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 PhD Student 
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 Expected Graduation Date: May 2014



Low Frequency Power System 
Oscillations

 Project Goal: Evaluate the small signal and transient stability of 
the WECC with high penetrations of wind and solar in 2022
 The western United States are more susceptible to low frequency power 

system oscillations caused by generators separated by long transmission 
lines that oscillate against each other

 These oscillations are not as well damped as higher frequency “local” 
oscillations
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Oscillations in the WECC

 There are several low frequency oscillation modes in the 
Western Electricity Coordinating Council (WECC) region
 “North-South” mode nominally near 0.25 Hz;

 “Alberta-BC” mode nominally near 0.4 Hz;

 “BC” mode nominally near 0.6 Hz; and,

 “Montana” mode nominally near 0.8 Hz.
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 System Inertia
 Large conventional generators provide a 

significant amount of inertia to the system, 
which improves transient response

 Increased renewable penetration (e.g. wind 
and solar) has the potential to greatly reduce 
system inertia and lead to stability issues



My Part of the Project

 Develop test cases based on WECC base case models (in PSLF)

 Generate statistics for each test case

 Perform modal analysis on the data to characterize the 
system stability

 PSLF (Positive Sequence Load Flow)
 GE software for analyzing power systems

 “epcl” language for writing scripts and new models

 Power system modal analysis
 If you have the equations, eigenvalue analysis

 For real data or large systems

 Prony analysis

 Matric pencil
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Base Case Statistics
 2022 Light Spring TEPPC Scenario Case

 Renewable penetrations consistent with 
state RPS requirements in 2022

 Grouped into 21 Areas 

 Total Generation: 116,971 MW 

 Installed Generation: 290,764 MW

 Metrics on Dispatch and Commitment
 GR – Governor Responsive

 BL – Base Load

 NG – No Governor

 Kt – ratio of power generation 

capability of units with governor 

response to the MW capability of 

all generation units 6

Generation Summary

GR Pgen (MW) 89,317 

GR MWCAP (MW) 117,768 
GR Headroom (MW) 28,451 

BL Pgen (MW) 6,444 

NG Pgen (MW) 3,085 

Wind Pgen (MW) 17,559 

Solar Pgen (MW) 102 
# GR Units 1,348 

# BL Units 244 

# NG Units 521 

# Wind/Solar Units 496 
MW Capability 144,958 

CU Pgen (MW) 98,847 

Total Pgen 116,971 

Total Pload 91,294 
Wind Pgen/Total Pgen 15.0%

Solar Pgen/Total Pgen 0.1%

Kt 81.2%

GR Pgen/CU Pgen 90.4%
GR Pgen/Total Pgen 76.4%

GR Headroom/CU Pgen 28.8%

GR Headroom/Total Pgen 24.3%

*California ISO (CAISO) Frequency Response Study, GE Energy Consulting, N. W. Miller, 2011
**John Undrill, “Power and Frequency Control as it Relates to Wind-Powered Generation”, Lawrence Berkeley National Laboratory Report, LBNL-4143E, December 2010. 



Base Case Statistics
 Wind/Solar Generation
 Wind: Gen – 17,558 MW; Installed – 27,918 MW (61%) 

 Solar: Gen – 101 MW; Installed – 175 MW (58%)

 496 Renewable Units, 88% of Wind is from types 3 & 4
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Area
# of 

Units

Renewable 
Generation 

(MW)

Renewable 
Installed 

(MW)

% 
Generation

10 9 1,035.16 1,668.31 62%

11 0 - - -

14 1 50.40 50.40 100%

18 2 - 586.00 0%

20 0 - - -

21 0 - - -

22 79 330.40 726.20 46%

24 176 3,791.05 7,720.14 49%

26 4 150.00 430.50 35%

30 89 693.28 1,314.78 53%

40 92 8,357.92 11,272.40 74%

50 0 - - -

52 0 - - -

54 5 50.00 81.60 61%

60 16 458.00 849.90 54%

62 0 - - -

63 0 - - -

64 2 129.99 351.60 37%

65 1 40.02 99.00 40%

70 15 1,906.99 2,275.50 84%

73 5 666.99 667.20 100%

Total
Generation

(MW)

Renewable 
Generation

(MW)

Light Spring 2022
(Original WECC Case)

116,970 17,660

Nominal Renewable
Output

116,970 12,696

Increased Solar 116,970 18,152

Low Load / High 
Renewable Output

114,618 18,152

High Load / High 
Renewable Output

125,526 17,660



Modal Analysis

 In order to evaluate the modes of the system, different “impulse” 
stimulus are applied

 A 0.5 second change in output power of a generator (e.g. Palo Verde)

 A 0.5 second increase in load (e.g. Chief Joseph brake)

 The resulting ringdown in generator speeds (system frequency) are 
analyzed to pull out the modes of the system
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 Matrix Pencil

 Choose pencil parameter L 

 Construct Hankel matrix [Y]

 Perform Singular Value Decomposition 
of [Y]

 Set up generalized eigensystem for 
pole computation

 Solve for modal parameters using 
poles z as in Prony method

Modal Analysis Techniques

 Prony Analysis

 Construct a discrete linear prediction 
model from the measured signal

 Find the roots of the characteristic 
polynomial of the model

 Solve for modal parameters using the 
roots as the complex modal 
frequencies for the signal 9
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Prony Analysis
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1 |Residue| = 3.9878e+36, pole = -62.239059 345.85j, damping = 0.177114

2 |Residue| = 3.9878e+36, pole = -62.239059 -345.85j, damping = 0.177114

3 |Residue| = 5.8935e+18, pole = -33.134991 0.00j, damping = 0.177114

4 |Residue| = 1.0757e+17, pole = -33.072341 79.82j, damping = 0.382786

5 |Residue| = 1.0757e+17, pole = -33.072341 -79.82j, damping = 0.382786

6 |Residue| = 3.6599e+13, pole = -29.397770 554.68j, damping = 0.052925

7 |Residue| = 3.6599e+13, pole = -29.397770 -554.68j, damping = 0.052925

8 |Residue| = 5.9204e+07, pole = -22.714937 747.99j, damping = 0.030354

9 |Residue| = 5.9204e+07, pole = -22.714937 -747.99j, damping = 0.030354



Next Steps

 Modal information gives us insight into stability of the system 
under different penetration scenarios

 This information can be applied to control techniques to 
improve grid stability with high wind/solar penetrations:
 Power modulation (two schemes, proportional to: local frequency 

error and wide area frequency measurements)

 With energy storage

 With curtailment

 Emulated Inertia (virtual rotor angle)

 Brake resistor damping

 VAR modulation

 From an Energy Surety perspective:
 Renewable sources improve Sustainability

 Improved Stability from optimized control techniques will help with 
Reliability and Cost concerns 11


