

Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of FeEDTA²⁻ and Na⁺

SAND2013-2708P

Presentation at the
ABC Salt III
Santa Fe, April 15-17, 2013

**Je-Hun Jang¹, Taya Olivas¹,
and Martin B. Nemer²**

¹Defense Waste Management Programs

²Thermal and Fluid Sciences
Sandia National Laboratories*

*Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

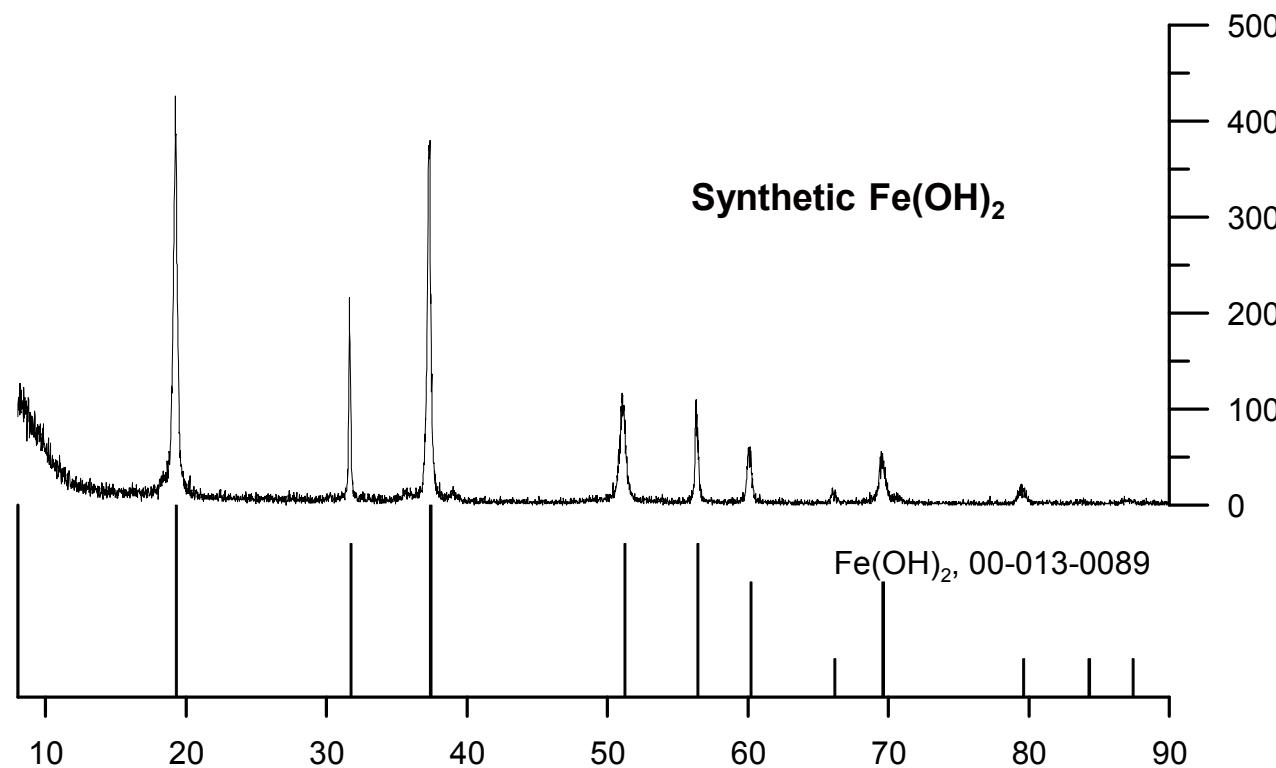
Introduction

- **EDTA⁴⁻**
 - Present in the waste
 - Capable of solubilizing actinides via aqueous complexation
- **Fe**
 - Present in the waste and containers
 - Competes with actinides for complexation with EDTA
- **Pitzer formulation**
 - Ideal for the activity coefficients for solutions of medium to high ionic strength

Objectives

- To determine the Pitzer interaction parameters ($\beta^{(0)}$, $\beta^{(1)}$, and C^ϕ) for the pair of FeEDTA²⁻ and Na⁺

Material and Methods (1/3)



- Iron(II) hydroxide was synthesized: $\text{Fe(OH)}_2(\text{s})$
- $\text{Na}_2\text{H}_2\text{EDTA}$, NaCl purchased
- Reactors were prepared in the glovebox
 - Po_2 less than 10 ppm
 - Serum bottles with rubber seals and aluminum crimps
 - Room temperature
 - $\text{Fe(OH)}_2(\text{s})$ in mixed $\text{Na}_2\text{H}_2\text{EDTA}$ and NaCl solutions
 - Powder reagents degassed in the glovebox for at least overnight
 - Solutions prepared using deoxygenated deionized water
 - For most conditions, more than two replicates prepared
- Aged for more than 1000 days

Material and Methods (2/3)

XRD of $\text{Fe(OH)}_2(\text{s})$

Material and Methods (3/3)

- ICP-AES for Na and Fe
- IC for Cl
- Total Carbon Coulometer for EDTA
- pH: glass combination electrode calibrated using commercial pH buffers
- XRD: characterization of solid

Aqueous speciation model used for this fitting

Table 1: Reactions and 10-based logarithms of their equilibrium constants (logK's) used in this model fitting.

Reactions	logK
<u>Aqueous reactions</u>	
(1) $\text{H}^+ + \text{OH}^- = \text{H}_2\text{O}$	13.99
(2) $\text{H}_4\text{EDTA}(\text{aq}) = 4\text{H}^+ + \text{EDTA}^{4-}$ ^a	-23.03
(3) $\text{H}_3\text{EDTA}^- = 3\text{H}^+ + \text{EDTA}^{4-}$	-20.53
(4) $\text{H}_2\text{EDTA}^{2-} = 2\text{H}^+ + \text{EDTA}^{4-}$	-17.45
(5) $\text{HEDTA}^{3-} = \text{H}^+ + \text{EDTA}^{4-}$	-10.57
(6) $\text{FeOH}^+ + \text{H}^+ = \text{Fe}^{2+} + \text{H}_2\text{O}$	9.31
(7) $\text{FeEDTA}^{2-} = \text{Fe}^{2+} + \text{EDTA}^{4-}$	-16.1
<u>Dissolution</u>	
(8) $\text{Fe}(\text{OH})_2(\text{s}) + 2\text{H}^+ = \text{Fe}^{2+} + 2\text{H}_2\text{O}$	12.95
(9) $\text{NaCl}(\text{s}) = \text{Na}^+ + \text{Cl}^-$	1.57

^a EDTA⁴⁻: $\text{C}_{10}\text{H}_{12}\text{O}_8\text{N}_2^{4-}$

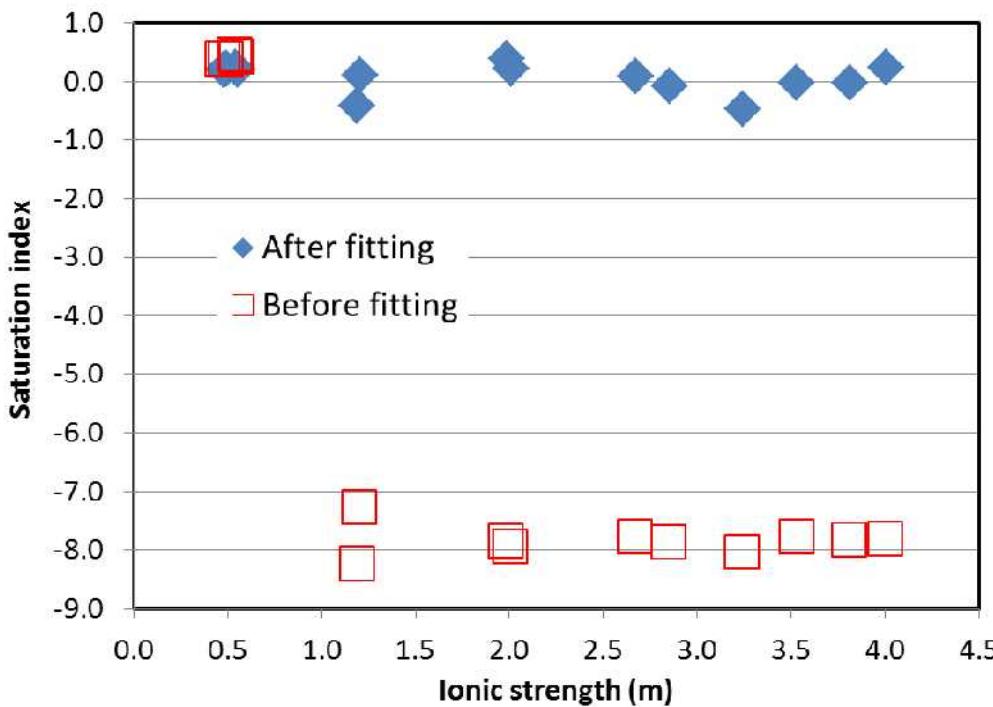
Table 2: Pitzer interaction parameters used in this model fitting. Three Pitzer parameters for $\text{FeEDTA}^{2-}/\text{Na}^+$ pair ($\beta^{(0)}$, $\beta^{(1)}$, and C^ϕ) were fitted to the experimental data.

<i>i</i>	<i>j</i>	$\beta^{(0)}$	$\beta^{(1)}$	C^ϕ
Na^+	Cl^-	0.0765	0.2664	0.00127
Na^+	OH^-	0.0864	0.253	0.0044
Na^+	H_3EDTA^-	-0.2345	0.29	0.059
Na^+	$\text{H}_2\text{EDTA}^{2-}$	-0.1262	1.74	0.054
Na^+	HEDTA^{3-}	0.5458	5.22	-0.048
Na^+	EDTA^{4-} ^a	1.016	11.6	0.001
H^+	Cl^-	0.1775	0.2945	0.0008
Fe^{2+}	Cl^-	0.3359	1.5322	-0.00861
Na^+	FeEDTA^{2-}	TBD ^b	TBD ^b	TBD ^b
θ_{cc} or θ_{aa}				
<i>i</i>	<i>j</i>	θ_{cc} or θ_{aa}		
Na^+	H^+	0.036		
Na^+	Fe^{2+}	0.08		
Cl^-	OH^-	-0.05		
<i>i</i>	<i>j</i>	k	$\psi_{cc}{}^{}_a$ or $\psi_{aa}{}^{}_c$	
Na^+	H^+	Cl^-	-0.004	
Cl^-	OH^-	Na^+	-0.006	

^a EDTA⁴⁻: $\text{C}_{10}\text{H}_{12}\text{O}_8\text{N}_2^{4-}$

^b TBD: To Be Determined

Fitting process


- **Saturation index:**
 - How far the system is from equilibrium with respect to the solid of interest
 - Can be calculated from the aqueous speciation (EQ3/6)
 - Can be positive, “ZERO”, and negative

- **Minimization of the sum of squared saturation indices:**

$$\text{Sum} = \sum [\log (Q/K)]^2$$

- **The repetition driven by a script written in Python programming language.**

Fitting Results

Plot of saturation indices over ionic strength. Blue solid diamonds aligned around 0.0 (within a range of -0.463 to 0.390) represent the saturation indices calculated with fitting of the Pitzer interaction parameters for $\text{Na}^+/\text{FeEDTA}^{2-}$ pair to the experimental data. Red open squares represent the saturation indices calculated without considering Pitzer interaction for $\text{Na}^+/\text{FeEDTA}^{2-}$ pair.

Table 3: Fitting results for the $\text{FeEDTA}^{2-}/\text{Na}^+$ pair.

Pitzer parameters	value	Residual
$\beta^{(0)}$	-8.43	
$\beta^{(1)}$	52.49	0.854
C^ϕ	3.41	

Conclusions

- Current model without the parameters predicted significant undersaturation.
- Model fit greatly improved as the new parameters were considered in the model.
- Now, the newer model with the parameters would predict lower total dissolved Fe, impacting the prediction of total dissolved actinide concentration in the presence of Fe and EDTA⁴⁻.