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High priority uncertainties for aggregation 
to a target application

Focus of this work

 Model parameter uncertainty

 Mesh convergence and stochastic convergence 
uncertainty

 Model form uncertainty
 Alternative models

 Evidenced by validation experiments

 Observed differences and their uncertainties

 Incomplete validation coverage of application
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Why do we care?

 We sometimes can’t run experiments at the conditions of the 
application, but can run a set of experiments at more benign 
conditions.
 What is the impact on target application predictions?

 We can observe model form error from experiments lower in 
the hierarchy
 Are these differences really important to the application?

 If so, what can we do?
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To address these questions, we need to develop a relationship 
between the validation experiments and the application



Other Approaches to Roll-Up

 Calibration or multiple calibrations (Babuška, et al.)

 Sensitivity to calibrated predictions to multiple calibration data set

 Assumes that the effect of model form error can be captured by multiple 
calibrations

 Calibration including model deficit term (Kennedy and O’Hagan)

 Useful when validation measurement types are the same as the response 
quantities of interest for the target application (homogeneous hierarchy)

 Gaussian Process Models are often used for model deficit term – does 
not preserve original conservation principles

 Bayesian net – evaluates a measure of reliability based on validation 
results and propagates to target application through common 
parameters (Mahadevan) 

 Experimental results from different location in the validation hierarchy 
weighted equally

 No model deficit term in present configuration
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Present Approach

 Present approach – develops a meta-model to relate validation 
experiments to application for a heterogeneous hierarchy

 Accounts for ‘distances’ between validation experiments and target 
application

 Quantifies completeness of validation hierarchy

 Can be used to develop a model deficit term that allows for mixed 
variable types

 Best approach? – open research question

 Issue: 

 All approaches utilize the CompSim models for the validation 
experiments and the target application – if physics is missing, all 
approaches are approximate at best, misleading at worst
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 Define a ‘distance’ measure in terms 
of relative behavior of the models of 
experiments to the model of 
application 

 Use a distance based on behavior, not 
on differences in arguments

 Use non-linear sensitivity analysis 
relative to the model arguments to 
characterize relative behavior

 Aggregate or weight the suite of 
experimental models to ‘best 
represent’ the target application 
model by minimizing the distance 
between the aggregated model and 
the target application model such that 
the

 Aggregated model has the same 
sensitivity to important arguments as 
the application model

Our approach to the hierarchy

Key assumption 1

f(x,) g(x,)

Arguments – (x,

8



Distance and Aggregation

Characterize Behavior: Latin Hypercube 
Sampling over neighborhoods

Modified Partial Least Squares Regression used to find w

Key difficulty: F often algorithmically singularKey assumption 2

Aggregation:
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Columns of F: 
• Can represent different experiments, quantities, or times from same experiment
• Consistent sampling across neighborhoods required



 Other uses of PLSR

 Originally used in the social sciences

 Heavily used in chemometrics

 Also use in anthropology, neuroscience, sensometrics, bioinformatics

 PLSR finds the multidimensional directions in the measurement space 
that explains the maximum multidimensional variance directions in the 
prediction space.

 Well suited when more weights w (or measurements) than the number 
of LHS samples and multi-colinearity amongst the f vectors

Partial Least Squares Regression (PLSR)
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 Develops an intermediate space in terms of p latent variables and the 
associated directions where p ≤ rank(F)

 For present application, p is an effective rank and is related to 

 The number of model arguments that have a significant effect on the 
predictions (increases p)

 The amount of uncertainty in the validation and application model 
parameters (increases p)

 The amount of measurement uncertainty (decreases p)

 Only need a sufficient number of LHS samples to estimate the p latent 
variables

Latent Variables
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Basic Assumption

Predictions from models with similar behavior will have 
similar model form error to first order

 Perhaps more appropriate when model form error is a 
secondary effect

 Need judgment as to the validity of the basic assumptions for 
a specific application 

There is no magic bullet and one should proceed with 
caution!
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Products and Process

• Completeness: Is validation hierarchy sufficiently complete?

• Validation metric: are validation differences significantly small for 
to application?

• Project differences to application with caution
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• Importance ordering of various measurements to application

decreasing r implies increasing importance
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Simple Examples

c = 0, d ≠ 0: diffusion
c ≠ 0, d =0, p = 1: convection
c ≠ 0, d =0, p = 2: Burgers
c, d ≠ 0, p = 1: conv-diff
c, d ≠ 0; p = 2: diff. Burgers
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Uncertainties considered: 
• model parameter for validation experiments and application
• measurement



Example 1: Completeness

 We can’t afford to do validation experiments for all of the 
physics!

 What is the impact of not doing validation experiments 
related to the non-linear feature of Burgers’ equation?
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Application not fully resolved by experiments

Coverage: Assessment
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Sensitivity to linear 
convective term: Well 
represented

Sensitivity to diffusive 
term: Phase change, but 
magnitudes well 
represented

Sensitivity to non-linear 
Burgers' term: Dominant 
sensitivity, not represented  

Require experiments to test non-linear term

Coverage: Sensitivity
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Example 2: Observed Model Form Error

 Our validation experiments show strong model form error!

 Calibration results in parameters well outside the expected 
range!

 Can we use the observed validation differences in u to correct 
the predictions of flux for the application?

 Will some measurements of flux help in the correction at the 
application level?
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Very hard test problem!  As example 1 showed, the missing 
physics are the dominant physics!
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Validation

Application

Projected differences well outside quartiles indicates that significant physics is 
missing from application prediction: should further develop model



 Using the models, not the observed validation differences, 
to develop a relationship between the experimental 
measurements and the application predictions

 Applicable to fully heterogeneous validation hierarchies

 Provides insight into the relationship between the 
validation measurements and the application for 
experimental design

 Can use this relationship to map the observed validation 
differences to the application

Recap: What are we really doing?
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 Issue: Present approach can project observed model form due to 
residuals from a calibration, but can also display non-physical 
behavior (i.e. oscillations) when model form error is large. 
 Are there better ways to evaluate the weights given the singular system?

 PLS structural modeling, non-linear and constrained PLS

 Are there features of this approach that can be adapted to other 
approaches?
 For example, can the concept of distance between experiment and application be 

used with the Bayesian net approach discussed earlier?

 Much research to be done in the development and choice of the best 
methodology!

 To be useful to SNL, the methodology must be able to address 
heterogeneous validation hierarchies

Discussion
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Methodology cannot create knowledge out of nothing! 
Judgment is required to cast a sufficiently broad net in the validation 
hierarchy and to decide when additional model building is appropriate.



Next Steps

In progress:
 Test methodology for 2 SNL 

applications
 System-Generated Electro-Magnetic Pulse 

 Re-entry structural response 

Future plans
 FY14: Additional development of 

methodology

 FY16 Thermo-mechanical breech L1 if 
appropriate
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Questions?
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