b′)
∫

dx+dx′+
〈
α−a′(x

′+,b′)α−a (x+,b)
〉
xA

(5.15)

where the Weizsäcker-Williams field structure W λ̄λ̄′;η̄η̄′
qq for this contribution is computed

as

W λ̄λ̄′;η̄η̄′
qq =

Ãλ̄(k3)
[
Ãη̄(m12)− Ãη̄(p13; c0,k3)

]
(5.16)

+ Ãλ̄(k1 + k2)
[
Ãη̄(m12)− Ãη̄(m12; c0,k1 + k2)

]
×
Ãλ̄′(k3)

[
Ãη̄
′
(m12)− Ãη̄′(p13; c0,k3)

]
+ Ãλ̄

′
(k1 + k2)

[
Ãη̄
′
(m12)− Ãη̄′(m12; c0,k1 + k2)

]
+
Ãλ̄(k3)

[
Ãη̄(p23; c0,k3) + Ãη̄(p13; c0,k3)

]
×
Ãλ̄′(k3)

[
Ãη̄′(p23; c0,k3) + Ãη̄′(p13; c0,k3)

]
− 1

N2
c

Ãλ̄(k3)
[
Ãη̄(p23; c0,k3) + Ãη̄(m12)

]
+ Ãλ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0; k1 + k2)

]
×
Ãλ̄′(k3)

[
Ãη̄′(p23; c0,k3) + Ãη̄

′
(m12)

]
+ Ãλ̄

′
(k1 + k2)

[
Ãη̄
′
(m12)− Ãη̄′(m12; c0; k1 + k2)

]} .

Using the relation (A.72) between the correlator of gauge fields and the unintegrated gluon

PDF Fg/A, we finally obtain:

〈 Iqq 〉xA = π2g2
sNcMλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)
W λ̄λ̄′;η̄η̄′
qq

1

q2
T

Fg/A(xA,qT ) . (5.17)

The 〈 Iq̄q̄ 〉xA contribution can be computed in a similar manner. Using the dilute ex-

pansion of the reduced antiquark amplitude given in Eq. (5.10), together with the definition

of the unintegrated gluon distribution, one obtains:

〈 Iq̄q̄ 〉xA = π2g2
s NcMλ̄λ̄′;η̄η̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)
W λ̄λ̄′;η̄η̄′

q̄q̄
1

q2
T

Fg/A(xA,qT ) , (5.18)
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with the Weizsäcker-Williams field structure W λ̄λ̄′;η̄η̄′

q̄q̄ :

W λ̄λ̄′;η̄η̄′

q̄q̄ =
Ãλ̄(k1)

[
Ãη̄(m32)− Ãη̄(q31; c̃0,k1)

]
(5.19)

+ Ãλ̄(k2 + k3)
[
Ãη̄(m32)− Ãη̄(m32; c̃0,k2 + k3)

]
×
Ãλ̄′(k1)

[
Ãη̄
′
(m32)− Ãη̄′(q31; c̃0,k1)

]
+ Ãλ̄

′
(k2 + k3)

[
Ãη̄
′
(m32)− Ãη̄′(m32; c̃0,k2 + k3)

]
+
Ãλ̄(k1)

[
Ãη̄(q21; c̃0,k1) + Ãη̄(q31; c̃0,k1)

]
×
Ãλ̄′(k1)

[
Ãη̄′(q21; c̃0,k1) + Ãη̄′(q31; c̃0,k1)

]
− 1

N2
c

Ãλ̄(k1)
[
Ãη̄(m32) + Ãη̄(q21; c̃0,k1)

]
+ Ãλ̄(k2 + k3)

[
Ãη̄(m32)− Ãη̄(m32; c̃0; k2 + k3)

]
×
Ãλ̄′(k1)

[
Ãη̄
′
(m32) + Ãη̄′(q21; c̃0,k1)

]
+ Ãλ̄

′
(k2 + k3)

[
Ãη̄
′
(m32)− Ãη̄′(m32; c̃0; k2 + k3)

] .

Not surprisingly, the above expression is the same as the one we obtained for the quark-

quark contribution in Eq. (5.16), up to the change of the subscripts 1 ↔ 3. Since, as

discussed previously, the functions that encode the product of splitting amplitudes follow

the same rule, we have that

〈 Iq̄q̄ 〉xA = 〈 Iqq 〉xA(1↔ 3) , (5.20)

reflecting the invariance of QCD under charge conjugation.

It turns out that the HEF limits of all the remaining contributions, i.e. 〈 Iqq̄ 〉xA ,

〈 ICC 〉xA , 〈 ICq 〉xA and 〈 ICq̄ 〉xA , which can be calculated with the help of the expansions

Eqs. (5.7), (5.7) and (5.13) on the amplitude level, can be cast in a similar form:

〈 I... 〉xA = π2g2
s Nc

(
M(ξ1, ξ2) ⊗W

) 1

q2
T

Fg/A(xA,qT ) . (5.21)

where the symbol ⊗ denotes a contraction over all open vector indices. The corresponding
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Weizsäcker-Williams field structures W are given by, respectively:

W λ̄λ̄′;η̄η̄′

qq̄ =
Ãλ̄(k3)

[
Ãη̄(p23; c0,k3) + Ãη̄(p13; c0,k3)

] (5.22)

×
Ãλ̄′(k1)

[
Ãη̄
′
(m32)− Ãη̄′(q31; c̃0,k1)

]
+ Ãλ̄

′
(k2 + k3)

[
Ãη̄
′
(m32)− Ãη̄′(m32; c̃0,k2 + k3)

]
+
Ãλ̄(k3)

[
Ãη̄(m12)− Ãη̄(p13; c0,k3)

]
+ Ãλ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0,k1 + k2)

]
×
Ãλ̄′(k1)

[
Ãη̄′(q21; c̃0,k1) + Ãη̄′(q31; c̃0,k1)

]
− 1

N2
c

Ãλ̄(k3)
[
Ãη̄(m12) + Ãη̄(p23; c0,k3)

]
+ Ãλ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0; k1 + k2)

]
×
Ãλ̄′(k1)

[
Ãη̄
′
(m32) + Ãη̄′(q21; c̃0,k1)

]
+ Ãλ̄

′
(k2 + k3)

[
Ãη̄
′
(m32)− Ãη̄′(m32; c̃0; k2 + k3)

] ,

WCC =
C̃(ξ3, ξ̄3p23; ξ1ξ2,k3

)
− C̃

(
ξ3, ξ̄3p13; ξ1ξ2,k3

)2

+
C̃(ξ3, ξ̄3p13; ξ1ξ2,k3

)
− C̃

(
ξ3, ξ̄3m12; ξ1ξ2,k1 + k2

)2

− 1

N2
c

C̃(ξ3, ξ̄3p23; ξ1ξ2,k3

)
− C̃

(
ξ3, ξ̄3m12; ξ1ξ2,k1 + k2

)2
, (5.23)

W λ̄η̄
Cq =

Ãλ̄(k3)
[
Ãη̄(p23; c0,k3) + Ãη̄(p13; c0,k3)

] (5.24)

×
C̃(ξ3, ξ̄3p23; ξ1ξ2,k3)− C̃(ξ3, ξ̄3p13; ξ1ξ2,k3)


+
Ãλ̄(k3)

[
Ãη̄(m12)− Ãη̄(p13; c0,k3)

]
+ Ãλ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0,k1 + k2)

]
×
C̃(ξ3, ξ̄3p13; ξ1ξ2,k3)− C̃(ξ3, ξ̄3m12; ξ1ξ2,k1 + k2)


− 1

N2
c

Ãλ̄(k3)
[
Ãη̄(m12) + Ãη̄(p23; c0,k3)

]
+ Ãλ̄(k1 + k2)

[
Ãη̄(m12)− Ãη̄(m12; c0; k1 + k2)

]
×
C̃(ξ3, ξ̄3p23; ξ1ξ2,k3)− C̃(ξ3, ξ̄3m12; ξ1ξ2,k1 + k2)

 ,

and lastly:
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W λ̄η̄
Cq̄ =

Ãλ̄(k1)
[
Ãη̄(q21; c̃0,k1) + Ãη̄(q31; c̃0,k1)

]
×
C̃(ξ3, ξ̄3p13; ξ1ξ2,k3)− C̃(ξ3, ξ̄3m12; ξ1ξ2,k1 + k2)


+
Ãλ̄(k1)

[
Ãη̄(m32)− Ãη̄(q31; c̃0,k1)

]
+ Ãλ̄(k2 + k3)

[
Ãη̄(m32)− Ãη̄(m32; c̃0,k2 + k3)

]
×
C̃(ξ3, ξ̄3p23; ξ1ξ2,k3)− C̃(ξ3, ξ̄3p13; ξ1ξ2,k3)


− 1

N2
c

Ãλ̄(k1)
[
Ãη̄(m32) + Ãη̄(q21; c̃0,k1)

]
+ Ãλ̄(k2 + k3)

[
Ãη̄(m32)− Ãη̄(m32; c̃0; k2 + k3)

]
×
C̃(ξ3, ξ̄3p23; ξ1ξ2,k3)− C̃(ξ3, ξ̄3m12; ξ1ξ2,k1 + k2)

} . (5.25)

We can now combine all the contributions that have been computed separately, and

write down the final factorized expression for the photoproduction of three jets in the HEF

limit as:

(2π)92p+ dσγA→qq̄g+X

d3~k1 d3~k2 d3~k3

∣∣∣∣
HEF limit

= 2π δ
(
p+ −

3∑
i=1

k+
i

)
Wtotal 1

q2
T

Fg/A(xA,qT ) , (5.26)

where the total Weizsäcker-Williams field structure Wtotal reads

Wtotal = π2Nc g
2
eg

4
s

1

k+
2 p

+

{
Mλ̄λ̄′;η̄η̄′

qq

(
ξ̄3,

ξ2

ξ̄3

)
W λ̄λ̄′;η̄η̄′
qq

+Mη̄η̄′;λ̄λ̄′

q̄q̄

(
ξ1,

ξ2

ξ̄1

)
W λ̄λ̄′;η̄η̄′

q̄q̄ + 2Mλ̄λ̄′;η̄η̄′

qq̄ (ξ1, ξ2)W λ̄λ̄′;η̄η̄′

qq̄

+MCC(ξ1, ξ2)WCC + 2Mη̄λ̄
Cq(ξ1, ξ2)W λ̄η̄

Cq + 2Mη̄λ̄
Cq̄(ξ1, ξ2)W λ̄η̄

Cq̄

}
. (5.27)

The products of splitting functions and the Weizsäcker-Williams field structures are given

in Eqs. (2.17)-(5.16), (2.27)-(5.19), (2.32)-(5.22), (2.35)-(5.23), (2.38)-(5.24) and (2.41)-

(5.25), respectively.

6 Summary and outlook

We calculated the partonic cross section for the forward inclusive production of a quark-

antiquark pair plus a gluon in the scattering of a real photon with a proton or nucleus.

The computation was performed at leading order in the CGC effective theory, valid at low

values of x, taking the multiple rescatterings of the partons off the semiclassical gluon fields

in the target proton or nucleus into account. From our partonic cross section, the cross

section for three-jet production in the low-Q2 limit of deep-inelastic scattering, or in ultra-

peripheral collisions, can be easily obtained by convolving the result with the relevant real

photon flux. Note that the cross section for three-jet production in deep-inelastic scattering

at low-x has been calculated in a helicity framework in [24].
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Our main result is the correlation limit of this cross section, corresponding to the

kinematical configuration where the total transverse momentum qT of the three outgoing

particles is much smaller than their individual transverse momenta. We demonstrated how

in this limit the cross section simplifies and factorizes into a partonic hard part on the one

hand, independent of qT , and a gluon correlator on the other hand, which parametrizes the

proton or nucleus target in terms of the unpolarized and linearly polarized gluon TMDs

FWW (xA, qT ) and HWW (xA, qT ). Using earlier results of the JIMWLK evolution of these

two gluon TMDs, we numerically studied the nonlinear small-x evolution of this cross

section.

In addition, we calculated the dilute limit of the CGC cross section by performing the

weak-field expansion. Once again, a simple factorization formula was obtained, this time in

terms of the unintegrated gluon PDF, and with a hard part corresponding to the γg∗ → qq̄g

off-shell matrix element in the language of high-energy factorization (or kT -factorization).

Our calculation provides an important contribution towards establishing the phe-

nomenology of forward particle production at low-x, in the line of [20, 24, 32]. In particular,

recently there has been much interest in processes with photons in the final state as a clean

probe for saturation effects [19, 33–36], and it can be noted that the cross section for the

photoproduction of two jets and a photon can very easily be adapted from the results of

the present paper, with a simplified Wilson line structure.

More importantly, we demonstrated for the first time that the CGC-TMD correspon-

dence still holds, at least at leading order, when considering three outgoing colored particles.

Finally, within the framework set up in this work and in [19], we are currently pursuing

the computation of photon-jet production in the CGC at NLO, to investigate whether this

correspondence holds beyond tree level as well.
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A Appendices

A.1 Fock states and wave functions

The perturbative time evolution of an asymptotic eigenstate |ω0〉 of the Hamiltonian, into

a physical Fock state |ψ(0)〉 at the time of interaction x+ = 0, can be computed as follows:

|ψ(0)〉 = T exp
(
−i
∫ 0

−∞
dx+Hint(x

+)
)
|ω0〉

= |ω0〉+
∑
ω

|ω〉〈ω|Hint|ω0〉
q−0 − q−

+
∑
ω,ω′

|ω〉〈ω|Hint|ω′〉〈ω′|Hint|ω0〉
(q−0 − q′−)(q−0 − q−)

+ ...
(A.1)

In the above,Hint(x
+) is the interaction part of the Hamiltonian, which evolves in light-cone

time as Hint(x
+) = eiÊx

+
Hinte

−iÊx+
where Ê|ω〉 = q−|ω〉. Adapting the above formula

to the perturbative dressing of a real photon state, we obtain the following expression to

order gsge in the coupling (using the notation ~k = (k+,k)):

|(γ)[~p]λ〉D = |(γ)[~p]λ〉0

+
∑
s,s′,i,j

∫
d3~q1

(2π)3 2q+
1

d3~q2

(2π)3 2q+
2

|(q)[~q1]is; (q̄)[~q2]js′〉0
〈(q)[~q1]is; (q̄)[~q2]js′ |Hint|(γ)[~p]λ〉

p− − q−1 − q
−
2

+
∑

s,s′,i,j,η,c

∫
d3~k1

(2π)3 2k+
1

d3~k2

(2π)3 2k+
2

d3~k3

(2π)3 2k+
3

|(q)[~k1]is; (g)[~k2]ηc ; (q̄)[~k3]js′〉0

×
[∫

d3~l

(2π)3 2l+
〈(q)[~k1]is; (g)[~k2]ηc |Hint|(q)[~l]īs̄〉

p− − k−1 − k
−
2 − k

−
3

〈(q)[~l]īs̄; (q̄)[~k3]js′ |Hint|(γ)[~p]λ〉
p− − l− − k−3

+

∫
d3 ~m

(2π)3 2m+

〈(g)[~k2]ηc ; (q̄)[~k3]js′ |Hint|(q̄)[~m]īs̄〉
p− − k−1 − k

−
2 − k

−
3

〈(q̄)[~m]īs̄; (q)[~k1]is|Hint|(γ)[~p]λ〉
p− −m− − k1

−

+
〈(q)[~k1]is; (g)[~k2]ηc ; (q̄)[~k3]js′ |Hint|(γ)[~p]λ〉

p− − k−1 − k
−
2 − k

−
3

]
+O(g2

sge, gsg
2
e) . (A.2)

In the above expression, the standard properties of light-cone perturbation theory (LCPT)

apply. In particular, at each vertex three-momentum is conserved, hence it is understood

that ~q1 = ~p − ~q2, ~k3 = ~p − ~k1 − ~k2, and so on. Moreover, the momenta satisfy on-shell

conditions, implying that in our massless case k−i = k2
i /2k

+
i . Introducing what we call the

‘wave functions’ F , the dressed photon state can be cast in a much more compact form:

|(γ)[~p]λ〉D = |(γ)[~p]λ〉0 + geδ
ij

∫
d3~q1

(2π)3F
(1)
γ

[
(q)[~q1]; (q̄)[~q2]

]λ
s′s
× |(q)[~q1]is; (q̄)[~q2]js′〉0

+ gegst
c
ij

∫
d3~k1

(2π)3

d3~k2

(2π)3

{(
F (2)
q + F

(2)
q̄ + F

(2)
C

)[
(q)[~k1]; (g)[~k2]; (q̄)[~k3]

]λη
ss′

× |(q)[~k1]is; (g)[~k2]ηc ; (q̄)[~k3]js′〉0 . (A.3)

The wave functions contain the dynamics of the splittings, and their expressions in terms

of the matrix elements are obtained by comparing Eqs. (A.2) and (A.3). They can be
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calculated with the help of the Feynman rules in appendix A.3. Since their calculation

has been performed explicitly for similar processes in Refs. [19, 21], but with slightly

different conventions, we restrict ourselves here to the computation of F
(1)
γ : the leading-

order splitting of a photon into a quark-antiquark pair. For the other wave functions, we

will merely present the final results.

The (dimension −1) γ → qq̄ wave function (see Fig. A.1) is defined as:

F (1)
γ

[
(q)[~q1]; (q̄)[~q2]

]λ
ss′

=
1

2q+
1

∑
s,s′,i,j

∫
d3~q2

(2π)32q+
2

∫
d3~x
〈0|ds′j (~q2)bsi (~q1)Hint a

†λ(~p)|0〉
p− − q−1 − q

−
2

,
(A.4)

where one should be careful to note that an arrow over a momentum vector indicates
~k = (k+,k), while an arrow over a coordinate means ~x = (x−,x). Making use of the LCPT

Feynman rules as well as the conventions for the (anti-)commutation relations listed in

appendix A.3:

F (1)
γ

[
(q)[~q1]; (q̄)[~q2]

]λ
ss′

=
1

2q+
1

∑
s,s′,i,j

∫
d3~q2

(2π)32q+
2

∫
d3~x
〈0|ds′j (~q2)bsi (~q1) : q̄(~x)��A(~x)q(~x) : a†λ(~p)|0〉

p− − q−1 − q
−
2

,

=
1

2q+
1

∑
s,s′,i,j

∫
d3~q2

2q+
2

δ(3)(~p− ~q1 − ~q2)

p− − q−1 − q
−
2

ūs(~q1)�ελ(~p)vs
′
(~q2) .

(A.5)

Note that, with a minor abuse of notation, we extracted the factor geδ
ij from the interaction

Hamiltonian and placed it in front of the wave function in Eq. (A.3). After some algebra,

we find that:

p− − q−1 − q
−
2 =

−p+

2q+
1 (p+ − q+

1 )

(q+
1

p+
p− q1

)2
, (A.6)

such that we obtain:

F (1)
γ

[
(q)[~q1]; (q̄)[~q2]

]λ
ss′

=
−1

2p+

∑
s,s′,i,j

ūs(~q1)�ελ(~p)vs
′
(~q2)( q+

1
q+ p− q1

)2 . (A.7)

As we will show in appendix A.4, the numerator in the above formula can be calculated in

terms of the so-called good spinors, on which we will elaborate later. In the massless case

under consideration, the result is generic and does not depend on whether one considers

quark or antiquark spinors. We can therefore read off the result from the general formula

(A.37), and adapt it to the kinematics of the γ → qq̄ splitting under consideration:

ū(~q1)�ελ(~p)v(~q2) =
p+

2q+
1 q

+
2

(
q+

1

p+
pj − qj1)εiλūG(~q1)γ+

[
(1− 2

q+
1

p+
)δij − iσij

]
vG(~q2) . (A.8)

To make this result more explicit, we choose a set of polarization vectors and Dirac spinors,

for which we refer to appendix A.6. With this choice, our final result for the γ → qq̄ wave

function is:

F (1)
γ

[
(q)[~q1]; (q̄)[~q2]

]λ
ss′

= − q
+
1 + q+

2

2
√
q+

1 q
+
2

q+
1 q

λ̄
2 − q

+
2 q

λ̄
1(

q+
1 q2 − q+

2 q1

)2 Ψλλ̄
ss′
( q+

1

q+
1 + q+

2

)
, (A.9)
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Figure A.1. The relevant leading-order splittings.

where Ψλλ̄
ss′(ξ) is the dimensionless splitting function, defined as:

Ψλλ̄
ss′(ξ) = (1− 2ξ)δλλ̄δs,−s′ − iελλ̄σ3

s,−s′ . (A.10)

For the other wave functions, the computation is analogous, and we refer to Refs. [19, 21]

for the explicit calculation of similar second-order functions. Apart from the γ → qq̄ case,

the q → qg and q̄ → q̄g leading-order wave functions (see Fig. A.1) will be important in

this work:

F (1)
q

[
(q)[~k1]; (g)[~k2]

]η
ss̄

=
(k+

1 + k+
2 )3/2

2k+
2

√
k+

1

φηη̄ss̄
( k+

2

k+
1 + k+

2

) k+
2 k

η̄
1 − k

+
1 k

η̄
2(

k+
2 k1 − k+

1 k2

)2 ,
F

(1)
q̄

[
(g)[~k2]; (q̄)[~k3]

]η
s′s̄

=
−(k+

2 + k+
3 )3/2

2k+
2

√
k+

3

φηη̄s′s̄
( k+

2

k+
2 + k+

3

) k+
2 k

η̄
3 − k

+
3 k

η̄
2(

k+
2 k3 − k+

3 k2

)2 , (A.11)

with:

φλλ̄αβ(z) = (2− z)δλλ̄δαβ − izελλ̄σ3
αβ . (A.12)

Once again, with some abuse of notation the factors gst
c
ij were extracted. The results for

the second-order splitting functions (see Fig. 2.1) are:

F (2)
q

[
(q)[~k1]; (g)[~k2]; (q̄)[~k3]

]λη
ss′

=
−1

4k+
2

√
k+

1 k
+
3

Ψλλ̄
s̄s′(ξ̄3)φηη̄ss̄

(ξ2

ξ̄3

) ξ3p
λ̄ − kλ̄3(

ξ3p− k3

)
2

(A.13)

×
ξ3

(
ξ̄3k

η̄
2 − ξ2(pη̄ − kη̄3)

)
ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2

,

F
(2)
q̄

[
(q)[~k1]; (g)[~k2]; (q̄)[~k3]

]λη
ss′

=
1

4k+
2

√
k+

1 k
+
3

Ψλλ̄
s̄s (ξ̄1)φηη̄s′s̄

(ξ2

ξ̄1

) ξ1p
λ̄ − kλ̄1

(ξ1p− k1)2

×
ξ1

(
ξ̄1k

η̄
2 − ξ2(pη̄ − kη̄1)

)
ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2

,

F
(2)
C

[
(q)[~k1]; (g)[~k2]; (q̄)[~k3]

]λη
ss′

=
1

4k+
2

√
k+

1 k
+
3

ϕληss′(ξ1, ξ2)

× 1

ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2
,

where the notations ξ1 = k+
1 /p

+, ξ2 = k+
2 /p

+, ξ3 = (p+ − k+
1 − k

+
2 )/p+ were introduced.

The splitting function of the instantaneous splitting of a photon into a gluon, a quark and
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an antiquark, is given by:

ϕληαβ(ξ1, ξ2) =
ξ1ξ2ξ3

ξ̄1ξ̄3

[
(ξ̄3 − ξ̄1)δληδα,−β + i(ξ̄3 + ξ̄1)ελησ3

α,−β
]
. (A.14)

In mixed Fourier space, the wave functions are found to be:

F (1)
γ

[
(q)[q+

1 ,x1]; (q̄)[q+
2 ,x3]

]λ
ss′

=
−iq+

2 (q+
1 + q+

2 )

2
√
q+

1 q
+
2

Ψλλ̄
ss′
( q+

1

q+
1 + q+

2

)
× δ(2)(q+

1 x1 + q+
2 x3)Aλ̄(x1) ,

F (1)
q

[
(q)[k+

1 ,x1]; (g)[k+
2 ,x2]

]η
ss′

=
i
√
k+

1 (k+
1 + k+

2 )
3
2

2k+
2

φηη̄ss′
( k+

2

k+
1 + k+

2

)
× δ(2)(k+

2 x2 + k+
1 x1)Aη̄(x2) ,

F
(1)
q̄

[
(g)[k+

2 ,x2]; (q̄)[k+
3 ,x3]

]η
s′s̃

=
−i
√
k+

3 (k+
2 + k+

3 )
3
2

2k+
2

φηη̄s′s̃
( k+

2

k+
2 + k+

3

)
× δ(2)(k+

2 x2 + k+
3 x3)Aη̄(x2) , (A.15)

and

F (2)
q

[
(q)[k+

1 ,w − x1]; (g)[k+
2 ,w − x2]; (q̄)[k+

3 ,w − x3]
]λη
ss′

=
1

4k+
2

√
k+

1 k
+
3

Ψλλ̄
s̄s′(ξ̄3)φηη̄ss̄

(ξ2

ξ̄3

) ∫
v
δ(2)
(
w − ξixi

)
δ(2)
(
v − ξ1

ξ̄3
x1 −

ξ2

ξ̄3
x2

)
×Aη̄(x1 − x2)Aλ̄

(
ξ3,x3 − v;

ξ1

ξ̄3
,x1 − x2

)
,

F
(2)
q̄

[
(q)[k+

1 ,w − x1]; (g)[k+
2 ,w − x2]; (q̄)[k+

3 ,w − x3]
]λη
ss′

=
−1

4k+
2

√
k+

1 k
+
3

Ψλλ̄
s̄s (ξ̄1)φηη̄s̄s′

(ξ2

ξ̄1

) ∫
u
δ(2)
(
w − ξixi

)
δ(2)
(
u− ξ2

ξ̄1
x2 −

ξ3

ξ̄1
x3

)
×Aη̄(x3 − x2)Aλ̄

(
ξ1,x1 − u;

ξ3

ξ̄1
,x3 − x2

)
,

F
(2)
C

[
(q)[k+

1 ,w − x1]; (g)[k+
2 ,w − x2]; (q̄)[k+

3 ,w − x3]
]λη
ss′

= ϕληss′(ξ1, ξ2)δ(2)
(
w − ξixi

)
× C

(
ξ3,w − x3; ξ1ξ2,x2 − x1

)
. (A.16)

The expressions for the non-Abelian Weizsäcker-Williams field A, the modified Weizsäcker-

Williams field A and the Coulomb field C can be found in Eqs. (2.11), (2.12) and (2.13).

A.2 Outgoing Fock state

The first step towards the computation of the outgoing Fock state, is performing the Fourier

transform of the transverse coordinates. For the zeroth-order term of the dressed photon

state (A.3), this is trivial and yields:

|(γ)[~p]λ〉D
∣∣∣
0

=

∫
w
e−ip·w|(γ)[p+,w]λ〉0 . (A.17)
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For the order ge term, we have that:

|(γ)[~p]λ〉D
∣∣∣
ge

= geδ
ij

∫
d3~q1

(2π)3

∫
yzy′z′

e−iq1·(z+z′)e−iq2·(y+y′)F (1)
γ

[
(q)[q+

1 , z
′]; (q̄)[q+

2 ,y
′]
]λ
s′s

× |(q)[q+
1 , z]is; (q̄)[q+

2 ,y]js′〉0
∣∣∣
~q2=~p−~q1

. (A.18)

Renaming y′ = w−y, using that ~q2 = ~p− ~q1, and integrating over the momentum q1, one

obtains:

|(γ)[~p]λ〉D
∣∣∣
ge

= geδ
ij

∫
dq+

1

2π

∫
wyz

e−ip·wF (1)
γ

[
(q)[q+

1 ,w − z]; (q̄)[p+ − q+
1 ,w − y]

]λ
s′s

× |(q)[q+
1 , z]is; (q̄)[p+ − q+

1 ,y]js′〉0 . (A.19)

Likewise, for any of the gegs contributions the Fourier transform looks as follows:

|(γ)[~p]λ〉D
∣∣∣
gegs

= gegst
c
ij

∫
d3~k1

(2π)3

d3~k2

(2π)3

3∏
i=1

∫
xix′i

e−iki·(xi+x′i)

× F (2)
[
(q)[k+

1 ,x
′
1]; (g)[k+

2 ,x
′
2]; (q̄)[k+

3 ,x
′
3]
]λη
s′s

× |(q)[k+
1 ,x1]is; (g)[k+

2 ,x2]ηc ; (q̄)[k+
3 ,x3]js′〉0 . (A.20)

After the substitution x′3 → w − x3, and integrating over the momenta k1 and k2:

|(γ)[~p]λ〉D
∣∣∣
gegs

=

∫
dk+

1

2π

dk+
2

2π

∫
wx1x2x3

e−ip·w

× F (2)
[
(q)[k+

1 ,w − x1]; (g)[k+
2 ,w − x2]; (q̄)[k+

3 ,w − x3]
]λη
s′s

× |(q)[k+
1 ,x1]is; (g)[k+

2 ,x2]ηc ; (q̄)[k+
3 ,x3]js′〉0 . (A.21)

Combining the above elements, the complete dressed photon state in mixed Fourier space

reads (where we set the transverse momentum p of the incoming photon equal to zero):

|(γ)[p+,p = 0]λ〉D =

∫
w
|(γ)[p+,w]λ〉0

+ geδ
ij

∫
dq+

1

2π

∫
wyz

F (1)
γ

[
(q)[q+

1 ,w − z]; (q̄)[p+ − q+
1 ,w − y]

]λ
s′s

× |(q)[q+
1 , z]is; (q̄)[p+ − q+

1 ,y]js′〉0

+ gegst
c
ij

∫
dk+

1

2π

dk+
2

2π

∫
wx1x2x3

×
(
F (2)
q + F

(2)
q̄ + F

(2)
C

)[
(q)[k1,w − x1]; (g)[k2,w − x2]; (q̄)[k3,w − x3]

]λη
s′s

× |(q)[k+
1 ,x1]is; (g)[k+

2 ,x2]ηc ; (q̄)[k+
3 ,x3]js′〉0 . (A.22)

Now, the outgoing state is obtained by acting on the bare components with the appropriate

Wilson lines (defined in Eq. (2.10), the subscripts F and A denote whether the generators
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of SU(Nc) are in the fundamental or adjoint representation, respectively):

|(γ)[p+,p = 0]λ〉D =

∫
w
|(γ)[p+,w]λ〉0

+ ge

∫
dq+

1

2π

∫
wyz

[
SF (z)S†F (y)

]
ij
F (1)
γ

[
(q)[q+

1 ,w − z]; (q̄)[p+ − q+
1 ,w − y]

]λ
s′s

× |(q)[q+
1 , z]is; (q̄)[p+ − q+

1 ,y]js′〉0

+ gegs

∫
dk+

1

2π

dk+
2

2π

∫
wx1x2x3

[
SF (x1)tdS†F (x3)

]
ij
SA(x2)dc

×
(
F (2)
q + F

(2)
q̄ + F

(2)
C

)[
(q)[k1,w − x1]; (g)[k2,w − x2]; (q̄)[k3,w − x3]

]η
s′s

× |(q)[k+
1 ,x1]is; (g)[k+

2 ,x2]ληc ; (q̄)[k+
3 ,x3]js′〉0 . (A.23)

Finally, the outgoing state needs to be written as a function of the dressed states,

not the bare ones. Schematically, the procedure goes as follows: first, observe that all the

dressed states are, up to gegs accuracy, related to the bare ones as:

|γ〉D = |γ〉0 + F (1)
γ |qq̄〉0 +

(
F (2)
q + F

(2)
q̄ + F

(2)
C

)
|qq̄g〉0 ,

|qq̄〉D = |qq̄〉0 +
(
F (1)
q + F

(1)
q̄

)
|qq̄g〉0 ,

|qq̄g〉D = |qq̄g〉0 . (A.24)

The outgoing state is then given by:

|γ〉out = |γ〉0 +
[
SF (z)S†F (y)

]
F (1)
γ |qq̄〉0

+
[
SF (x1)tcS†F (x3)

]
SA(x2)

(
F (2)
q + F

(2)
q̄ + F

(2)
C

)
|qq̄g〉0 ,

= |γ〉0 +
([
SF (z)S†F (y)

]
− 1
)
F (1)
γ |qq̄〉D

+
{([

SF (x1)tcS†F (x3)
]
SA(x2)− 1

)(
F (2)
q + F

(2)
q̄ + F

(2)
C

)
−
([
SF (z)S†F (y)

]
− 1
)(
F (1)
q + F

(1)
q̄

)}
|qq̄g〉D . (A.25)

The above procedure can be performed explicitly from a closer look at the |qq̄〉 → |qq̄g〉
splittings. It is easy to see that, in mixed Fourier space:

|(q)[n+,b]ls̄; (q̄)[m+, c]l̄s̃〉0 = |(q)[n+,b]ls̄; (q̄)[m+, c]l̄s̃〉D

− gstcil
∫

dk+
2

2π

∫
x1x2

F (1)
q

[
(q)[k+

1 = n+ − k+
2 ,b− x1]; (g)[k+

2 ,b− x2]
]η
ss̄

× |(q)[k+
1 = n+ − k+

2 ,x1]is; (g)[k+
2 ,x2]ηc ; (q̄)[k+

3 = m+,x3 = a]j=l̄s′=s̃〉D

− gstcl̄j

∫
dk+

2

2π

∫
x2x3

F
(1)
q̄

[
(g)[k+

2 , c− x2]; (q̄)[k+
3 = m+ − k+

2 , c− x3]
]η
s′s̃

× |(q)[k+
1 = n+,x1 = b]ls̄; (g)[k+

2 ,x2]ληc ; (q̄)[k+
3 = m+ − k+

2 ,x3]js′〉D . (A.26)
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We thus obtain for the outgoing state (retaining only the terms that yield the three outgoing

particles we are after):

|(γ)[p+,p = 0]λ〉out = gegs

∫
dk+

1

2π

dk+
2

2π

∫
wx1x2x3

{([
SF (x1)tdS†F (x3)

]
ij
SA(x2)dc − tcij

)
×
(
F (2)
q + F

(2)
q̄ + F

(2)
C

)[
(q)[k+

1 ,w − x1]; (g)[k+
2 ,w − x2]; (q̄)[k+

3 ,w − x3]
]ηλ
s′s

−
∫
v

([
tcSF (v)S†F (x3)

]
ij
− tcij

)
F (1)
γ

[
(q)[k+

1 + k+
2 ,w − v]; (q̄)[k+

3 ,w − x3]
]λ
s̄s′

× F (1)
q

[
(q)[k+

1 ,v − x1]; (g)[k+
2 ,v − x2]

]η
ss̄

−
∫
v

([
SF (x1)S†F (v)tc

]
ij
− tcij

)
F (1)
γ

[
(q)[k+

1 ,w − x1]; (q̄)[k+
2 + k+

3 ,w − v]
]λ
ss̃

× F (1)
q̄

[
(g)[k+

2 ,v − x2]; (q̄)[k+
3 ,v − x3]

]η
s′s̃

}
× |(q)[k+

1 ,x1]is; (g)[k+
2 ,x2]ηc ; (q̄)[k+

3 ,x3]js′〉D . (A.27)

Using the results for the Fourier transforms of the splitting functions Eqs. (A.15) and

(A.16), as well as the definitions (2.7), (2.8) and (2.9) and the identity:[
SF (x1)tdS†F (x3)

]
ij
SA(x2)dc =

[
SF (x1)S†F (x2)tcSF (x2)S†F (x3)

]
ij
, (A.28)

one arrives at the final expression Eq. (2.4).

A.3 LCPT conventions and Feynman rules

We follow the conventions of Ref. [25], in which the quark and gluon fields are defined as

follows in terms of the creation- and annihilation operators:

qi(~x) =
∑
s

∫
d3~k

(2π)3 2k+

[
e−i

~k~xbsi (
~k)us(~k) + ei

~k~xd†si (~k)vs(~k)
]
,

Aµc (~x) =
∑
λ

∫
d3~k

(2π)3 2k+

[
e−i

~k~xaλc (~k)εµλ(~k) + ei
~k~xa†λc (~k)εµ∗λ (~k)

]
,

(A.29)

with the following (anti-)commutation relations:{
bsi (
~k1), b†s

′

j (~k2)
}

= 2k+
1 (2π)3δ(3)(~k1 − ~k2)δss

′
δij ,{

dsi (
~k1), d†s

′

j (~k2)
}

= 2k+
1 (2π)3δ(3)(~k1 − ~k2)δss

′
δij ,[

aλ(~k1), a†λ
′
(~k2)

]
= 2k+

1 (2π)3δ(3)(~k1 − ~k2)δλλ
′
.

(A.30)

As is clear from the above definitions, in our conventions all the creation and annihilation

operators have mass dimension −1. Hence, it follows that the for the moment unspecified

Dirac spinors are required to have dimension 1/2, in order for the quark field to have

dimension 3/2. Following the same reasoning, the polarization vectors are dimensionless,

such that the boson field has dimension 1. With these definitions, each n-particle Fock

state in momentum space has dimension −n.
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Figure A.2. Relevant LCPT Feynman rules. As in the covariant case, the quark-antiquark-photon

vertex is simply obtained from the quark-antiquark-gluon one by replacing gs → ge and Ag → Aγ .

Note that : O : denotes normal ordering, and that we used the notation ~x = (x−,x).

The above conventions are in contrast with the ones used in our earlier work Ref. [19,

21], where all creation and annihilation operators have dimension −3/2, while the quark

and gluon fields keep their usual dimensions 3/2 and 1.

The Feynman rules for LCPT can be found in Refs. [25, 28]. The relevant ones for our

process are listed in Fig. A.2, where it is understood that the gluon field is Ag ≡ Ag,ct
c.

The quark-antiquark-photon vertex is then obtained from the quark-antiquark-gluon one

by the replacement gs → ge and Ag → Aγ .

A.4 Generic quark-boson-antiquark splitting function

In this subsection, we show how to derive a generic expression for the quark-boson-

antiquark splitting, irregardless of which particle is the radiator. Without losing generality,

let us focus on the structure:

ū(~q2)�ελ(~p)v(~q1) . (A.31)

We will decompose the spinors in terms of good and bad components, which can be per-

formed by means of the projectors:

PB ≡
γ+γ−

2
=
γ0γ−√

2
and PG ≡

γ−γ+

2
=
γ0γ+

√
2

. (A.32)

In LCPT even intermediate particles follow the classical equations of motion, hence it

follows in a straightforward way from the Dirac equation that the bad components of a

spinor depend on the good ones through the relations (see Ref. [25]):

usB(~k) =
γ+

2k+
k · γ usG(~k) and vsB(~k) =

γ+

2k+
k · γ vsG(~k) , (A.33)

and similarly:

ūsB(~k) = ūsG(~k)k · γ γ
+

2k+
and v̄sB(~k) = v̄sG(~k)k · γ γ

+

2k+
. (A.34)
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With the above relations, as well as the following parameterization of the polarization

vector for the gluon:

εµλ(~k) =

(
0+,

k · ελ

k+
, ελ
)
, (A.35)

and using the identities in appendix A.5, we obtain the following expression for Eq. (A.31):

ū(~q1)�ελ(~p)v(~q2) =
(
ūG(~q1) + ūB(~q1)

)
�ελ(~p)

(
vG(~q2) + vB(~q2)

)
,

= εiλūG(~q1)
(

1 + q1 · γ
γ+

2q+
1

)( pi
p+
γ+ − γi

)(
1 +

γ+

2q+
2

q2 · γ
)
vG(~q2) ,

= εiλūG(~q1)
( pi
p+
γ+ − γi − q1 · γ

γ+

2q+
1

γi
)(

1 +
γ+

2q+
2

q2 · γ
)
vG(~q2) ,

= εiλūG(~q1)γ+
( pi
p+

+ q1 · γ
γi

2q+
1

+
γi

2q+
2

q2 · γ
)
vG(~q2) .

(A.36)

Furthermore, using the decomposition Eq. (A.42), we obtain the result:

ū(~q1)�ελ(~p)v(~q2) = εiλūG(~q1)γ+
( pi
p+

+
qj1

2q+
1

(−δji − iσji) +
qj2

2q+
2

(−δij − iσij)
)
vG(~q2) ,

= εiλūG(~q1)γ+
[( pi
p+
− qi1

2q+
1

− qi2
2q+

2

)
− iσij

( qj2
2q+

2

− qj1
2q+

1

)]
vG(~q2) ,

(A.37)

which was obtained earlier in Ref. [25]. Since in the massless case the good and bad

projections (A.33) and (A.34) are the same for the quark and the antiquark, the above

result is general, and one can freely interchange ū→ v̄ or v → u.

For instance, imposing ~p = ~q1 + ~q2 in Eq. (A.37), and defining ξ = q+
1 /p

+, one obtains

the numerator of the γ → qq̄ splitting function:

ū(~q1)�ελ(~p)v(~q2) =
p+

2q+
1 q

+
2

εiλ(ξpj − qj1)ūG(~q1)γ+
[
(1− 2ξ)δij − iσij

]
vG(~q2) . (A.38)

A.5 Useful identities

Gamma matrices From the relation:

{γµ, γν} = 2gµν14 , (A.39)

and the definitions γ± = (γ0 ± γ3)/
√

2, one easily obtains the following identities:

(γ+)2 = 0 ,{
γ+, γi

}
= 0 ,{

γ+, γ0
}

=
√

2 .

(A.40)

Moreover, any transverse gamma matrix γi sandwished between ‘good’ Dirac spinors uG =

PGu or vG = PGv disappears:

ūsG(~k)γius
′
G(~p) = v̄sG(~k)γivs

′
G(~p) = v̄sG(~k)γius

′
G(~p) = ūsG(~k)γivs

′
G(~p) = 0 . (A.41)
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The following decomposition will often be useful:

γiγj =
1

2
{γi, γj}+

1

2
[γi, γj ] ,

= −δij − iσij ,
(A.42)

where we defined σij = (i/2)[γi, γj ].

Dirac sigma The Dirac sigma is Hermitian
(
σij
)†

= σij , and commutes with the non-

transverse gamma matrices:
[
σij , γ0

]
=
[
σij , γ3

]
= 0, and by extension

[
σij , γ+

]
=[

σij ,PG
]

= 0. Moreover, we have that:

σilσjl = δij , (A.43)

and
Tr(PGσij) = 0 ,

Tr(PGσijσkl) = 2εijεkl .
(A.44)

A.6 Explicit spinor representation

One can simplify the wave functions considerably by choosing an explicit parameterization

of the Dirac spinors. We follow the so-called ‘Kogut-Soper’ conventions [27, 28], in which

the transverse polarization vectors of the gluon are written as follows:

εµλ(~k) =
(

0,
k · ελ

k+
, ελ
)
, (A.45)

and the longitudinal polarization vector (with Q2 = k2):

εµL(~k) =
(

0,
Q

k+
, 0
)
. (A.46)

However, in contrast to Kogut and Soper, we choose linear polarization vectors:

εiλ = δiλ , (A.47)

with εi†λ ε
j
λ = δij . We work in the chiral representation of the gamma matrices:

γ0 =

(
0 12

12 0

)
, γi =

(
0 −σi

σi 0

)
, (A.48)

with the usual Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.49)

such that:

γ+ =


0 0 0 0

0 0 0
√

2√
2 0 0 0

0 0 0 0

 , γ1 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 , γ2 =


0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0

 . (A.50)
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The Dirac sigma is explicitly:

σij =
i

2

[
γi, γj

]
,

σ12 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , σ21 = −σ12 , σ11 = σ22 = 0 .
(A.51)

With these conventions, the Dirac spinors are given by (1 corresponds to spin up, −1 to

spin down):

u1(~k) =
1

21/4
√
k+


√

2k+

k1 + ik2

m

0

 , u−1(~k) =
1

21/4
√
k+


0

m

−k1 + ik2√
2k+

 , (A.52)

and

v1(~k) =
1

21/4
√
k+


0

−m
−k1 + ik2√

2k+

 , v−1(~k) =
1

21/4
√
k+


√

2k+

k1 + ik2

−m
0

 . (A.53)

From the above expressions and in the massless case, it is very easy to obtain the good

spinors usG(~k) = PGus(~k) and vsG(~k) = PGvs(~k):

u1
G(~k) = 21/4

√
k+


1

0

0

0

 , u−1
G (~k) = 21/4

√
k+


0

0

0

1

 , (A.54)

and

v1
G(~k) = u−1

G (~k) = 21/4
√
k+


0

0

0

1

 , v−1
G (~k) = u1

G(~k) = 21/4
√
k+


1

0

0

0

 . (A.55)

The complex conjugates are:

ū1
G(~k) = 21/4

√
k+
(

0, 0, 1, 0
)
, ū−1

G (~k) = 21/4
√
k+
(

0, 1, 0, 0
)
, (A.56)

and

v̄1
G(~k) = ū−1

G (~k) = 21/4
√
k+
(

0, 1, 0, 0
)
, v̄−1

G (~k) = ū1
G(~k) = 21/4

√
k+
(

0, 0, 1, 0
)
.

(A.57)

Useful identities in the computation of the squared splitting function are:

σ3
αβσ

3
γβ = εαβεγβ = δαγ , (A.58)

σ3
−α,−β = −σ3

αβ and σ3
αα = 0 . (A.59)
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A.7 Weizsäcker-Williams gluon TMD and unintegrated gluon distribution

In this part we construct the gluon distributions of a right-moving nuclear target, to be

consistent with the rest of the appendix in which we set up the LCPT rules for a right

mover. However, in the calculation to which this paper is devoted, we take the projectile

–the dressed photon– to be a right mover, scattering off a left-moving target. In order

to apply the formulas derived in this subsection to the calculation in the main text, they

should be converted to a left-moving target which can be done by simply exchanging the

indices +↔ −. Note that, in this appendix, we also keep the gluon fields Aµ general; i.e.

they are not necessarily semiclassical background fields αµ.

We define the gluon density inside a right-moving proton or nucleus as the gluon

number operator evaluated in the target’s nonperturbative Fock state [29]:

dNg

d ln(1/xA)d2k
≡ 1

2(2π)3
〈a†λc (~k)aλc (~k)〉xA , (A.60)

where xA = k+/p+
A is the fraction of the target’s longitudinal momentum carried by the

gluon. From the Fourier expansion of the gluon quantum field, keeping in mind that the

integration over the longitudinal momentum component is restricted to k+ > 0, we easily

obtain that:

Aic(
~k) =

1

2k+
aic(
~k), and Aic(−~k) =

1

2k+
ai†c (~k) , (A.61)

where we chose linear polarization vectors εiλ = δiλ. Moreover, in a light-cone gauge A+ = 0

the color field strengths are equal to F i+c (~k) = −ik+Aic(
~k), such that:

dNg

d ln(1/xA)d2k
≡ 1

4π3
〈F i+c (−~k)F i+c (~k)〉xA . (A.62)

Weizsäcker-Williams gluon TMD The operator definition of the Weizsäcker-Williams

gluon TMD is

FWW (xA,k) =
2

p+
A

∫
dξ−d2ξ

(2π)3
e−ik

+ξ−eik·ξ

Tr 〈P |F i+(ξ−, ξ)U [+](ξ−, ξ)F i+(0−,0)U [+]†(ξ−, ξ)|P 〉 , (A.63)

where the color field strengths are evaluated in the proton states |P 〉, and where a gauge-

invariant definition is guaranteed by the inclusion of the following gauge links:

U [+](ξ−, ξ) = U(0−,0; 0−,+∞)U(0−,+∞; ξ−,+∞)U(ξ−,+∞; ξ−, ξ) . (A.64)

These links can be eliminated by choosing a light-cone gauge7 A+ = 0, Ai(ξ− = +∞) = 0,

such that,

FWW (xA,k) =
1

p+
A

∫
dξ−d2ξ

(2π)3
e−ik

+ξ−eik·ξ〈P |F i+c (ξ−, ξ)F i+c (0−,0)|P 〉 , (A.65)

7The WW distribution is the only gluon TMD for which all gauge links can be eliminated simultaneously,

and for which the interpretation of counting gluon states holds.
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where we also evaluated the trace, using Tr(tatb) = δab/2. Furthermore, making use of

translational invariance and Fourier transforming the field strengths:

FWW (xA,k) =
1

p+
A

1

(2π)3δ(3)(0)

∫
dv−d2vdw−d2w

(2π)3
e−ik

+(v−−w−)eik·(v−w)

× 〈P |F i+c (v−,v)F i+c (w−,w)|P 〉 ,

=
1

p+
A

1

(2π)6δ(3)(0)
〈P |F i+c (−~k)F i+c (~k)|P 〉 . (A.66)

Finally, the Fock states of the nuclear target differ from the usual hadronic states by a

normalization:

〈O〉xA =
〈P |O|P 〉
〈P |P 〉

, with 〈P |P 〉 = (2π)32p+
Aδ

(3)(0) , (A.67)

such that:

FWW (xA,k) =
1

4π3
〈F i+c (−~k)F i+c (~k)〉xA =

dNg

d ln(1/xA)d2k
. (A.68)

Unintegrated gluon distribution The unintegrated gluon distribution Fg/A(xA,k), on

the other hand, is commonly defined via the dipole cross section in the dilute limit of the

CGC, to which it is linearly related [30]:

σdip(xA, r) =
4παs
Nc

∫
d2k

k2
Fg/A(xA,k)

(
1− eik·r

)
. (A.69)

To compute the dipole cross section in the dilute limit (again, for a right-moving target),

we need to expand the Wilson lines to second order in the gauge fields, this time in a

covariant gauge:

SF (x) ' 1 + igs

∫
dz−A+

a (z−,x)ta +
(igs)

2

2!
P
∫

dz−1 dz−2 A
+
a (z−1 ,x)taA+

b (z−2 ,x)tb . (A.70)

Note that, to the present accuracy the path ordering does not matter (since Tr(tatb) =

Tr(tbta) = δab/2), and there is thus a strict separation between transverse and longitudinal

dynamics. With this expansion, the dipole cross section reads:

σdip(xA, r) = 2S⊥〈1−
1

Nc
TrSF (r)S†F (0) 〉xA , (A.71)

=
g2
sS⊥
Nc

∫
dv−dw−〈A+

a (v−, r)A+
a (w−, r)−A+

a (v−, r)A+
a (w−,0)〉xA ,

=
g2
s

Nc

∫
dv−d2vdw−d2w

×
(
δ(2)(v −w)− δ(2)(v −w − r)

)
〈A+

a (v−,v)A+
a (w−,w)〉xA ,

=
g2
s

Nc

∫
dv−d2vdw−d2w

×
∫

d2k

(2π)2

(
e−ik·(v−w) − e−ik·(v−w−r)

)
〈A+

a (v−,v)A+
a (w−,w)〉xA ,
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which is equal to Eq. (A.69) when we define:

Fg/A(xA,k) =
k2

(2π)2

∫
dv−d2vdw−d2w e−ik·(v−w)〈A+

a (v−,v)A+
a (w−,w)〉xA . (A.72)

Restoring the factor e−ik
+(v−−w−) ' 1, and choosing a covariant gauge such that F i+a (x−,x) =

∂iA+
a (x−,x), we obtain after partial integration:

Fg/A(xA,k) =
1

(2π)2
〈F i+a (−~k)F i+a (~k)〉xA ,

= π
dNg

d ln(1/xA)d2k
. (A.73)

Hence, in the dilute limit at low-x where Eq. (A.69) holds, the unintegrated gluon PDF and

the Weizsäcker-Williams gluon TMD are equal up to a factor π [31]. In the appropriate

gauge, both can be shown to be equal (up to the same factor π) to the gluon number

counting operator evaluated in the CGC average.
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[33] S. Benić, K. Fukushima, O. Garcia-Montero and R. Venugopalan, JHEP 1701 (2017) 115.
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