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= Project Goal: Evaluate the small signal and transient stability of
the WECC with high penetrations of wind and solar in 2022
= The western United States are more susceptible to low frequency power

system oscillations caused by generators separated by long transmission
lines that oscillate against each other

= These oscillations are not as well damped as higher frequency “local”

oscillations
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Oscillations in the WECC ) i,

= There are several low frequency oscillation modes in the
Western Electricity Coordinating Council (WECC) region
= “North-South” mode nominally near 0.25 Hz;
= “Alberta-BC” mode nominally near 0.4 Hz;

= “BC” mode nominally near 0.6 Hz; and,
= “Montana” mode nominally near 0.8 Hz.

= System Inertia

= Large conventional generators provide a
significant amount of inertia to the system,
which improves transient response

" Increased renewable penetration (e.g. wind
and solar) has the potential to greatly reduce
system inertia and lead to stability issues




My Part of the Project ) .

= Develop test cases based on WECC base case models (in PSLF)
= Generate statistics for each test case

= Perform modal analysis on the data to characterize the
system stability

= PSLF (Positive Sequence Load Flow)
= GE software for analyzing power systems
= “epcl” language for writing scripts and new models

= Power system modal analysis
= |f you have the equations, eigenvalue analysis

= For real data or large systems
= Prony analysis
= Matric pencil



Base Case Statistics
= 2022 Light Spring TEPPC Scenario Case

= Renewable penetrations consistent with
state RPS requirements in 2022

= Grouped into 21 Areas
= Total Generation: 116,971 MW
= |nstalled Generation: 290,764 MW

= Metrics on Dispatch and Commitment

= GR - Governor Responsive

= BL-Base Load

= NG - No Governor

= Kt —ratio of power generation
capability of units with governor
response to the MW capability of
all generation units

*California ISO (CAISO) Frequency Response Study, GE Energy Consulting, N. W. Miller, 2011
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Generation Summary

GR Pgen (MW) 89,317
GR MWCAP (MW) 117,768
GR Headroom (MW) 28,451
BL Pgen (MW) 6,444
NG Pgen (MW) 3,085
Wind Pgen (MW) 17,559
Solar Pgen (MW) 102
# GR Units 1,348
# BL Units 244
# NG Units 521
# Wind/Solar Units 496
MW Capability 144,958
CU Pgen (MW) 98,847
Total Pgen 116,971
Total Pload 91,294
Wind Pgen/Total Pgen 15.0%
Solar Pgen/Total Pgen 0.1%
Kt 81.2%
GR Pgen/CU Pgen 90.4%
GR Pgen/Total Pgen 76.4%
GR Headroom/CU Pgen 28.8%
GR Headroom/Total Pgen 24.3%

**John Undrill, “Power and Frequency Control as it Relates to Wind-Powered Generation”, Lawrence Berkeley National Laboratory Report, LBNL-4143E, December 2010.
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Base Case Statistics

= Wind/Solar Generation

Renewable Renewable 0
H . — . — (o)
Area lfn(i):s Generation  Installed Genefation =  Wind: Gen-17,558 MW, Installed — 27,918 MW (61%)
(MW) (MW) Solar: Gen — 101 MW; Installed — 175 MW (58%)
101 o 1,035.16  1,668.31 62% 496 Renewable Units, 88% of Wind is from types 3 & 4
11 0 - - -
14 1 50.40 50.40 100%
18 2 - 586.00 0%
20 0 S S -
211 o - - = Total |Renewable
22 | 79 Sl 726.20 =20l Generation|Generation
24 | 176 3,791.05 7,720.14 49% (MW) (MW)
26 | 4 150.00 430.50 35% : :
30 | 8o 69328  1,314.78 53% Light Spring 2022 | 1, ¢ 550 | 17660
40 92 8,357.92 11,272.40 74% (Original WECC Case)
50 0 - - - Nominal Renewable 116 970 12 696
52 0 - - = Output ’ ’
[}]

541 5 50.00 S 61% Increased Solar 116,970 18,152
60 16 458.00 849.90 54%
62 0 - - - Low Load / High

114,61 18,152
63 0 - - - Renewable Output /618 815
64 2 129.99 351.60 37% High Load / High
65 1 40.02 99.00 40% Renewable Output 125,526 17,660
70 15 1,906.99 2,275.50 84%
73 5 666.99 667.20 100%



Modal Analysis

= |norder to evaluate the modes of the system, different “impulse”
stimulus are applied
= A0.5second change in output power of a generator (e.g. Palo Verde)
= AO0.5second increase in load (e.g. Chief Joseph brake)

= The resulting ringdown in generator speeds (system frequency) are
analyzed to pull out the modes of the system
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Modal Analysis Techniques 1) .

O=)Be" —> k)= Bz
i=1 i=1

= Prony Analysis = Matrix Pencil
= Construct a discrete linear prediction = Choose pencil parameter L
model from the measured signal = Construct Hankel matrix [Y]
yin=1) yn-2) - »(0) a y(n) ¥(0) y(1) - y(L)
y(n‘—O) y(n‘—l) - y{l) 4 y(n‘+1) [¥] y(1) (2) o (L1
Y(N=2) y(N=3) - y(N-n-D]a,] [y(N-1) y(N:—L) y(N_:L+l) y(:N)
" Find the roots of the characteristic = Perform Singular Value Decomposition

polynomial of the model

z0 22 o 2 B ¥(0)
z| zy oz | B ov® [
A2 o 2B, y(N-1)

= Solve for modal parameters using the
roots as the complex modal -
frequencies for the signal

of [Y]
r]=wislrf
Set up generalized eigensystem for
pole computation
=l v vy o va]l =T
Pal=l vove vl =]

Solve for modal parameters using
poles z as in Prony method 9

Source: Computational Methods for Electric Power Systems, M. L. Crow, CRC Press, 2010



Prony Analysis ) &,

x 107 Generator Speed Differences (REEVE_G1 - COULEEO1)
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— Simulation data
Prony fit
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1 |Residue| = 3.9878e+36, pole =-62.239059 345.85j, damping =0.177114
2 |Residue| = 3.9878e+36, pole =-62.239059 -345.85j, damping = 0.177114
3 |Residue| = 5.8935e+18, pole =-33.134991 0.00j, damping = 0.177114

4 |Residue| = 1.0757e+17, pole = -33.072341 79.82j, damping = 0.382786

5 |Residue| = 1.0757e+17, pole = -33.072341 -79.82j, damping = 0.382786
6 |Residue| = 3.6599e+13, pole =-29.397770 554.68j, damping = 0.052925
7 |Residue| = 3.6599e+13, pole =-29.397770 -554.68j, damping = 0.052925
8 |Residue| = 5.9204e+07, pole =-22.714937 747.99j, damping = 0.030354
9 |Residue| =5.9204e+07, pole = -22.714937 -747.99j, damping = 0.030354

10
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Next Steps ) &=,

= Modal information gives us insight into stability of the system
under different penetration scenarios

= This information can be applied to control techniques to
improve grid stability with high wind/solar penetrations:

= Power modulation (two schemes, proportional to: local frequency
error and wide area frequency measurements)

= With energy storage
= With curtailment

= Emulated Inertia (virtual rotor angle)
= Brake resistor damping
= VAR modulation

= From an Energy Surety perspective:

= Renewable sources improve Sustainability
= |Improved Stability from optimized control techniques will help with

Reliabilitx and Cost concerns 11



