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Too Much Traffic to Monitor Manually
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Maybe Machine Learning Can Help...
Web Search

Pose Recognition in Kinect

Reading Bank Checks

Friend Recommendations

Winning Jeopardy
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The IID Assumption in Machine Learning

IID = Independent and Identically Distributed
Assumes future data looks like past data.

What happens if:
I a new category appears?
I future data is noisier?
I a category evolves (e.g., malware)?

Answer: user gets a prediction, business as usual.
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A Toy Example

Source: Hooker (2004).
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Can we detect when machine learning is
extrapolating on new data?
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Approach: Intrinsic vs. Extrinsic Risk Estimation
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Digression: Ensemble Learning

Ensemble machine learning: wisdom of crowds / committee of
experts

Truth 1 0 1 1 0 Accuracy
Model 1 1 0 0 1 1 60%
Model 2 0 1 1 1 0 60%
Model 3 0 0 1 0 0 60%
Model 4 1 1 1 1 1 60%
Model 5 1 0 0 0 0 60%
Vote 1–5 1 0 1 1 0 100%

I No one model has to get it all right
I Performance of ensemble outperforms individuals
I Usually more reliable / robust
I Reduces variance

8 / 19



Remoteness: Intrinsic Risk Score for Tree Ensembles

Data point z is remote with respect to class A if its average forest
proximity to examples from A is low.

Remoteness(z) based on the closest class.

Breiman’s forest proximity:
I Points x and y are close to

each other if they tend to land
in the same leaves.

I Note:
I non-Euclidean; invariant to

monotonic scaling
I categorical and numeric

features
I no triangle inequality c©Tom Mitchell, McGraw Hill, 1997
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Extrapolation Risk Score
Following Hooker (2004), define extrapolation risk for data point x as

Extrap(x) =
fU(x)

fU(x) + fD(x)

I fU(x): data density at x assuming a uniform distribution
I fD(x): data density at x assuming the same distribution that

generated the observed data D.

Extrap(x) = 1 for max. risk, and 0 for min. risk.
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Confidence and Extrapolation Representation Trees (CERT)
Hooker (2004) proposed CERT models for estimating extrap. risk.

I Idea: frame as classification problem.

Class A (all train data)
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I Classification model predicts Pr(x ∈ Class B) ≈ Extrap(x)
I Decision tree learns bounding boxes:
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I Analytically compute expected # background points in a region.
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Research Questions

1. Benefits from ensemble of CERT models?
I A: Ensemble consistently improves risk estimation.
I A: Pruning really is needed.

2. Remoteness vs. CERT Forests?
(Intrinsic vs. Extrinsic)

3. Limitations?
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Take Away #1: Extrinsic Risk Model Needed
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Canary Features
Classification model ignores feature x3
— which is important for finding the novel class.

  30%

x1 x2 x3 x4 x5 x6 x7 x8 x9

W
ei

g
h

t 
(N

o
rm

al
iz

ed
)

Feature

Comparison of Feature Weights (NYT Topic)

oracle
Random Forest
CERT Ensemble

  0%

  5%

  10%

  15%

  20%

  25%
Canary Feature

14 / 19



Anecdotal Success on Sandia Data

Task:
I Binary classification with O(100) features.
I Existing SVM classifier with good accuracy, but trouble with

rare anomalies.

Re-filtered SVM output using risk model:
I Fit CERT Forest using large unlabeled corpus.
I Checked predictions with high extrap. risk where SVM had high

confidence.
I 70 of 75 points checked were outliers requiring human analyst.

Impact: group now uses separate models for classification and outlier
detection, and both feed into analyst decision support tool.
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Take Away #2: Intrinsic Risk Needed, Also

Task: predict if Windows binary file is malware or not.1

Training Data: 2010
I 18,588 examples
I 44.8% malware

Testing Data: 2011
I 16,432 examples
I 79.3% malware

Setup:
I Train classifier: goodware vs malware
I Estimate risk (test)
I Risk correlates with classifier mistakes?
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1Data from Ken Chiang, Michael Karres, and Levi Lloyd.
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Error Analysis for PE Task
CERT can prematurely declare points low-risk.
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Conclusions & Next Steps

I Intrinsic and extrinsic risk metrics are complementary.
I Ensembles improve CERT’s risk assessments.
I Characterized failure modes for CERT and remoteness score.

I Characterize types of problems each works well on?
I Benefit from combining?
I Exploring possible fixes for premature stopping in CERT.

Questions?
mamunso@sandia.gov
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