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= Develop readiness for scientific data analysis and visualization at
extreme scale.

In particular, address the challenges of emerging multi- and many-core
architectures.

= Create a toolkit that well suited to design of visualization operations
with a great number of shared memory threads.

" Develop a framework that adapts to emerging processor and
compiler technologies.

= Design multi-purpose algorithms that can be applied to a variety of
visualization operations.




Basic Approach )

" Functor mapping [Baker, et al. 2010]




Applied to Topologies )i,




Applied to Topologies )i,




Dax Framework ) B

dax::cont dax::exec
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Subdivision (with quadratic smoothing)
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template<typename ValueType>

class ThresholdClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType: :NUM_POINTS> &values) const

{

ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{

out = in;
}
}s



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell

{

public:
typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM POINTS> &values) const
{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid; Report cells to be

} generated.
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class HalfSpaceClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (dax::dot(values[index],this->normal) + offset > @) { return 1; }
}
return 0 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class SphereClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}
return 8 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class TetrahedraTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(
Topology: :PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax: :Id,NumInputPoints> const& in,
int subIndex,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{
for (int index = ©@; index < NumOutputPoints; index++)
{
out[index] = in[TetraVerts[index]];
} Define cells.
}

}s



Threshold Operation with Unused Point Removal
VTK .
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Dax CUDA (Tesla C2050)1
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Faceted Normals Smoothed Normals
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Faceted Normals Smoothed Normals Simplified Mesh


http://daxtoolkit.org

Project Goals (Summary) Dm’:’
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= Develop readiness for scientific data analysis and visualization at
extreme scale.

In particular, address the challenges of emerging multi- and many-core
architectures.

= Create a toolkit that well suited to design of visualization operations
with a great number of shared memory threads.

" Develop a framework that adapts to emerging processor and
compiler technologies.

= Design multi-purpose algorithms that can be applied to a variety of
visualization operations.
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= Converge on functional API
Alpha version released BSD (http://daxtoolkit.org)

= Unify algorithms within integrated toolkit

= Tackle real problems

Seeking early adopters interested in applying GPUs / accelerators to their
problem domain




