

SAND2012-6949P

Estimating Extrapolation Risk in Supervised Machine Learning

Should I trust *this* prediction?

Art Munson, Philip Kegelmeyer

Sandia National Laboratories

August 23, 2012

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Too Much Traffic to Monitor Manually

Maybe Machine Learning Can Help...

Web Search

Pose Recognition in Kinect

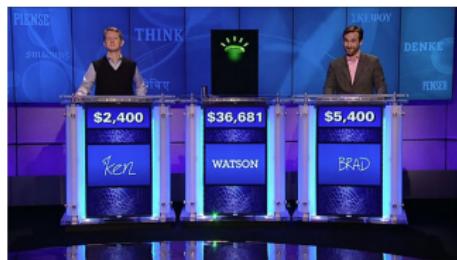
Reading Bank Checks

Friend Recommendations

People You May Know

[See All](#)

Winning Jeopardy



The IID Assumption in Machine Learning

IID = Independent and Identically Distributed

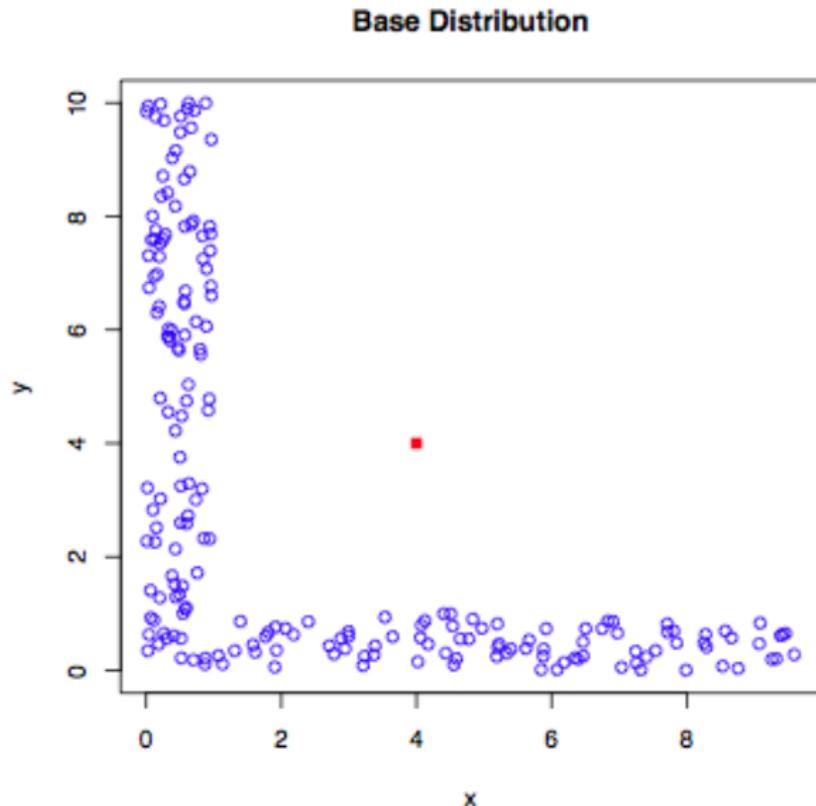
Assumes future data looks like past data.

What happens if:

- ▶ a new category appears?
- ▶ future data is noisier?
- ▶ a category evolves (e.g., malware)?

Answer: user gets a prediction, business as usual.

A Toy Example

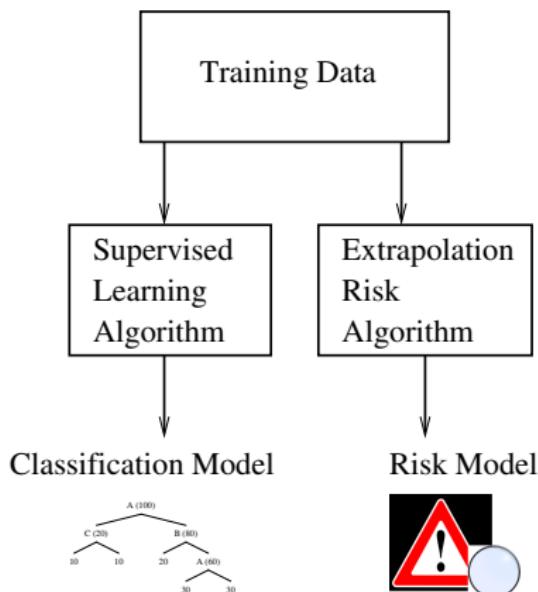


Source: Hooker (2004).

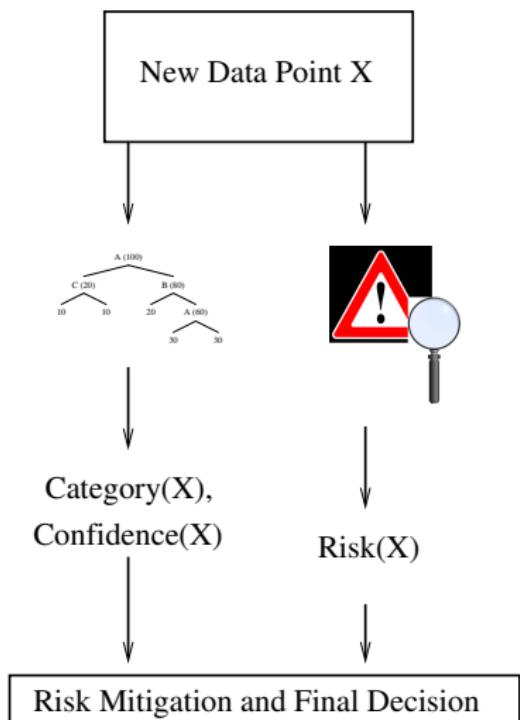
Can we detect when machine learning is extrapolating on new data?

Approach: Intrinsic vs. Extrinsic Risk Estimation

Model Building



Model Deployment



Digression: Ensemble Learning

Ensemble machine learning: wisdom of crowds / committee of experts

Truth	1	0	1	1	0	Accuracy
Model 1	1	0	0	1	1	60%
Model 2	0	1	1	1	0	60%
Model 3	0	0	1	0	0	60%
Model 4	1	1	1	1	1	60%
Model 5	1	0	0	0	0	60%
Vote 1–5	1	0	1	1	0	100%

- ▶ No one model has to get it all right
- ▶ Performance of ensemble outperforms individuals
- ▶ Usually more reliable / robust
- ▶ Reduces variance

Remoteness: Intrinsic Risk Score for Tree Ensembles

Data point z is *remote* with respect to class A if its average forest proximity to examples from A is low.

Remoteness(z) based on the closest class.

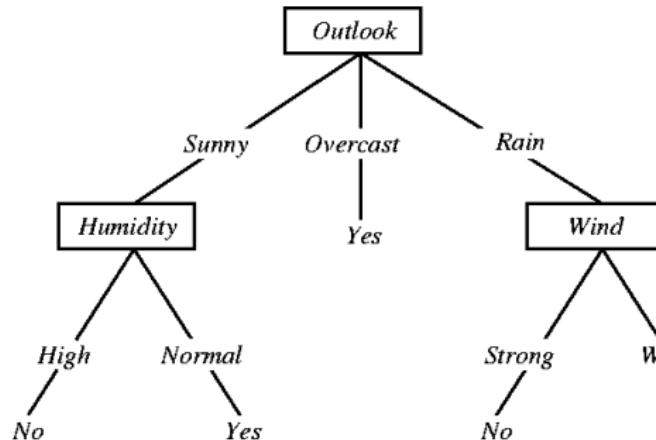
Remoteness: Intrinsic Risk Score for Tree Ensembles

Data point z is *remote* with respect to class A if its average forest proximity to examples from A is low.

Remoteness(z) based on the closest class.

Breiman's *forest proximity*:

- ▶ Points x and y are close to each other if they tend to land in the same leaves.
- ▶ Note:
 - ▶ non-Euclidean; invariant to monotonic scaling
 - ▶ categorical and numeric features
 - ▶ no triangle inequality



©Tom Mitchell, McGraw Hill, 1997

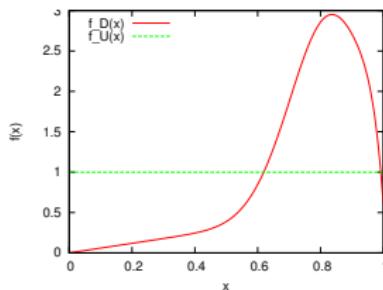
Extrapolation Risk Score

Following Hooker (2004), define extrapolation risk for data point x as

$$\text{Extrap}(x) = \frac{f_U(x)}{f_U(x) + f_D(x)}$$

- ▶ $f_U(x)$: data density at x assuming a uniform distribution
- ▶ $f_D(x)$: data density at x assuming the same distribution that generated the observed data D .

$\text{Extrap}(x) = 1$ for max. risk, and 0 for min. risk.

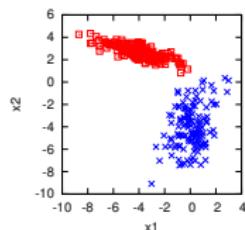


Confidence and Extrapolation Representation Trees (CERT)

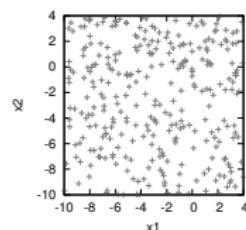
Hooker (2004) proposed CERT models for estimating extrap. risk.

- ▶ Idea: frame as classification problem.

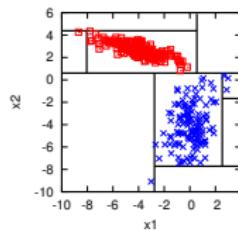
Class A (all train data)



Class B (background)



- ▶ Classification model predicts $\Pr(x \in \text{Class B}) \approx \text{Extrap}(x)$
- ▶ Decision tree learns bounding boxes:

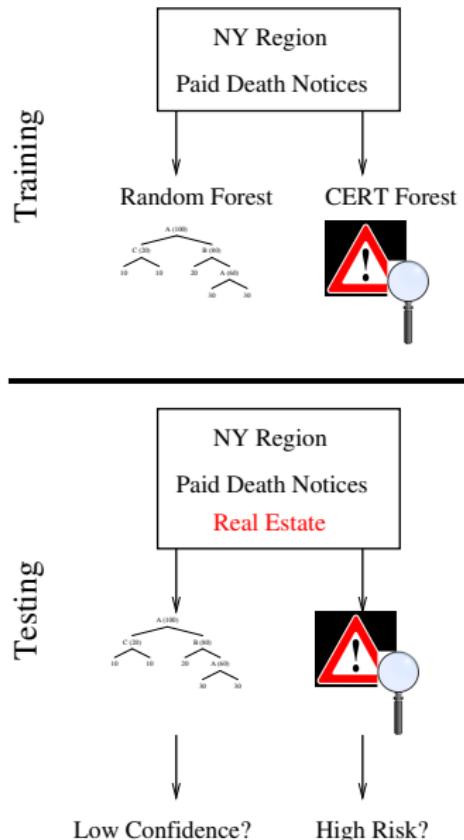
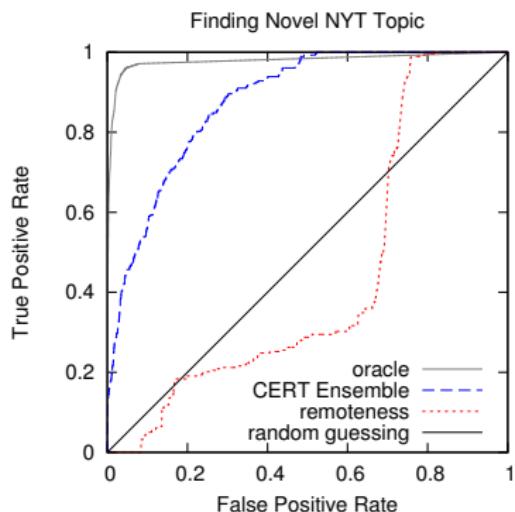


- ▶ Analytically compute expected # background points in a region.

Research Questions

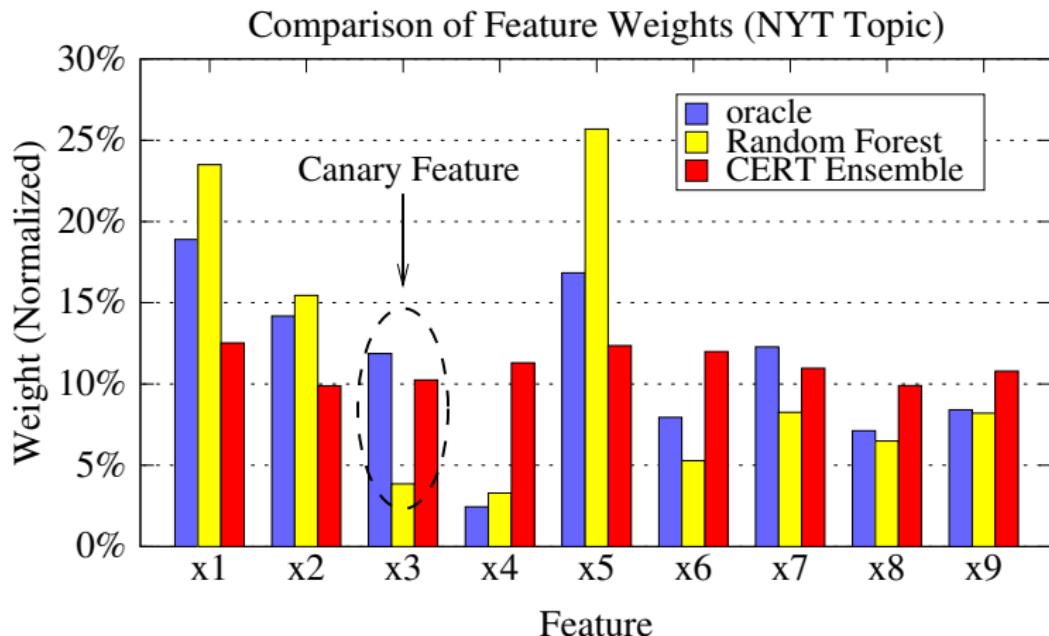
1. Benefits from ensemble of CERT models?
 - ▶ A: Ensemble consistently improves risk estimation.
 - ▶ A: Pruning really is needed.
2. Remoteness vs. CERT Forests?
(Intrinsic vs. Extrinsic)
3. Limitations?

Take Away #1: Extrinsic Risk Model Needed



Canary Features

Classification model ignores feature x3
— which is important for finding the novel class.



Anecdotal Success on Sandia Data

Task:

- ▶ Binary classification with $O(100)$ features.
- ▶ Existing SVM classifier with good accuracy, but trouble with rare anomalies.

Re-filtered SVM output using risk model:

- ▶ Fit CERT Forest using large unlabeled corpus.
- ▶ Checked predictions with high extrap. risk where SVM had high confidence.
- ▶ 70 of 75 points checked were outliers requiring human analyst.

Impact: group now uses separate models for classification and outlier detection, and both feed into analyst decision support tool.

Take Away #2: Intrinsic Risk Needed, Also

Task: predict if Windows binary file is malware or not.¹

Training Data: 2010

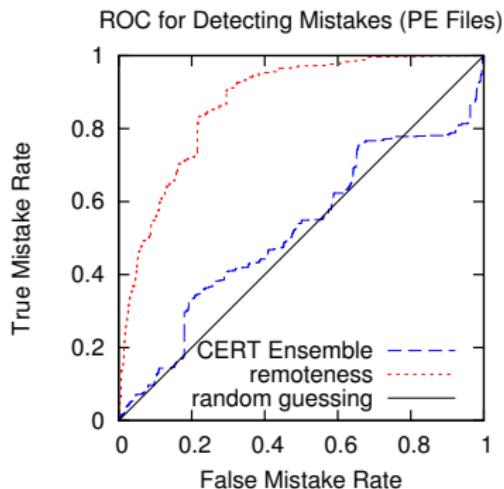
- ▶ 18,588 examples
- ▶ 44.8% malware

Testing Data: 2011

- ▶ 16,432 examples
- ▶ 79.3% malware

Setup:

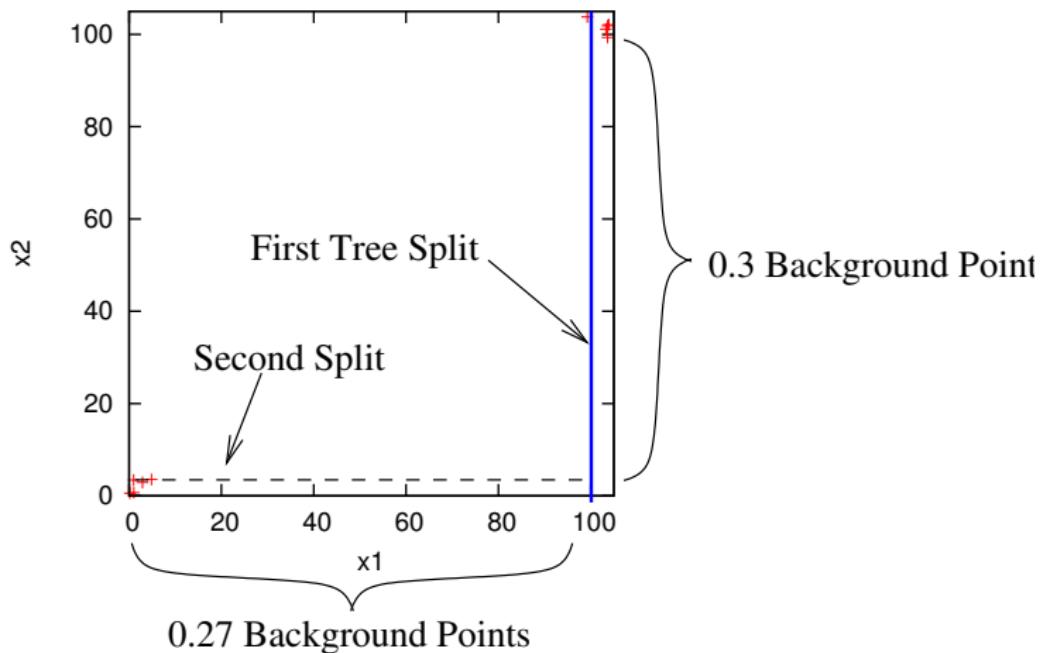
- ▶ Train classifier: goodware vs malware
- ▶ Estimate risk (test)
- ▶ Risk correlates with classifier mistakes?



¹Data from Ken Chiang, Michael Karres, and Levi Lloyd.

Error Analysis for PE Task

CERT can prematurely declare points low-risk.



Conclusions & Next Steps

- ▶ Intrinsic and extrinsic risk metrics are complementary.
- ▶ Ensembles improve CERT's risk assessments.
- ▶ Characterized failure modes for CERT and remoteness score.

- ▶ Characterize types of problems each works well on?
- ▶ Benefit from combining?
- ▶ Exploring possible fixes for premature stopping in CERT.

Questions?

mamunso@sandia.gov

Bibliography I

Giles Hooker.

Diagnosing extrapolation: Tree-based density estimation.

In Won Kim, Ronny Kohavi, Johannes Gehrke, and William DuMouchel, editors, *Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 569–574, New York, NY, USA, 2004. ACM.