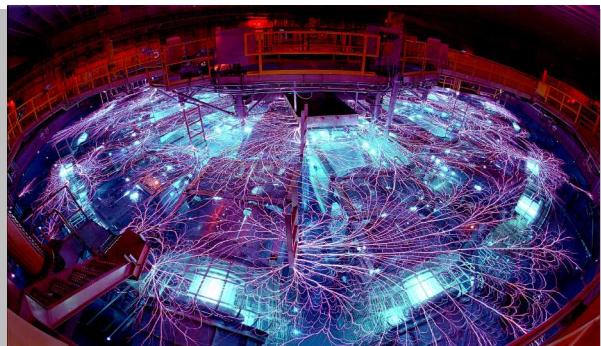
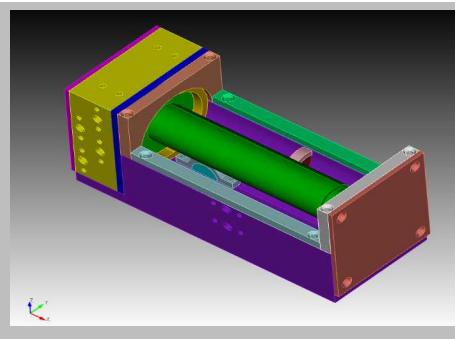
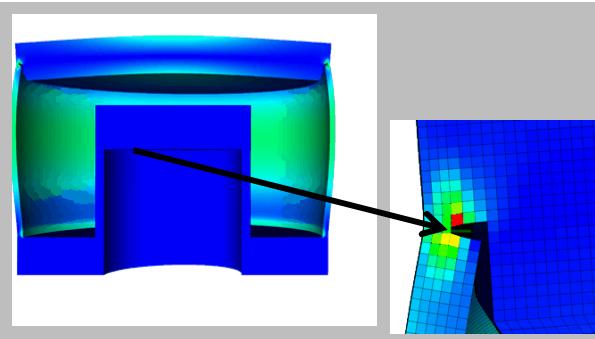


Exceptional service in the national interest



Validation Hierarchy and Aggregation to Target Application (Roll-up)

Richard Hills

SAND Number:

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

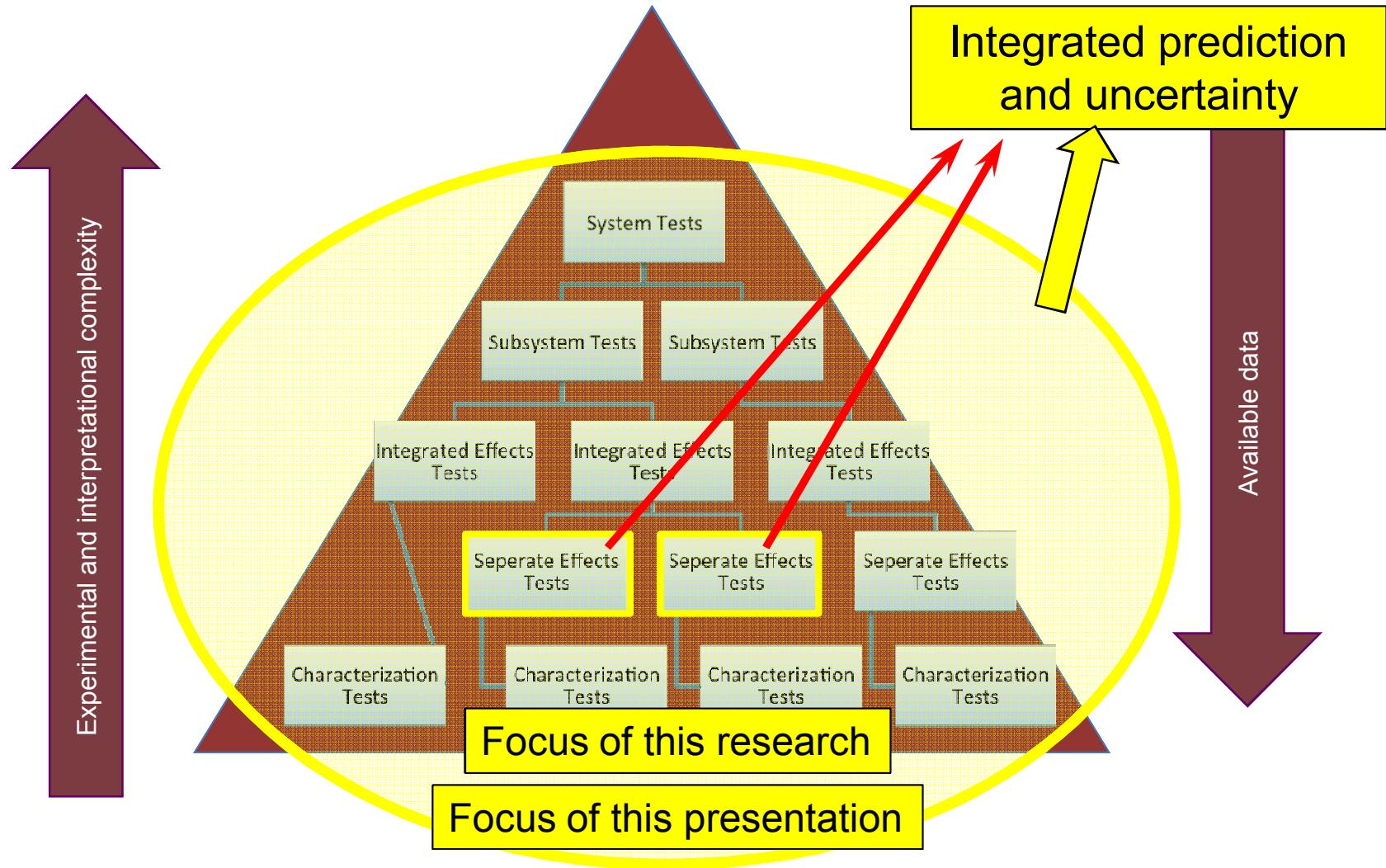
- Background
 - Validation hierarchy and aggregation to an application
 - Other approaches
- Present Approach
 - The concept
 - Distance between experiment and application
 - Aggregation/roll-up across hierarchy
 - Other uses
- Examples

High priority uncertainties for aggregation to a target application

- Model parameter uncertainty
- Mesh convergence and stochastic convergence uncertainty
- Model form uncertainty
 - Alternative models
 - Evidenced by validation experiments
 - Observed differences and their uncertainties
 - Incomplete validation coverage of application

Focus of this work

Validation Hierarchy or Pyramid



Why do we care?

- We sometimes can't run experiments at the conditions of the application, but can run a set of experiments at more benign conditions.
 - What is the impact on target application predictions?
- We can observe model form error from experiments lower in the hierarchy
 - Are these differences really important to the application?
 - If so, what can we do?

To address these questions, we need to develop a relationship between the validation experiments and the application

Other Approaches to Roll-Up

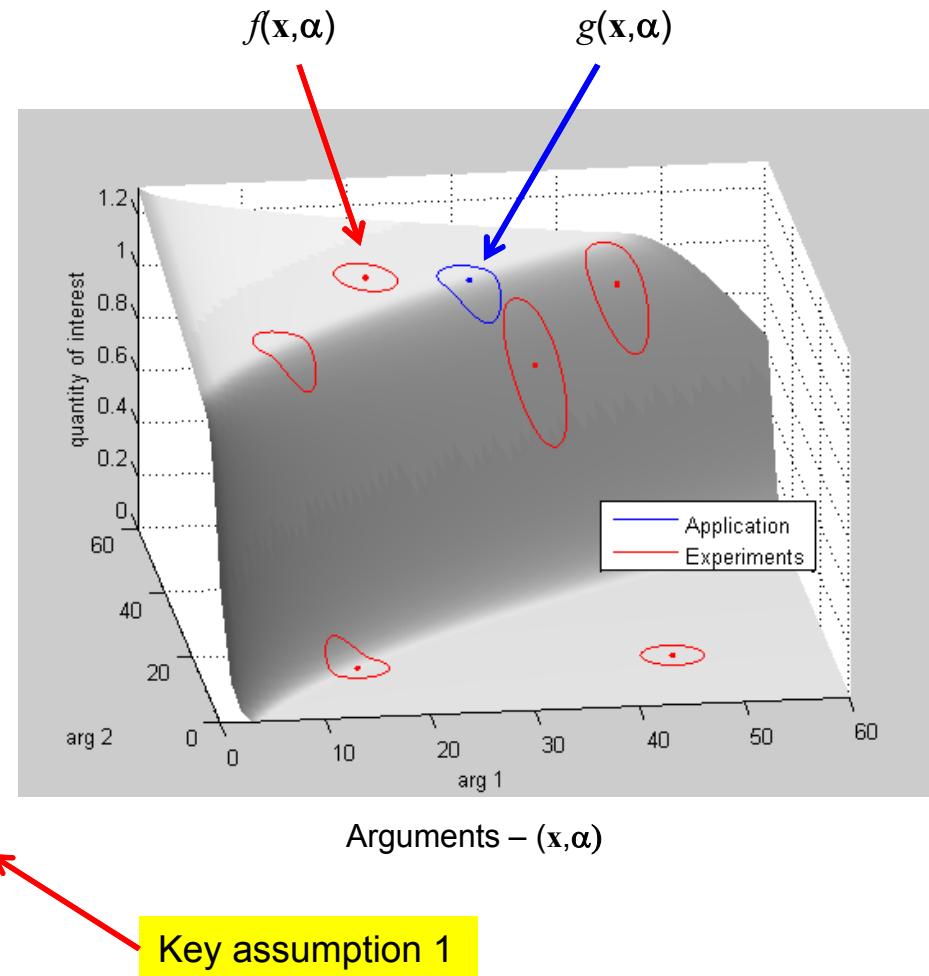
- Calibration or multiple calibrations (Babuška, et al.)
 - Sensitivity to calibrated predictions to multiple calibration data set
 - Assumes that the effect of model form error can be captured by multiple calibrations
- Calibration including model deficit term (Kennedy and O'Hagan)
 - Useful when validation measurement types are the same as the response quantities of interest for the target application (homogeneous hierarchy)
 - Gaussian Process Models are often used for model deficit term – does not preserve original conservation principles
- Bayesian net – evaluates a measure of reliability based on validation results and propagates to target application through common parameters (Mahadevan)
 - Experimental results from different location in the validation hierarchy weighted equally
 - No model deficit term in present configuration

Present Approach

- Present approach – develops a meta-model to relate validation experiments to application for a heterogeneous hierarchy
 - Accounts for ‘distances’ between validation experiments and target application
 - Quantifies completeness of validation hierarchy
 - Can be used to develop a model deficit term that allows for mixed variable types
- Best approach? – open research question
- Issue:
 - All approaches utilize the CompSim models for the validation experiments and the target application – if physics is missing, all approaches are approximate at best, misleading at worst

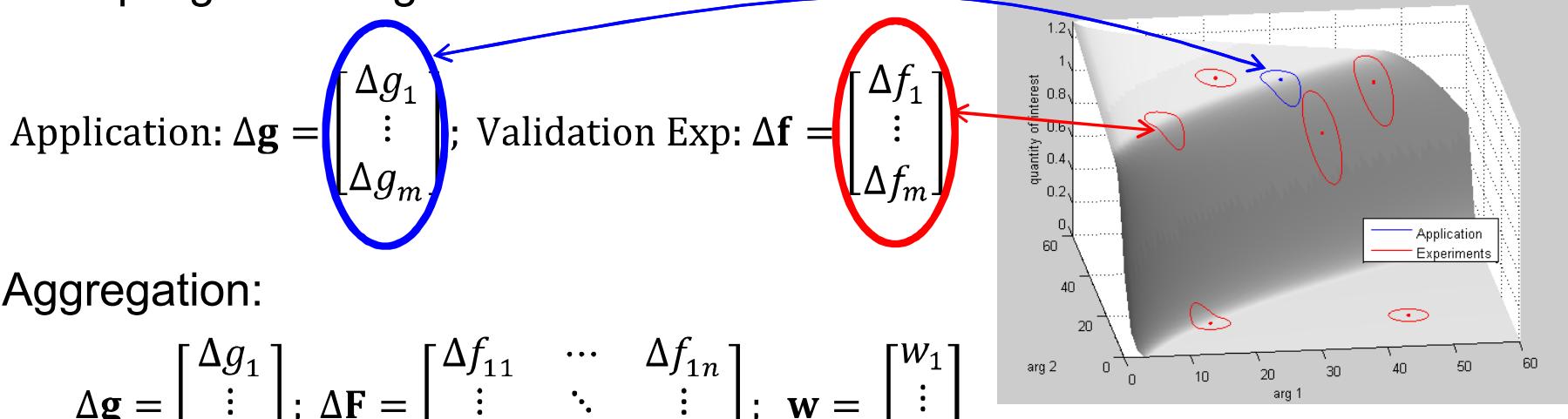
Our approach to the hierarchy

- Define a 'distance' measure in terms of relative behavior of the models of experiments to the model of application
 - Use a distance based on behavior, not on differences in arguments
 - Use non-linear sensitivity analysis relative to the model arguments to characterize relative behavior
- Aggregate or weight the suite of experimental models to 'best represent' the target application model by minimizing the distance between the aggregated model and the target application model such that the
 - Aggregated model has the same sensitivity to important arguments as the application model



Distance and Aggregation

Characterize Behavior: Latin Hypercube Sampling over neighborhoods



Aggregation:

$$\Delta \mathbf{g} = \begin{bmatrix} \Delta g_1 \\ \vdots \\ \Delta g_m \end{bmatrix}; \Delta \mathbf{F} = \begin{bmatrix} \Delta f_{11} & \cdots & \Delta f_{1n} \\ \vdots & \ddots & \vdots \\ \Delta f_{m1} & \cdots & \Delta f_{mn} \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$$

Key assumption 2

$$\Delta \mathbf{g} \cong \Delta \mathbf{F} \mathbf{w}$$

Key difficulty: $\Delta \mathbf{F}$ often algorithmically singular

Columns of $\Delta \mathbf{F}$:

- Can represent different experiments, quantities, or times from same experiment
- Consistent sampling across neighborhoods required

Modified Partial Least Squares Regression used to find \mathbf{w}

Partial Least Squares Regression (PLSR)

- Other uses of PLSR
 - Originally used in the social sciences
 - Heavily used in chemometrics
 - Also use in anthropology, neuroscience, sensometrics, bioinformatics
- PLSR finds the multidimensional directions in the measurement space that explains the maximum multidimensional variance directions in the prediction space.
- Well suited when more weights w (or measurements) than the number of LHS samples and multi-collinearity amongst the Δf vectors

Latent Variables

- Develops an intermediate space in terms of p latent variables and the associated directions where $p \leq \text{rank}(\Delta F)$
- For present application, p is an effective rank and is related to
 - The number of model arguments that have a significant effect on the predictions (increases p)
 - The amount of uncertainty in the validation and application model parameters (increases p)
 - The amount of measurement uncertainty (decreases p)
- Only need a sufficient number of LHS samples to estimate the p latent variables

Basic Assumption

Predictions from models with similar behavior will have similar model form error to first order

- Perhaps more appropriate when model form error is a secondary effect
- Need judgment as to the validity of the basic assumptions for a specific application

There is no magic bullet and one should proceed with caution!

Products and Process

- Importance ordering of various measurements to application

$$r = \sqrt{(\Delta g - \Delta f w)^T (\Delta g - \Delta f w)} \quad \text{decreasing } r \text{ implies increasing importance}$$

- Completeness: Is validation hierarchy sufficiently complete?

$$\text{Coverage Residuals: } r = \Delta g - \Delta F w \quad \text{Step 1}$$

- Validation metric: are validation differences significantly small for to application?

$$r^2 = w^T (\gamma - f)^T \text{cov}(\gamma - f)^{-1} (\gamma - f) w \quad \text{Step 2}$$

- Project differences to application with caution

$$\Delta g_{\text{proj meas}} \cong \Delta F_{\text{meas}} w = (\gamma - f) w = \begin{bmatrix} \gamma_1 - f_1 \\ \vdots \\ \gamma_n - f_n \end{bmatrix} w \quad \text{Step 3}$$

P
r
o
c
e
s
s

Simple Examples

$$\frac{\partial u}{\partial t} + c \frac{\partial u^p}{\partial x} = d \frac{\partial^2 u}{\partial x^2}$$

$$u(x, 0) = \begin{cases} 0.5; & x < 1 \\ x - 0.5; & 1 \leq x < 2 \\ 1.5; & 2 \leq x < 3 \\ 4.5 - x; & 3 \leq x < 4 \\ 0.5; & 4 \leq x \end{cases}$$

$$u(0) = u(20)$$

- $c = 0, d \neq 0$: diffusion
- $c \neq 0, d = 0, p = 1$: convection
- $c \neq 0, d = 0, p = 2$: Burgers
- $c, d \neq 0, p = 1$: conv-diff
- $c, d \neq 0; p = 2$: diff. Burgers

Uncertainties considered:

- model parameter for validation experiments and application
- measurement

Example 1: Completeness

- We can't afford to do validation experiments for all of the physics!
- What is the impact of not doing validation experiments related to the non-linear feature of Burgers' equation?

Coverage

Application Physics:

- Diffusive Burgers'

Validation Exp. Physics

- Convection-Diffusion

Measured

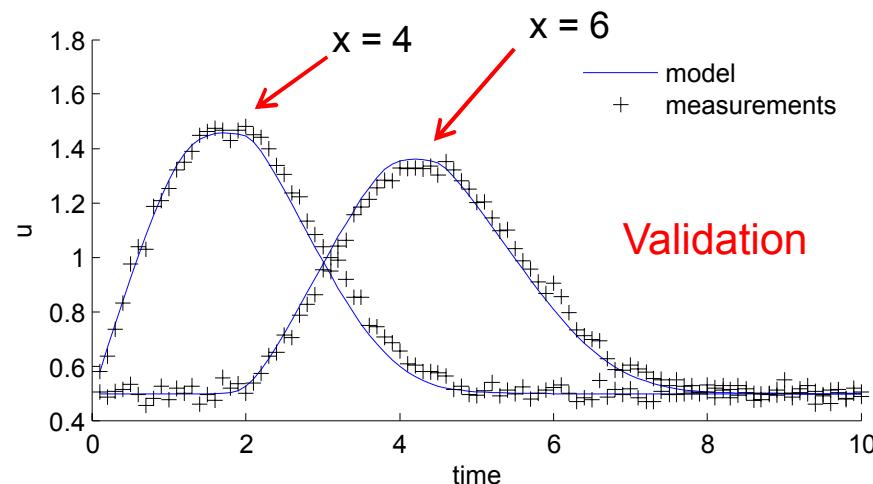
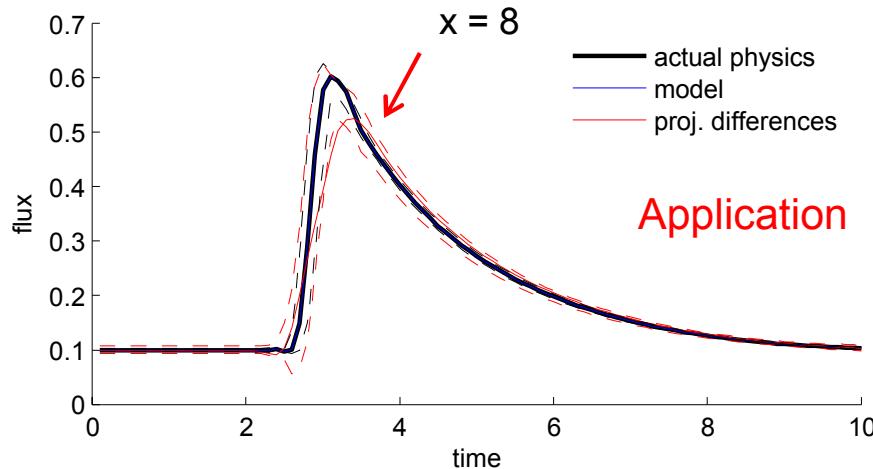
- u at $x = 4, 6$
- Independent experiments

Application quantity of interest

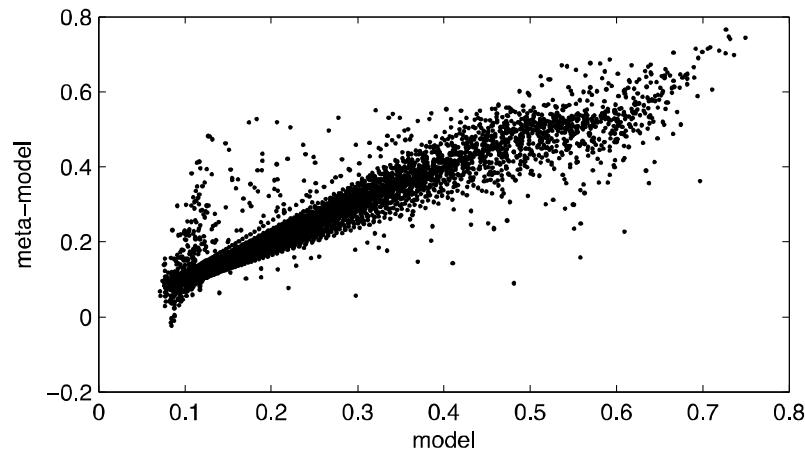
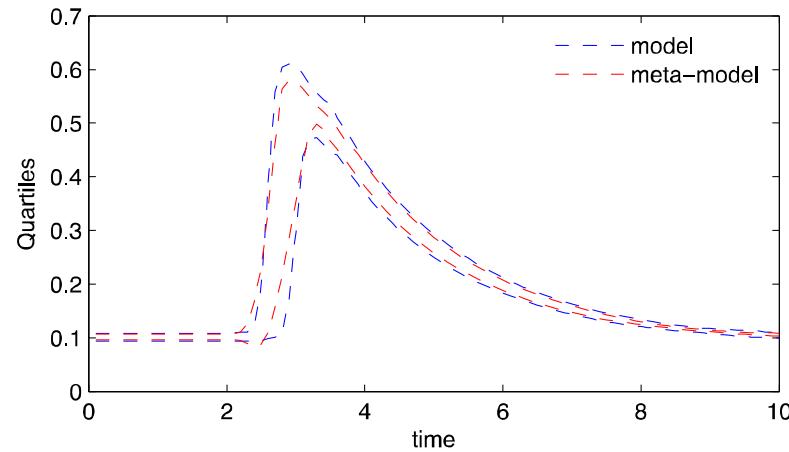
- flux at $x = 8$

Notes

- Uncertainty in model parameters for both validation experiments and application (specified)
- Measurement uncertainty (specified)

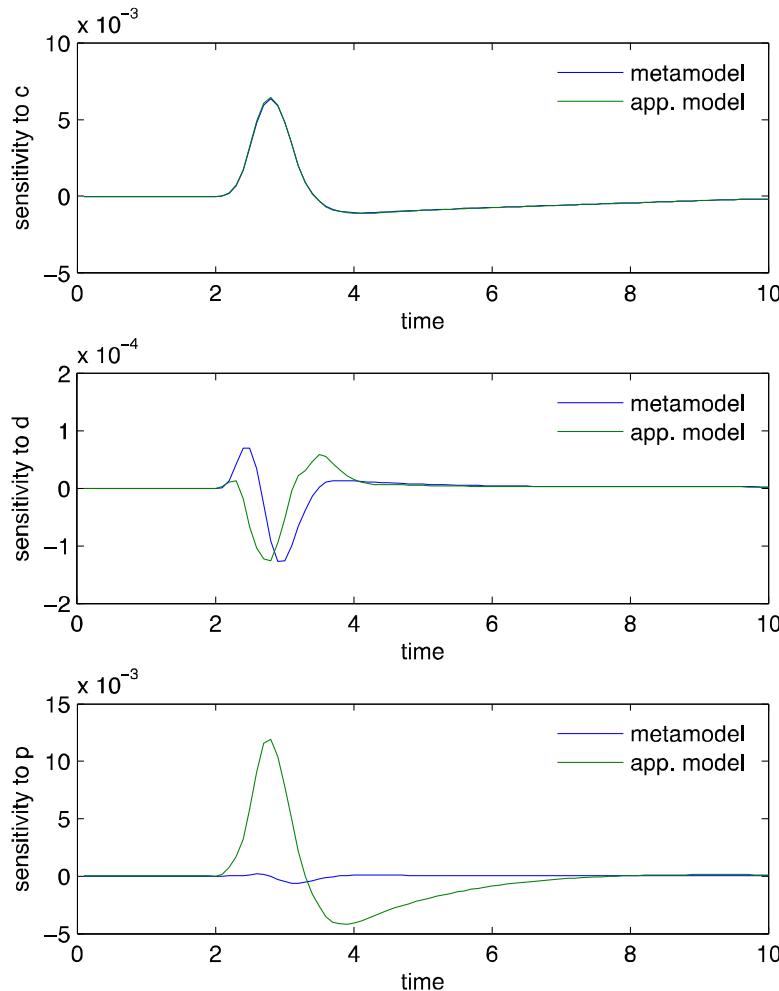


Coverage: Assessment



Application not fully resolved by experiments

Coverage: Sensitivity



Sensitivity to linear convective term: Well represented

Sensitivity to diffusive term: Phase change, but magnitudes well represented

Sensitivity to non-linear Burgers' term: Dominant sensitivity, not represented

Require experiments to test non-linear term

Example 2: Observed Model Form Error

- Our validation experiments show strong model form error!
- Calibration results in parameters well outside the expected range!
- Can we use the observed validation differences in **u** to correct the predictions of **flux** for the application?
- Will some measurements of **flux** help in the correction at the application level?

Very hard test problem! As example 1 showed, the missing physics are the dominant physics!

Observed Model Form Error in u : Predicting flux

Actual Physics:

- Diffusive Burgers'

Modeled Physics

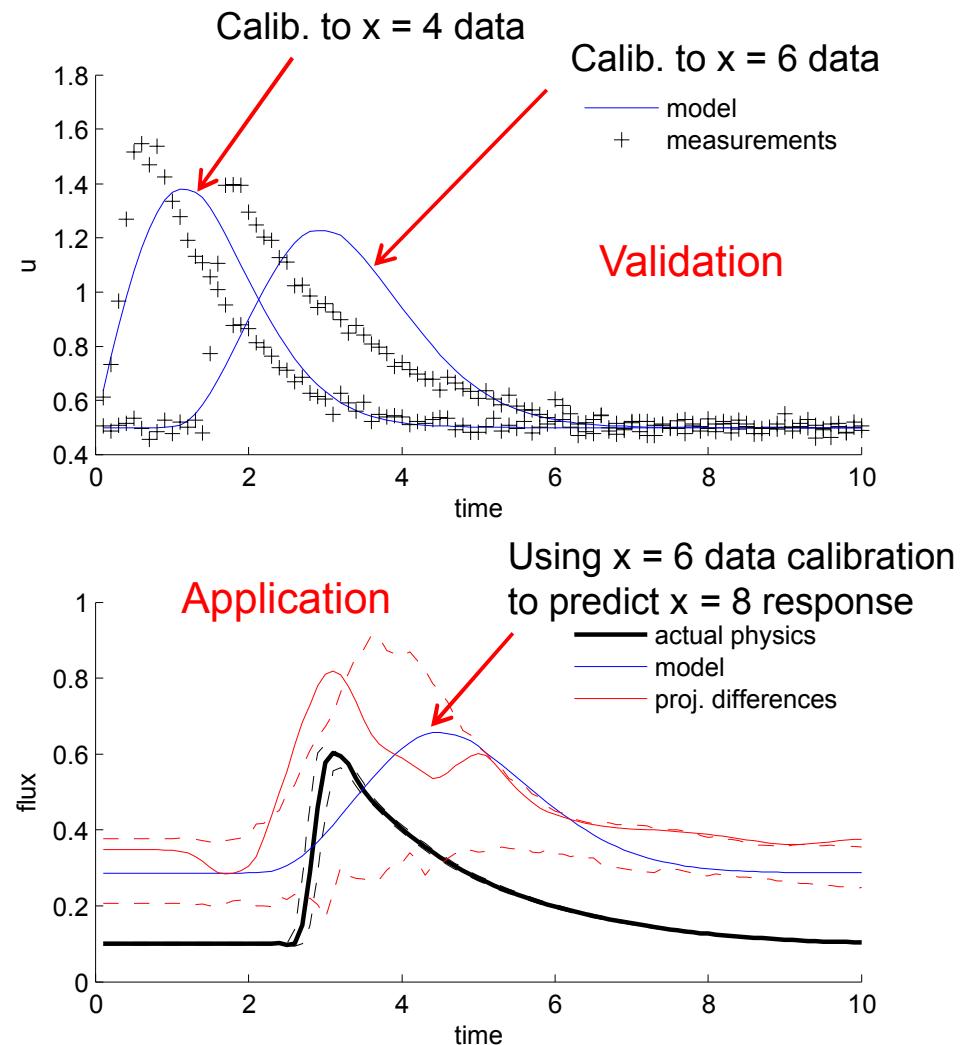
- Convection-Diffusion

Measured

- **u at $x = 4, 6$**
- Independent experiments

Application quantity of interest

- **flux at $x = 8$**



Correcting flux predictions using observed model form error in u performs poorly: other experimental evidence needed!

Some Flux Measurements

Actual Physics:

- Diffusive Burgers'

Modeled Physics

- Convection-Diffusion

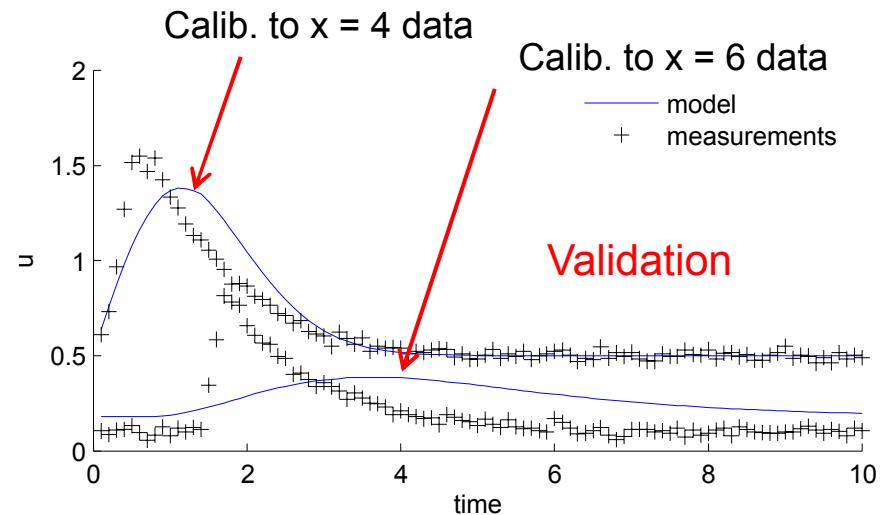
Measured

- u at $x = 4$, **flux at $x = 6$**
- Independent experiments

Application quantity of interest

- flux at $x = 8$

Flux measurements help for the projected differences, but not for calibration



Projected differences well outside quartiles indicates that significant physics is missing from application prediction: should further develop model

Recap: What are we really doing?

- Using the models, not the observed validation differences, to develop a relationship between the experimental measurements and the application predictions
- Applicable to fully heterogeneous validation hierarchies
- Provides insight into the relationship between the validation measurements and the application for experimental design
- Can use this relationship to map the observed validation differences to the application

Discussion

- Issue: Present approach can project observed model form due to residuals from a calibration, but can also display non-physical behavior (i.e. oscillations) when model form error is large.
 - Are there better ways to evaluate the weights given the singular system?
 - PLS structural modeling, non-linear and constrained PLS
- Are there features of this approach that can be adapted to other approaches?
 - For example, can the concept of distance between experiment and application be used with the Bayesian net approach discussed earlier?
- Much research to be done in the development and choice of the best methodology!
- To be useful to SNL, the methodology must be able to address heterogeneous validation hierarchies

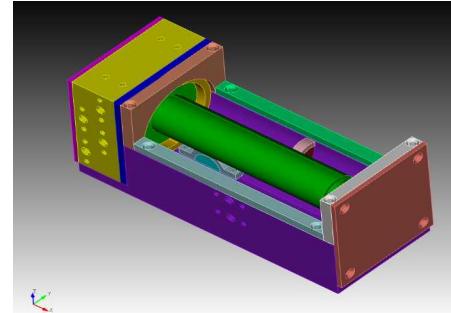
Methodology cannot create knowledge out of nothing!

Judgment is required to cast a sufficiently broad net in the validation hierarchy and to decide when additional model building is appropriate.

Next Steps

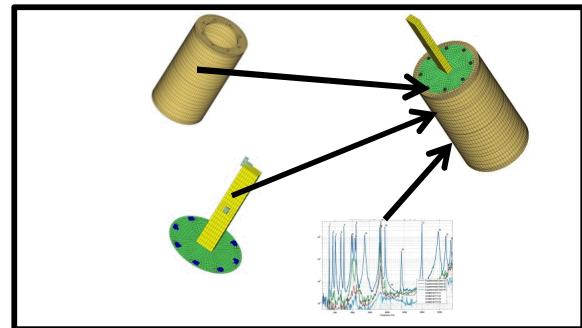
In progress:

- Test methodology for 2 SNL applications
 - System-Generated Electro-Magnetic Pulse
 - Re-entry structural response



Future plans

- FY14: Additional development of methodology
- FY16 Thermo-mechanical breech L1 if appropriate



Questions?

Relevant Publications

Other Basic Approaches:

- Babuska, I., F. Nobile, R. Tempone (2008), A Systematic Approach to Model Validation Based on Bayesian Updates and Predicted Related Rejection Criteria, *Computer Methods in Applied Mechanics and Engineering* 197:2517-2539.
- Kennedy, M.C., O'Hagan, A. (2001), Bayesian Calibration of Computer Models, *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 63(3):425-464.
- Mahadevan, S. (2011), Roll-Up of Multi-Level UQ Activities towards System Level QMU, Presented at Sandia National Laboratories, Albuquerque, NM, Oct. 4.

Current Approach

- Hills, R. G., I. H. Leslie (2003), Statistical Validation of Engineering and Scientific Models: Validation Experiments to Application, SAND2003-0706, Sandia National Laboratories, Albuquerque, NM.
- Hills, R.G. (2006), Model Validation: Model Parameter and Measurement Uncertainty, *Journal of Heat Transfer* 128, pp. 339-351.
- Hills, R.G., J.R. Hamilton (2009), Validation Experiments to Application: A Model Based Approach, SAND2009-1091 Unlimited Release Printed February 2009
- Hamilton, J. R., R. G. Hills (2010a), Relation of Validation Experiments to Applications, *Numerical Heat Transfer, Part B: Fundamentals*, 57: 5, pp. 307-332.
- Hamilton, J. R., R.G. Hills (2010b), Relation of Validation Experiments to Applications: A Nonlinear Approach, *Numerical Heat Transfer, Part B: Fundamentals*, 57: 6, pp. 373-395.
- Hills, R. G. (2013), Roll-up of Validation Results to a Target Application, Sandia Report, in revision