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Project Goals

 Develop readiness for scientific data analysis and visualization at 
extreme scale.
 In particular, address the challenges of emerging multi- and many-core 

architectures.

 Create a toolkit that well suited to design of visualization operations 
with a great number of shared memory threads.

 Develop a framework that adapts to emerging processor and 
compiler technologies.

 Design multi-purpose algorithms that can be applied to a variety of 
visualization operations.



Basic Approach

 Functor mapping [Baker, et al. 2010]
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template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM_POINTS> &values) const

{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 
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class HalfSpaceClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (dax::dot(values[index],this->normal) + offset > 0) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class SphereClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class TetrahedraTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(

Topology::PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

int subIndex,
dax::Tuple<dax::Id,NumOutputPoints> &out) const

{
for (int index = 0; index < NumOutputPoints; index++)

{
out[index] = in[TetraVerts[index]];
}

}
}; 

Define cells.



Threshold Operation with Unused Point Removal

































Faceted Normals Smoothed Normals
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Faceted Normals Smoothed Normals Simplified Mesh

http://daxtoolkit.org


Project Goals (Summary)

 Develop readiness for scientific data analysis and visualization at 
extreme scale.
 In particular, address the challenges of emerging multi- and many-core 

architectures.

 Create a toolkit that well suited to design of visualization operations 
with a great number of shared memory threads.

 Develop a framework that adapts to emerging processor and 
compiler technologies.

 Design multi-purpose algorithms that can be applied to a variety of 
visualization operations.



Next Steps

 Converge on functional API
 Alpha version released BSD (http://daxtoolkit.org)

 Unify algorithms within integrated toolkit

 Tackle real problems
 Seeking early adopters interested in applying GPUs / accelerators to their 

problem domain


