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General model problem

Forward problem:
Strong form:

−∇ · (a(λ)∇u) + b(λ) · ∇u = f (λ) in D = (0, 1)2

u = 0 on ∂D

Weak form: find u(·,λ) ∈ V = H1
0(D) such that

B(u, v) = F (v) ∀v ∈ V.

Where

B(u, v) =

∫
D

a(λ)∇u · ∇v dx +

∫
D

b(λ) · ∇u v dx,

F (v) =

∫
D

f (λ) v dx,

and λ represents the uncertain parameters.

Adjoint problem:
Quantity of interest (QoI):

Q(u) =

∫
D

q(x) · u(x,λ) dx.

Weak form: find φ ∈ V such that

B(v, φ) = Q(v) ∀v ∈ V.

Error representation:

Q(u)−Q(uh) = B(e, φ)

= F (φ)−B(uh, φ)

:= R(uh;φ)

Physical discretization and parametrization

Physical discretization
The forward problem is initially discretized using
piecewise linear finite elements on a uniform
triangulation. The discrete forward problem is: Find
uh ∈ V h such that

B(uh, v) = F (v) ∀v ∈ V h,

The adjoint problem is discretized using piecewise
quadratic finite elements on the same triangulation.
Find φ+ ∈ V + such that

B(v, φ+) = Q(v) ∀v ∈ V +

Parameter space
Pseudospectral projection is used in parameter space. Let IN = {k ∈ Nd : k1 + · · · + kd ≤ N} and let PN denote the
space of polynomials defined by PN = span{Ψk(λ) : k ∈ IN}. Where Ψk(λ) = Ψk1(λ1) · · ·Ψkd(λd) and Ψki is the 1D
Legendre polynomial of order ki.
Solutions are expanded in the basis Ψk

U(x,λ) =
∑
k∈IN

〈
uh(x, ·),Ψk

〉︸ ︷︷ ︸
uhk(x)

Ψk(λ)

where the coefficients, uhk, are computed using quadrature.

Error decomposition

Let U =
∑

k∈IN u
h
k(x)Ψk(λ) and Φ =

∑
k∈IN φ

+
k (x)Ψk(λ).

For a given vector of parameters λ

Q
(
u(·,λ)

)
−Q

(
U(·,λ)

)
= F

(
φ(·,λ)

)
−B

(
U(·,λ), φ(·,λ)

)
= R

(
U(·,λ), φ(·,λ)

)
= R

(
U(·,λ), φ(·,λ)− φ+(·,λ)

)
+ R

(
U(·,λ), φ+(·,λ)− Φ(·,λ)

)
+ R

(
U(·,λ),Φ(·,λ)

)
≈ R

(
U(·,λ); Φ(·,λ)

)
A simple manipulation gives an estimate for the error due to the approximation in each space.

R
(
U(·,λ); Φ(·,λ)

)
= R

(
U(·,λ); Φ(·,λ)

)
−R

(
uh(·,λ);φ+(·,λ)

)
︸ ︷︷ ︸

error due to approx in stochastic space

+ R
(
uh(·,λ);φ+(·,λ)

)
︸ ︷︷ ︸

error due to physical discretization

For computational efficiency we form surrogate approximations

E(λ) =
∑
k∈IM

〈
R
(
U(x, ·); Φ(x, ·)

)
,Ψk

〉
Ψk(λ)

EΩ(λ) = E(λ)− ED(λ) ED(λ) =
∑
k∈IN

〈
R
(
uh(x, ·);φ+(x, ·)

)
,Ψk

〉
Ψk(λ)

and obtain computable error estimates for the error in each space as well as an estimator of the total error in the QoI.

E(λ) = EΩ(λ) + ED(λ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Adaptive algorithms

Global approximation Piecewise approximation

Choose N (M = 2N ), h
while ‖E‖ > tol do
construct U , Φ,ED(λ),E(λ)
calculate

∥∥E − ED∥∥, and
∥∥ED∥∥.

if
∥∥E − ED∥∥ ≤ ∥∥ED∥∥ then

refine physical mesh
else
refine polynomial approximation
(N ← N + 1)

end if
end while

refine physical mesh

for Ei > TOL/ |{Ei}| do
estimate sub element errors
{ej}2d

j=1

if ∃ej > αhEDi then
split element into 2d elements
refine dominate element(s)

else
refine existing element’s
physical mesh

end if
end for

refine polynomial approximation

for Ei > TOL/ |{Ei}| do
estimate sub element errors
{ej}2d

j=1

if ∃ej > αNEΩ
i then

split element into 2d elements
else
for existing element N ← N + 1

end if
end for
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Smooth response surface

Let

a(λ) = 2 b(λ) =

[
10 sin

(
π
2λ1

)
10 cos (πλ2)

]
and f be chosen so that

u(x, y,λ) = 400
[
λ1(x− x2)e

− 20
λ1

(x−λ1)2
]
·
[
λ2(y − y2)e

− 20
λ2

(y−λ2)2
]
.

For the QoI we define

q(x, y) =
[
1 + tanh[1000(x− 0.5)]

]
·
[
1 + tanh[1000(y − 0.5)]

]
.

λ1 ∼ U(0, 1) λ2 ∼ U(0, 1)
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Figure: Exact quantity of interest

∥∥EΩ
∥∥2

L2(Ω)

∥∥ED
∥∥2

L2(Ω) ‖E‖2
L2(Ω)

‖E‖2L2(Ω)

‖Q(u)−Q(U)‖2L2(Ω)

G
lo

ba
l

2.2379e-03 3.7513e-04 2.7582e-03 1.0023
7.3117e-04 4.6532e-04 9.4083e-04 1.0044
3.7186e-04 4.1253e-04 8.1932e-04 1.0518
3.8743e-04 1.1014e-04 4.9064e-04 1.0865
1.6523e-04 1.1142e-04 2.5706e-04 1.2042
1.0446e-04 1.1062e-04 2.1730e-04 1.2744

P
W

4.0316e-03 4.0316e-03 4.6410e-03 0.9803
5.8767e-04 5.8767e-04 1.2772e-03 1.0276
5.9570e-04 5.9570e-04 6.8116e-04 1.0157
3.0194e-04 3.0194e-04 3.5404e-04 0.9935
3.9369e-05 3.9369e-05 8.9687e-05 0.9991
3.9178e-05 3.9178e-05 6.1090e-05 0.9936
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Figure: Convergence of true error
Figure: Physical mesh
superimposed on parameter space.

Response surface with a discontinuity

Let

a(λ) = 2 b(λ) =

[
sin(3π

2 λ1)
2 + 4bλ2 − λ1c

] For the QoI we define

q(x, y) =
100

π
exp
(
− 100(x− 0.33)2 − 100(y − 0.33)2

)
f is chosen so that

u(x, y,λ) = 10 sin
(3π

2
λ1

)(
2 + 4bλ2 − λ1c

)
· (x− x2)(y − y2) λ1, λ2 ∼ U(0, 1)
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Figure: Exact response surface
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Figure: Response - global algorithm
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Figure: Response - piecewise

∥∥EΩ
∥∥2

L2(Ω)

∥∥ED
∥∥2

L2(Ω) ‖E‖2
L2(Ω)

‖E‖2L2(Ω)

‖Q(u)−Q(U)‖2L2(Ω)

G
lo

ba
l

4.4533e-02 1.2871e-05 4.4575e-02 0.5321
3.8879e-02 1.3086e-05 3.8924e-02 0.5236
3.4536e-02 1.3260e-05 3.4582e-02 0.5170
3.1087e-02 1.3404e-05 3.1134e-02 0.5118
2.8276e-02 1.3524e-05 2.8323e-02 0.5076
2.5940e-02 1.3627e-05 2.5986e-02 0.5041

P
W

3.5460e-02 1.3016e-05 3.5442e-02 0.5094
2.7707e-02 1.3732e-05 2.7708e-02 0.6991
1.6752e-02 1.4030e-05 1.6766e-02 0.5170
9.7675e-03 1.4373e-05 9.7873e-03 0.5937
6.7371e-03 1.4491e-05 6.7576e-03 0.4851
4.9759e-03 1.4630e-05 4.9945e-03 0.5817
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Figure: Parameter space mesh

Navier Stokes flow past a cylinder
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−λ1∇u + u · ∇u +∇p = f

∇ · u = 0

u(Γ4) =

[
λ2 · 3

32(4− y2)
0

]
u = 0, x ∈ Γ2 ∪ Γ3 ∪ Γ5

(ν∇u− pI) = 0, x ∈ Γ1

q(x) =

[
100
π exp

(
− 100(x− 1)2 − 100(y − 0)2

)
0

]
λ1 ∼ U(0.01, 0.1) λ2 ∼ U(1, 4)

∥∥EΩ
∥∥2

L2(Ω)

∥∥ED
∥∥2

L2(Ω) ‖E‖2
L2(Ω)

G
lo

ba
l 4.8969e-06 1.1054e-08 4.9729e-06

1.0774e-06 1.1351e-08 1.1082e-06
2.1222e-07 1.1170e-08 2.2771e-07
3.8686e-08 1.0974e-08 5.0287e-08

P
W

6.4097e-06 1.1083e-08 6.4647e-06
2.0061e-06 1.0825e-08 2.0454e-06
4.9921e-07 1.1004e-08 5.1946e-07
2.6232e-07 1.0852e-08 2.7677e-07
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Conclusions and future work

• proposed decomposition successfully quantifies error from each space
• the ability to adapt physical meshes to different regions of parameter space

allows computational resources to be used more efficiently
• if a fixed physical mesh is used the decomposition provides a computable

threshold for minimum obtainable error
⇒ apply a similar technique to intrusive methods such as stochastic Galerkin
⇒ apply to probabilistic quantities of interest (exceedance probabilities and the

determination of the limit state surface) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
local QoI

λ
1

λ 2

1Institute for Computational Engineering and Scieces, The University of Texas at Austin, Austin, TX 78712
2Optimization and Uncertainty Quantification Department, Sandia National Laboratories, Albuquerque, NM 87123
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security
Administration under contract DE-AC04-94AL85000.

*cbryant@ices.utexas.edu

SAND2012-6289P


