

31 July, 2012

SEERI 2012 Summer Student Presentation

Christopher T Parzyck

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Introduction/Outline

- **Third year undergraduate student at UC San Diego**
 - Majoring in Physics and Mathematics
- **Grew up in the Albuquerque area**
- **Third summer here at Sandia**
 - SEERI Program
 - Org. 1344
- **Telecommuted during 2011-2012 school year**

Introduction/Outline

- Projects for the past year:
- Axness-Kerr Photocurrent Model development
 - Review of work from last summer
 - Approximate Solution to moving boundary problem
 - New semi-closed form solution for N/N⁺ region
 - Current Work
- Summer 2012 Saturn / Hermes Projects
 - Pinhole camera mount for off-axis imaging of Saturn source
 - Research into sensitivity of Image Plate
 - Pinhole design for on-axis imaging with AWE Fiber-Optic Cable
 - Image Processing and Creation of Matlab GUIs

Axness-Kerr Photocurrent Model

- Work from last summer:

- **Xyce**

- Parallel Electronic Simulator
- My work: Compact photocurrent models
 - *Capture Fundamental Device Physics*
 - *Closed Form or Semi-Closed form solutions for device models*
 - *Modular components of large scale circuit simulations*
- In particular: Photocurrent generation in Bipolar Junction Transistors
 - *Physics is applicable to other Silicon devices (diodes)*

- **A-K Photocurrent Model**

- Approximates carrier transport equations with Ambipolar-Diffusion Equation

- **End of last summer:**

- Implemented standalone version of model (including SACADO compatibility for eventual communication with Xyce solvers)
 - *Solution of Quasi-Neutral device regions with Discrete Fourier Transform (Fourier Sine Series)*

Axness-Kerr Photocurrent Model

- Ambipolar Diffusion Equation (1-D)

$$\dot{u} = D_a \frac{\partial^2 u}{\partial x^2} - \mu_a E \frac{\partial u}{\partial x} - \frac{1}{\tau} u + g(t)$$

- Carrier mobilities are fixed from diffusivities by Einstein relation
 - Carrier Diffusivities and Lifetimes can be used as calibration parameters
 - $g(t)$ is the carrier generation rate (due to electron-hole pair production)
- Quasi-Neutral region widths are given by the physical region width less what is lost to the depletion region
 - *Effective widths depend on device bias*
 - *Moving Boundary problem*
 - *Also would like solution for $\tau = \tau(t)$ as to include neutron damage effects during pulse*

Axness-Kerr Photocurrent Model

- **Solution to MBP**

- Stop-start method
 - Pick a basis set: $\{\psi_n(x)\}$
 - Solve for a given initial condition (find coefficients s.t. $u(x, t) = \sum_n a_n(t) \psi_n(x)$)
 - For next time interval find new basis functions: $\{\phi_n(x)\}$
 - Rescale and project onto new basis:

$$u(x, t_k^+) = u\left(\frac{L_k}{L_{k-1}} x, t_k^-\right) = \sum_n a'_n(t) \phi_n(x)$$

- Renormalize to enforce charge conservation

$$\int_0^{L_{k-1}} dx u(x, t_k^-) = \int_0^{L_k} dx u(x, t_k^+)$$

- This is then the initial condition for the next time-step

Axness-Kerr Photocurrent Model

- Solution for epitaxial devices (where the subcollector contributes a large portion of the device photocurrent)

$$\dot{u} = \hat{L} u(x, t) + g(t)$$
$$\hat{L} = \begin{cases} D_1 \partial_x^2 - \frac{1}{\tau_1} & 0 \leq x \leq L_1 \\ D_2 \partial_x^2 - \frac{1}{\tau_2} & L_1 \leq x \leq L_2 \end{cases}$$

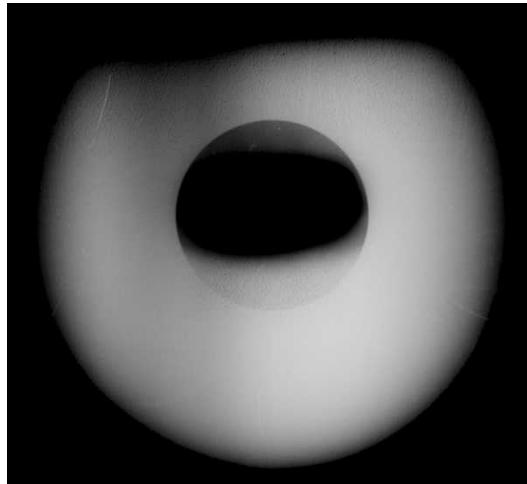
- Homogeneous Dirichlet Boundary Conditions at $x = 0, L_2$
- Additionally at $x = L_1$

$$\begin{aligned} - N_1 u \Big|_{x=L_1^-} &= N_2 u \Big|_{x=L_1^+} \\ - D_1 \frac{\partial u}{\partial x} \Big|_{x=L_1^-} &= D_2 \frac{\partial u}{\partial x} \Big|_{x=L_1^+} \end{aligned}$$

Axness-Kerr Photocurrent Model

- Solution for epitaxial devices (continued)
- Separate variables and solve spatial eigenvalue equation: $\hat{L} \psi(x) = \lambda \psi(x)$
 - Two solution sets, depends on if $\frac{1}{\tau_1} < \lambda \leq \frac{1}{\tau_2}$ or $\lambda > \max(\frac{1}{\tau_1}, \frac{1}{\tau_2})$
 - \hat{L} is Hermitian so the $\{\psi_n\}$ form an orthonormal basis ($w(x) = \begin{cases} 1 & 0 \leq x \leq L_1 \\ \frac{N_2}{N_1} & L_1 \leq x \leq L_2 \end{cases}$)
 - The rest of the problem is a straightforward solution by eigenfunction expansion
 - Taking the limit as $t \rightarrow \infty$ and identifying one part of the infinite sum with the steady state solution allows for a perturbation-from-equilibrium solution and better convergence rates

Axness-Kerr Photocurrent Model


- **Current Work:**

- Modifying code to integrate into Xyce
 - *Cleaning up*
 - *Adding a P-N-N⁺ diode version of the code*
- Writing scripts to use DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) for parameter calibration for comparison against device response data

Summer 2012 Experimental Design Work

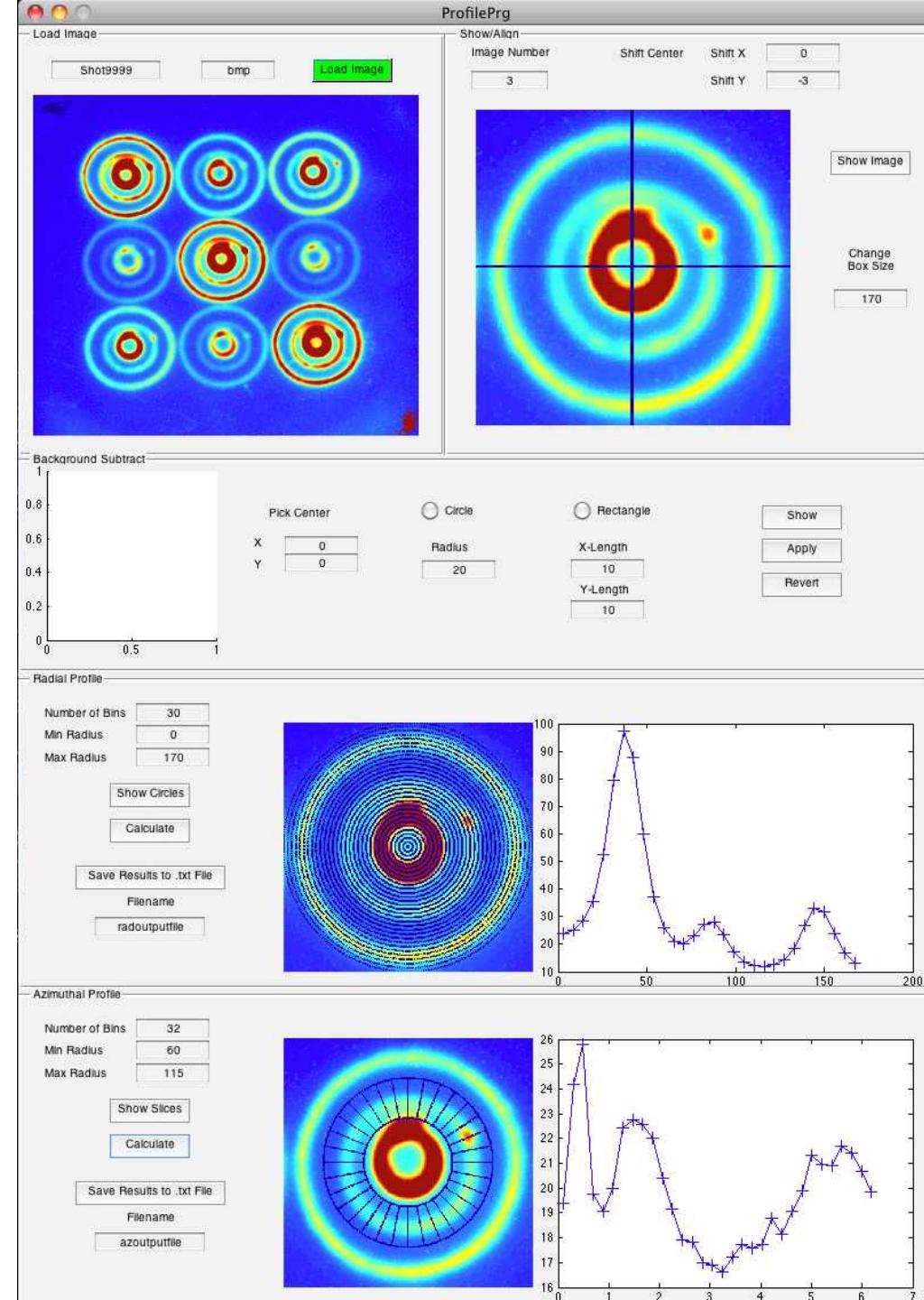
- **Off-Axis Imaging Experiment on Saturn**

- Thin Tantalum cylinders are used as β to γ converters on Saturn in reflex-triode mode.
- Wanted to get images of side of Tantalum to characterize effects of seam on radiation intensity
- Designed mount to hold tungsten pinhole camera (using Image Plate) inside Saturn vacuum chamber.
- Alignment and focus were correct.
- Underestimated dose, film was overexposed.

Overexposed image of side of Saturn source.

Summer 2012 Experimental Design Work

- **Image Plate sensitivity analysis**
- **Use Fujifilm BAS (Bio-Imaging Analysis Systems) Image Plate to image radiation sources when it is inconvenient to use a scintillator & camera setup**
 - Similar to X-ray film
 - Data is read using a special scanner (UV laser excites electrons out of metastable state causing photon emission)
 - High resolution (down to 25 μm square pixel size)
 - Can be erased with UV light (reusable)
- **Characterized image plate response (grey-scale value) as a function of energy deposited in active layer**
 - Compared energy deposition calculations using ADEPT and X-ray absorption/attenuation coefficients from NIST (National Institute of Standards and Technology)
 - Found that NIST tables well characterized energy deposition in active layer for photon energies $< 200 \text{ keV}$.


Summer 2012 Experimental Design Work

- **Saturn On-Axis Imaging mount/pinhole design**
 - Worked on designing a pinhole camera for an on-axis imaging system for Saturn
 - Will use a plastic scintillator and radiation hard fiber-optic cable supplied by AWE to provide images of Saturn source during tests
 - Mount goes directly into shielding below test fixture, less then a foot from the Saturn source.
 - Provides quick feedback about characteristics and quality of shot to customer
 - *Faster then waiting for processing of TLDs*
 - *Provides very high spatial resolution*
 - Will use image plate to characterize pinhole camera characteristics (resolution and radiation leakage) before using full setup of scintillator and cable.

Summer 2012 Experimental Design Work

- **Saturn data image processing**

- Preprocessed images using NIH tool ‘ImageJ’
- Utilized a number of Matlab GUI’s written by previous SEERI student Andrew Sharp
- Modified several GUI’s for increased compatibility and functionality
- Wrote code for an additional GUI that provides azimuthally averaged radial profiles and radially averaged azimuthal profiles of data from images of Saturn’s ‘rings’
- Processed images using new tool
 - *By looking for differences in radial profile as a function of time can determine if rings flex inwards or outwards at all during shot*
 - *By analyzing azimuthal profile of source can learn about formation of ‘hot spots’-areas of high source intensity caused by non-uniformity of converter material*

Acknowledgements / References

- Chuck Hembree
- Eric Keiter
- Jason Verley
- Vic Harper-Slaboszewicz
- Jason Serrano
- Andrew McCourt
- Brad Peyton & Saturn Crew
- Hermes III Crew
- Jim Bryson
- Trish St. John

• References:
– SAND 2012-2161

Questions