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Introduction Sensitivity Analysis

Arctic sea ice is an important component of the global climate system, reflecting a significant Our sensitivity analysis builds on previous work where six response functions, which include
amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean ice volume, ice area, ice extent, root mean square ice speed, and central Arctic ice thickness
circulation by modifying the salinity of the upper ocean. and speed, were evaluated with respect to a combination of ten model parameters [5]. The
DAKOTA framework [6] is used to vary parameters simultaneously using Latin hypercube
sampling (LHS) and standardized regression coefficients are computed using a linear
regression model to quantify the effects of the different parameters.

The volume and extent of Arctic sea ice have
shown a significant decline in recent decades with
implications for global climate as well as regional
geopolitics. Increasing interest in exploration and
mineral extraction in the Arctic in additional to
climate feedback effects make a predictive sea ice
modeling a high priority.

In the original analysis a set of ten, primarily thermodynamic, parameters were assessed for
a single year model run. A plot of the standardized regression coefficients for total Arctic ice
volume with respect to each of the ten parameters is shown below along with the yearly
cycle of ice volume for 50 LHS samples. In this case the fresh ice conductivity and albedo
parameters are dominant.
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Sea ice models vary in their predictions for Arctic
sea ice evolution, but all have underestimated the
rate of decline in minimum sea ice extent over the
last thirty years [1]. Comparisons with satellite data
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The models contain many physical parameters with Northern Hemisphere Extent Anomalies Jul 2012 15r
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p'ropagated by different nu.merlcal aIgonthrns, : ’ volume (left) and the mean and 2-sigma variations of total ice volume for the single year
discovery of the most important physical 2019792000 mean = 10.1 milionsqkm run (right)
parameters in the models, and a consistent R S C N e , , .
approach for comparative evaluation of the each In the current analysis rheological parameters that are specific to the EVP and EDC
model Arctic sea ice concentration, rheologies are evaluated in a similar manner. A single year run of a 1 degree global CICE

July 1979-2012. (NSIDC) simulation is used to evaluate the same set of response functions. The final result will be
two sets of parameters that are the most important for the EVP and EDC versions of
CICE, respectively.

Sea Ice Models

For this evaluation, the state-of-the-art LANL CICE model [3] has been used. Physical

processes included in this model are motion and deformation due to surface winds and ocean Pa ram ete I EStl m ath N an d M Od el

currents, variations in thickness including leads (open water) and ridges, and the annual cycle

of growth and melt due to radiative forcing. Se | ECth n

These processes are modeled mathematically with p = ice density Given a set of the most important parameters from the sensitivity analysis the best fit
_ . . h = ave. thickness parameter values will be estimated. With the DAKOTA framework a nonlinear least-squares
S ST e Ol G2 oS R 7 approach is used where we seek to minimize the following function
—dv _ t, = atmospheric drag
ph—:ta-l-tw—fc-l-V'hG t, = ocean drag . 2
: di T . , f. = Coriolis force S(6)=Z(yl. ~ f(x:;0))
* Ice thickness distribution evolution equation o = ice stress fensor i1
dg+(v ) +8(fg) _ g= ice thickness distribution for a vector of parameters 6 that are inputs to the model /. The responses y are obtained
dt V)8 oh -V f=0onlot from the data sets listed in Table 1. A 2 year subset of the available data will be used for the
: L — ridging functi o
* 1-d heat equation for temperature and change in thickness v =ricgins function parameter estimation.
T = 1ce temperature
dlr 0(,oT e ¢ = heat capacity Table 1: Data for use in parameter estimation and model selection.
pc - k +Kloe k = conductivity
dt 0z\ 0Oz o . Data Type Temporal Coverage Source
i = extinction coetlicient Ice Concentration/Area 1979-present (monthly) www. nsidc.org
In addition to these equations, there are sub-models for various components such as ridging Ice Thickness 2003-2007 tkwolpl.nasa.goviicesat_
function, ice stress, and even conductivity. This creates a complex chain of interactions with e Motion 1782004 rkwokjpl.nasa. goviicemotion
unc ’ ’ Y- P Ice Deformation 1996-2008 (winter months) www-radar.jpl.nasa.gov/rgps

many variable parameters.

. . An initial model selection will be done by computing the objectives S(6) for each model
An |SOtrOp|C RheOIOgy configuration using the optimized parameters for a subset of the data gcft included in the
One sub-model with important effects on the velocity and deformation is the rheology used parameter estimation step. In addition, a more sophisticated Bayesian approach as
to compute ice stress. The default rheology in the LANL CICE model is the elastic-viscous- proposed in [7] is being investigated.
plastic (EVP) rheology. This model assumes that cracks are distributed randomly throughout
the ice and they result in a form of isotropic weakening. This assumption does not hold for

high resolutions where a single large crack may be associated with strong localized Uncerta|nty AnalyS|S

deformation. The final task in this research will be to quantify the uncertainty in the simulations and to

An alternative formation will some potential to improve sea ice models has been developed determine whether the data actually fall within the model results and uncertainty bounds.
by Schreyer et al. [4]. In this elastic-decohesive (EDC) rheology cracks are explicitly modeled For complex models with many sources of uncertainty this can be a difficult task. We will
as displacement discontinuities and intact ice modeled as elastic. As cracks form the ice use the method of Romero et al. who combine various uncertainty measures for a complex
weakens in preferential directions resulting in anisotropic behavior. system into uncertainty bounds for a meaningful measure of the overall uncertainty of the
The EDC model has been implemented in the LANL CICE code for the sensitivity, model system [8].

selection and uncertainty analyses. Thickness and velocity results from a single year run with The final result will be a set of the most important physical parameters along with their
initialization are shown below for both the EVP and EDC options. optimal values, a ranking of the model configurations, and an estimation of the uncertainty
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in model responses for ice thickness, extent, and velocity.
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