
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Dax: A Pervasively Parallel Framework 
for Data Analysis and Visualization 

Kenneth Moreland, Sandia National Laboratories

October 3, 2012

SAND2012-8219P



Project Goals

 Develop readiness for scientific data analysis and visualization at 
extreme scale.
 In particular, address the challenges of emerging multi- and many-core 

architectures.

 Create a toolkit that well suited to design of visualization operations 
with a great number of shared memory threads.

 Develop a framework that adapts to emerging processor and 
compiler technologies.

 Design multi-purpose algorithms that can be applied to a variety of 
visualization operations.



Basic Approach

 Functor mapping [Baker, et al. 2010]

functor()



Applied to Topologies

functor()



Applied to Topologies

functor()



Execution 
Environment

Control 
Environment

Dax Framework

dax::cont dax::exec



Execution 
Environment

Control 
Environment

Grid Topology
Array Handle
Invoke

Dax Framework

dax::cont dax::exec



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework

dax::cont dax::exec



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework

dax::cont dax::exec



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke

Device 
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet
Dax Framework

dax::cont dax::exec



Threshold (with point removal)Threshold (with point removal) Contour (with normal estimation and 
surface improvements)
Contour (with normal estimation and 
surface improvements)

Subdivision (with quadratic smoothing)Subdivision (with quadratic smoothing) Contour (with normal, 
surface improvements, 
quadratic smoothing, and 
curvature estimation)

Contour (with normal, 
surface improvements, 
quadratic smoothing, and 
curvature estimation)



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM_POINTS> &values) const

{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM_POINTS> &values) const

{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class HalfSpaceClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (dax::dot(values[index],this->normal) + offset > 0) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class SphereClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class TetrahedraTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(

Topology::PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

int subIndex,
dax::Tuple<dax::Id,NumOutputPoints> &out) const

{
for (int index = 0; index < NumOutputPoints; index++)

{
out[index] = in[TetraVerts[index]];
}

}
}; 

Define cells.



Threshold Operation with Unused Point Removal

































Faceted Normals Smoothed Normals



5

21 26

6

2
3

36

8

32

33
17

16

24

26

6

2
3

36

8

32

33
17

16



5

21 26

6

2
3

36

8

32

33
17

16

24

26

6

2
3

36

8

32

33
17

16

5

21 26

6

2
3

36

8

32

33
17

16

24

26

6

2
3

36

8

32

33
17

16



5

21 26

6

2
3

36

8

32

33
17

16

24

26

6

2
3

36

8

32

33
17

16

2 26 2 3 36 3 6 21 5 26 6

8 32 36 8 32 33 16 24 17 16 33 17



5

21 26

6

2
3

36

8

32

33
17

16

24

26

6

2
3

36

8

32

33
17

16

2 2 3 3 5 6 6 8 8 16 16

17 17 21 24 26 26 32 32 33 33 36 36



5

21 26

6

2
3

36

8

32

33
17

16

24





Faceted Normals Smoothed Normals Simplified Mesh

http://daxtoolkit.org


Project Goals (Summary)

 Develop readiness for scientific data analysis and visualization at 
extreme scale.
 In particular, address the challenges of emerging multi- and many-core 

architectures.

 Create a toolkit that well suited to design of visualization operations 
with a great number of shared memory threads.

 Develop a framework that adapts to emerging processor and 
compiler technologies.

 Design multi-purpose algorithms that can be applied to a variety of 
visualization operations.



Next Steps

 Converge on functional API
 Alpha version released BSD (http://daxtoolkit.org)

 Unify algorithms within integrated toolkit

 Tackle real problems
 Seeking early adopters interested in applying GPUs / accelerators to their 

problem domain


