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= Background
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= QOther approaches
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= The concept
= Distance between experiment and application

= Aggregation/roll-up across hierarchy
=  QOther uses

= Examples




High priority uncertainties for aggregation ()i
to a target application

= Model parameter uncertainty

= Mesh convergence and stochastic convergence
uncertainty

= Model form uncertainty
= Alternative models

= Evidenced by validation experiments
* Observed differences and their uncertainties
" Incomplete validation coverage of application

|

Focus of this work




Validation Hierarchy or Pyramid ii
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Why do we care? )

= We sometimes can’t run experiments at the conditions of the
application, but can run a set of experiments at more benign
conditions.

= What is the impact on target application predictions?

= We can observe model form error from experiments lower in
the hierarchy
= Are these differences really important to the application?
= |f so, what can we do?

To address these questions, we need to develop a relationship
between the validation experiments and the application




Other Approaches to Roll-Up T g

= (Calibration or multiple calibrations (Babuska, et al.)
= Sensitivity to calibrated predictions to multiple calibration data set

= Assumes that the effect of model form error can be captured by multiple
calibrations

= (Calibration including model deficit term (Kennedy and O’Hagan)

=  Useful when validation measurement types are the same as the response
guantities of interest for the target application (homogeneous hierarchy)

®=  Gaussian Process Models are often used for model deficit term — does
not preserve original conservation principles

=  Bayesian net — evaluates a measure of reliability based on validation
results and propagates to target application through common
parameters (Mahadevan)

= Experimental results from different location in the validation hierarchy
weighted equally

= No model deficit term in present configuration
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Present Approach ) .

= Present approach — develops a meta-model to relate validation
experiments to application for a heterogeneous hierarchy

= Accounts for ‘distances’ between validation experiments and target
application

= Quantifies completeness of validation hierarchy

= (Can be used to develop a model deficit term that allows for mixed
variable types

= Best approach? —open research question
= |ssue:

= All approaches utilize the CompSim models for the validation
experiments and the target application — if physics is missing, all
approaches are approximate at best, misleading at worst




Our approach to the hierarchy T .

=  Define a ‘distance’ measure in terms

of relative behavior of the models of fx.a) g(x,a)
experiments to the model of
application
* Use a distance based on behavior, not 12| 3 \ ot ............... A
on differences in arguments 1 ' L

= Use non-linear sensitivity analysis
relative to the model arguments to
characterize relative behavior

guantity of interest
=
=

= Aggregate or weight the suite of 05
experimental models to ‘best 0,
H F2 S S Anplication |2

represent’ the target application 60 i

Experiments

model by minimizing the distance oy

between the aggregated modeland A >

the target application model such that

the Tz 0y 0 0 20 40 50 60

arg 1

= Aggregated model has the same
Arguments — (x,a)

sensitivity to important arguments as
the application model \
Key assumption 1




Distance and Aggregation 1) .

Characterize Behavior: Latin Hypercube
Sampling over neighborhoods

borhoods

; Validation Exp: Af

Application: Ag =

Aggregation:
Ag, Afi, - Afiy _
Agm Afml Afmn
Key assumption2 —> Ag = AFw Key difficulty: AF often algorithmically singular

Columns of AF:
« Can represent different experiments, quantities, or times from same experiment
+ Consistent sampling across neighborhoods required

Modified Partial Least Squares Regression used to find w
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Partial Least Squares Regression (PLSR)

= QOther uses of PLSR
= QOriginally used in the social sciences
= Heavily used in chemometrics
= Also use in anthropology, neuroscience, sensometrics, bioinformatics

= PLSR finds the multidimensional directions in the measurement space
that explains the maximum multidimensional variance directions in the
prediction space.

=  Well suited when more weights w (or measurements) than the number
of LHS samples and multi-colinearity amongst the Af vectors
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Latent Variables

= Develops an intermediate space in terms of p latent variables and the
associated directions where p < rank(AF)
" For present application, p is an effective rank and is related to

= The number of model arguments that have a significant effect on the
predictions (increases p)

= The amount of uncertainty in the validation and application model
parameters (increases p)

* The amount of measurement uncertainty (decreases p)

"= Only need a sufficient number of LHS samples to estimate the p latent
variables
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Basic Assumption ) e,

Predictions from models with similar behavior will have
similar model form error to first order

= Perhaps more appropriate when model form erroris a
secondary effect

= Need judgment as to the validity of the basic assumptions for
a specific application

There is no magic bullet and one should proceed with
caution!




Products and Process ) i,

» Importance ordering of various measurements to application

r = \/(Ag — M w)T(Ag — Afw) decreasing r implies increasing importance

« Completeness: Is validation hierarchy sufficiently complete?
Coverage Residuals: r = Ag — AFw < Step 1

« Validation metric: are validation differences significantly small for
to application?

r2=wl (y—£f)Tcoviy—f)'(y—fHw < Step 2

* Project differences to application with caution

V1 _fﬂ
. w
Vn _fn

Step2.
/m

Agpl‘oi meas = AFpeas W = (Y — f) W =
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Simple Examples ) .

d

2
ou ow _ 0% ¢=0,d#0: diffusion
ot dx dx? ¢#0,d=0, p=1: convection
c#0,d=0, p=2:Burgers
r 0.5; r <1 ¢, d#0, p=1: conv-diff

x—05 1<x<? ¢, d # 0; p = 2: diff. Burgers

u(x,0) =41.5; 2<x<3
45—x; 3<x<4
\ 0.5; 4<x

u(0) = u(20)

Uncertainties considered:
* model parameter for validation experiments and application
 measurement
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Example 1: Completeness ) ..

= We can’t afford to do validation experiments for all of the
physics!

= Whatis the impact of not doing validation experiments
related to the non-linear feature of Burgers’ equation?




Coverage

Application Physics:
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Coverage: Assessment ) i,

Laboratories
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Coverage: Sensitivity
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Sensitivity to linear
convective term: Well
represented

Sensitivity to diffusive
term: Phase change, but
magnitudes well
represented

Sensitivity to non-linear
Burgers' term: Dominant
sensitivity, not represented

Require experiments to test non-linear term 18




Sandia

Example 2: Observed Model Form Error @ &:..

= Qur validation experiments show strong model form error!

= Calibration results in parameters well outside the expected
range!

= Can we use the observed validation differences in u to correct
the predictions of flux for the application?

= Will some measurements of flux help in the correction at the
application level?

Very hard test problem! As example 1 showed, the missing
physics are the dominant physics!
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Observed Model Form Error in u:

Predicting flux

Actual Physics:
» Diffusive Burgers’

Modeled Physics
» Convection-Diffusion

Measured
e uatx=4,6
* Independent experiments

Application quantity of
interest
 fluxatx=38

flux
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Calib. to x = 4 data

/

Calib. to x = 6 data

model
+  measurements

Validation

04—
0

time
Using x = 6 data calibration

to predict x = 8 response
actual physics
model

Application

proj. differences

time

Correcting flux predictions using observed model form error in u
performs poorly: other experimental evidence needed! 20




Some Flux Measurements ) e
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Calib. to x = 4 data
Calib. to x = 6 data

model
+  measurements

Actual Physics: 2/
» Diffusive Burgers’

Modeled Physics

. . . > 1 Validation
« Convection-Diffusion
05 T ey e b
Jr
Measured Wﬁ T TR e
« uatx=4, fluxatx=6 0 2 4 8 8 10
* Independent experiments "
P P Using x = 6 calibration
0.7 Application to predict x = 8 response
. . . A actual physics
Application quantity of 06 | el

proj. differences

interest 05" !
e fluxatx=8

flux

Flux measurements help for the
projected differences, but not for _
calibration 0

Projected differences well outside quartiles indicates that sighificant physics is
missing from application prediction: should further develop model




Recap: What are we really doing? @&

= Using the models, not the observed validation differences,
to develop a relationship between the experimental
measurements and the application predictions

= Applicable to fully heterogeneous validation hierarchies

= Provides insight into the relationship between the
validation measurements and the application for
experimental design

= Can use this relationship to map the observed validation
differences to the application




Discussion ) p_

Issue: Present approach can project observed model form due to
residuals from a calibration, but can also display non-physical
behavior (i.e. oscillations) when model form error is large.

= Are there better ways to evaluate the weights given the singular system?

= PLS structural modeling, non-linear and constrained PLS

Are there features of this approach that can be adapted to other
approaches?

= For example, can the concept of distance between experiment and application be

used with the Bayesian net approach discussed earlier?

Much research to be done in the development and choice of the best
methodology!

To be useful to SNL, the methodology must be able to address
heterogeneous validation hierarchies

Methodology cannot create knowledge out of nothing!

Judgment is required to cast a sufficiently broad net in the validation
hierarchy and to decide when additional model building is appropriate.
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Next Steps

In progress:

= Test methodology for 2 SNL
applications
= System-Generated Electro-Magnetic Pulse

= Re-entry structural response

Future plans

= FY14: Additional development of
methodology

= FY16 Thermo-mechanical breech L1 if
appropriate
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Questions? )
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