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Sensitivity Analysis
Our sensitivity analysis builds on previous work where six response functions, which include
ice volume, ice area, ice extent, root mean square ice speed, and central Arctic ice thickness
and speed, were evaluated with respect to a combination of ten model parameters [5]. The
DAKOTA framework [6] is used to vary parameters simultaneously using Latin hypercube
sampling (LHS) and standardized regression coefficients are computed using a linear

Introduction
Arctic sea ice is an important component of the global climate system, reflecting a significant
amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean
circulation by modifying the salinity of the upper ocean.

The volume and extent of Arctic sea ice have
shown a significant decline in recent decades with sampling (LHS) and standardized regression coefficients are computed using a linear

regression model to quantify the effects of the different parameters.

In the original analysis a set of ten, primarily thermodynamic, parameters were assessed for
a single year model run. A plot of the standardized regression coefficients for total Arctic ice
volume with respect to each of the ten parameters is shown below along with the yearly
cycle of ice volume for 50 LHS samples. In this case the fresh ice conductivity and albedo
parameters are dominant.

shown a significant decline in recent decades with
implications for global climate as well as regional
geopolitics. Increasing interest in exploration and
mineral extraction in the Arctic in additional to
climate feedback effects make a predictive sea ice
modeling a high priority.

Sea ice models vary in their predictions for Arctic
sea ice evolution, but all have underestimated the
rate of decline in minimum sea ice extent over the
last thirty years [1]. Comparisons with satellite data
also show that sea ice models do not accurately
reproduce the thickness decline or observed drift
and deformation patterns [2].

The models contain many physical parameters with
values that are inherently uncertain. A robust,
predictive sea ice modeling capability requires an
understanding of how these uncertainties are
propagated by different numerical algorithms,
discovery of the most important physical
parameters in the models, and a consistent
approach for comparative evaluation of the each
model.

Arctic sea ice concentration, 
July 2012. (NSIDC)

Arctic sea ice concentration,
July 1979-2012. (NSIDC)
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In the current analysis rheological parameters that are specific to the EVP and EDC
rheologies are evaluated in a similar manner. A single year run of a 1 degree global CICE

Standardized regression coefficients for a selection of ten parameters for Arctic ice 
volume (left) and the mean and 2-sigma variations of total ice volume for the single year 

run (right).

Data Type Temporal Coverage Source
Ice Concentration/Area 1979-present (monthly) www. nsidc.org

These processes are modeled mathematically with

• 2-d momentum equation for ice velocity

• Ice thickness distribution evolution equation

• 1-d heat equation for temperature and change in thickness

Sea Ice Models 
For this evaluation, the state-of-the-art LANL CICE model [3] has been used. Physical
processes included in this model are motion and deformation due to surface winds and ocean
currents, variations in thickness including leads (open water) and ridges, and the annual cycle
of growth and melt due to radiative forcing.
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  ice density

h  ave. thickness

v  ice velocity

ta  atmospheric drag

tw  ocean drag

fc Coriolis force

  ice stress tensor

g  ice thickness distribution

f  h /t

  ridging function

T  ice temperature

c  heat capacity

k  conductivity

  extinction coefficient

Parameter Estimation and Model 
Selection

Given a set of the most important parameters from the sensitivity analysis the best fit
parameter values will be estimated. With the DAKOTA framework a nonlinear least-squares
approach is used where we seek to minimize the following function

model.
July 1979-2012. (NSIDC)

Table 1: Data for use in parameter estimation and model selection.

for a vector of parameters θ that are inputs to the model f. The responses y are obtained
from the data sets listed in Table 1. A 2 year subset of the available data will be used for the
parameter estimation.

S( )  yi  f (xi;) 
2

i1

n



rheologies are evaluated in a similar manner. A single year run of a 1 degree global CICE
simulation is used to evaluate the same set of response functions. The final result will be
two sets of parameters that are the most important for the EVP and EDC versions of
CICE, respectively.

Ice Concentration/Area 1979-present (monthly) www. nsidc.org
Ice Thickness 2003-2007 rkwok.jpl.nasa.gov/icesat
Ice Motion 1978-2004 rkwok.jpl.nasa.gov/icemotion
Ice Deformation 1996-2008 (winter months) www-radar.jpl.nasa.gov/rgps

Anisotropic Rheology
One sub-model with important effects on the velocity and deformation is the rheology used
to compute ice stress. The default rheology in the LANL CICE model is the elastic-viscous-
plastic (EVP) rheology. This model assumes that cracks are distributed randomly throughout
the ice and they result in a form of isotropic weakening. This assumption does not hold for
high resolutions where a single large crack may be associated with strong localized
deformation.

An alternative formation will some potential to improve sea ice models has been developed
by Schreyer et al. [4]. In this elastic-decohesive (EDC) rheology cracks are explicitly modeled
as displacement discontinuities and intact ice modeled as elastic. As cracks form the ice
weakens in preferential directions resulting in anisotropic behavior.

The EDC model has been implemented in the LANL CICE code for the sensitivity, model
selection and uncertainty analyses. Thickness and velocity results from a single year run with
initialization are shown below for both the EVP and EDC options.

Uncertainty Analysis
The final task in this research will be to quantify the uncertainty in the simulations and to
determine whether the data actually fall within the model results and uncertainty bounds.
For complex models with many sources of uncertainty this can be a difficult task. We will
use the method of Romero et al. who combine various uncertainty measures for a complex
system into uncertainty bounds for a meaningful measure of the overall uncertainty of the
system [8].

The final result will be a set of the most important physical parameters along with their
optimal values, a ranking of the model configurations, and an estimation of the uncertainty
in model responses for ice thickness, extent, and velocity.

An initial model selection will be done by computing the objectives S(θ) for each model
configuration using the optimized parameters for a subset of the data not included in the
parameter estimation step. In addition, a more sophisticated Bayesian approach as
proposed in [7] is being investigated.

In addition to these equations, there are sub-models for various components such as ridging
function, ice stress, and even conductivity. This creates a complex chain of interactions with
many variable parameters.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000. 
SAND No. 2011-XXXXP

Exceptional Service in the National Interest

References
[1] J. Stroeve, M. M. Holland, W. Meier, T. Scambos, M. Serreze (2007). Arctic sea ice decline: Faster than forecast. Geophysical 
Research Letters 34, 1-5.
[2] P. Rampal, J. Weiss, C. Dubois, J.-M. Campin (2011). IPCC climate models do not capture Arctic sea ice drift acceleration: 
Consequences in terms of projected sea ice thinning and decline, JGR 116:C00D07, doi:10.1029/2011JC007110.
[3] E. C. Hunke, W. H. Lipscomb (2006). CICE: The Los Alamos Sea Ice Model, Documentation and Software User’s Manual 
Version 4.0. Technical Report LA-CC-06-012, Los Alamos National Laboratory.
[4] H. Schreyer, L. Monday, D. Sulsky, M. Coon, R. Kwok (2006). Elastic-Decohesive Constitutive Model for Sea Ice. JGR, 
111:C11S26, doi:10.1029/2005JC003334.
[5] K. Peterson, P. Bochev and B. Paskaleva (2010). Development, sensitivity analysis and uncertainty quantification of high-
fidelity Arctic Sea Ice Models, SAND 2010-6218.
[6] B. M. Adams, W. J. Bohnhoff, K. R. Dalbey, J. P. Eddy, M. S. Eldred, D. M. Gay, K. Haskell, P. D. Hough, L. P. Swiler, (2009). 
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty 
Quantification, and Sensitivity Analysis: Version 5.0 User's Manual SAND2010-2183. 
[7] L. Swiler, A. Urbina, (2011). Multiple Model Inference: Calibration, Selection, and Prediction with Multiple Models. AIAA 13th

Non-Deterministic Approaches (NDA) Conference.
[8] V. Romero, A. Luketa, M. Sherman (2010). Application of a Versatile “Real-Space” Validation Methodology to a Fire Model, 
Journal of Thermophysics and Heat Transfer. 24:730-744, doi:10.2514/1.46358.

Ice thickness contours and velocity vectors after a single year run of CICE on a 1 
degree grid with the EDC (left) and EVP (right) rheologies.
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