

Exceptional service in the national interest

Wind Turbine Reliability Data Analysis

John Flory, Ph.D. Candidate, University of Pittsburgh

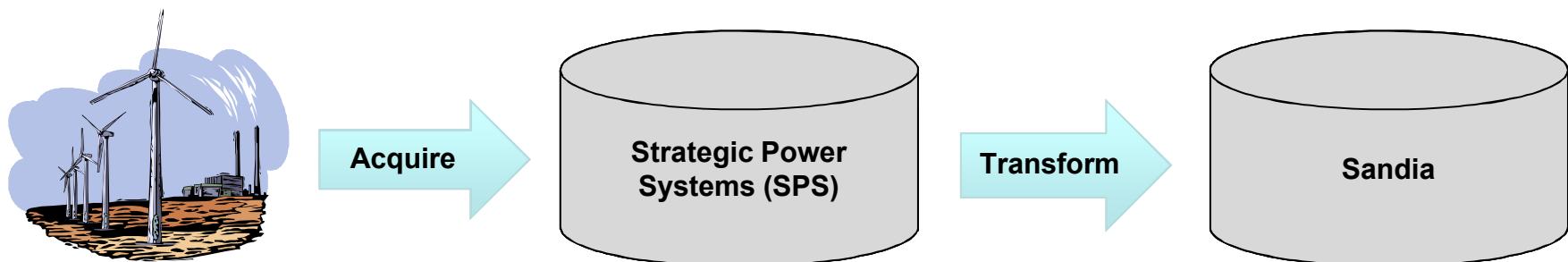
Mentor: Alistair Ogilvie

Organization: 6121

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Purpose

Key objectives:


1. Can data predict wind turbine failures?
2. How much data is really needed?

Role in energy surety:

- Reliability
- Cost effectiveness

Wind Turbine Reliability Data

- **Supervisory control and data acquisition (SCADA) data:**
 - Critical parameters for wind turbine reliability (47 total)
 - Acquisition fidelity based on parameter variability
 - Reduced to summarize 10-minute time intervals
- **Operational Analysis Reliability Program (ORAP) data:**
 - Discrete event-based data
 - Includes statuses as well as critical warnings and failures

Data Issues and Challenges

- **Integrity:**
 - *Completeness:* Often not fully or properly transmitted
 - *Accuracy:* Static values from server overload
- **Collection and storage:**
 - Expense increases exponentially with acquisition fidelity
 - Takes effort to ensure clean transmission of data
- **Statistical:**
 - High-dimensional data set, dependent variables
 - Relatively short history (< 2 years)

SCADA Data Analysis Approach

- **Focus of analysis:**
 - A specific, well-defined failure mode
 - Wind turbines with identical manufacturer and power capacity
- **Failure mode: Drive train vibration**
 - Acceleration exceeds a limit for a specified time interval
 - Results in immediate shutdown of turbine
- **Use regression analysis to:**
 - Identify significant predictors of drive train acceleration
 - Determine root cause of vibration spikes

Regression Results

- **Significant predictors of drive train acceleration**
 1. Wind speed***
 2. Rotor speed
 3. Gearbox temperature
 4. Wind deviation (one second period)
 5. Change in torque
 6. Blade position
- **Regression model:**
 - Explains 55%-80% of acceleration variation (varies by turbine)
 - Wind speed is most important predictor
 - Does not predict the large observed acceleration spikes

Regression Results

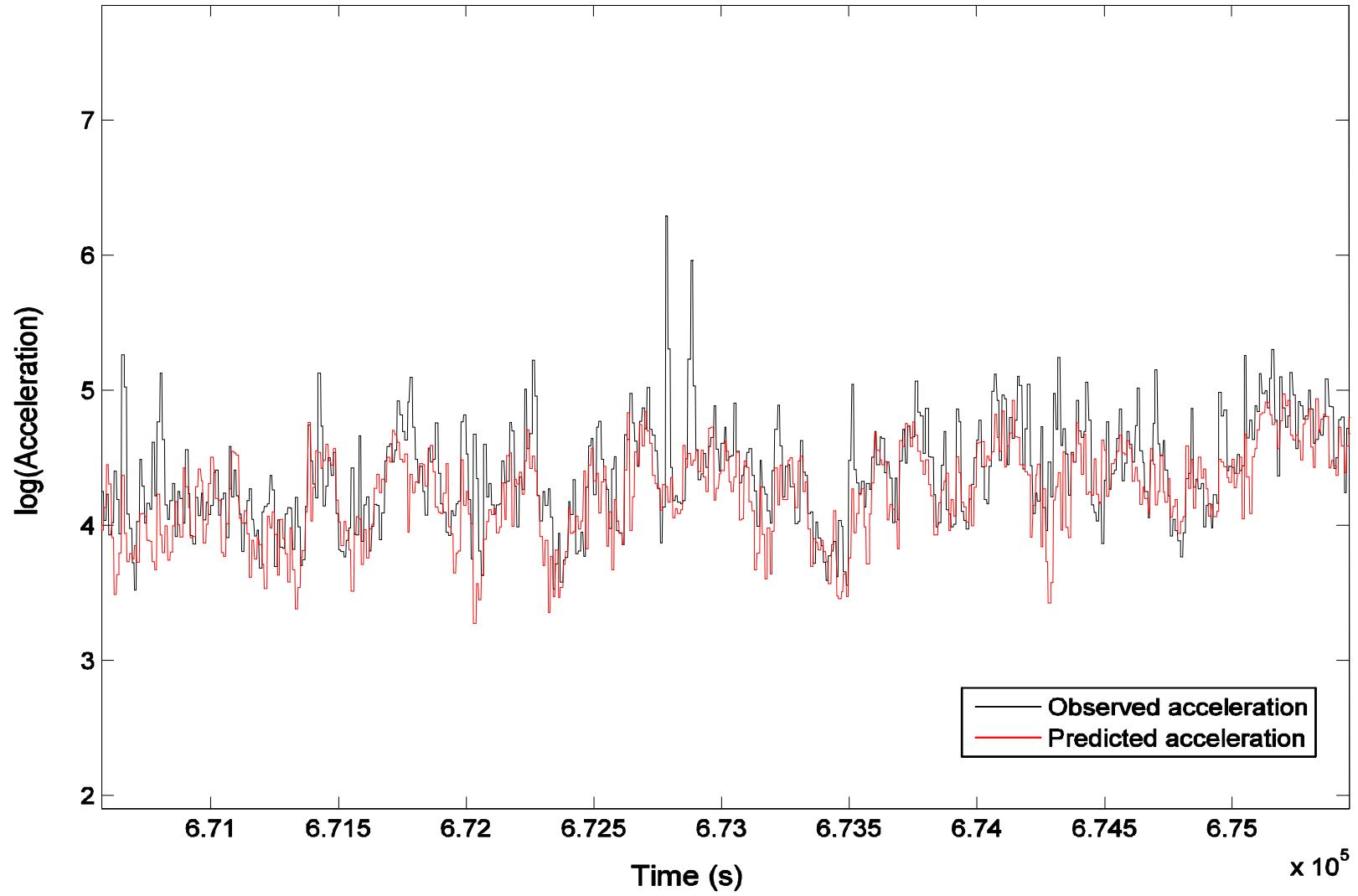


Figure 1: Plot of observed and predicted drive train acceleration.

Model Extensions and Hypothesis

- **Regression using principal components analysis (PCA):**
 - Based on transformed data using principal components
 - Can explain nearly 80% of acceleration variance, but not spikes
 - Pros: Multiple correlated variables utilized
 - Cons: Transformed variables lack intuitive interpretation
- **Best Hypothesis: Wind gusts drive large accelerations.**
- **Attempts to verify hypothesis:**
 - Meteorological tower data
 - Drive train and tower acceleration correspondence

ORAP Analysis Approach

- **Objective:** Identify associations between ORAP events
 - Determine root causes of failures
 - Reveal hidden system interdependencies
- **Focus of analysis:**
 - Warning and failure codes only
 - Limited to turbines with identical manufacturer and power capacity
 - Includes all ORAP data collected to present (~30,000 events)
- **Technique:** *Apriori algorithm*
 - Iteratively identifies significantly associated events
 - Strictly data driven—makes no statistical assumptions
- Events partitioned into unique “turbine-month” bins

ORAP Analysis Results

Confidence		Association Rule		
1.0000	Collective fault pitch controller	Pitch overrun 90°	----->	Blade angle asymmetry
0.9474	Pitch overrun 90°	Pitch control deviation axis 3	----->	Blade angle asymmetry
0.9333	Pitch overrun 90°	Pitch control deviation axis 2	----->	Blade angle asymmetry
0.8889	Increasing speed with falling blade angle	Drivetrain vibration	----->	Tower vibration
0.8750	Increasing speed with falling blade angle	Low noise operation	----->	Tower vibration
0.8667	Generator Overspeed	Drivetrain vibration	----->	Tower vibration
0.8667	Generator speed implausible	Line CCU collective faults	----->	Line CCU fault voltage
0.8571	Response signal from CCU	Pitch overrun 90°	----->	Blade angle asymmetry
0.8571	Pitch overrun 90°	Line CCU collective faults	----->	Line CCU fault voltage
0.8462	Overtemperature pitch motor	Pitch control deviation axis 2	----->	Blade angle asymmetry

Table 1: A sample of some strongly associated ORAP events.

ORAP Analysis Results

- ORAP analysis just beginning....
- Potentially a useful tool to identify failure root causes
 - Statistical results only for now
 - Engineering interpretation needed
- Advantages:
 - Requires no *a priori* data knowledge or assumptions
 - All available ORAP data utilized
 - Relatively quick to perform analysis
- Limitations:
 - ORAP data integrity not considered
 - Actionable information requires systems expertise
 - Association does not imply causality!

Questions