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General model problem Smooth response surface

Adjoint problem: Let
Quantity of interest (Qol):

Q(u) = /D d(@) - ulz, A) de.

Forward problem:
Strong form:

—V - (a(A)Vu) +b(A) - Vu = f(A) inD = (0,1)

N[

a <A) = 2 >\1 ) ] Response surface for Q(u)

) = [10 cos (TA2)
and f be chosen so that

“= 0 on aD 20 2 20 2
. — (2= —==(y—A
Weak form: find ’LL(-, )\> cV = H&(D) such that Weak form: find ¢ € V' such that U($, Y, )\) = 400 [)\1(113 — 262)6 )‘1( Y } . [)\Q(y — y2>6 )\2(y 2) } .
B(u,v) = F(v) Yo €V B(v,¢)=Q(v) YveV. For the Qol we define
Where Error representation: g(z,y) = [1 + tanh[1000(z: — 0.5)]} - [1 1 tanh[1000(y — 0.5)]} .
h
_ — B
B(u,v) = / a(A)Vu - Vo dx —I—/ b(A) - Vu v de, Qu) — Q) (€, 9) .
D D = F(¢) - B(u", ¢) AL~ U(0,1) Xy ~ U(0,1)
= R(u"; ¢) '
F(v) = Avd ’ : : :
) /Df( v da, Figure: Exact quantity of interest
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The forward problem is initially discretized using The adjoint problem is discretized using piecewise gg%gggi gg%gggi Tg;‘;g:gg ?3232 I
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B(v,¢") =Qv) YveV Figure: Convergence of true error | .
B(u",v) = Fv) YveV" Figure: Physical mesh
superimposed on parameter space.
Parameter space
Pseudospectral projection is used in parameter space. Let Zy = {k € N : k; +--- + k; < N} and let PV denote the
space of polynomials defined by PV = span{Uy(A) : k € Zy}. Where Ug(X\) = Uy, (A1) - - - Uy, (A\g) and Wy is the 1D . . . .
Legendre polynomial of order ;. Response surface with a discontinuity
Solutions are expanded in the basis W,
h
Uz, A) = Z (W' (@, ), Uk ) Wi(A) Let For the Qol we define
kely s (3T 100
o a() = 2 b(\) = [2 814“&2 M)A ] g(z,y) = — exp ( — 100(z — 0.33)% — 100(y — 0.33)2)
where the coefficients, u}, are computed using quadrature. +4[ A2 — A Q

Let U = > ker, ug(x)¥x(X) and & = D kely Op () Vk(A).
For a given vector of parameters A

Qul M) = QU X)) = F(6(, V) = B(U(, A),6(, V)

= R(U(-,2),6(, X))
= R(U(,2),6(,A) = 6" (- X)) + R(U(, A), 67, 2) = (-, X))
+R(U(-,>\),<I>( ,A))

A simple manipulation gives an estimate for the error due to the approximation in each space.

R(UC, X9, ) = R(UC, A 00, 8)) = R(u"(, N7, X) + R(u"( )67 (X))
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error due to approx in stochastic space error due to physical discretization

For computational efficiency we form surrogate approximations

EN =Y (R(U@ e, ), i) Ux(N

kEIM

EYN) = E() = EP(N PN = 3 (R(u'(®, ) " (@,)), Uk ) Wi

kEIN
and obtain computable error estimates for the error in each space as well as an estimator of the total error in the Qol.

EA) =E%N) +EP(N)
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f is chosen so that

u(z,y,A) = 10sin (%T)q) (2 + 4| A — >\1J> (z—2*)(y — o)

A, Ay ~ U(0,1)

| | | I
l/& w N [ o [ N w

[

08 == \A\
al
v \!L\,! ‘\\\
T RIS
D

Figure: Exact response surface Figure: Response - piecewise
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Adaptive algorithms

Global approximation Piecewise approximation

refine physical mesh refine polynomial approximation

Choose N (M =2N), h
while |£]| > tol do

for g@ > TOL/ |{8z}| do
estimate sub element errors

for gz > TOL/ ‘{SZH do
estimate sub element errors

1 1 1 1 1 1 1 1 1
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construct U, ,EP(X),E(N)

calculate ||€ — €DL, and ||EP||.

if ||€—&P| <€ then
refine physical mesh

{ej}?dzl

if Je; > &P then
split element into 2¢ elements
refine dominate element(s)

{ej}?dzl
if Je; > ay&’ then

split element into 2¢ elements
else

else else for existing element N «— N + 1
refine polynomial approximation refine existing element’s end if
(N — N +1) physical mesh end for
end if end if
end while end for
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Figure: Parameter space mesh
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Conclusions and future work

e proposed decomposition successfully quantifies error from each space . v '''''

e the ability to adapt physical meshes to different regions of parameter space
allows computational resources to be used more efficiently

e if a fixed physical mesh is used the decomposition provides a computable il
threshold for minimum obtainable error U

= apply a similar technique to intrusive methods such as stochastic Galerkin

= apply to probabilistic quantities of interest (exceedance probabilities and the
determination of the limit state surface)
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