National
Laboratories

Exceptz'onal service in the national interest

;'///z'/

Dax: A Pervasively Parallel Ffameork
for Data Analysis and Visualization

Kenneth Moreland, Sandia National Laboratories
October 3, 2012

U.S. DEPARTMENT OF l VU AL =)

JENERGY /[IVA A

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
National Nuclear Security Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

. Fn [
Project Goals iy

National _
Laboratories

= Develop readiness for scientific data analysis and visualization at
extreme scale.

In particular, address the challenges of emerging multi- and many-core
architectures.

= Create a toolkit that well suited to design of visualization operations
with a great number of shared memory threads.

" Develop a framework that adapts to emerging processor and
compiler technologies.

= Design multi-purpose algorithms that can be applied to a variety of
visualization operations.

Basic Approach)

" Functor mapping [Baker, et al. 2010]

Applied to Topologies)i,

Applied to Topologies)i,

Dax Framework) B

dax::cont dax::exec

e

Sandia
National _
Laboratories

Dax Framework

..exec

dax

:cont

dax

e

Sandia
National _
Laboratories

Dax Framework

..exec

dax

:cont

dax

e

Sandia
National _
Laboratories

Dax Framework

..exec

dax

:cont

dax

e

Sandia
National _
Laboratories

Dax Framework

..exec

dax

:cont

dax

Threshold (with point removal)

Subdivision (with quadratic smoothing)

1 N ey
ATNG

Contour (with normal estimation and
surface improvements)

Contour (with normal,
surface improvements
qguadratic smoot
curvature estim

template<typename ValueType>

class ThresholdClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType: :NUM_POINTS> &values) const

{

ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{

out = in;
}
}s

template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell

{

public:
typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM POINTS> &values) const
{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid; Report cells to be

} generated.
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class HalfSpaceClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (dax::dot(values[index],this->normal) + offset > @) { return 1; }
}
return 0 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class SphereClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}
return 8 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class TetrahedraTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(
Topology: :PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax: :Id,NumInputPoints> const& in,
int subIndex,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{
for (int index = ©@; index < NumOutputPoints; index++)
{
out[index] = in[TetraVerts[index]];
} Define cells.
}

}s

Threshold Operation with Unused Point Removal
VTK .
Dax Serial

Dax OpenMP (12 Cores) Il

Dax CUDA (Tesla C2050)1
O 2 4 6 8 10 12 14 16 18 20

Seconds

s

e

Faceted Normals Smoothed Normals

“ N “ N “ N 4 N “ N
4 \ 4 \ 4 \ 4 \ ’ \
[[[[[[| I
\ ’ \ ’ \ ’ \ ’ \ ’

~ 4 ~ 4 ~ 4 ~ ' ~ e

- - - N - N
N\N - S - S - So - S -
~cm———o— " Il Il i I

- ~<
- S o
~ .

”— ‘\\\ ”f ‘\\\ ”—
’ ~ ., N ’
’ N \ ’
[[[
4 AY 4 AN 7 AY
N ~ N
A

7’
[
\

”— ‘s\\

4 ~
4 \
([
\ ’

~

Faceted Normals Smoothed Normals Simplified Mesh

http://daxtoolkit.org

Project Goals (Summary) Dm’:’

National _
Laboratories

= Develop readiness for scientific data analysis and visualization at
extreme scale.

In particular, address the challenges of emerging multi- and many-core
architectures.

= Create a toolkit that well suited to design of visualization operations
with a great number of shared memory threads.

" Develop a framework that adapts to emerging processor and
compiler technologies.

= Design multi-purpose algorithms that can be applied to a variety of
visualization operations.

Fw [)
Next Steps) i

Laboratories

= Converge on functional API
Alpha version released BSD (http://daxtoolkit.org)

= Unify algorithms within integrated toolkit

= Tackle real problems

Seeking early adopters interested in applying GPUs / accelerators to their
problem domain

